summaryrefslogtreecommitdiff
path: root/vendor/crossbeam-deque/src/deque.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/crossbeam-deque/src/deque.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/crossbeam-deque/src/deque.rs')
-rw-r--r--vendor/crossbeam-deque/src/deque.rs2195
1 files changed, 2195 insertions, 0 deletions
diff --git a/vendor/crossbeam-deque/src/deque.rs b/vendor/crossbeam-deque/src/deque.rs
new file mode 100644
index 0000000..c37de2d
--- /dev/null
+++ b/vendor/crossbeam-deque/src/deque.rs
@@ -0,0 +1,2195 @@
+use std::cell::{Cell, UnsafeCell};
+use std::cmp;
+use std::fmt;
+use std::iter::FromIterator;
+use std::marker::PhantomData;
+use std::mem::{self, ManuallyDrop, MaybeUninit};
+use std::ptr;
+use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering};
+use std::sync::Arc;
+
+use crate::epoch::{self, Atomic, Owned};
+use crate::utils::{Backoff, CachePadded};
+
+// Minimum buffer capacity.
+const MIN_CAP: usize = 64;
+// Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`.
+const MAX_BATCH: usize = 32;
+// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets
+// deallocated as soon as possible.
+const FLUSH_THRESHOLD_BYTES: usize = 1 << 10;
+
+/// A buffer that holds tasks in a worker queue.
+///
+/// This is just a pointer to the buffer and its length - dropping an instance of this struct will
+/// *not* deallocate the buffer.
+struct Buffer<T> {
+ /// Pointer to the allocated memory.
+ ptr: *mut T,
+
+ /// Capacity of the buffer. Always a power of two.
+ cap: usize,
+}
+
+unsafe impl<T> Send for Buffer<T> {}
+
+impl<T> Buffer<T> {
+ /// Allocates a new buffer with the specified capacity.
+ fn alloc(cap: usize) -> Buffer<T> {
+ debug_assert_eq!(cap, cap.next_power_of_two());
+
+ let mut v = ManuallyDrop::new(Vec::with_capacity(cap));
+ let ptr = v.as_mut_ptr();
+
+ Buffer { ptr, cap }
+ }
+
+ /// Deallocates the buffer.
+ unsafe fn dealloc(self) {
+ drop(Vec::from_raw_parts(self.ptr, 0, self.cap));
+ }
+
+ /// Returns a pointer to the task at the specified `index`.
+ unsafe fn at(&self, index: isize) -> *mut T {
+ // `self.cap` is always a power of two.
+ // We do all the loads at `MaybeUninit` because we might realize, after loading, that we
+ // don't actually have the right to access this memory.
+ self.ptr.offset(index & (self.cap - 1) as isize)
+ }
+
+ /// Writes `task` into the specified `index`.
+ ///
+ /// This method might be concurrently called with another `read` at the same index, which is
+ /// technically speaking a data race and therefore UB. We should use an atomic store here, but
+ /// that would be more expensive and difficult to implement generically for all types `T`.
+ /// Hence, as a hack, we use a volatile write instead.
+ unsafe fn write(&self, index: isize, task: MaybeUninit<T>) {
+ ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task)
+ }
+
+ /// Reads a task from the specified `index`.
+ ///
+ /// This method might be concurrently called with another `write` at the same index, which is
+ /// technically speaking a data race and therefore UB. We should use an atomic load here, but
+ /// that would be more expensive and difficult to implement generically for all types `T`.
+ /// Hence, as a hack, we use a volatile load instead.
+ unsafe fn read(&self, index: isize) -> MaybeUninit<T> {
+ ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>())
+ }
+}
+
+impl<T> Clone for Buffer<T> {
+ fn clone(&self) -> Buffer<T> {
+ *self
+ }
+}
+
+impl<T> Copy for Buffer<T> {}
+
+/// Internal queue data shared between the worker and stealers.
+///
+/// The implementation is based on the following work:
+///
+/// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev]
+/// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models.
+/// PPoPP 2013.][weak-mem]
+/// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++
+/// atomics. OOPSLA 2013.][checker]
+///
+/// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974
+/// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524
+/// [checker]: https://dl.acm.org/citation.cfm?id=2509514
+struct Inner<T> {
+ /// The front index.
+ front: AtomicIsize,
+
+ /// The back index.
+ back: AtomicIsize,
+
+ /// The underlying buffer.
+ buffer: CachePadded<Atomic<Buffer<T>>>,
+}
+
+impl<T> Drop for Inner<T> {
+ fn drop(&mut self) {
+ // Load the back index, front index, and buffer.
+ let b = *self.back.get_mut();
+ let f = *self.front.get_mut();
+
+ unsafe {
+ let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected());
+
+ // Go through the buffer from front to back and drop all tasks in the queue.
+ let mut i = f;
+ while i != b {
+ buffer.deref().at(i).drop_in_place();
+ i = i.wrapping_add(1);
+ }
+
+ // Free the memory allocated by the buffer.
+ buffer.into_owned().into_box().dealloc();
+ }
+ }
+}
+
+/// Worker queue flavor: FIFO or LIFO.
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+enum Flavor {
+ /// The first-in first-out flavor.
+ Fifo,
+
+ /// The last-in first-out flavor.
+ Lifo,
+}
+
+/// A worker queue.
+///
+/// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal
+/// tasks from it. Task schedulers typically create a single worker queue per thread.
+///
+/// # Examples
+///
+/// A FIFO worker:
+///
+/// ```
+/// use crossbeam_deque::{Steal, Worker};
+///
+/// let w = Worker::new_fifo();
+/// let s = w.stealer();
+///
+/// w.push(1);
+/// w.push(2);
+/// w.push(3);
+///
+/// assert_eq!(s.steal(), Steal::Success(1));
+/// assert_eq!(w.pop(), Some(2));
+/// assert_eq!(w.pop(), Some(3));
+/// ```
+///
+/// A LIFO worker:
+///
+/// ```
+/// use crossbeam_deque::{Steal, Worker};
+///
+/// let w = Worker::new_lifo();
+/// let s = w.stealer();
+///
+/// w.push(1);
+/// w.push(2);
+/// w.push(3);
+///
+/// assert_eq!(s.steal(), Steal::Success(1));
+/// assert_eq!(w.pop(), Some(3));
+/// assert_eq!(w.pop(), Some(2));
+/// ```
+pub struct Worker<T> {
+ /// A reference to the inner representation of the queue.
+ inner: Arc<CachePadded<Inner<T>>>,
+
+ /// A copy of `inner.buffer` for quick access.
+ buffer: Cell<Buffer<T>>,
+
+ /// The flavor of the queue.
+ flavor: Flavor,
+
+ /// Indicates that the worker cannot be shared among threads.
+ _marker: PhantomData<*mut ()>, // !Send + !Sync
+}
+
+unsafe impl<T: Send> Send for Worker<T> {}
+
+impl<T> Worker<T> {
+ /// Creates a FIFO worker queue.
+ ///
+ /// Tasks are pushed and popped from opposite ends.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::<i32>::new_fifo();
+ /// ```
+ pub fn new_fifo() -> Worker<T> {
+ let buffer = Buffer::alloc(MIN_CAP);
+
+ let inner = Arc::new(CachePadded::new(Inner {
+ front: AtomicIsize::new(0),
+ back: AtomicIsize::new(0),
+ buffer: CachePadded::new(Atomic::new(buffer)),
+ }));
+
+ Worker {
+ inner,
+ buffer: Cell::new(buffer),
+ flavor: Flavor::Fifo,
+ _marker: PhantomData,
+ }
+ }
+
+ /// Creates a LIFO worker queue.
+ ///
+ /// Tasks are pushed and popped from the same end.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::<i32>::new_lifo();
+ /// ```
+ pub fn new_lifo() -> Worker<T> {
+ let buffer = Buffer::alloc(MIN_CAP);
+
+ let inner = Arc::new(CachePadded::new(Inner {
+ front: AtomicIsize::new(0),
+ back: AtomicIsize::new(0),
+ buffer: CachePadded::new(Atomic::new(buffer)),
+ }));
+
+ Worker {
+ inner,
+ buffer: Cell::new(buffer),
+ flavor: Flavor::Lifo,
+ _marker: PhantomData,
+ }
+ }
+
+ /// Creates a stealer for this queue.
+ ///
+ /// The returned stealer can be shared among threads and cloned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::<i32>::new_lifo();
+ /// let s = w.stealer();
+ /// ```
+ pub fn stealer(&self) -> Stealer<T> {
+ Stealer {
+ inner: self.inner.clone(),
+ flavor: self.flavor,
+ }
+ }
+
+ /// Resizes the internal buffer to the new capacity of `new_cap`.
+ #[cold]
+ unsafe fn resize(&self, new_cap: usize) {
+ // Load the back index, front index, and buffer.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::Relaxed);
+ let buffer = self.buffer.get();
+
+ // Allocate a new buffer and copy data from the old buffer to the new one.
+ let new = Buffer::alloc(new_cap);
+ let mut i = f;
+ while i != b {
+ ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1);
+ i = i.wrapping_add(1);
+ }
+
+ let guard = &epoch::pin();
+
+ // Replace the old buffer with the new one.
+ self.buffer.replace(new);
+ let old =
+ self.inner
+ .buffer
+ .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard);
+
+ // Destroy the old buffer later.
+ guard.defer_unchecked(move || old.into_owned().into_box().dealloc());
+
+ // If the buffer is very large, then flush the thread-local garbage in order to deallocate
+ // it as soon as possible.
+ if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES {
+ guard.flush();
+ }
+ }
+
+ /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the
+ /// buffer.
+ fn reserve(&self, reserve_cap: usize) {
+ if reserve_cap > 0 {
+ // Compute the current length.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::SeqCst);
+ let len = b.wrapping_sub(f) as usize;
+
+ // The current capacity.
+ let cap = self.buffer.get().cap;
+
+ // Is there enough capacity to push `reserve_cap` tasks?
+ if cap - len < reserve_cap {
+ // Keep doubling the capacity as much as is needed.
+ let mut new_cap = cap * 2;
+ while new_cap - len < reserve_cap {
+ new_cap *= 2;
+ }
+
+ // Resize the buffer.
+ unsafe {
+ self.resize(new_cap);
+ }
+ }
+ }
+ }
+
+ /// Returns `true` if the queue is empty.
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ ///
+ /// assert!(w.is_empty());
+ /// w.push(1);
+ /// assert!(!w.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::SeqCst);
+ b.wrapping_sub(f) <= 0
+ }
+
+ /// Returns the number of tasks in the deque.
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ ///
+ /// assert_eq!(w.len(), 0);
+ /// w.push(1);
+ /// assert_eq!(w.len(), 1);
+ /// w.push(1);
+ /// assert_eq!(w.len(), 2);
+ /// ```
+ pub fn len(&self) -> usize {
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::SeqCst);
+ b.wrapping_sub(f).max(0) as usize
+ }
+
+ /// Pushes a task into the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ /// w.push(1);
+ /// w.push(2);
+ /// ```
+ pub fn push(&self, task: T) {
+ // Load the back index, front index, and buffer.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::Acquire);
+ let mut buffer = self.buffer.get();
+
+ // Calculate the length of the queue.
+ let len = b.wrapping_sub(f);
+
+ // Is the queue full?
+ if len >= buffer.cap as isize {
+ // Yes. Grow the underlying buffer.
+ unsafe {
+ self.resize(2 * buffer.cap);
+ }
+ buffer = self.buffer.get();
+ }
+
+ // Write `task` into the slot.
+ unsafe {
+ buffer.write(b, MaybeUninit::new(task));
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Increment the back index.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ self.inner.back.store(b.wrapping_add(1), Ordering::Release);
+ }
+
+ /// Pops a task from the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_fifo();
+ /// w.push(1);
+ /// w.push(2);
+ ///
+ /// assert_eq!(w.pop(), Some(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// assert_eq!(w.pop(), None);
+ /// ```
+ pub fn pop(&self) -> Option<T> {
+ // Load the back and front index.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::Relaxed);
+
+ // Calculate the length of the queue.
+ let len = b.wrapping_sub(f);
+
+ // Is the queue empty?
+ if len <= 0 {
+ return None;
+ }
+
+ match self.flavor {
+ // Pop from the front of the queue.
+ Flavor::Fifo => {
+ // Try incrementing the front index to pop the task.
+ let f = self.inner.front.fetch_add(1, Ordering::SeqCst);
+ let new_f = f.wrapping_add(1);
+
+ if b.wrapping_sub(new_f) < 0 {
+ self.inner.front.store(f, Ordering::Relaxed);
+ return None;
+ }
+
+ unsafe {
+ // Read the popped task.
+ let buffer = self.buffer.get();
+ let task = buffer.read(f).assume_init();
+
+ // Shrink the buffer if `len - 1` is less than one fourth of the capacity.
+ if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 {
+ self.resize(buffer.cap / 2);
+ }
+
+ Some(task)
+ }
+ }
+
+ // Pop from the back of the queue.
+ Flavor::Lifo => {
+ // Decrement the back index.
+ let b = b.wrapping_sub(1);
+ self.inner.back.store(b, Ordering::Relaxed);
+
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the front index.
+ let f = self.inner.front.load(Ordering::Relaxed);
+
+ // Compute the length after the back index was decremented.
+ let len = b.wrapping_sub(f);
+
+ if len < 0 {
+ // The queue is empty. Restore the back index to the original task.
+ self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
+ None
+ } else {
+ // Read the task to be popped.
+ let buffer = self.buffer.get();
+ let mut task = unsafe { Some(buffer.read(b)) };
+
+ // Are we popping the last task from the queue?
+ if len == 0 {
+ // Try incrementing the front index.
+ if self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // Failed. We didn't pop anything. Reset to `None`.
+ task.take();
+ }
+
+ // Restore the back index to the original task.
+ self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
+ } else {
+ // Shrink the buffer if `len` is less than one fourth of the capacity.
+ if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 {
+ unsafe {
+ self.resize(buffer.cap / 2);
+ }
+ }
+ }
+
+ task.map(|t| unsafe { t.assume_init() })
+ }
+ }
+ }
+ }
+}
+
+impl<T> fmt::Debug for Worker<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Worker { .. }")
+ }
+}
+
+/// A stealer handle of a worker queue.
+///
+/// Stealers can be shared among threads.
+///
+/// Task schedulers typically have a single worker queue per worker thread.
+///
+/// # Examples
+///
+/// ```
+/// use crossbeam_deque::{Steal, Worker};
+///
+/// let w = Worker::new_lifo();
+/// w.push(1);
+/// w.push(2);
+///
+/// let s = w.stealer();
+/// assert_eq!(s.steal(), Steal::Success(1));
+/// assert_eq!(s.steal(), Steal::Success(2));
+/// assert_eq!(s.steal(), Steal::Empty);
+/// ```
+pub struct Stealer<T> {
+ /// A reference to the inner representation of the queue.
+ inner: Arc<CachePadded<Inner<T>>>,
+
+ /// The flavor of the queue.
+ flavor: Flavor,
+}
+
+unsafe impl<T: Send> Send for Stealer<T> {}
+unsafe impl<T: Send> Sync for Stealer<T> {}
+
+impl<T> Stealer<T> {
+ /// Returns `true` if the queue is empty.
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ /// let s = w.stealer();
+ ///
+ /// assert!(s.is_empty());
+ /// w.push(1);
+ /// assert!(!s.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let f = self.inner.front.load(Ordering::Acquire);
+ atomic::fence(Ordering::SeqCst);
+ let b = self.inner.back.load(Ordering::Acquire);
+ b.wrapping_sub(f) <= 0
+ }
+
+ /// Returns the number of tasks in the deque.
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ /// let s = w.stealer();
+ ///
+ /// assert_eq!(s.len(), 0);
+ /// w.push(1);
+ /// assert_eq!(s.len(), 1);
+ /// w.push(2);
+ /// assert_eq!(s.len(), 2);
+ /// ```
+ pub fn len(&self) -> usize {
+ let f = self.inner.front.load(Ordering::Acquire);
+ atomic::fence(Ordering::SeqCst);
+ let b = self.inner.back.load(Ordering::Acquire);
+ b.wrapping_sub(f).max(0) as usize
+ }
+
+ /// Steals a task from the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Steal, Worker};
+ ///
+ /// let w = Worker::new_lifo();
+ /// w.push(1);
+ /// w.push(2);
+ ///
+ /// let s = w.stealer();
+ /// assert_eq!(s.steal(), Steal::Success(1));
+ /// assert_eq!(s.steal(), Steal::Success(2));
+ /// ```
+ pub fn steal(&self) -> Steal<T> {
+ // Load the front index.
+ let f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ return Steal::Empty;
+ }
+
+ // Load the buffer and read the task at the front.
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+ let task = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ // If the buffer has been swapped or the increment fails, we retry.
+ if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
+ || self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ return Steal::Retry;
+ }
+
+ // Return the stolen task.
+ Steal::Success(unsafe { task.assume_init() })
+ }
+
+ /// Steals a batch of tasks and pushes them into another worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w1 = Worker::new_fifo();
+ /// w1.push(1);
+ /// w1.push(2);
+ /// w1.push(3);
+ /// w1.push(4);
+ ///
+ /// let s = w1.stealer();
+ /// let w2 = Worker::new_fifo();
+ ///
+ /// let _ = s.steal_batch(&w2);
+ /// assert_eq!(w2.pop(), Some(1));
+ /// assert_eq!(w2.pop(), Some(2));
+ /// ```
+ pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> {
+ self.steal_batch_with_limit(dest, MAX_BATCH)
+ }
+
+ /// Steals no more than `limit` of tasks and pushes them into another worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than the given limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w1 = Worker::new_fifo();
+ /// w1.push(1);
+ /// w1.push(2);
+ /// w1.push(3);
+ /// w1.push(4);
+ /// w1.push(5);
+ /// w1.push(6);
+ ///
+ /// let s = w1.stealer();
+ /// let w2 = Worker::new_fifo();
+ ///
+ /// let _ = s.steal_batch_with_limit(&w2, 2);
+ /// assert_eq!(w2.pop(), Some(1));
+ /// assert_eq!(w2.pop(), Some(2));
+ /// assert_eq!(w2.pop(), None);
+ ///
+ /// w1.push(7);
+ /// w1.push(8);
+ /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
+ /// // half of the elements are currently popped, but the number of popped elements is considered
+ /// // an implementation detail that may be changed in the future.
+ /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX);
+ /// assert_eq!(w2.len(), 3);
+ /// ```
+ pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> {
+ assert!(limit > 0);
+ if Arc::ptr_eq(&self.inner, &dest.inner) {
+ if dest.is_empty() {
+ return Steal::Empty;
+ } else {
+ return Steal::Success(());
+ }
+ }
+
+ // Load the front index.
+ let mut f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ let len = b.wrapping_sub(f);
+ if len <= 0 {
+ return Steal::Empty;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = cmp::min((len as usize + 1) / 2, limit);
+ dest.reserve(batch_size);
+ let mut batch_size = batch_size as isize;
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ // Load the buffer.
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+
+ match self.flavor {
+ // Steal a batch of tasks from the front at once.
+ Flavor::Fifo => {
+ // Copy the batch from the source to the destination buffer.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i));
+ dest_buffer.write(dest_b.wrapping_add(i), task);
+ }
+ }
+ }
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i));
+ dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
+ }
+ }
+ }
+ }
+
+ // Try incrementing the front index to steal the batch.
+ // If the buffer has been swapped or the increment fails, we retry.
+ if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
+ || self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(batch_size),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ dest_b = dest_b.wrapping_add(batch_size);
+ }
+
+ // Steal a batch of tasks from the front one by one.
+ Flavor::Lifo => {
+ // This loop may modify the batch_size, which triggers a clippy lint warning.
+ // Use a new variable to avoid the warning, and to make it clear we aren't
+ // modifying the loop exit condition during iteration.
+ let original_batch_size = batch_size;
+
+ for i in 0..original_batch_size {
+ // If this is not the first steal, check whether the queue is empty.
+ if i > 0 {
+ // We've already got the current front index. Now execute the fence to
+ // synchronize with other threads.
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ batch_size = i;
+ break;
+ }
+ }
+
+ // Read the task at the front.
+ let task = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ // If the buffer has been swapped or the increment fails, we retry.
+ if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
+ || self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // We didn't steal this task, forget it and break from the loop.
+ batch_size = i;
+ break;
+ }
+
+ // Write the stolen task into the destination buffer.
+ unsafe {
+ dest_buffer.write(dest_b, task);
+ }
+
+ // Move the source front index and the destination back index one step forward.
+ f = f.wrapping_add(1);
+ dest_b = dest_b.wrapping_add(1);
+ }
+
+ // If we didn't steal anything, the operation needs to be retried.
+ if batch_size == 0 {
+ return Steal::Retry;
+ }
+
+ // If stealing into a FIFO queue, stolen tasks need to be reversed.
+ if dest.flavor == Flavor::Fifo {
+ for i in 0..batch_size / 2 {
+ unsafe {
+ let i1 = dest_b.wrapping_sub(batch_size - i);
+ let i2 = dest_b.wrapping_sub(i + 1);
+ let t1 = dest_buffer.read(i1);
+ let t2 = dest_buffer.read(i2);
+ dest_buffer.write(i1, t2);
+ dest_buffer.write(i2, t1);
+ }
+ }
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ dest.inner.back.store(dest_b, Ordering::Release);
+
+ // Return with success.
+ Steal::Success(())
+ }
+
+ /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Steal, Worker};
+ ///
+ /// let w1 = Worker::new_fifo();
+ /// w1.push(1);
+ /// w1.push(2);
+ /// w1.push(3);
+ /// w1.push(4);
+ ///
+ /// let s = w1.stealer();
+ /// let w2 = Worker::new_fifo();
+ ///
+ /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1));
+ /// assert_eq!(w2.pop(), Some(2));
+ /// ```
+ pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> {
+ self.steal_batch_with_limit_and_pop(dest, MAX_BATCH)
+ }
+
+ /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from
+ /// that worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than the given limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Steal, Worker};
+ ///
+ /// let w1 = Worker::new_fifo();
+ /// w1.push(1);
+ /// w1.push(2);
+ /// w1.push(3);
+ /// w1.push(4);
+ /// w1.push(5);
+ /// w1.push(6);
+ ///
+ /// let s = w1.stealer();
+ /// let w2 = Worker::new_fifo();
+ ///
+ /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1));
+ /// assert_eq!(w2.pop(), Some(2));
+ /// assert_eq!(w2.pop(), None);
+ ///
+ /// w1.push(7);
+ /// w1.push(8);
+ /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
+ /// // half of the elements are currently popped, but the number of popped elements is considered
+ /// // an implementation detail that may be changed in the future.
+ /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3));
+ /// assert_eq!(w2.pop(), Some(4));
+ /// assert_eq!(w2.pop(), Some(5));
+ /// assert_eq!(w2.pop(), None);
+ /// ```
+ pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> {
+ assert!(limit > 0);
+ if Arc::ptr_eq(&self.inner, &dest.inner) {
+ match dest.pop() {
+ None => return Steal::Empty,
+ Some(task) => return Steal::Success(task),
+ }
+ }
+
+ // Load the front index.
+ let mut f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ let len = b.wrapping_sub(f);
+ if len <= 0 {
+ return Steal::Empty;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = cmp::min((len as usize - 1) / 2, limit - 1);
+ dest.reserve(batch_size);
+ let mut batch_size = batch_size as isize;
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ // Load the buffer
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+
+ // Read the task at the front.
+ let mut task = unsafe { buffer.deref().read(f) };
+
+ match self.flavor {
+ // Steal a batch of tasks from the front at once.
+ Flavor::Fifo => {
+ // Copy the batch from the source to the destination buffer.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i + 1));
+ dest_buffer.write(dest_b.wrapping_add(i), task);
+ }
+ }
+ }
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i + 1));
+ dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
+ }
+ }
+ }
+ }
+
+ // Try incrementing the front index to steal the task.
+ // If the buffer has been swapped or the increment fails, we retry.
+ if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
+ || self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(batch_size + 1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ return Steal::Retry;
+ }
+
+ dest_b = dest_b.wrapping_add(batch_size);
+ }
+
+ // Steal a batch of tasks from the front one by one.
+ Flavor::Lifo => {
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ return Steal::Retry;
+ }
+
+ // Move the front index one step forward.
+ f = f.wrapping_add(1);
+
+ // Repeat the same procedure for the batch steals.
+ //
+ // This loop may modify the batch_size, which triggers a clippy lint warning.
+ // Use a new variable to avoid the warning, and to make it clear we aren't
+ // modifying the loop exit condition during iteration.
+ let original_batch_size = batch_size;
+ for i in 0..original_batch_size {
+ // We've already got the current front index. Now execute the fence to
+ // synchronize with other threads.
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ batch_size = i;
+ break;
+ }
+
+ // Read the task at the front.
+ let tmp = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ // If the buffer has been swapped or the increment fails, we retry.
+ if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
+ || self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // We didn't steal this task, forget it and break from the loop.
+ batch_size = i;
+ break;
+ }
+
+ // Write the previously stolen task into the destination buffer.
+ unsafe {
+ dest_buffer.write(dest_b, mem::replace(&mut task, tmp));
+ }
+
+ // Move the source front index and the destination back index one step forward.
+ f = f.wrapping_add(1);
+ dest_b = dest_b.wrapping_add(1);
+ }
+
+ // If stealing into a FIFO queue, stolen tasks need to be reversed.
+ if dest.flavor == Flavor::Fifo {
+ for i in 0..batch_size / 2 {
+ unsafe {
+ let i1 = dest_b.wrapping_sub(batch_size - i);
+ let i2 = dest_b.wrapping_sub(i + 1);
+ let t1 = dest_buffer.read(i1);
+ let t2 = dest_buffer.read(i2);
+ dest_buffer.write(i1, t2);
+ dest_buffer.write(i2, t1);
+ }
+ }
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ dest.inner.back.store(dest_b, Ordering::Release);
+
+ // Return with success.
+ Steal::Success(unsafe { task.assume_init() })
+ }
+}
+
+impl<T> Clone for Stealer<T> {
+ fn clone(&self) -> Stealer<T> {
+ Stealer {
+ inner: self.inner.clone(),
+ flavor: self.flavor,
+ }
+ }
+}
+
+impl<T> fmt::Debug for Stealer<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Stealer { .. }")
+ }
+}
+
+// Bits indicating the state of a slot:
+// * If a task has been written into the slot, `WRITE` is set.
+// * If a task has been read from the slot, `READ` is set.
+// * If the block is being destroyed, `DESTROY` is set.
+const WRITE: usize = 1;
+const READ: usize = 2;
+const DESTROY: usize = 4;
+
+// Each block covers one "lap" of indices.
+const LAP: usize = 64;
+// The maximum number of values a block can hold.
+const BLOCK_CAP: usize = LAP - 1;
+// How many lower bits are reserved for metadata.
+const SHIFT: usize = 1;
+// Indicates that the block is not the last one.
+const HAS_NEXT: usize = 1;
+
+/// A slot in a block.
+struct Slot<T> {
+ /// The task.
+ task: UnsafeCell<MaybeUninit<T>>,
+
+ /// The state of the slot.
+ state: AtomicUsize,
+}
+
+impl<T> Slot<T> {
+ const UNINIT: Self = Self {
+ task: UnsafeCell::new(MaybeUninit::uninit()),
+ state: AtomicUsize::new(0),
+ };
+
+ /// Waits until a task is written into the slot.
+ fn wait_write(&self) {
+ let backoff = Backoff::new();
+ while self.state.load(Ordering::Acquire) & WRITE == 0 {
+ backoff.snooze();
+ }
+ }
+}
+
+/// A block in a linked list.
+///
+/// Each block in the list can hold up to `BLOCK_CAP` values.
+struct Block<T> {
+ /// The next block in the linked list.
+ next: AtomicPtr<Block<T>>,
+
+ /// Slots for values.
+ slots: [Slot<T>; BLOCK_CAP],
+}
+
+impl<T> Block<T> {
+ /// Creates an empty block that starts at `start_index`.
+ fn new() -> Block<T> {
+ Self {
+ next: AtomicPtr::new(ptr::null_mut()),
+ slots: [Slot::UNINIT; BLOCK_CAP],
+ }
+ }
+
+ /// Waits until the next pointer is set.
+ fn wait_next(&self) -> *mut Block<T> {
+ let backoff = Backoff::new();
+ loop {
+ let next = self.next.load(Ordering::Acquire);
+ if !next.is_null() {
+ return next;
+ }
+ backoff.snooze();
+ }
+ }
+
+ /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
+ unsafe fn destroy(this: *mut Block<T>, count: usize) {
+ // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
+ // begun destruction of the block.
+ for i in (0..count).rev() {
+ let slot = (*this).slots.get_unchecked(i);
+
+ // Mark the `DESTROY` bit if a thread is still using the slot.
+ if slot.state.load(Ordering::Acquire) & READ == 0
+ && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
+ {
+ // If a thread is still using the slot, it will continue destruction of the block.
+ return;
+ }
+ }
+
+ // No thread is using the block, now it is safe to destroy it.
+ drop(Box::from_raw(this));
+ }
+}
+
+/// A position in a queue.
+struct Position<T> {
+ /// The index in the queue.
+ index: AtomicUsize,
+
+ /// The block in the linked list.
+ block: AtomicPtr<Block<T>>,
+}
+
+/// An injector queue.
+///
+/// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have
+/// a single injector queue, which is the entry point for new tasks.
+///
+/// # Examples
+///
+/// ```
+/// use crossbeam_deque::{Injector, Steal};
+///
+/// let q = Injector::new();
+/// q.push(1);
+/// q.push(2);
+///
+/// assert_eq!(q.steal(), Steal::Success(1));
+/// assert_eq!(q.steal(), Steal::Success(2));
+/// assert_eq!(q.steal(), Steal::Empty);
+/// ```
+pub struct Injector<T> {
+ /// The head of the queue.
+ head: CachePadded<Position<T>>,
+
+ /// The tail of the queue.
+ tail: CachePadded<Position<T>>,
+
+ /// Indicates that dropping a `Injector<T>` may drop values of type `T`.
+ _marker: PhantomData<T>,
+}
+
+unsafe impl<T: Send> Send for Injector<T> {}
+unsafe impl<T: Send> Sync for Injector<T> {}
+
+impl<T> Default for Injector<T> {
+ fn default() -> Self {
+ let block = Box::into_raw(Box::new(Block::<T>::new()));
+ Self {
+ head: CachePadded::new(Position {
+ block: AtomicPtr::new(block),
+ index: AtomicUsize::new(0),
+ }),
+ tail: CachePadded::new(Position {
+ block: AtomicPtr::new(block),
+ index: AtomicUsize::new(0),
+ }),
+ _marker: PhantomData,
+ }
+ }
+}
+
+impl<T> Injector<T> {
+ /// Creates a new injector queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let q = Injector::<i32>::new();
+ /// ```
+ pub fn new() -> Injector<T> {
+ Self::default()
+ }
+
+ /// Pushes a task into the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let w = Injector::new();
+ /// w.push(1);
+ /// w.push(2);
+ /// ```
+ pub fn push(&self, task: T) {
+ let backoff = Backoff::new();
+ let mut tail = self.tail.index.load(Ordering::Acquire);
+ let mut block = self.tail.block.load(Ordering::Acquire);
+ let mut next_block = None;
+
+ loop {
+ // Calculate the offset of the index into the block.
+ let offset = (tail >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ tail = self.tail.index.load(Ordering::Acquire);
+ block = self.tail.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ // If we're going to have to install the next block, allocate it in advance in order to
+ // make the wait for other threads as short as possible.
+ if offset + 1 == BLOCK_CAP && next_block.is_none() {
+ next_block = Some(Box::new(Block::<T>::new()));
+ }
+
+ let new_tail = tail + (1 << SHIFT);
+
+ // Try advancing the tail forward.
+ match self.tail.index.compare_exchange_weak(
+ tail,
+ new_tail,
+ Ordering::SeqCst,
+ Ordering::Acquire,
+ ) {
+ Ok(_) => unsafe {
+ // If we've reached the end of the block, install the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next_block = Box::into_raw(next_block.unwrap());
+ let next_index = new_tail.wrapping_add(1 << SHIFT);
+
+ self.tail.block.store(next_block, Ordering::Release);
+ self.tail.index.store(next_index, Ordering::Release);
+ (*block).next.store(next_block, Ordering::Release);
+ }
+
+ // Write the task into the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.task.get().write(MaybeUninit::new(task));
+ slot.state.fetch_or(WRITE, Ordering::Release);
+
+ return;
+ },
+ Err(t) => {
+ tail = t;
+ block = self.tail.block.load(Ordering::Acquire);
+ backoff.spin();
+ }
+ }
+ }
+ }
+
+ /// Steals a task from the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Steal};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ ///
+ /// assert_eq!(q.steal(), Steal::Success(1));
+ /// assert_eq!(q.steal(), Steal::Success(2));
+ /// assert_eq!(q.steal(), Steal::Empty);
+ /// ```
+ pub fn steal(&self) -> Steal<T> {
+ let mut head;
+ let mut block;
+ let mut offset;
+
+ let backoff = Backoff::new();
+ loop {
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+
+ // Calculate the offset of the index into the block.
+ offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ } else {
+ break;
+ }
+ }
+
+ let mut new_head = head + (1 << SHIFT);
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return Steal::Empty;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ }
+ }
+
+ // Try moving the head index forward.
+ if self
+ .head
+ .index
+ .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let task = slot.task.get().read().assume_init();
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy
+ // but couldn't because we were busy reading from the slot.
+ if (offset + 1 == BLOCK_CAP)
+ || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0)
+ {
+ Block::destroy(block, offset);
+ }
+
+ Steal::Success(task)
+ }
+ }
+
+ /// Steals a batch of tasks and pushes them into a worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Worker};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ /// q.push(3);
+ /// q.push(4);
+ ///
+ /// let w = Worker::new_fifo();
+ /// let _ = q.steal_batch(&w);
+ /// assert_eq!(w.pop(), Some(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// ```
+ pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> {
+ self.steal_batch_with_limit(dest, MAX_BATCH)
+ }
+
+ /// Steals no more than of tasks and pushes them into a worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Worker};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ /// q.push(3);
+ /// q.push(4);
+ /// q.push(5);
+ /// q.push(6);
+ ///
+ /// let w = Worker::new_fifo();
+ /// let _ = q.steal_batch_with_limit(&w, 2);
+ /// assert_eq!(w.pop(), Some(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// assert_eq!(w.pop(), None);
+ ///
+ /// q.push(7);
+ /// q.push(8);
+ /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
+ /// // half of the elements are currently popped, but the number of popped elements is considered
+ /// // an implementation detail that may be changed in the future.
+ /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX);
+ /// assert_eq!(w.len(), 3);
+ /// ```
+ pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> {
+ assert!(limit > 0);
+ let mut head;
+ let mut block;
+ let mut offset;
+
+ let backoff = Backoff::new();
+ loop {
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+
+ // Calculate the offset of the index into the block.
+ offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ } else {
+ break;
+ }
+ }
+
+ let mut new_head = head;
+ let advance;
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return Steal::Empty;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate
+ // the right batch size to steal.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(limit);
+ } else {
+ let len = (tail - head) >> SHIFT;
+ // Steal half of the available tasks.
+ advance = ((len + 1) / 2).min(limit);
+ }
+ } else {
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(limit);
+ }
+
+ new_head += advance << SHIFT;
+ let new_offset = offset + advance;
+
+ // Try moving the head index forward.
+ if self
+ .head
+ .index
+ .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = new_offset - offset;
+ dest.reserve(batch_size);
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if new_offset == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Copy values from the injector into the destination queue.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i);
+ slot.wait_write();
+ let task = slot.task.get().read();
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add(i as isize), task);
+ }
+ }
+
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i);
+ slot.wait_write();
+ let task = slot.task.get().read();
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
+ // data races because it doesn't understand fences.
+ dest.inner
+ .back
+ .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy
+ // but couldn't because we were busy reading from the slot.
+ if new_offset == BLOCK_CAP {
+ Block::destroy(block, offset);
+ } else {
+ for i in offset..new_offset {
+ let slot = (*block).slots.get_unchecked(i);
+
+ if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset);
+ break;
+ }
+ }
+ }
+
+ Steal::Success(())
+ }
+ }
+
+ /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Steal, Worker};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ /// q.push(3);
+ /// q.push(4);
+ ///
+ /// let w = Worker::new_fifo();
+ /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// ```
+ pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> {
+ // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly
+ // better, but we may change it in the future to be compatible with the same method in Stealer.
+ self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1)
+ }
+
+ /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than the given limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Steal, Worker};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ /// q.push(3);
+ /// q.push(4);
+ /// q.push(5);
+ /// q.push(6);
+ ///
+ /// let w = Worker::new_fifo();
+ /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// assert_eq!(w.pop(), None);
+ ///
+ /// q.push(7);
+ /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
+ /// // half of the elements are currently popped, but the number of popped elements is considered
+ /// // an implementation detail that may be changed in the future.
+ /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3));
+ /// assert_eq!(w.pop(), Some(4));
+ /// assert_eq!(w.pop(), Some(5));
+ /// assert_eq!(w.pop(), None);
+ /// ```
+ pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> {
+ assert!(limit > 0);
+ let mut head;
+ let mut block;
+ let mut offset;
+
+ let backoff = Backoff::new();
+ loop {
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+
+ // Calculate the offset of the index into the block.
+ offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ } else {
+ break;
+ }
+ }
+
+ let mut new_head = head;
+ let advance;
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return Steal::Empty;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(limit);
+ } else {
+ let len = (tail - head) >> SHIFT;
+ // Steal half of the available tasks.
+ advance = ((len + 1) / 2).min(limit);
+ }
+ } else {
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(limit);
+ }
+
+ new_head += advance << SHIFT;
+ let new_offset = offset + advance;
+
+ // Try moving the head index forward.
+ if self
+ .head
+ .index
+ .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = new_offset - offset - 1;
+ dest.reserve(batch_size);
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if new_offset == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let task = slot.task.get().read();
+
+ match dest.flavor {
+ Flavor::Fifo => {
+ // Copy values from the injector into the destination queue.
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i + 1);
+ slot.wait_write();
+ let task = slot.task.get().read();
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add(i as isize), task);
+ }
+ }
+
+ Flavor::Lifo => {
+ // Copy values from the injector into the destination queue.
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i + 1);
+ slot.wait_write();
+ let task = slot.task.get().read();
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
+ // data races because it doesn't understand fences.
+ dest.inner
+ .back
+ .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy
+ // but couldn't because we were busy reading from the slot.
+ if new_offset == BLOCK_CAP {
+ Block::destroy(block, offset);
+ } else {
+ for i in offset..new_offset {
+ let slot = (*block).slots.get_unchecked(i);
+
+ if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset);
+ break;
+ }
+ }
+ }
+
+ Steal::Success(task.assume_init())
+ }
+ }
+
+ /// Returns `true` if the queue is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let q = Injector::new();
+ ///
+ /// assert!(q.is_empty());
+ /// q.push(1);
+ /// assert!(!q.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let head = self.head.index.load(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::SeqCst);
+ head >> SHIFT == tail >> SHIFT
+ }
+
+ /// Returns the number of tasks in the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let q = Injector::new();
+ ///
+ /// assert_eq!(q.len(), 0);
+ /// q.push(1);
+ /// assert_eq!(q.len(), 1);
+ /// q.push(1);
+ /// assert_eq!(q.len(), 2);
+ /// ```
+ pub fn len(&self) -> usize {
+ loop {
+ // Load the tail index, then load the head index.
+ let mut tail = self.tail.index.load(Ordering::SeqCst);
+ let mut head = self.head.index.load(Ordering::SeqCst);
+
+ // If the tail index didn't change, we've got consistent indices to work with.
+ if self.tail.index.load(Ordering::SeqCst) == tail {
+ // Erase the lower bits.
+ tail &= !((1 << SHIFT) - 1);
+ head &= !((1 << SHIFT) - 1);
+
+ // Fix up indices if they fall onto block ends.
+ if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
+ tail = tail.wrapping_add(1 << SHIFT);
+ }
+ if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Rotate indices so that head falls into the first block.
+ let lap = (head >> SHIFT) / LAP;
+ tail = tail.wrapping_sub((lap * LAP) << SHIFT);
+ head = head.wrapping_sub((lap * LAP) << SHIFT);
+
+ // Remove the lower bits.
+ tail >>= SHIFT;
+ head >>= SHIFT;
+
+ // Return the difference minus the number of blocks between tail and head.
+ return tail - head - tail / LAP;
+ }
+ }
+ }
+}
+
+impl<T> Drop for Injector<T> {
+ fn drop(&mut self) {
+ let mut head = *self.head.index.get_mut();
+ let mut tail = *self.tail.index.get_mut();
+ let mut block = *self.head.block.get_mut();
+
+ // Erase the lower bits.
+ head &= !((1 << SHIFT) - 1);
+ tail &= !((1 << SHIFT) - 1);
+
+ unsafe {
+ // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
+ while head != tail {
+ let offset = (head >> SHIFT) % LAP;
+
+ if offset < BLOCK_CAP {
+ // Drop the task in the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ let p = &mut *slot.task.get();
+ p.as_mut_ptr().drop_in_place();
+ } else {
+ // Deallocate the block and move to the next one.
+ let next = *(*block).next.get_mut();
+ drop(Box::from_raw(block));
+ block = next;
+ }
+
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Deallocate the last remaining block.
+ drop(Box::from_raw(block));
+ }
+ }
+}
+
+impl<T> fmt::Debug for Injector<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Worker { .. }")
+ }
+}
+
+/// Possible outcomes of a steal operation.
+///
+/// # Examples
+///
+/// There are lots of ways to chain results of steal operations together:
+///
+/// ```
+/// use crossbeam_deque::Steal::{self, Empty, Retry, Success};
+///
+/// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>();
+///
+/// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty);
+/// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry);
+/// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1));
+///
+/// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry);
+/// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1));
+/// ```
+#[must_use]
+#[derive(PartialEq, Eq, Copy, Clone)]
+pub enum Steal<T> {
+ /// The queue was empty at the time of stealing.
+ Empty,
+
+ /// At least one task was successfully stolen.
+ Success(T),
+
+ /// The steal operation needs to be retried.
+ Retry,
+}
+
+impl<T> Steal<T> {
+ /// Returns `true` if the queue was empty at the time of stealing.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert!(!Success(7).is_empty());
+ /// assert!(!Retry::<i32>.is_empty());
+ ///
+ /// assert!(Empty::<i32>.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ match self {
+ Steal::Empty => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if at least one task was stolen.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert!(!Empty::<i32>.is_success());
+ /// assert!(!Retry::<i32>.is_success());
+ ///
+ /// assert!(Success(7).is_success());
+ /// ```
+ pub fn is_success(&self) -> bool {
+ match self {
+ Steal::Success(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if the steal operation needs to be retried.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert!(!Empty::<i32>.is_retry());
+ /// assert!(!Success(7).is_retry());
+ ///
+ /// assert!(Retry::<i32>.is_retry());
+ /// ```
+ pub fn is_retry(&self) -> bool {
+ match self {
+ Steal::Retry => true,
+ _ => false,
+ }
+ }
+
+ /// Returns the result of the operation, if successful.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert_eq!(Empty::<i32>.success(), None);
+ /// assert_eq!(Retry::<i32>.success(), None);
+ ///
+ /// assert_eq!(Success(7).success(), Some(7));
+ /// ```
+ pub fn success(self) -> Option<T> {
+ match self {
+ Steal::Success(res) => Some(res),
+ _ => None,
+ }
+ }
+
+ /// If no task was stolen, attempts another steal operation.
+ ///
+ /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then:
+ ///
+ /// * If the second steal resulted in `Success`, it is returned.
+ /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned.
+ /// * If both resulted in `None`, then `None` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1));
+ /// assert_eq!(Retry.or_else(|| Success(2)), Success(2));
+ ///
+ /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>);
+ /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>);
+ ///
+ /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>);
+ /// ```
+ pub fn or_else<F>(self, f: F) -> Steal<T>
+ where
+ F: FnOnce() -> Steal<T>,
+ {
+ match self {
+ Steal::Empty => f(),
+ Steal::Success(_) => self,
+ Steal::Retry => {
+ if let Steal::Success(res) = f() {
+ Steal::Success(res)
+ } else {
+ Steal::Retry
+ }
+ }
+ }
+ }
+}
+
+impl<T> fmt::Debug for Steal<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self {
+ Steal::Empty => f.pad("Empty"),
+ Steal::Success(_) => f.pad("Success(..)"),
+ Steal::Retry => f.pad("Retry"),
+ }
+ }
+}
+
+impl<T> FromIterator<Steal<T>> for Steal<T> {
+ /// Consumes items until a `Success` is found and returns it.
+ ///
+ /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`.
+ /// Otherwise, `Empty` is returned.
+ fn from_iter<I>(iter: I) -> Steal<T>
+ where
+ I: IntoIterator<Item = Steal<T>>,
+ {
+ let mut retry = false;
+ for s in iter {
+ match &s {
+ Steal::Empty => {}
+ Steal::Success(_) => return s,
+ Steal::Retry => retry = true,
+ }
+ }
+
+ if retry {
+ Steal::Retry
+ } else {
+ Steal::Empty
+ }
+ }
+}