aboutsummaryrefslogtreecommitdiff
path: root/vendor/gimli/src/read/cfi.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/gimli/src/read/cfi.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/gimli/src/read/cfi.rs')
-rw-r--r--vendor/gimli/src/read/cfi.rs7823
1 files changed, 0 insertions, 7823 deletions
diff --git a/vendor/gimli/src/read/cfi.rs b/vendor/gimli/src/read/cfi.rs
deleted file mode 100644
index d92c8b2..0000000
--- a/vendor/gimli/src/read/cfi.rs
+++ /dev/null
@@ -1,7823 +0,0 @@
-#[cfg(feature = "read")]
-use alloc::boxed::Box;
-
-use core::cmp::{Ord, Ordering};
-use core::fmt::{self, Debug};
-use core::iter::FromIterator;
-use core::mem;
-use core::num::Wrapping;
-
-use super::util::{ArrayLike, ArrayVec};
-use crate::common::{
- DebugFrameOffset, EhFrameOffset, Encoding, Format, Register, SectionId, Vendor,
-};
-use crate::constants::{self, DwEhPe};
-use crate::endianity::Endianity;
-use crate::read::{
- EndianSlice, Error, Expression, Reader, ReaderOffset, Result, Section, StoreOnHeap,
-};
-
-/// `DebugFrame` contains the `.debug_frame` section's frame unwinding
-/// information required to unwind to and recover registers from older frames on
-/// the stack. For example, this is useful for a debugger that wants to print
-/// locals in a backtrace.
-///
-/// Most interesting methods are defined in the
-/// [`UnwindSection`](trait.UnwindSection.html) trait.
-///
-/// ### Differences between `.debug_frame` and `.eh_frame`
-///
-/// While the `.debug_frame` section's information has a lot of overlap with the
-/// `.eh_frame` section's information, the `.eh_frame` information tends to only
-/// encode the subset of information needed for exception handling. Often, only
-/// one of `.eh_frame` or `.debug_frame` will be present in an object file.
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub struct DebugFrame<R: Reader> {
- section: R,
- address_size: u8,
- segment_size: u8,
- vendor: Vendor,
-}
-
-impl<R: Reader> DebugFrame<R> {
- /// Set the size of a target address in bytes.
- ///
- /// This defaults to the native word size.
- /// This is only used if the CIE version is less than 4.
- pub fn set_address_size(&mut self, address_size: u8) {
- self.address_size = address_size
- }
-
- /// Set the size of a segment selector in bytes.
- ///
- /// This defaults to 0.
- /// This is only used if the CIE version is less than 4.
- pub fn set_segment_size(&mut self, segment_size: u8) {
- self.segment_size = segment_size
- }
-
- /// Set the vendor extensions to use.
- ///
- /// This defaults to `Vendor::Default`.
- pub fn set_vendor(&mut self, vendor: Vendor) {
- self.vendor = vendor;
- }
-}
-
-impl<'input, Endian> DebugFrame<EndianSlice<'input, Endian>>
-where
- Endian: Endianity,
-{
- /// Construct a new `DebugFrame` instance from the data in the
- /// `.debug_frame` section.
- ///
- /// It is the caller's responsibility to read the section and present it as
- /// a `&[u8]` slice. That means using some ELF loader on Linux, a Mach-O
- /// loader on macOS, etc.
- ///
- /// ```
- /// use gimli::{DebugFrame, NativeEndian};
- ///
- /// // Use with `.debug_frame`
- /// # let buf = [0x00, 0x01, 0x02, 0x03];
- /// # let read_debug_frame_section_somehow = || &buf;
- /// let debug_frame = DebugFrame::new(read_debug_frame_section_somehow(), NativeEndian);
- /// ```
- pub fn new(section: &'input [u8], endian: Endian) -> Self {
- Self::from(EndianSlice::new(section, endian))
- }
-}
-
-impl<R: Reader> Section<R> for DebugFrame<R> {
- fn id() -> SectionId {
- SectionId::DebugFrame
- }
-
- fn reader(&self) -> &R {
- &self.section
- }
-}
-
-impl<R: Reader> From<R> for DebugFrame<R> {
- fn from(section: R) -> Self {
- // Default to no segments and native word size.
- DebugFrame {
- section,
- address_size: mem::size_of::<usize>() as u8,
- segment_size: 0,
- vendor: Vendor::Default,
- }
- }
-}
-
-/// `EhFrameHdr` contains the information about the `.eh_frame_hdr` section.
-///
-/// A pointer to the start of the `.eh_frame` data, and optionally, a binary
-/// search table of pointers to the `.eh_frame` records that are found in this section.
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub struct EhFrameHdr<R: Reader>(R);
-
-/// `ParsedEhFrameHdr` contains the parsed information from the `.eh_frame_hdr` section.
-#[derive(Clone, Debug)]
-pub struct ParsedEhFrameHdr<R: Reader> {
- address_size: u8,
- section: R,
-
- eh_frame_ptr: Pointer,
- fde_count: u64,
- table_enc: DwEhPe,
- table: R,
-}
-
-impl<'input, Endian> EhFrameHdr<EndianSlice<'input, Endian>>
-where
- Endian: Endianity,
-{
- /// Constructs a new `EhFrameHdr` instance from the data in the `.eh_frame_hdr` section.
- pub fn new(section: &'input [u8], endian: Endian) -> Self {
- Self::from(EndianSlice::new(section, endian))
- }
-}
-
-impl<R: Reader> EhFrameHdr<R> {
- /// Parses this `EhFrameHdr` to a `ParsedEhFrameHdr`.
- pub fn parse(&self, bases: &BaseAddresses, address_size: u8) -> Result<ParsedEhFrameHdr<R>> {
- let mut reader = self.0.clone();
- let version = reader.read_u8()?;
- if version != 1 {
- return Err(Error::UnknownVersion(u64::from(version)));
- }
-
- let eh_frame_ptr_enc = parse_pointer_encoding(&mut reader)?;
- let fde_count_enc = parse_pointer_encoding(&mut reader)?;
- let table_enc = parse_pointer_encoding(&mut reader)?;
-
- let parameters = PointerEncodingParameters {
- bases: &bases.eh_frame_hdr,
- func_base: None,
- address_size,
- section: &self.0,
- };
-
- // Omitting this pointer is not valid (defeats the purpose of .eh_frame_hdr entirely)
- if eh_frame_ptr_enc == constants::DW_EH_PE_omit {
- return Err(Error::CannotParseOmitPointerEncoding);
- }
- let eh_frame_ptr = parse_encoded_pointer(eh_frame_ptr_enc, &parameters, &mut reader)?;
-
- let fde_count;
- if fde_count_enc == constants::DW_EH_PE_omit || table_enc == constants::DW_EH_PE_omit {
- fde_count = 0
- } else {
- fde_count = parse_encoded_pointer(fde_count_enc, &parameters, &mut reader)?.direct()?;
- }
-
- Ok(ParsedEhFrameHdr {
- address_size,
- section: self.0.clone(),
-
- eh_frame_ptr,
- fde_count,
- table_enc,
- table: reader,
- })
- }
-}
-
-impl<R: Reader> Section<R> for EhFrameHdr<R> {
- fn id() -> SectionId {
- SectionId::EhFrameHdr
- }
-
- fn reader(&self) -> &R {
- &self.0
- }
-}
-
-impl<R: Reader> From<R> for EhFrameHdr<R> {
- fn from(section: R) -> Self {
- EhFrameHdr(section)
- }
-}
-
-impl<R: Reader> ParsedEhFrameHdr<R> {
- /// Returns the address of the binary's `.eh_frame` section.
- pub fn eh_frame_ptr(&self) -> Pointer {
- self.eh_frame_ptr
- }
-
- /// Retrieves the CFI binary search table, if there is one.
- pub fn table(&self) -> Option<EhHdrTable<R>> {
- // There are two big edge cases here:
- // * You search the table for an invalid address. As this is just a binary
- // search table, we always have to return a valid result for that (unless
- // you specify an address that is lower than the first address in the
- // table). Since this means that you have to recheck that the FDE contains
- // your address anyways, we just return the first FDE even when the address
- // is too low. After all, we're just doing a normal binary search.
- // * This falls apart when the table is empty - there is no entry we could
- // return. We conclude that an empty table is not really a table at all.
- if self.fde_count == 0 {
- None
- } else {
- Some(EhHdrTable { hdr: self })
- }
- }
-}
-
-/// An iterator for `.eh_frame_hdr` section's binary search table.
-///
-/// Each table entry consists of a tuple containing an `initial_location` and `address`.
-/// The `initial location` represents the first address that the targeted FDE
-/// is able to decode. The `address` is the address of the FDE in the `.eh_frame` section.
-/// The `address` can be converted with `EhHdrTable::pointer_to_offset` and `EhFrame::fde_from_offset` to an FDE.
-#[derive(Debug)]
-pub struct EhHdrTableIter<'a, 'bases, R: Reader> {
- hdr: &'a ParsedEhFrameHdr<R>,
- table: R,
- bases: &'bases BaseAddresses,
- remain: u64,
-}
-
-impl<'a, 'bases, R: Reader> EhHdrTableIter<'a, 'bases, R> {
- /// Yield the next entry in the `EhHdrTableIter`.
- pub fn next(&mut self) -> Result<Option<(Pointer, Pointer)>> {
- if self.remain == 0 {
- return Ok(None);
- }
-
- let parameters = PointerEncodingParameters {
- bases: &self.bases.eh_frame_hdr,
- func_base: None,
- address_size: self.hdr.address_size,
- section: &self.hdr.section,
- };
-
- self.remain -= 1;
- let from = parse_encoded_pointer(self.hdr.table_enc, &parameters, &mut self.table)?;
- let to = parse_encoded_pointer(self.hdr.table_enc, &parameters, &mut self.table)?;
- Ok(Some((from, to)))
- }
- /// Yield the nth entry in the `EhHdrTableIter`
- pub fn nth(&mut self, n: usize) -> Result<Option<(Pointer, Pointer)>> {
- use core::convert::TryFrom;
- let size = match self.hdr.table_enc.format() {
- constants::DW_EH_PE_uleb128 | constants::DW_EH_PE_sleb128 => {
- return Err(Error::VariableLengthSearchTable);
- }
- constants::DW_EH_PE_sdata2 | constants::DW_EH_PE_udata2 => 2,
- constants::DW_EH_PE_sdata4 | constants::DW_EH_PE_udata4 => 4,
- constants::DW_EH_PE_sdata8 | constants::DW_EH_PE_udata8 => 8,
- _ => return Err(Error::UnknownPointerEncoding),
- };
-
- let row_size = size * 2;
- let n = u64::try_from(n).map_err(|_| Error::UnsupportedOffset)?;
- self.remain = self.remain.saturating_sub(n);
- self.table.skip(R::Offset::from_u64(n * row_size)?)?;
- self.next()
- }
-}
-
-#[cfg(feature = "fallible-iterator")]
-impl<'a, 'bases, R: Reader> fallible_iterator::FallibleIterator for EhHdrTableIter<'a, 'bases, R> {
- type Item = (Pointer, Pointer);
- type Error = Error;
- fn next(&mut self) -> Result<Option<Self::Item>> {
- EhHdrTableIter::next(self)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- use core::convert::TryInto;
- (
- self.remain.try_into().unwrap_or(0),
- self.remain.try_into().ok(),
- )
- }
-
- fn nth(&mut self, n: usize) -> Result<Option<Self::Item>> {
- EhHdrTableIter::nth(self, n)
- }
-}
-
-/// The CFI binary search table that is an optional part of the `.eh_frame_hdr` section.
-#[derive(Debug, Clone)]
-pub struct EhHdrTable<'a, R: Reader> {
- hdr: &'a ParsedEhFrameHdr<R>,
-}
-
-impl<'a, R: Reader + 'a> EhHdrTable<'a, R> {
- /// Return an iterator that can walk the `.eh_frame_hdr` table.
- ///
- /// Each table entry consists of a tuple containing an `initial_location` and `address`.
- /// The `initial location` represents the first address that the targeted FDE
- /// is able to decode. The `address` is the address of the FDE in the `.eh_frame` section.
- /// The `address` can be converted with `EhHdrTable::pointer_to_offset` and `EhFrame::fde_from_offset` to an FDE.
- pub fn iter<'bases>(&self, bases: &'bases BaseAddresses) -> EhHdrTableIter<'_, 'bases, R> {
- EhHdrTableIter {
- hdr: self.hdr,
- bases,
- remain: self.hdr.fde_count,
- table: self.hdr.table.clone(),
- }
- }
- /// *Probably* returns a pointer to the FDE for the given address.
- ///
- /// This performs a binary search, so if there is no FDE for the given address,
- /// this function **will** return a pointer to any other FDE that's close by.
- ///
- /// To be sure, you **must** call `contains` on the FDE.
- pub fn lookup(&self, address: u64, bases: &BaseAddresses) -> Result<Pointer> {
- let size = match self.hdr.table_enc.format() {
- constants::DW_EH_PE_uleb128 | constants::DW_EH_PE_sleb128 => {
- return Err(Error::VariableLengthSearchTable);
- }
- constants::DW_EH_PE_sdata2 | constants::DW_EH_PE_udata2 => 2,
- constants::DW_EH_PE_sdata4 | constants::DW_EH_PE_udata4 => 4,
- constants::DW_EH_PE_sdata8 | constants::DW_EH_PE_udata8 => 8,
- _ => return Err(Error::UnknownPointerEncoding),
- };
-
- let row_size = size * 2;
-
- let mut len = self.hdr.fde_count;
-
- let mut reader = self.hdr.table.clone();
-
- let parameters = PointerEncodingParameters {
- bases: &bases.eh_frame_hdr,
- func_base: None,
- address_size: self.hdr.address_size,
- section: &self.hdr.section,
- };
-
- while len > 1 {
- let head = reader.split(R::Offset::from_u64((len / 2) * row_size)?)?;
- let tail = reader.clone();
-
- let pivot =
- parse_encoded_pointer(self.hdr.table_enc, &parameters, &mut reader)?.direct()?;
-
- match pivot.cmp(&address) {
- Ordering::Equal => {
- reader = tail;
- break;
- }
- Ordering::Less => {
- reader = tail;
- len = len - (len / 2);
- }
- Ordering::Greater => {
- reader = head;
- len /= 2;
- }
- }
- }
-
- reader.skip(R::Offset::from_u64(size)?)?;
-
- parse_encoded_pointer(self.hdr.table_enc, &parameters, &mut reader)
- }
-
- /// Convert a `Pointer` to a section offset.
- ///
- /// This does not support indirect pointers.
- pub fn pointer_to_offset(&self, ptr: Pointer) -> Result<EhFrameOffset<R::Offset>> {
- let ptr = ptr.direct()?;
- let eh_frame_ptr = self.hdr.eh_frame_ptr().direct()?;
-
- // Calculate the offset in the EhFrame section
- R::Offset::from_u64(ptr - eh_frame_ptr).map(EhFrameOffset)
- }
-
- /// Returns a parsed FDE for the given address, or `NoUnwindInfoForAddress`
- /// if there are none.
- ///
- /// You must provide a function to get its associated CIE. See
- /// `PartialFrameDescriptionEntry::parse` for more information.
- ///
- /// # Example
- ///
- /// ```
- /// # use gimli::{BaseAddresses, EhFrame, ParsedEhFrameHdr, EndianSlice, NativeEndian, Error, UnwindSection};
- /// # fn foo() -> Result<(), Error> {
- /// # let eh_frame: EhFrame<EndianSlice<NativeEndian>> = unreachable!();
- /// # let eh_frame_hdr: ParsedEhFrameHdr<EndianSlice<NativeEndian>> = unimplemented!();
- /// # let addr = 0;
- /// # let bases = unimplemented!();
- /// let table = eh_frame_hdr.table().unwrap();
- /// let fde = table.fde_for_address(&eh_frame, &bases, addr, EhFrame::cie_from_offset)?;
- /// # Ok(())
- /// # }
- /// ```
- pub fn fde_for_address<F>(
- &self,
- frame: &EhFrame<R>,
- bases: &BaseAddresses,
- address: u64,
- get_cie: F,
- ) -> Result<FrameDescriptionEntry<R>>
- where
- F: FnMut(
- &EhFrame<R>,
- &BaseAddresses,
- EhFrameOffset<R::Offset>,
- ) -> Result<CommonInformationEntry<R>>,
- {
- let fdeptr = self.lookup(address, bases)?;
- let offset = self.pointer_to_offset(fdeptr)?;
- let entry = frame.fde_from_offset(bases, offset, get_cie)?;
- if entry.contains(address) {
- Ok(entry)
- } else {
- Err(Error::NoUnwindInfoForAddress)
- }
- }
-
- #[inline]
- #[doc(hidden)]
- #[deprecated(note = "Method renamed to fde_for_address; use that instead.")]
- pub fn lookup_and_parse<F>(
- &self,
- address: u64,
- bases: &BaseAddresses,
- frame: EhFrame<R>,
- get_cie: F,
- ) -> Result<FrameDescriptionEntry<R>>
- where
- F: FnMut(
- &EhFrame<R>,
- &BaseAddresses,
- EhFrameOffset<R::Offset>,
- ) -> Result<CommonInformationEntry<R>>,
- {
- self.fde_for_address(&frame, bases, address, get_cie)
- }
-
- /// Returns the frame unwind information for the given address,
- /// or `NoUnwindInfoForAddress` if there are none.
- ///
- /// You must provide a function to get the associated CIE. See
- /// `PartialFrameDescriptionEntry::parse` for more information.
- pub fn unwind_info_for_address<'ctx, F, A: UnwindContextStorage<R>>(
- &self,
- frame: &EhFrame<R>,
- bases: &BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- address: u64,
- get_cie: F,
- ) -> Result<&'ctx UnwindTableRow<R, A>>
- where
- F: FnMut(
- &EhFrame<R>,
- &BaseAddresses,
- EhFrameOffset<R::Offset>,
- ) -> Result<CommonInformationEntry<R>>,
- {
- let fde = self.fde_for_address(frame, bases, address, get_cie)?;
- fde.unwind_info_for_address(frame, bases, ctx, address)
- }
-}
-
-/// `EhFrame` contains the frame unwinding information needed during exception
-/// handling found in the `.eh_frame` section.
-///
-/// Most interesting methods are defined in the
-/// [`UnwindSection`](trait.UnwindSection.html) trait.
-///
-/// See
-/// [`DebugFrame`](./struct.DebugFrame.html#differences-between-debug_frame-and-eh_frame)
-/// for some discussion on the differences between `.debug_frame` and
-/// `.eh_frame`.
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub struct EhFrame<R: Reader> {
- section: R,
- address_size: u8,
- vendor: Vendor,
-}
-
-impl<R: Reader> EhFrame<R> {
- /// Set the size of a target address in bytes.
- ///
- /// This defaults to the native word size.
- pub fn set_address_size(&mut self, address_size: u8) {
- self.address_size = address_size
- }
-
- /// Set the vendor extensions to use.
- ///
- /// This defaults to `Vendor::Default`.
- pub fn set_vendor(&mut self, vendor: Vendor) {
- self.vendor = vendor;
- }
-}
-
-impl<'input, Endian> EhFrame<EndianSlice<'input, Endian>>
-where
- Endian: Endianity,
-{
- /// Construct a new `EhFrame` instance from the data in the
- /// `.eh_frame` section.
- ///
- /// It is the caller's responsibility to read the section and present it as
- /// a `&[u8]` slice. That means using some ELF loader on Linux, a Mach-O
- /// loader on macOS, etc.
- ///
- /// ```
- /// use gimli::{EhFrame, EndianSlice, NativeEndian};
- ///
- /// // Use with `.eh_frame`
- /// # let buf = [0x00, 0x01, 0x02, 0x03];
- /// # let read_eh_frame_section_somehow = || &buf;
- /// let eh_frame = EhFrame::new(read_eh_frame_section_somehow(), NativeEndian);
- /// ```
- pub fn new(section: &'input [u8], endian: Endian) -> Self {
- Self::from(EndianSlice::new(section, endian))
- }
-}
-
-impl<R: Reader> Section<R> for EhFrame<R> {
- fn id() -> SectionId {
- SectionId::EhFrame
- }
-
- fn reader(&self) -> &R {
- &self.section
- }
-}
-
-impl<R: Reader> From<R> for EhFrame<R> {
- fn from(section: R) -> Self {
- // Default to native word size.
- EhFrame {
- section,
- address_size: mem::size_of::<usize>() as u8,
- vendor: Vendor::Default,
- }
- }
-}
-
-// This has to be `pub` to silence a warning (that is deny(..)'d by default) in
-// rustc. Eventually, not having this `pub` will become a hard error.
-#[doc(hidden)]
-#[allow(missing_docs)]
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum CieOffsetEncoding {
- U32,
- U64,
-}
-
-/// An offset into an `UnwindSection`.
-//
-// Needed to avoid conflicting implementations of `Into<T>`.
-pub trait UnwindOffset<T = usize>: Copy + Debug + Eq + From<T>
-where
- T: ReaderOffset,
-{
- /// Convert an `UnwindOffset<T>` into a `T`.
- fn into(self) -> T;
-}
-
-impl<T> UnwindOffset<T> for DebugFrameOffset<T>
-where
- T: ReaderOffset,
-{
- #[inline]
- fn into(self) -> T {
- self.0
- }
-}
-
-impl<T> UnwindOffset<T> for EhFrameOffset<T>
-where
- T: ReaderOffset,
-{
- #[inline]
- fn into(self) -> T {
- self.0
- }
-}
-
-/// This trait completely encapsulates everything that is different between
-/// `.eh_frame` and `.debug_frame`, as well as all the bits that can change
-/// between DWARF versions.
-#[doc(hidden)]
-pub trait _UnwindSectionPrivate<R: Reader> {
- /// Get the underlying section data.
- fn section(&self) -> &R;
-
- /// Returns true if the given length value should be considered an
- /// end-of-entries sentinel.
- fn length_value_is_end_of_entries(length: R::Offset) -> bool;
-
- /// Return true if the given offset if the CIE sentinel, false otherwise.
- fn is_cie(format: Format, id: u64) -> bool;
-
- /// Return the CIE offset/ID encoding used by this unwind section with the
- /// given DWARF format.
- fn cie_offset_encoding(format: Format) -> CieOffsetEncoding;
-
- /// For `.eh_frame`, CIE offsets are relative to the current position. For
- /// `.debug_frame`, they are relative to the start of the section. We always
- /// internally store them relative to the section, so we handle translating
- /// `.eh_frame`'s relative offsets in this method. If the offset calculation
- /// underflows, return `None`.
- fn resolve_cie_offset(&self, base: R::Offset, offset: R::Offset) -> Option<R::Offset>;
-
- /// Does this version of this unwind section encode address and segment
- /// sizes in its CIEs?
- fn has_address_and_segment_sizes(version: u8) -> bool;
-
- /// The address size to use if `has_address_and_segment_sizes` returns false.
- fn address_size(&self) -> u8;
-
- /// The segment size to use if `has_address_and_segment_sizes` returns false.
- fn segment_size(&self) -> u8;
-
- /// The vendor extensions to use.
- fn vendor(&self) -> Vendor;
-}
-
-/// A section holding unwind information: either `.debug_frame` or
-/// `.eh_frame`. See [`DebugFrame`](./struct.DebugFrame.html) and
-/// [`EhFrame`](./struct.EhFrame.html) respectively.
-pub trait UnwindSection<R: Reader>: Clone + Debug + _UnwindSectionPrivate<R> {
- /// The offset type associated with this CFI section. Either
- /// `DebugFrameOffset` or `EhFrameOffset`.
- type Offset: UnwindOffset<R::Offset>;
-
- /// Iterate over the `CommonInformationEntry`s and `FrameDescriptionEntry`s
- /// in this `.debug_frame` section.
- ///
- /// Can be [used with
- /// `FallibleIterator`](./index.html#using-with-fallibleiterator).
- fn entries<'bases>(&self, bases: &'bases BaseAddresses) -> CfiEntriesIter<'bases, Self, R> {
- CfiEntriesIter {
- section: self.clone(),
- bases,
- input: self.section().clone(),
- }
- }
-
- /// Parse the `CommonInformationEntry` at the given offset.
- fn cie_from_offset(
- &self,
- bases: &BaseAddresses,
- offset: Self::Offset,
- ) -> Result<CommonInformationEntry<R>> {
- let offset = UnwindOffset::into(offset);
- let input = &mut self.section().clone();
- input.skip(offset)?;
- CommonInformationEntry::parse(bases, self, input)
- }
-
- /// Parse the `PartialFrameDescriptionEntry` at the given offset.
- fn partial_fde_from_offset<'bases>(
- &self,
- bases: &'bases BaseAddresses,
- offset: Self::Offset,
- ) -> Result<PartialFrameDescriptionEntry<'bases, Self, R>> {
- let offset = UnwindOffset::into(offset);
- let input = &mut self.section().clone();
- input.skip(offset)?;
- PartialFrameDescriptionEntry::parse_partial(self, bases, input)
- }
-
- /// Parse the `FrameDescriptionEntry` at the given offset.
- fn fde_from_offset<F>(
- &self,
- bases: &BaseAddresses,
- offset: Self::Offset,
- get_cie: F,
- ) -> Result<FrameDescriptionEntry<R>>
- where
- F: FnMut(&Self, &BaseAddresses, Self::Offset) -> Result<CommonInformationEntry<R>>,
- {
- let partial = self.partial_fde_from_offset(bases, offset)?;
- partial.parse(get_cie)
- }
-
- /// Find the `FrameDescriptionEntry` for the given address.
- ///
- /// If found, the FDE is returned. If not found,
- /// `Err(gimli::Error::NoUnwindInfoForAddress)` is returned.
- /// If parsing fails, the error is returned.
- ///
- /// You must provide a function to get its associated CIE. See
- /// `PartialFrameDescriptionEntry::parse` for more information.
- ///
- /// Note: this iterates over all FDEs. If available, it is possible
- /// to do a binary search with `EhFrameHdr::fde_for_address` instead.
- fn fde_for_address<F>(
- &self,
- bases: &BaseAddresses,
- address: u64,
- mut get_cie: F,
- ) -> Result<FrameDescriptionEntry<R>>
- where
- F: FnMut(&Self, &BaseAddresses, Self::Offset) -> Result<CommonInformationEntry<R>>,
- {
- let mut entries = self.entries(bases);
- while let Some(entry) = entries.next()? {
- match entry {
- CieOrFde::Cie(_) => {}
- CieOrFde::Fde(partial) => {
- let fde = partial.parse(&mut get_cie)?;
- if fde.contains(address) {
- return Ok(fde);
- }
- }
- }
- }
- Err(Error::NoUnwindInfoForAddress)
- }
-
- /// Find the frame unwind information for the given address.
- ///
- /// If found, the unwind information is returned. If not found,
- /// `Err(gimli::Error::NoUnwindInfoForAddress)` is returned. If parsing or
- /// CFI evaluation fails, the error is returned.
- ///
- /// ```
- /// use gimli::{BaseAddresses, EhFrame, EndianSlice, NativeEndian, UnwindContext,
- /// UnwindSection};
- ///
- /// # fn foo() -> gimli::Result<()> {
- /// # let read_eh_frame_section = || unimplemented!();
- /// // Get the `.eh_frame` section from the object file. Alternatively,
- /// // use `EhFrame` with the `.eh_frame` section of the object file.
- /// let eh_frame = EhFrame::new(read_eh_frame_section(), NativeEndian);
- ///
- /// # let get_frame_pc = || unimplemented!();
- /// // Get the address of the PC for a frame you'd like to unwind.
- /// let address = get_frame_pc();
- ///
- /// // This context is reusable, which cuts down on heap allocations.
- /// let ctx = UnwindContext::new();
- ///
- /// // Optionally provide base addresses for any relative pointers. If a
- /// // base address isn't provided and a pointer is found that is relative to
- /// // it, we will return an `Err`.
- /// # let address_of_text_section_in_memory = unimplemented!();
- /// # let address_of_got_section_in_memory = unimplemented!();
- /// let bases = BaseAddresses::default()
- /// .set_text(address_of_text_section_in_memory)
- /// .set_got(address_of_got_section_in_memory);
- ///
- /// let unwind_info = eh_frame.unwind_info_for_address(
- /// &bases,
- /// &mut ctx,
- /// address,
- /// EhFrame::cie_from_offset,
- /// )?;
- ///
- /// # let do_stuff_with = |_| unimplemented!();
- /// do_stuff_with(unwind_info);
- /// # let _ = ctx;
- /// # unreachable!()
- /// # }
- /// ```
- #[inline]
- fn unwind_info_for_address<'ctx, F, A: UnwindContextStorage<R>>(
- &self,
- bases: &BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- address: u64,
- get_cie: F,
- ) -> Result<&'ctx UnwindTableRow<R, A>>
- where
- F: FnMut(&Self, &BaseAddresses, Self::Offset) -> Result<CommonInformationEntry<R>>,
- {
- let fde = self.fde_for_address(bases, address, get_cie)?;
- fde.unwind_info_for_address(self, bases, ctx, address)
- }
-}
-
-impl<R: Reader> _UnwindSectionPrivate<R> for DebugFrame<R> {
- fn section(&self) -> &R {
- &self.section
- }
-
- fn length_value_is_end_of_entries(_: R::Offset) -> bool {
- false
- }
-
- fn is_cie(format: Format, id: u64) -> bool {
- match format {
- Format::Dwarf32 => id == 0xffff_ffff,
- Format::Dwarf64 => id == 0xffff_ffff_ffff_ffff,
- }
- }
-
- fn cie_offset_encoding(format: Format) -> CieOffsetEncoding {
- match format {
- Format::Dwarf32 => CieOffsetEncoding::U32,
- Format::Dwarf64 => CieOffsetEncoding::U64,
- }
- }
-
- fn resolve_cie_offset(&self, _: R::Offset, offset: R::Offset) -> Option<R::Offset> {
- Some(offset)
- }
-
- fn has_address_and_segment_sizes(version: u8) -> bool {
- version == 4
- }
-
- fn address_size(&self) -> u8 {
- self.address_size
- }
-
- fn segment_size(&self) -> u8 {
- self.segment_size
- }
-
- fn vendor(&self) -> Vendor {
- self.vendor
- }
-}
-
-impl<R: Reader> UnwindSection<R> for DebugFrame<R> {
- type Offset = DebugFrameOffset<R::Offset>;
-}
-
-impl<R: Reader> _UnwindSectionPrivate<R> for EhFrame<R> {
- fn section(&self) -> &R {
- &self.section
- }
-
- fn length_value_is_end_of_entries(length: R::Offset) -> bool {
- length.into_u64() == 0
- }
-
- fn is_cie(_: Format, id: u64) -> bool {
- id == 0
- }
-
- fn cie_offset_encoding(_format: Format) -> CieOffsetEncoding {
- // `.eh_frame` offsets are always 4 bytes, regardless of the DWARF
- // format.
- CieOffsetEncoding::U32
- }
-
- fn resolve_cie_offset(&self, base: R::Offset, offset: R::Offset) -> Option<R::Offset> {
- base.checked_sub(offset)
- }
-
- fn has_address_and_segment_sizes(_version: u8) -> bool {
- false
- }
-
- fn address_size(&self) -> u8 {
- self.address_size
- }
-
- fn segment_size(&self) -> u8 {
- 0
- }
-
- fn vendor(&self) -> Vendor {
- self.vendor
- }
-}
-
-impl<R: Reader> UnwindSection<R> for EhFrame<R> {
- type Offset = EhFrameOffset<R::Offset>;
-}
-
-/// Optional base addresses for the relative `DW_EH_PE_*` encoded pointers.
-///
-/// During CIE/FDE parsing, if a relative pointer is encountered for a base
-/// address that is unknown, an Err will be returned.
-///
-/// ```
-/// use gimli::BaseAddresses;
-///
-/// # fn foo() {
-/// # let address_of_eh_frame_hdr_section_in_memory = unimplemented!();
-/// # let address_of_eh_frame_section_in_memory = unimplemented!();
-/// # let address_of_text_section_in_memory = unimplemented!();
-/// # let address_of_got_section_in_memory = unimplemented!();
-/// # let address_of_the_start_of_current_func = unimplemented!();
-/// let bases = BaseAddresses::default()
-/// .set_eh_frame_hdr(address_of_eh_frame_hdr_section_in_memory)
-/// .set_eh_frame(address_of_eh_frame_section_in_memory)
-/// .set_text(address_of_text_section_in_memory)
-/// .set_got(address_of_got_section_in_memory);
-/// # let _ = bases;
-/// # }
-/// ```
-#[derive(Clone, Default, Debug, PartialEq, Eq)]
-pub struct BaseAddresses {
- /// The base addresses to use for pointers in the `.eh_frame_hdr` section.
- pub eh_frame_hdr: SectionBaseAddresses,
-
- /// The base addresses to use for pointers in the `.eh_frame` section.
- pub eh_frame: SectionBaseAddresses,
-}
-
-/// Optional base addresses for the relative `DW_EH_PE_*` encoded pointers
-/// in a particular section.
-///
-/// See `BaseAddresses` for methods that are helpful in setting these addresses.
-#[derive(Clone, Default, Debug, PartialEq, Eq)]
-pub struct SectionBaseAddresses {
- /// The address of the section containing the pointer.
- pub section: Option<u64>,
-
- /// The base address for text relative pointers.
- /// This is generally the address of the `.text` section.
- pub text: Option<u64>,
-
- /// The base address for data relative pointers.
- ///
- /// For pointers in the `.eh_frame_hdr` section, this is the address
- /// of the `.eh_frame_hdr` section
- ///
- /// For pointers in the `.eh_frame` section, this is generally the
- /// global pointer, such as the address of the `.got` section.
- pub data: Option<u64>,
-}
-
-impl BaseAddresses {
- /// Set the `.eh_frame_hdr` section base address.
- #[inline]
- pub fn set_eh_frame_hdr(mut self, addr: u64) -> Self {
- self.eh_frame_hdr.section = Some(addr);
- self.eh_frame_hdr.data = Some(addr);
- self
- }
-
- /// Set the `.eh_frame` section base address.
- #[inline]
- pub fn set_eh_frame(mut self, addr: u64) -> Self {
- self.eh_frame.section = Some(addr);
- self
- }
-
- /// Set the `.text` section base address.
- #[inline]
- pub fn set_text(mut self, addr: u64) -> Self {
- self.eh_frame_hdr.text = Some(addr);
- self.eh_frame.text = Some(addr);
- self
- }
-
- /// Set the `.got` section base address.
- #[inline]
- pub fn set_got(mut self, addr: u64) -> Self {
- self.eh_frame.data = Some(addr);
- self
- }
-}
-
-/// An iterator over CIE and FDE entries in a `.debug_frame` or `.eh_frame`
-/// section.
-///
-/// Some pointers may be encoded relative to various base addresses. Use the
-/// [`BaseAddresses`](./struct.BaseAddresses.html) parameter to provide them. By
-/// default, none are provided. If a relative pointer is encountered for a base
-/// address that is unknown, an `Err` will be returned and iteration will abort.
-///
-/// Can be [used with
-/// `FallibleIterator`](./index.html#using-with-fallibleiterator).
-///
-/// ```
-/// use gimli::{BaseAddresses, EhFrame, EndianSlice, NativeEndian, UnwindSection};
-///
-/// # fn foo() -> gimli::Result<()> {
-/// # let read_eh_frame_somehow = || unimplemented!();
-/// let eh_frame = EhFrame::new(read_eh_frame_somehow(), NativeEndian);
-///
-/// # let address_of_eh_frame_hdr_section_in_memory = unimplemented!();
-/// # let address_of_eh_frame_section_in_memory = unimplemented!();
-/// # let address_of_text_section_in_memory = unimplemented!();
-/// # let address_of_got_section_in_memory = unimplemented!();
-/// # let address_of_the_start_of_current_func = unimplemented!();
-/// // Provide base addresses for relative pointers.
-/// let bases = BaseAddresses::default()
-/// .set_eh_frame_hdr(address_of_eh_frame_hdr_section_in_memory)
-/// .set_eh_frame(address_of_eh_frame_section_in_memory)
-/// .set_text(address_of_text_section_in_memory)
-/// .set_got(address_of_got_section_in_memory);
-///
-/// let mut entries = eh_frame.entries(&bases);
-///
-/// # let do_stuff_with = |_| unimplemented!();
-/// while let Some(entry) = entries.next()? {
-/// do_stuff_with(entry)
-/// }
-/// # unreachable!()
-/// # }
-/// ```
-#[derive(Clone, Debug)]
-pub struct CfiEntriesIter<'bases, Section, R>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- section: Section,
- bases: &'bases BaseAddresses,
- input: R,
-}
-
-impl<'bases, Section, R> CfiEntriesIter<'bases, Section, R>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- /// Advance the iterator to the next entry.
- pub fn next(&mut self) -> Result<Option<CieOrFde<'bases, Section, R>>> {
- if self.input.is_empty() {
- return Ok(None);
- }
-
- match parse_cfi_entry(self.bases, &self.section, &mut self.input) {
- Err(e) => {
- self.input.empty();
- Err(e)
- }
- Ok(None) => {
- self.input.empty();
- Ok(None)
- }
- Ok(Some(entry)) => Ok(Some(entry)),
- }
- }
-}
-
-#[cfg(feature = "fallible-iterator")]
-impl<'bases, Section, R> fallible_iterator::FallibleIterator for CfiEntriesIter<'bases, Section, R>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- type Item = CieOrFde<'bases, Section, R>;
- type Error = Error;
-
- fn next(&mut self) -> ::core::result::Result<Option<Self::Item>, Self::Error> {
- CfiEntriesIter::next(self)
- }
-}
-
-/// Either a `CommonInformationEntry` (CIE) or a `FrameDescriptionEntry` (FDE).
-#[derive(Clone, Debug, PartialEq, Eq)]
-pub enum CieOrFde<'bases, Section, R>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- /// This CFI entry is a `CommonInformationEntry`.
- Cie(CommonInformationEntry<R>),
- /// This CFI entry is a `FrameDescriptionEntry`, however fully parsing it
- /// requires parsing its CIE first, so it is left in a partially parsed
- /// state.
- Fde(PartialFrameDescriptionEntry<'bases, Section, R>),
-}
-
-fn parse_cfi_entry<'bases, Section, R>(
- bases: &'bases BaseAddresses,
- section: &Section,
- input: &mut R,
-) -> Result<Option<CieOrFde<'bases, Section, R>>>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- let (offset, length, format) = loop {
- let offset = input.offset_from(section.section());
- let (length, format) = input.read_initial_length()?;
-
- if Section::length_value_is_end_of_entries(length) {
- return Ok(None);
- }
-
- // Hack: skip zero padding inserted by buggy compilers/linkers.
- // We require that the padding is a multiple of 32-bits, otherwise
- // there is no reliable way to determine when the padding ends. This
- // should be okay since CFI entries must be aligned to the address size.
-
- if length.into_u64() != 0 || format != Format::Dwarf32 {
- break (offset, length, format);
- }
- };
-
- let mut rest = input.split(length)?;
- let cie_offset_base = rest.offset_from(section.section());
- let cie_id_or_offset = match Section::cie_offset_encoding(format) {
- CieOffsetEncoding::U32 => rest.read_u32().map(u64::from)?,
- CieOffsetEncoding::U64 => rest.read_u64()?,
- };
-
- if Section::is_cie(format, cie_id_or_offset) {
- let cie = CommonInformationEntry::parse_rest(offset, length, format, bases, section, rest)?;
- Ok(Some(CieOrFde::Cie(cie)))
- } else {
- let cie_offset = R::Offset::from_u64(cie_id_or_offset)?;
- let cie_offset = match section.resolve_cie_offset(cie_offset_base, cie_offset) {
- None => return Err(Error::OffsetOutOfBounds),
- Some(cie_offset) => cie_offset,
- };
-
- let fde = PartialFrameDescriptionEntry {
- offset,
- length,
- format,
- cie_offset: cie_offset.into(),
- rest,
- section: section.clone(),
- bases,
- };
-
- Ok(Some(CieOrFde::Fde(fde)))
- }
-}
-
-/// We support the z-style augmentation [defined by `.eh_frame`][ehframe].
-///
-/// [ehframe]: https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
-#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
-pub struct Augmentation {
- /// > A 'L' may be present at any position after the first character of the
- /// > string. This character may only be present if 'z' is the first character
- /// > of the string. If present, it indicates the presence of one argument in
- /// > the Augmentation Data of the CIE, and a corresponding argument in the
- /// > Augmentation Data of the FDE. The argument in the Augmentation Data of
- /// > the CIE is 1-byte and represents the pointer encoding used for the
- /// > argument in the Augmentation Data of the FDE, which is the address of a
- /// > language-specific data area (LSDA). The size of the LSDA pointer is
- /// > specified by the pointer encoding used.
- lsda: Option<constants::DwEhPe>,
-
- /// > A 'P' may be present at any position after the first character of the
- /// > string. This character may only be present if 'z' is the first character
- /// > of the string. If present, it indicates the presence of two arguments in
- /// > the Augmentation Data of the CIE. The first argument is 1-byte and
- /// > represents the pointer encoding used for the second argument, which is
- /// > the address of a personality routine handler. The size of the
- /// > personality routine pointer is specified by the pointer encoding used.
- personality: Option<(constants::DwEhPe, Pointer)>,
-
- /// > A 'R' may be present at any position after the first character of the
- /// > string. This character may only be present if 'z' is the first character
- /// > of the string. If present, The Augmentation Data shall include a 1 byte
- /// > argument that represents the pointer encoding for the address pointers
- /// > used in the FDE.
- fde_address_encoding: Option<constants::DwEhPe>,
-
- /// True if this CIE's FDEs are trampolines for signal handlers.
- is_signal_trampoline: bool,
-}
-
-impl Augmentation {
- fn parse<Section, R>(
- augmentation_str: &mut R,
- bases: &BaseAddresses,
- address_size: u8,
- section: &Section,
- input: &mut R,
- ) -> Result<Augmentation>
- where
- R: Reader,
- Section: UnwindSection<R>,
- {
- debug_assert!(
- !augmentation_str.is_empty(),
- "Augmentation::parse should only be called if we have an augmentation"
- );
-
- let mut augmentation = Augmentation::default();
-
- let mut parsed_first = false;
- let mut data = None;
-
- while !augmentation_str.is_empty() {
- let ch = augmentation_str.read_u8()?;
- match ch {
- b'z' => {
- if parsed_first {
- return Err(Error::UnknownAugmentation);
- }
-
- let augmentation_length = input.read_uleb128().and_then(R::Offset::from_u64)?;
- data = Some(input.split(augmentation_length)?);
- }
- b'L' => {
- let rest = data.as_mut().ok_or(Error::UnknownAugmentation)?;
- let encoding = parse_pointer_encoding(rest)?;
- augmentation.lsda = Some(encoding);
- }
- b'P' => {
- let rest = data.as_mut().ok_or(Error::UnknownAugmentation)?;
- let encoding = parse_pointer_encoding(rest)?;
- let parameters = PointerEncodingParameters {
- bases: &bases.eh_frame,
- func_base: None,
- address_size,
- section: section.section(),
- };
-
- let personality = parse_encoded_pointer(encoding, &parameters, rest)?;
- augmentation.personality = Some((encoding, personality));
- }
- b'R' => {
- let rest = data.as_mut().ok_or(Error::UnknownAugmentation)?;
- let encoding = parse_pointer_encoding(rest)?;
- augmentation.fde_address_encoding = Some(encoding);
- }
- b'S' => augmentation.is_signal_trampoline = true,
- _ => return Err(Error::UnknownAugmentation),
- }
-
- parsed_first = true;
- }
-
- Ok(augmentation)
- }
-}
-
-/// Parsed augmentation data for a `FrameDescriptEntry`.
-#[derive(Clone, Debug, Default, PartialEq, Eq)]
-struct AugmentationData {
- lsda: Option<Pointer>,
-}
-
-impl AugmentationData {
- fn parse<R: Reader>(
- augmentation: &Augmentation,
- encoding_parameters: &PointerEncodingParameters<R>,
- input: &mut R,
- ) -> Result<AugmentationData> {
- // In theory, we should be iterating over the original augmentation
- // string, interpreting each character, and reading the appropriate bits
- // out of the augmentation data as we go. However, the only character
- // that defines augmentation data in the FDE is the 'L' character, so we
- // can just check for its presence directly.
-
- let aug_data_len = input.read_uleb128().and_then(R::Offset::from_u64)?;
- let rest = &mut input.split(aug_data_len)?;
- let mut augmentation_data = AugmentationData::default();
- if let Some(encoding) = augmentation.lsda {
- let lsda = parse_encoded_pointer(encoding, encoding_parameters, rest)?;
- augmentation_data.lsda = Some(lsda);
- }
- Ok(augmentation_data)
- }
-}
-
-/// > A Common Information Entry holds information that is shared among many
-/// > Frame Description Entries. There is at least one CIE in every non-empty
-/// > `.debug_frame` section.
-#[derive(Clone, Debug, PartialEq, Eq)]
-pub struct CommonInformationEntry<R, Offset = <R as Reader>::Offset>
-where
- R: Reader<Offset = Offset>,
- Offset: ReaderOffset,
-{
- /// The offset of this entry from the start of its containing section.
- offset: Offset,
-
- /// > A constant that gives the number of bytes of the CIE structure, not
- /// > including the length field itself (see Section 7.2.2). The size of the
- /// > length field plus the value of length must be an integral multiple of
- /// > the address size.
- length: Offset,
-
- format: Format,
-
- /// > A version number (see Section 7.23). This number is specific to the
- /// > call frame information and is independent of the DWARF version number.
- version: u8,
-
- /// The parsed augmentation, if any.
- augmentation: Option<Augmentation>,
-
- /// > The size of a target address in this CIE and any FDEs that use it, in
- /// > bytes. If a compilation unit exists for this frame, its address size
- /// > must match the address size here.
- address_size: u8,
-
- /// "The size of a segment selector in this CIE and any FDEs that use it, in
- /// bytes."
- segment_size: u8,
-
- /// "A constant that is factored out of all advance location instructions
- /// (see Section 6.4.2.1)."
- code_alignment_factor: u64,
-
- /// > A constant that is factored out of certain offset instructions (see
- /// > below). The resulting value is (operand * data_alignment_factor).
- data_alignment_factor: i64,
-
- /// > An unsigned LEB128 constant that indicates which column in the rule
- /// > table represents the return address of the function. Note that this
- /// > column might not correspond to an actual machine register.
- return_address_register: Register,
-
- /// > A sequence of rules that are interpreted to create the initial setting
- /// > of each column in the table.
- ///
- /// > The default rule for all columns before interpretation of the initial
- /// > instructions is the undefined rule. However, an ABI authoring body or a
- /// > compilation system authoring body may specify an alternate default
- /// > value for any or all columns.
- ///
- /// This is followed by `DW_CFA_nop` padding until the end of `length` bytes
- /// in the input.
- initial_instructions: R,
-}
-
-impl<R: Reader> CommonInformationEntry<R> {
- fn parse<Section: UnwindSection<R>>(
- bases: &BaseAddresses,
- section: &Section,
- input: &mut R,
- ) -> Result<CommonInformationEntry<R>> {
- match parse_cfi_entry(bases, section, input)? {
- Some(CieOrFde::Cie(cie)) => Ok(cie),
- Some(CieOrFde::Fde(_)) => Err(Error::NotCieId),
- None => Err(Error::NoEntryAtGivenOffset),
- }
- }
-
- fn parse_rest<Section: UnwindSection<R>>(
- offset: R::Offset,
- length: R::Offset,
- format: Format,
- bases: &BaseAddresses,
- section: &Section,
- mut rest: R,
- ) -> Result<CommonInformationEntry<R>> {
- let version = rest.read_u8()?;
-
- // Version 1 of `.debug_frame` corresponds to DWARF 2, and then for
- // DWARF 3 and 4, I think they decided to just match the standard's
- // version.
- match version {
- 1 | 3 | 4 => (),
- _ => return Err(Error::UnknownVersion(u64::from(version))),
- }
-
- let mut augmentation_string = rest.read_null_terminated_slice()?;
-
- let (address_size, segment_size) = if Section::has_address_and_segment_sizes(version) {
- let address_size = rest.read_u8()?;
- let segment_size = rest.read_u8()?;
- (address_size, segment_size)
- } else {
- (section.address_size(), section.segment_size())
- };
-
- let code_alignment_factor = rest.read_uleb128()?;
- let data_alignment_factor = rest.read_sleb128()?;
-
- let return_address_register = if version == 1 {
- Register(rest.read_u8()?.into())
- } else {
- rest.read_uleb128().and_then(Register::from_u64)?
- };
-
- let augmentation = if augmentation_string.is_empty() {
- None
- } else {
- Some(Augmentation::parse(
- &mut augmentation_string,
- bases,
- address_size,
- section,
- &mut rest,
- )?)
- };
-
- let entry = CommonInformationEntry {
- offset,
- length,
- format,
- version,
- augmentation,
- address_size,
- segment_size,
- code_alignment_factor,
- data_alignment_factor,
- return_address_register,
- initial_instructions: rest,
- };
-
- Ok(entry)
- }
-}
-
-/// # Signal Safe Methods
-///
-/// These methods are guaranteed not to allocate, acquire locks, or perform any
-/// other signal-unsafe operations.
-impl<R: Reader> CommonInformationEntry<R> {
- /// Get the offset of this entry from the start of its containing section.
- pub fn offset(&self) -> R::Offset {
- self.offset
- }
-
- /// Return the encoding parameters for this CIE.
- pub fn encoding(&self) -> Encoding {
- Encoding {
- format: self.format,
- version: u16::from(self.version),
- address_size: self.address_size,
- }
- }
-
- /// The size of addresses (in bytes) in this CIE.
- pub fn address_size(&self) -> u8 {
- self.address_size
- }
-
- /// Iterate over this CIE's initial instructions.
- ///
- /// Can be [used with
- /// `FallibleIterator`](./index.html#using-with-fallibleiterator).
- pub fn instructions<'a, Section>(
- &self,
- section: &'a Section,
- bases: &'a BaseAddresses,
- ) -> CallFrameInstructionIter<'a, R>
- where
- Section: UnwindSection<R>,
- {
- CallFrameInstructionIter {
- input: self.initial_instructions.clone(),
- address_encoding: None,
- parameters: PointerEncodingParameters {
- bases: &bases.eh_frame,
- func_base: None,
- address_size: self.address_size,
- section: section.section(),
- },
- vendor: section.vendor(),
- }
- }
-
- /// > A constant that gives the number of bytes of the CIE structure, not
- /// > including the length field itself (see Section 7.2.2). The size of the
- /// > length field plus the value of length must be an integral multiple of
- /// > the address size.
- pub fn entry_len(&self) -> R::Offset {
- self.length
- }
-
- /// > A version number (see Section 7.23). This number is specific to the
- /// > call frame information and is independent of the DWARF version number.
- pub fn version(&self) -> u8 {
- self.version
- }
-
- /// Get the augmentation data, if any exists.
- ///
- /// The only augmentation understood by `gimli` is that which is defined by
- /// `.eh_frame`.
- pub fn augmentation(&self) -> Option<&Augmentation> {
- self.augmentation.as_ref()
- }
-
- /// True if this CIE's FDEs have a LSDA.
- pub fn has_lsda(&self) -> bool {
- self.augmentation.map_or(false, |a| a.lsda.is_some())
- }
-
- /// Return the encoding of the LSDA address for this CIE's FDEs.
- pub fn lsda_encoding(&self) -> Option<constants::DwEhPe> {
- self.augmentation.and_then(|a| a.lsda)
- }
-
- /// Return the encoding and address of the personality routine handler
- /// for this CIE's FDEs.
- pub fn personality_with_encoding(&self) -> Option<(constants::DwEhPe, Pointer)> {
- self.augmentation.as_ref().and_then(|a| a.personality)
- }
-
- /// Return the address of the personality routine handler
- /// for this CIE's FDEs.
- pub fn personality(&self) -> Option<Pointer> {
- self.augmentation
- .as_ref()
- .and_then(|a| a.personality)
- .map(|(_, p)| p)
- }
-
- /// Return the encoding of the addresses for this CIE's FDEs.
- pub fn fde_address_encoding(&self) -> Option<constants::DwEhPe> {
- self.augmentation.and_then(|a| a.fde_address_encoding)
- }
-
- /// True if this CIE's FDEs are trampolines for signal handlers.
- pub fn is_signal_trampoline(&self) -> bool {
- self.augmentation.map_or(false, |a| a.is_signal_trampoline)
- }
-
- /// > A constant that is factored out of all advance location instructions
- /// > (see Section 6.4.2.1).
- pub fn code_alignment_factor(&self) -> u64 {
- self.code_alignment_factor
- }
-
- /// > A constant that is factored out of certain offset instructions (see
- /// > below). The resulting value is (operand * data_alignment_factor).
- pub fn data_alignment_factor(&self) -> i64 {
- self.data_alignment_factor
- }
-
- /// > An unsigned ... constant that indicates which column in the rule
- /// > table represents the return address of the function. Note that this
- /// > column might not correspond to an actual machine register.
- pub fn return_address_register(&self) -> Register {
- self.return_address_register
- }
-}
-
-/// A partially parsed `FrameDescriptionEntry`.
-///
-/// Fully parsing this FDE requires first parsing its CIE.
-#[derive(Clone, Debug, PartialEq, Eq)]
-pub struct PartialFrameDescriptionEntry<'bases, Section, R>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- offset: R::Offset,
- length: R::Offset,
- format: Format,
- cie_offset: Section::Offset,
- rest: R,
- section: Section,
- bases: &'bases BaseAddresses,
-}
-
-impl<'bases, Section, R> PartialFrameDescriptionEntry<'bases, Section, R>
-where
- R: Reader,
- Section: UnwindSection<R>,
-{
- fn parse_partial(
- section: &Section,
- bases: &'bases BaseAddresses,
- input: &mut R,
- ) -> Result<PartialFrameDescriptionEntry<'bases, Section, R>> {
- match parse_cfi_entry(bases, section, input)? {
- Some(CieOrFde::Cie(_)) => Err(Error::NotFdePointer),
- Some(CieOrFde::Fde(partial)) => Ok(partial),
- None => Err(Error::NoEntryAtGivenOffset),
- }
- }
-
- /// Fully parse this FDE.
- ///
- /// You must provide a function get its associated CIE (either by parsing it
- /// on demand, or looking it up in some table mapping offsets to CIEs that
- /// you've already parsed, etc.)
- pub fn parse<F>(&self, get_cie: F) -> Result<FrameDescriptionEntry<R>>
- where
- F: FnMut(&Section, &BaseAddresses, Section::Offset) -> Result<CommonInformationEntry<R>>,
- {
- FrameDescriptionEntry::parse_rest(
- self.offset,
- self.length,
- self.format,
- self.cie_offset,
- self.rest.clone(),
- &self.section,
- self.bases,
- get_cie,
- )
- }
-
- /// Get the offset of this entry from the start of its containing section.
- pub fn offset(&self) -> R::Offset {
- self.offset
- }
-
- /// Get the offset of this FDE's CIE.
- pub fn cie_offset(&self) -> Section::Offset {
- self.cie_offset
- }
-
- /// > A constant that gives the number of bytes of the header and
- /// > instruction stream for this function, not including the length field
- /// > itself (see Section 7.2.2). The size of the length field plus the value
- /// > of length must be an integral multiple of the address size.
- pub fn entry_len(&self) -> R::Offset {
- self.length
- }
-}
-
-/// A `FrameDescriptionEntry` is a set of CFA instructions for an address range.
-#[derive(Clone, Debug, PartialEq, Eq)]
-pub struct FrameDescriptionEntry<R, Offset = <R as Reader>::Offset>
-where
- R: Reader<Offset = Offset>,
- Offset: ReaderOffset,
-{
- /// The start of this entry within its containing section.
- offset: Offset,
-
- /// > A constant that gives the number of bytes of the header and
- /// > instruction stream for this function, not including the length field
- /// > itself (see Section 7.2.2). The size of the length field plus the value
- /// > of length must be an integral multiple of the address size.
- length: Offset,
-
- format: Format,
-
- /// "A constant offset into the .debug_frame section that denotes the CIE
- /// that is associated with this FDE."
- ///
- /// This is the CIE at that offset.
- cie: CommonInformationEntry<R, Offset>,
-
- /// > The address of the first location associated with this table entry. If
- /// > the segment_size field of this FDE's CIE is non-zero, the initial
- /// > location is preceded by a segment selector of the given length.
- initial_segment: u64,
- initial_address: u64,
-
- /// "The number of bytes of program instructions described by this entry."
- address_range: u64,
-
- /// The parsed augmentation data, if we have any.
- augmentation: Option<AugmentationData>,
-
- /// "A sequence of table defining instructions that are described below."
- ///
- /// This is followed by `DW_CFA_nop` padding until `length` bytes of the
- /// input are consumed.
- instructions: R,
-}
-
-impl<R: Reader> FrameDescriptionEntry<R> {
- fn parse_rest<Section, F>(
- offset: R::Offset,
- length: R::Offset,
- format: Format,
- cie_pointer: Section::Offset,
- mut rest: R,
- section: &Section,
- bases: &BaseAddresses,
- mut get_cie: F,
- ) -> Result<FrameDescriptionEntry<R>>
- where
- Section: UnwindSection<R>,
- F: FnMut(&Section, &BaseAddresses, Section::Offset) -> Result<CommonInformationEntry<R>>,
- {
- let cie = get_cie(section, bases, cie_pointer)?;
-
- let initial_segment = if cie.segment_size > 0 {
- rest.read_address(cie.segment_size)?
- } else {
- 0
- };
-
- let mut parameters = PointerEncodingParameters {
- bases: &bases.eh_frame,
- func_base: None,
- address_size: cie.address_size,
- section: section.section(),
- };
-
- let (initial_address, address_range) = Self::parse_addresses(&mut rest, &cie, &parameters)?;
- parameters.func_base = Some(initial_address);
-
- let aug_data = if let Some(ref augmentation) = cie.augmentation {
- Some(AugmentationData::parse(
- augmentation,
- &parameters,
- &mut rest,
- )?)
- } else {
- None
- };
-
- let entry = FrameDescriptionEntry {
- offset,
- length,
- format,
- cie,
- initial_segment,
- initial_address,
- address_range,
- augmentation: aug_data,
- instructions: rest,
- };
-
- Ok(entry)
- }
-
- fn parse_addresses(
- input: &mut R,
- cie: &CommonInformationEntry<R>,
- parameters: &PointerEncodingParameters<R>,
- ) -> Result<(u64, u64)> {
- let encoding = cie.augmentation().and_then(|a| a.fde_address_encoding);
- if let Some(encoding) = encoding {
- let initial_address = parse_encoded_pointer(encoding, parameters, input)?;
-
- // Ignore indirection.
- let initial_address = initial_address.pointer();
-
- // Address ranges cannot be relative to anything, so just grab the
- // data format bits from the encoding.
- let address_range = parse_encoded_pointer(encoding.format(), parameters, input)?;
- Ok((initial_address, address_range.pointer()))
- } else {
- let initial_address = input.read_address(cie.address_size)?;
- let address_range = input.read_address(cie.address_size)?;
- Ok((initial_address, address_range))
- }
- }
-
- /// Return the table of unwind information for this FDE.
- #[inline]
- pub fn rows<'a, 'ctx, Section: UnwindSection<R>, A: UnwindContextStorage<R>>(
- &self,
- section: &'a Section,
- bases: &'a BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- ) -> Result<UnwindTable<'a, 'ctx, R, A>> {
- UnwindTable::new(section, bases, ctx, self)
- }
-
- /// Find the frame unwind information for the given address.
- ///
- /// If found, the unwind information is returned along with the reset
- /// context in the form `Ok((unwind_info, context))`. If not found,
- /// `Err(gimli::Error::NoUnwindInfoForAddress)` is returned. If parsing or
- /// CFI evaluation fails, the error is returned.
- pub fn unwind_info_for_address<'ctx, Section: UnwindSection<R>, A: UnwindContextStorage<R>>(
- &self,
- section: &Section,
- bases: &BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- address: u64,
- ) -> Result<&'ctx UnwindTableRow<R, A>> {
- let mut table = self.rows(section, bases, ctx)?;
- while let Some(row) = table.next_row()? {
- if row.contains(address) {
- return Ok(table.ctx.row());
- }
- }
- Err(Error::NoUnwindInfoForAddress)
- }
-}
-
-/// # Signal Safe Methods
-///
-/// These methods are guaranteed not to allocate, acquire locks, or perform any
-/// other signal-unsafe operations.
-#[allow(clippy::len_without_is_empty)]
-impl<R: Reader> FrameDescriptionEntry<R> {
- /// Get the offset of this entry from the start of its containing section.
- pub fn offset(&self) -> R::Offset {
- self.offset
- }
-
- /// Get a reference to this FDE's CIE.
- pub fn cie(&self) -> &CommonInformationEntry<R> {
- &self.cie
- }
-
- /// > A constant that gives the number of bytes of the header and
- /// > instruction stream for this function, not including the length field
- /// > itself (see Section 7.2.2). The size of the length field plus the value
- /// > of length must be an integral multiple of the address size.
- pub fn entry_len(&self) -> R::Offset {
- self.length
- }
-
- /// Iterate over this FDE's instructions.
- ///
- /// Will not include the CIE's initial instructions, if you want those do
- /// `fde.cie().instructions()` first.
- ///
- /// Can be [used with
- /// `FallibleIterator`](./index.html#using-with-fallibleiterator).
- pub fn instructions<'a, Section>(
- &self,
- section: &'a Section,
- bases: &'a BaseAddresses,
- ) -> CallFrameInstructionIter<'a, R>
- where
- Section: UnwindSection<R>,
- {
- CallFrameInstructionIter {
- input: self.instructions.clone(),
- address_encoding: self.cie.augmentation().and_then(|a| a.fde_address_encoding),
- parameters: PointerEncodingParameters {
- bases: &bases.eh_frame,
- func_base: None,
- address_size: self.cie.address_size,
- section: section.section(),
- },
- vendor: section.vendor(),
- }
- }
-
- /// The first address for which this entry has unwind information for.
- pub fn initial_address(&self) -> u64 {
- self.initial_address
- }
-
- /// The number of bytes of instructions that this entry has unwind
- /// information for.
- pub fn len(&self) -> u64 {
- self.address_range
- }
-
- /// Return `true` if the given address is within this FDE, `false`
- /// otherwise.
- ///
- /// This is equivalent to `entry.initial_address() <= address <
- /// entry.initial_address() + entry.len()`.
- pub fn contains(&self, address: u64) -> bool {
- let start = self.initial_address();
- let end = start + self.len();
- start <= address && address < end
- }
-
- /// The address of this FDE's language-specific data area (LSDA), if it has
- /// any.
- pub fn lsda(&self) -> Option<Pointer> {
- self.augmentation.as_ref().and_then(|a| a.lsda)
- }
-
- /// Return true if this FDE's function is a trampoline for a signal handler.
- #[inline]
- pub fn is_signal_trampoline(&self) -> bool {
- self.cie().is_signal_trampoline()
- }
-
- /// Return the address of the FDE's function's personality routine
- /// handler. The personality routine does language-specific clean up when
- /// unwinding the stack frames with the intent to not run them again.
- #[inline]
- pub fn personality(&self) -> Option<Pointer> {
- self.cie().personality()
- }
-}
-
-/// Specification of what storage should be used for [`UnwindContext`].
-///
-#[cfg_attr(
- feature = "read",
- doc = "
-Normally you would only need to use [`StoreOnHeap`], which places the stack
-on the heap using [`Vec`]. This is the default storage type parameter for [`UnwindContext`].
-"
-)]
-///
-/// If you need to avoid [`UnwindContext`] from allocating memory, e.g. for signal safety,
-/// you can provide you own storage specification:
-/// ```rust,no_run
-/// # use gimli::*;
-/// #
-/// # fn foo<'a>(some_fde: gimli::FrameDescriptionEntry<gimli::EndianSlice<'a, gimli::LittleEndian>>)
-/// # -> gimli::Result<()> {
-/// # let eh_frame: gimli::EhFrame<_> = unreachable!();
-/// # let bases = unimplemented!();
-/// #
-/// struct StoreOnStack;
-///
-/// impl<R: Reader> UnwindContextStorage<R> for StoreOnStack {
-/// type Rules = [(Register, RegisterRule<R>); 192];
-/// type Stack = [UnwindTableRow<R, Self>; 4];
-/// }
-///
-/// let mut ctx = UnwindContext::<_, StoreOnStack>::new_in();
-///
-/// // Initialize the context by evaluating the CIE's initial instruction program,
-/// // and generate the unwind table.
-/// let mut table = some_fde.rows(&eh_frame, &bases, &mut ctx)?;
-/// while let Some(row) = table.next_row()? {
-/// // Do stuff with each row...
-/// # let _ = row;
-/// }
-/// # unreachable!()
-/// # }
-/// ```
-pub trait UnwindContextStorage<R: Reader>: Sized {
- /// The storage used for register rules in a unwind table row.
- ///
- /// Note that this is nested within the stack.
- type Rules: ArrayLike<Item = (Register, RegisterRule<R>)>;
-
- /// The storage used for unwind table row stack.
- type Stack: ArrayLike<Item = UnwindTableRow<R, Self>>;
-}
-
-#[cfg(feature = "read")]
-const MAX_RULES: usize = 192;
-#[cfg(feature = "read")]
-const MAX_UNWIND_STACK_DEPTH: usize = 4;
-
-#[cfg(feature = "read")]
-impl<R: Reader> UnwindContextStorage<R> for StoreOnHeap {
- type Rules = [(Register, RegisterRule<R>); MAX_RULES];
- type Stack = Box<[UnwindTableRow<R, Self>; MAX_UNWIND_STACK_DEPTH]>;
-}
-
-/// Common context needed when evaluating the call frame unwinding information.
-///
-/// This structure can be large so it is advisable to place it on the heap.
-/// To avoid re-allocating the context multiple times when evaluating multiple
-/// CFI programs, it can be reused.
-///
-/// ```
-/// use gimli::{UnwindContext, UnwindTable};
-///
-/// # fn foo<'a>(some_fde: gimli::FrameDescriptionEntry<gimli::EndianSlice<'a, gimli::LittleEndian>>)
-/// # -> gimli::Result<()> {
-/// # let eh_frame: gimli::EhFrame<_> = unreachable!();
-/// # let bases = unimplemented!();
-/// // An uninitialized context.
-/// let mut ctx = Box::new(UnwindContext::new());
-///
-/// // Initialize the context by evaluating the CIE's initial instruction program,
-/// // and generate the unwind table.
-/// let mut table = some_fde.rows(&eh_frame, &bases, &mut ctx)?;
-/// while let Some(row) = table.next_row()? {
-/// // Do stuff with each row...
-/// # let _ = row;
-/// }
-/// # unreachable!()
-/// # }
-/// ```
-#[derive(Clone, PartialEq, Eq)]
-pub struct UnwindContext<R: Reader, A: UnwindContextStorage<R> = StoreOnHeap> {
- // Stack of rows. The last row is the row currently being built by the
- // program. There is always at least one row. The vast majority of CFI
- // programs will only ever have one row on the stack.
- stack: ArrayVec<A::Stack>,
-
- // If we are evaluating an FDE's instructions, then `is_initialized` will be
- // `true`. If `initial_rule` is `Some`, then the initial register rules are either
- // all default rules or have just 1 non-default rule, stored in `initial_rule`.
- // If it's `None`, `stack[0]` will contain the initial register rules
- // described by the CIE's initial instructions. These rules are used by
- // `DW_CFA_restore`. Otherwise, when we are currently evaluating a CIE's
- // initial instructions, `is_initialized` will be `false` and initial rules
- // cannot be read.
- initial_rule: Option<(Register, RegisterRule<R>)>,
-
- is_initialized: bool,
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Debug for UnwindContext<R, S> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("UnwindContext")
- .field("stack", &self.stack)
- .field("initial_rule", &self.initial_rule)
- .field("is_initialized", &self.is_initialized)
- .finish()
- }
-}
-
-impl<R: Reader, A: UnwindContextStorage<R>> Default for UnwindContext<R, A> {
- fn default() -> Self {
- Self::new_in()
- }
-}
-
-#[cfg(feature = "read")]
-impl<R: Reader> UnwindContext<R> {
- /// Construct a new call frame unwinding context.
- pub fn new() -> Self {
- Self::new_in()
- }
-}
-
-/// # Signal Safe Methods
-///
-/// These methods are guaranteed not to allocate, acquire locks, or perform any
-/// other signal-unsafe operations, if an non-allocating storage is used.
-impl<R: Reader, A: UnwindContextStorage<R>> UnwindContext<R, A> {
- /// Construct a new call frame unwinding context.
- pub fn new_in() -> Self {
- let mut ctx = UnwindContext {
- stack: Default::default(),
- initial_rule: None,
- is_initialized: false,
- };
- ctx.reset();
- ctx
- }
-
- /// Run the CIE's initial instructions and initialize this `UnwindContext`.
- fn initialize<Section: UnwindSection<R>>(
- &mut self,
- section: &Section,
- bases: &BaseAddresses,
- cie: &CommonInformationEntry<R>,
- ) -> Result<()> {
- // Always reset because previous initialization failure may leave dirty state.
- self.reset();
-
- let mut table = UnwindTable::new_for_cie(section, bases, self, cie);
- while table.next_row()?.is_some() {}
-
- self.save_initial_rules()?;
- Ok(())
- }
-
- fn reset(&mut self) {
- self.stack.clear();
- self.stack.try_push(UnwindTableRow::default()).unwrap();
- debug_assert!(self.stack[0].is_default());
- self.initial_rule = None;
- self.is_initialized = false;
- }
-
- fn row(&self) -> &UnwindTableRow<R, A> {
- self.stack.last().unwrap()
- }
-
- fn row_mut(&mut self) -> &mut UnwindTableRow<R, A> {
- self.stack.last_mut().unwrap()
- }
-
- fn save_initial_rules(&mut self) -> Result<()> {
- debug_assert!(!self.is_initialized);
- self.initial_rule = match *self.stack.last().unwrap().registers.rules {
- // All rules are default (undefined). In this case just synthesize
- // an undefined rule.
- [] => Some((Register(0), RegisterRule::Undefined)),
- [ref rule] => Some(rule.clone()),
- _ => {
- let rules = self.stack.last().unwrap().clone();
- self.stack
- .try_insert(0, rules)
- .map_err(|_| Error::StackFull)?;
- None
- }
- };
- self.is_initialized = true;
- Ok(())
- }
-
- fn start_address(&self) -> u64 {
- self.row().start_address
- }
-
- fn set_start_address(&mut self, start_address: u64) {
- let row = self.row_mut();
- row.start_address = start_address;
- }
-
- fn set_register_rule(&mut self, register: Register, rule: RegisterRule<R>) -> Result<()> {
- let row = self.row_mut();
- row.registers.set(register, rule)
- }
-
- /// Returns `None` if we have not completed evaluation of a CIE's initial
- /// instructions.
- fn get_initial_rule(&self, register: Register) -> Option<RegisterRule<R>> {
- if !self.is_initialized {
- return None;
- }
- Some(match self.initial_rule {
- None => self.stack[0].registers.get(register),
- Some((r, ref rule)) if r == register => rule.clone(),
- _ => RegisterRule::Undefined,
- })
- }
-
- fn set_cfa(&mut self, cfa: CfaRule<R>) {
- self.row_mut().cfa = cfa;
- }
-
- fn cfa_mut(&mut self) -> &mut CfaRule<R> {
- &mut self.row_mut().cfa
- }
-
- fn push_row(&mut self) -> Result<()> {
- let new_row = self.row().clone();
- self.stack.try_push(new_row).map_err(|_| Error::StackFull)
- }
-
- fn pop_row(&mut self) -> Result<()> {
- let min_size = if self.is_initialized && self.initial_rule.is_none() {
- 2
- } else {
- 1
- };
- if self.stack.len() <= min_size {
- return Err(Error::PopWithEmptyStack);
- }
- self.stack.pop().unwrap();
- Ok(())
- }
-}
-
-/// The `UnwindTable` iteratively evaluates a `FrameDescriptionEntry`'s
-/// `CallFrameInstruction` program, yielding the each row one at a time.
-///
-/// > 6.4.1 Structure of Call Frame Information
-/// >
-/// > DWARF supports virtual unwinding by defining an architecture independent
-/// > basis for recording how procedures save and restore registers during their
-/// > lifetimes. This basis must be augmented on some machines with specific
-/// > information that is defined by an architecture specific ABI authoring
-/// > committee, a hardware vendor, or a compiler producer. The body defining a
-/// > specific augmentation is referred to below as the “augmenter.”
-/// >
-/// > Abstractly, this mechanism describes a very large table that has the
-/// > following structure:
-/// >
-/// > <table>
-/// > <tr>
-/// > <th>LOC</th><th>CFA</th><th>R0</th><th>R1</th><td>...</td><th>RN</th>
-/// > </tr>
-/// > <tr>
-/// > <th>L0</th> <td></td> <td></td> <td></td> <td></td> <td></td>
-/// > </tr>
-/// > <tr>
-/// > <th>L1</th> <td></td> <td></td> <td></td> <td></td> <td></td>
-/// > </tr>
-/// > <tr>
-/// > <td>...</td><td></td> <td></td> <td></td> <td></td> <td></td>
-/// > </tr>
-/// > <tr>
-/// > <th>LN</th> <td></td> <td></td> <td></td> <td></td> <td></td>
-/// > </tr>
-/// > </table>
-/// >
-/// > The first column indicates an address for every location that contains code
-/// > in a program. (In shared objects, this is an object-relative offset.) The
-/// > remaining columns contain virtual unwinding rules that are associated with
-/// > the indicated location.
-/// >
-/// > The CFA column defines the rule which computes the Canonical Frame Address
-/// > value; it may be either a register and a signed offset that are added
-/// > together, or a DWARF expression that is evaluated.
-/// >
-/// > The remaining columns are labeled by register number. This includes some
-/// > registers that have special designation on some architectures such as the PC
-/// > and the stack pointer register. (The actual mapping of registers for a
-/// > particular architecture is defined by the augmenter.) The register columns
-/// > contain rules that describe whether a given register has been saved and the
-/// > rule to find the value for the register in the previous frame.
-/// >
-/// > ...
-/// >
-/// > This table would be extremely large if actually constructed as
-/// > described. Most of the entries at any point in the table are identical to
-/// > the ones above them. The whole table can be represented quite compactly by
-/// > recording just the differences starting at the beginning address of each
-/// > subroutine in the program.
-#[derive(Debug)]
-pub struct UnwindTable<'a, 'ctx, R: Reader, A: UnwindContextStorage<R> = StoreOnHeap> {
- code_alignment_factor: Wrapping<u64>,
- data_alignment_factor: Wrapping<i64>,
- next_start_address: u64,
- last_end_address: u64,
- returned_last_row: bool,
- current_row_valid: bool,
- instructions: CallFrameInstructionIter<'a, R>,
- ctx: &'ctx mut UnwindContext<R, A>,
-}
-
-/// # Signal Safe Methods
-///
-/// These methods are guaranteed not to allocate, acquire locks, or perform any
-/// other signal-unsafe operations.
-impl<'a, 'ctx, R: Reader, A: UnwindContextStorage<R>> UnwindTable<'a, 'ctx, R, A> {
- /// Construct a new `UnwindTable` for the given
- /// `FrameDescriptionEntry`'s CFI unwinding program.
- pub fn new<Section: UnwindSection<R>>(
- section: &'a Section,
- bases: &'a BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- fde: &FrameDescriptionEntry<R>,
- ) -> Result<Self> {
- ctx.initialize(section, bases, fde.cie())?;
- Ok(Self::new_for_fde(section, bases, ctx, fde))
- }
-
- fn new_for_fde<Section: UnwindSection<R>>(
- section: &'a Section,
- bases: &'a BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- fde: &FrameDescriptionEntry<R>,
- ) -> Self {
- assert!(ctx.stack.len() >= 1);
- UnwindTable {
- code_alignment_factor: Wrapping(fde.cie().code_alignment_factor()),
- data_alignment_factor: Wrapping(fde.cie().data_alignment_factor()),
- next_start_address: fde.initial_address(),
- last_end_address: fde.initial_address().wrapping_add(fde.len()),
- returned_last_row: false,
- current_row_valid: false,
- instructions: fde.instructions(section, bases),
- ctx,
- }
- }
-
- fn new_for_cie<Section: UnwindSection<R>>(
- section: &'a Section,
- bases: &'a BaseAddresses,
- ctx: &'ctx mut UnwindContext<R, A>,
- cie: &CommonInformationEntry<R>,
- ) -> Self {
- assert!(ctx.stack.len() >= 1);
- UnwindTable {
- code_alignment_factor: Wrapping(cie.code_alignment_factor()),
- data_alignment_factor: Wrapping(cie.data_alignment_factor()),
- next_start_address: 0,
- last_end_address: 0,
- returned_last_row: false,
- current_row_valid: false,
- instructions: cie.instructions(section, bases),
- ctx,
- }
- }
-
- /// Evaluate call frame instructions until the next row of the table is
- /// completed, and return it.
- ///
- /// Unfortunately, this cannot be used with `FallibleIterator` because of
- /// the restricted lifetime of the yielded item.
- pub fn next_row(&mut self) -> Result<Option<&UnwindTableRow<R, A>>> {
- assert!(self.ctx.stack.len() >= 1);
- self.ctx.set_start_address(self.next_start_address);
- self.current_row_valid = false;
-
- loop {
- match self.instructions.next() {
- Err(e) => return Err(e),
-
- Ok(None) => {
- if self.returned_last_row {
- return Ok(None);
- }
-
- let row = self.ctx.row_mut();
- row.end_address = self.last_end_address;
-
- self.returned_last_row = true;
- self.current_row_valid = true;
- return Ok(Some(row));
- }
-
- Ok(Some(instruction)) => {
- if self.evaluate(instruction)? {
- self.current_row_valid = true;
- return Ok(Some(self.ctx.row()));
- }
- }
- };
- }
- }
-
- /// Returns the current row with the lifetime of the context.
- pub fn into_current_row(self) -> Option<&'ctx UnwindTableRow<R, A>> {
- if self.current_row_valid {
- Some(self.ctx.row())
- } else {
- None
- }
- }
-
- /// Evaluate one call frame instruction. Return `Ok(true)` if the row is
- /// complete, `Ok(false)` otherwise.
- fn evaluate(&mut self, instruction: CallFrameInstruction<R>) -> Result<bool> {
- use crate::CallFrameInstruction::*;
-
- match instruction {
- // Instructions that complete the current row and advance the
- // address for the next row.
- SetLoc { address } => {
- if address < self.ctx.start_address() {
- return Err(Error::InvalidAddressRange);
- }
-
- self.next_start_address = address;
- self.ctx.row_mut().end_address = self.next_start_address;
- return Ok(true);
- }
- AdvanceLoc { delta } => {
- let delta = Wrapping(u64::from(delta)) * self.code_alignment_factor;
- self.next_start_address = (Wrapping(self.ctx.start_address()) + delta).0;
- self.ctx.row_mut().end_address = self.next_start_address;
- return Ok(true);
- }
-
- // Instructions that modify the CFA.
- DefCfa { register, offset } => {
- self.ctx.set_cfa(CfaRule::RegisterAndOffset {
- register,
- offset: offset as i64,
- });
- }
- DefCfaSf {
- register,
- factored_offset,
- } => {
- let data_align = self.data_alignment_factor;
- self.ctx.set_cfa(CfaRule::RegisterAndOffset {
- register,
- offset: (Wrapping(factored_offset) * data_align).0,
- });
- }
- DefCfaRegister { register } => {
- if let CfaRule::RegisterAndOffset {
- register: ref mut reg,
- ..
- } = *self.ctx.cfa_mut()
- {
- *reg = register;
- } else {
- return Err(Error::CfiInstructionInInvalidContext);
- }
- }
- DefCfaOffset { offset } => {
- if let CfaRule::RegisterAndOffset {
- offset: ref mut off,
- ..
- } = *self.ctx.cfa_mut()
- {
- *off = offset as i64;
- } else {
- return Err(Error::CfiInstructionInInvalidContext);
- }
- }
- DefCfaOffsetSf { factored_offset } => {
- if let CfaRule::RegisterAndOffset {
- offset: ref mut off,
- ..
- } = *self.ctx.cfa_mut()
- {
- let data_align = self.data_alignment_factor;
- *off = (Wrapping(factored_offset) * data_align).0;
- } else {
- return Err(Error::CfiInstructionInInvalidContext);
- }
- }
- DefCfaExpression { expression } => {
- self.ctx.set_cfa(CfaRule::Expression(expression));
- }
-
- // Instructions that define register rules.
- Undefined { register } => {
- self.ctx
- .set_register_rule(register, RegisterRule::Undefined)?;
- }
- SameValue { register } => {
- self.ctx
- .set_register_rule(register, RegisterRule::SameValue)?;
- }
- Offset {
- register,
- factored_offset,
- } => {
- let offset = Wrapping(factored_offset as i64) * self.data_alignment_factor;
- self.ctx
- .set_register_rule(register, RegisterRule::Offset(offset.0))?;
- }
- OffsetExtendedSf {
- register,
- factored_offset,
- } => {
- let offset = Wrapping(factored_offset) * self.data_alignment_factor;
- self.ctx
- .set_register_rule(register, RegisterRule::Offset(offset.0))?;
- }
- ValOffset {
- register,
- factored_offset,
- } => {
- let offset = Wrapping(factored_offset as i64) * self.data_alignment_factor;
- self.ctx
- .set_register_rule(register, RegisterRule::ValOffset(offset.0))?;
- }
- ValOffsetSf {
- register,
- factored_offset,
- } => {
- let offset = Wrapping(factored_offset) * self.data_alignment_factor;
- self.ctx
- .set_register_rule(register, RegisterRule::ValOffset(offset.0))?;
- }
- Register {
- dest_register,
- src_register,
- } => {
- self.ctx
- .set_register_rule(dest_register, RegisterRule::Register(src_register))?;
- }
- Expression {
- register,
- expression,
- } => {
- let expression = RegisterRule::Expression(expression);
- self.ctx.set_register_rule(register, expression)?;
- }
- ValExpression {
- register,
- expression,
- } => {
- let expression = RegisterRule::ValExpression(expression);
- self.ctx.set_register_rule(register, expression)?;
- }
- Restore { register } => {
- let initial_rule = if let Some(rule) = self.ctx.get_initial_rule(register) {
- rule
- } else {
- // Can't restore the initial rule when we are
- // evaluating the initial rules!
- return Err(Error::CfiInstructionInInvalidContext);
- };
-
- self.ctx.set_register_rule(register, initial_rule)?;
- }
-
- // Row push and pop instructions.
- RememberState => {
- self.ctx.push_row()?;
- }
- RestoreState => {
- // Pop state while preserving current location.
- let start_address = self.ctx.start_address();
- self.ctx.pop_row()?;
- self.ctx.set_start_address(start_address);
- }
-
- // GNU Extension. Save the size somewhere so the unwinder can use
- // it when restoring IP
- ArgsSize { size } => {
- self.ctx.row_mut().saved_args_size = size;
- }
-
- // AArch64 extension.
- NegateRaState => {
- let register = crate::AArch64::RA_SIGN_STATE;
- let value = match self.ctx.row().register(register) {
- RegisterRule::Undefined => 0,
- RegisterRule::Constant(value) => value,
- _ => return Err(Error::CfiInstructionInInvalidContext),
- };
- self.ctx
- .set_register_rule(register, RegisterRule::Constant(value ^ 1))?;
- }
-
- // No operation.
- Nop => {}
- };
-
- Ok(false)
- }
-}
-
-// We tend to have very few register rules: usually only a couple. Even if we
-// have a rule for every register, on x86-64 with SSE and everything we're
-// talking about ~100 rules. So rather than keeping the rules in a hash map, or
-// a vector indexed by register number (which would lead to filling lots of
-// empty entries), we store them as a vec of (register number, register rule)
-// pairs.
-//
-// Additionally, because every register's default rule is implicitly
-// `RegisterRule::Undefined`, we never store a register's rule in this vec if it
-// is undefined and save a little bit more space and do a little fewer
-// comparisons that way.
-//
-// The maximum number of rules preallocated by libunwind is 97 for AArch64, 128
-// for ARM, and even 188 for MIPS. It is extremely unlikely to encounter this
-// many register rules in practice.
-//
-// See:
-// - https://github.com/libunwind/libunwind/blob/11fd461095ea98f4b3e3a361f5a8a558519363fa/include/tdep-x86_64/dwarf-config.h#L36
-// - https://github.com/libunwind/libunwind/blob/11fd461095ea98f4b3e3a361f5a8a558519363fa/include/tdep-aarch64/dwarf-config.h#L32
-// - https://github.com/libunwind/libunwind/blob/11fd461095ea98f4b3e3a361f5a8a558519363fa/include/tdep-arm/dwarf-config.h#L31
-// - https://github.com/libunwind/libunwind/blob/11fd461095ea98f4b3e3a361f5a8a558519363fa/include/tdep-mips/dwarf-config.h#L31
-struct RegisterRuleMap<R: Reader, S: UnwindContextStorage<R> = StoreOnHeap> {
- rules: ArrayVec<S::Rules>,
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Debug for RegisterRuleMap<R, S> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("RegisterRuleMap")
- .field("rules", &self.rules)
- .finish()
- }
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Clone for RegisterRuleMap<R, S> {
- fn clone(&self) -> Self {
- Self {
- rules: self.rules.clone(),
- }
- }
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Default for RegisterRuleMap<R, S> {
- fn default() -> Self {
- RegisterRuleMap {
- rules: Default::default(),
- }
- }
-}
-
-/// # Signal Safe Methods
-///
-/// These methods are guaranteed not to allocate, acquire locks, or perform any
-/// other signal-unsafe operations.
-impl<R: Reader, S: UnwindContextStorage<R>> RegisterRuleMap<R, S> {
- fn is_default(&self) -> bool {
- self.rules.is_empty()
- }
-
- fn get(&self, register: Register) -> RegisterRule<R> {
- self.rules
- .iter()
- .find(|rule| rule.0 == register)
- .map(|r| {
- debug_assert!(r.1.is_defined());
- r.1.clone()
- })
- .unwrap_or(RegisterRule::Undefined)
- }
-
- fn set(&mut self, register: Register, rule: RegisterRule<R>) -> Result<()> {
- if !rule.is_defined() {
- let idx = self
- .rules
- .iter()
- .enumerate()
- .find(|&(_, r)| r.0 == register)
- .map(|(i, _)| i);
- if let Some(idx) = idx {
- self.rules.swap_remove(idx);
- }
- return Ok(());
- }
-
- for &mut (reg, ref mut old_rule) in &mut *self.rules {
- debug_assert!(old_rule.is_defined());
- if reg == register {
- *old_rule = rule;
- return Ok(());
- }
- }
-
- self.rules
- .try_push((register, rule))
- .map_err(|_| Error::TooManyRegisterRules)
- }
-
- fn iter(&self) -> RegisterRuleIter<R> {
- RegisterRuleIter(self.rules.iter())
- }
-}
-
-impl<'a, R, S: UnwindContextStorage<R>> FromIterator<&'a (Register, RegisterRule<R>)>
- for RegisterRuleMap<R, S>
-where
- R: 'a + Reader,
-{
- fn from_iter<T>(iter: T) -> Self
- where
- T: IntoIterator<Item = &'a (Register, RegisterRule<R>)>,
- {
- let iter = iter.into_iter();
- let mut rules = RegisterRuleMap::default();
- for &(reg, ref rule) in iter.filter(|r| r.1.is_defined()) {
- rules.set(reg, rule.clone()).expect(
- "This is only used in tests, impl isn't exposed publicly.
- If you trip this, fix your test",
- );
- }
- rules
- }
-}
-
-impl<R, S: UnwindContextStorage<R>> PartialEq for RegisterRuleMap<R, S>
-where
- R: Reader + PartialEq,
-{
- fn eq(&self, rhs: &Self) -> bool {
- for &(reg, ref rule) in &*self.rules {
- debug_assert!(rule.is_defined());
- if *rule != rhs.get(reg) {
- return false;
- }
- }
-
- for &(reg, ref rhs_rule) in &*rhs.rules {
- debug_assert!(rhs_rule.is_defined());
- if *rhs_rule != self.get(reg) {
- return false;
- }
- }
-
- true
- }
-}
-
-impl<R, S: UnwindContextStorage<R>> Eq for RegisterRuleMap<R, S> where R: Reader + Eq {}
-
-/// An unordered iterator for register rules.
-#[derive(Debug, Clone)]
-pub struct RegisterRuleIter<'iter, R>(::core::slice::Iter<'iter, (Register, RegisterRule<R>)>)
-where
- R: Reader;
-
-impl<'iter, R: Reader> Iterator for RegisterRuleIter<'iter, R> {
- type Item = &'iter (Register, RegisterRule<R>);
-
- fn next(&mut self) -> Option<Self::Item> {
- self.0.next()
- }
-}
-
-/// A row in the virtual unwind table that describes how to find the values of
-/// the registers in the *previous* frame for a range of PC addresses.
-#[derive(PartialEq, Eq)]
-pub struct UnwindTableRow<R: Reader, S: UnwindContextStorage<R> = StoreOnHeap> {
- start_address: u64,
- end_address: u64,
- saved_args_size: u64,
- cfa: CfaRule<R>,
- registers: RegisterRuleMap<R, S>,
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Debug for UnwindTableRow<R, S> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("UnwindTableRow")
- .field("start_address", &self.start_address)
- .field("end_address", &self.end_address)
- .field("saved_args_size", &self.saved_args_size)
- .field("cfa", &self.cfa)
- .field("registers", &self.registers)
- .finish()
- }
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Clone for UnwindTableRow<R, S> {
- fn clone(&self) -> Self {
- Self {
- start_address: self.start_address,
- end_address: self.end_address,
- saved_args_size: self.saved_args_size,
- cfa: self.cfa.clone(),
- registers: self.registers.clone(),
- }
- }
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> Default for UnwindTableRow<R, S> {
- fn default() -> Self {
- UnwindTableRow {
- start_address: 0,
- end_address: 0,
- saved_args_size: 0,
- cfa: Default::default(),
- registers: Default::default(),
- }
- }
-}
-
-impl<R: Reader, S: UnwindContextStorage<R>> UnwindTableRow<R, S> {
- fn is_default(&self) -> bool {
- self.start_address == 0
- && self.end_address == 0
- && self.cfa.is_default()
- && self.registers.is_default()
- }
-
- /// Get the starting PC address that this row applies to.
- pub fn start_address(&self) -> u64 {
- self.start_address
- }
-
- /// Get the end PC address where this row's register rules become
- /// unapplicable.
- ///
- /// In other words, this row describes how to recover the last frame's
- /// registers for all PCs where `row.start_address() <= PC <
- /// row.end_address()`. This row does NOT describe how to recover registers
- /// when `PC == row.end_address()`.
- pub fn end_address(&self) -> u64 {
- self.end_address
- }
-
- /// Return `true` if the given `address` is within this row's address range,
- /// `false` otherwise.
- pub fn contains(&self, address: u64) -> bool {
- self.start_address <= address && address < self.end_address
- }
-
- /// Returns the amount of args currently on the stack.
- ///
- /// When unwinding, if the personality function requested a change in IP,
- /// the SP needs to be adjusted by saved_args_size.
- pub fn saved_args_size(&self) -> u64 {
- self.saved_args_size
- }
-
- /// Get the canonical frame address (CFA) recovery rule for this row.
- pub fn cfa(&self) -> &CfaRule<R> {
- &self.cfa
- }
-
- /// Get the register recovery rule for the given register number.
- ///
- /// The register number mapping is architecture dependent. For example, in
- /// the x86-64 ABI the register number mapping is defined in Figure 3.36:
- ///
- /// > Figure 3.36: DWARF Register Number Mapping
- /// >
- /// > <table>
- /// > <tr><th>Register Name</th> <th>Number</th> <th>Abbreviation</th></tr>
- /// > <tr><td>General Purpose Register RAX</td> <td>0</td> <td>%rax</td></tr>
- /// > <tr><td>General Purpose Register RDX</td> <td>1</td> <td>%rdx</td></tr>
- /// > <tr><td>General Purpose Register RCX</td> <td>2</td> <td>%rcx</td></tr>
- /// > <tr><td>General Purpose Register RBX</td> <td>3</td> <td>%rbx</td></tr>
- /// > <tr><td>General Purpose Register RSI</td> <td>4</td> <td>%rsi</td></tr>
- /// > <tr><td>General Purpose Register RDI</td> <td>5</td> <td>%rdi</td></tr>
- /// > <tr><td>General Purpose Register RBP</td> <td>6</td> <td>%rbp</td></tr>
- /// > <tr><td>Stack Pointer Register RSP</td> <td>7</td> <td>%rsp</td></tr>
- /// > <tr><td>Extended Integer Registers 8-15</td> <td>8-15</td> <td>%r8-%r15</td></tr>
- /// > <tr><td>Return Address RA</td> <td>16</td> <td></td></tr>
- /// > <tr><td>Vector Registers 0–7</td> <td>17-24</td> <td>%xmm0–%xmm7</td></tr>
- /// > <tr><td>Extended Vector Registers 8–15</td> <td>25-32</td> <td>%xmm8–%xmm15</td></tr>
- /// > <tr><td>Floating Point Registers 0–7</td> <td>33-40</td> <td>%st0–%st7</td></tr>
- /// > <tr><td>MMX Registers 0–7</td> <td>41-48</td> <td>%mm0–%mm7</td></tr>
- /// > <tr><td>Flag Register</td> <td>49</td> <td>%rFLAGS</td></tr>
- /// > <tr><td>Segment Register ES</td> <td>50</td> <td>%es</td></tr>
- /// > <tr><td>Segment Register CS</td> <td>51</td> <td>%cs</td></tr>
- /// > <tr><td>Segment Register SS</td> <td>52</td> <td>%ss</td></tr>
- /// > <tr><td>Segment Register DS</td> <td>53</td> <td>%ds</td></tr>
- /// > <tr><td>Segment Register FS</td> <td>54</td> <td>%fs</td></tr>
- /// > <tr><td>Segment Register GS</td> <td>55</td> <td>%gs</td></tr>
- /// > <tr><td>Reserved</td> <td>56-57</td> <td></td></tr>
- /// > <tr><td>FS Base address</td> <td>58</td> <td>%fs.base</td></tr>
- /// > <tr><td>GS Base address</td> <td>59</td> <td>%gs.base</td></tr>
- /// > <tr><td>Reserved</td> <td>60-61</td> <td></td></tr>
- /// > <tr><td>Task Register</td> <td>62</td> <td>%tr</td></tr>
- /// > <tr><td>LDT Register</td> <td>63</td> <td>%ldtr</td></tr>
- /// > <tr><td>128-bit Media Control and Status</td> <td>64</td> <td>%mxcsr</td></tr>
- /// > <tr><td>x87 Control Word</td> <td>65</td> <td>%fcw</td></tr>
- /// > <tr><td>x87 Status Word</td> <td>66</td> <td>%fsw</td></tr>
- /// > <tr><td>Upper Vector Registers 16–31</td> <td>67-82</td> <td>%xmm16–%xmm31</td></tr>
- /// > <tr><td>Reserved</td> <td>83-117</td> <td></td></tr>
- /// > <tr><td>Vector Mask Registers 0–7</td> <td>118-125</td> <td>%k0–%k7</td></tr>
- /// > <tr><td>Reserved</td> <td>126-129</td> <td></td></tr>
- /// > </table>
- pub fn register(&self, register: Register) -> RegisterRule<R> {
- self.registers.get(register)
- }
-
- /// Iterate over all defined register `(number, rule)` pairs.
- ///
- /// The rules are not iterated in any guaranteed order. Any register that
- /// does not make an appearance in the iterator implicitly has the rule
- /// `RegisterRule::Undefined`.
- ///
- /// ```
- /// # use gimli::{EndianSlice, LittleEndian, UnwindTableRow};
- /// # fn foo<'input>(unwind_table_row: UnwindTableRow<EndianSlice<'input, LittleEndian>>) {
- /// for &(register, ref rule) in unwind_table_row.registers() {
- /// // ...
- /// # drop(register); drop(rule);
- /// }
- /// # }
- /// ```
- pub fn registers(&self) -> RegisterRuleIter<R> {
- self.registers.iter()
- }
-}
-
-/// The canonical frame address (CFA) recovery rules.
-#[derive(Clone, Debug, PartialEq, Eq)]
-pub enum CfaRule<R: Reader> {
- /// The CFA is given offset from the given register's value.
- RegisterAndOffset {
- /// The register containing the base value.
- register: Register,
- /// The offset from the register's base value.
- offset: i64,
- },
- /// The CFA is obtained by evaluating this `Reader` as a DWARF expression
- /// program.
- Expression(Expression<R>),
-}
-
-impl<R: Reader> Default for CfaRule<R> {
- fn default() -> Self {
- CfaRule::RegisterAndOffset {
- register: Register(0),
- offset: 0,
- }
- }
-}
-
-impl<R: Reader> CfaRule<R> {
- fn is_default(&self) -> bool {
- match *self {
- CfaRule::RegisterAndOffset { register, offset } => {
- register == Register(0) && offset == 0
- }
- _ => false,
- }
- }
-}
-
-/// An entry in the abstract CFI table that describes how to find the value of a
-/// register.
-///
-/// "The register columns contain rules that describe whether a given register
-/// has been saved and the rule to find the value for the register in the
-/// previous frame."
-#[derive(Clone, Debug, PartialEq, Eq)]
-#[non_exhaustive]
-pub enum RegisterRule<R: Reader> {
- /// > A register that has this rule has no recoverable value in the previous
- /// > frame. (By convention, it is not preserved by a callee.)
- Undefined,
-
- /// > This register has not been modified from the previous frame. (By
- /// > convention, it is preserved by the callee, but the callee has not
- /// > modified it.)
- SameValue,
-
- /// "The previous value of this register is saved at the address CFA+N where
- /// CFA is the current CFA value and N is a signed offset."
- Offset(i64),
-
- /// "The previous value of this register is the value CFA+N where CFA is the
- /// current CFA value and N is a signed offset."
- ValOffset(i64),
-
- /// "The previous value of this register is stored in another register
- /// numbered R."
- Register(Register),
-
- /// "The previous value of this register is located at the address produced
- /// by executing the DWARF expression."
- Expression(Expression<R>),
-
- /// "The previous value of this register is the value produced by executing
- /// the DWARF expression."
- ValExpression(Expression<R>),
-
- /// "The rule is defined externally to this specification by the augmenter."
- Architectural,
-
- /// This is a pseudo-register with a constant value.
- Constant(u64),
-}
-
-impl<R: Reader> RegisterRule<R> {
- fn is_defined(&self) -> bool {
- !matches!(*self, RegisterRule::Undefined)
- }
-}
-
-/// A parsed call frame instruction.
-#[derive(Clone, Debug, PartialEq, Eq)]
-#[non_exhaustive]
-pub enum CallFrameInstruction<R: Reader> {
- // 6.4.2.1 Row Creation Methods
- /// > 1. DW_CFA_set_loc
- /// >
- /// > The DW_CFA_set_loc instruction takes a single operand that represents
- /// > a target address. The required action is to create a new table row
- /// > using the specified address as the location. All other values in the
- /// > new row are initially identical to the current row. The new location
- /// > value is always greater than the current one. If the segment_size
- /// > field of this FDE's CIE is non- zero, the initial location is preceded
- /// > by a segment selector of the given length.
- SetLoc {
- /// The target address.
- address: u64,
- },
-
- /// The `AdvanceLoc` instruction is used for all of `DW_CFA_advance_loc` and
- /// `DW_CFA_advance_loc{1,2,4}`.
- ///
- /// > 2. DW_CFA_advance_loc
- /// >
- /// > The DW_CFA_advance instruction takes a single operand (encoded with
- /// > the opcode) that represents a constant delta. The required action is
- /// > to create a new table row with a location value that is computed by
- /// > taking the current entry’s location value and adding the value of
- /// > delta * code_alignment_factor. All other values in the new row are
- /// > initially identical to the current row.
- AdvanceLoc {
- /// The delta to be added to the current address.
- delta: u32,
- },
-
- // 6.4.2.2 CFA Definition Methods
- /// > 1. DW_CFA_def_cfa
- /// >
- /// > The DW_CFA_def_cfa instruction takes two unsigned LEB128 operands
- /// > representing a register number and a (non-factored) offset. The
- /// > required action is to define the current CFA rule to use the provided
- /// > register and offset.
- DefCfa {
- /// The target register's number.
- register: Register,
- /// The non-factored offset.
- offset: u64,
- },
-
- /// > 2. DW_CFA_def_cfa_sf
- /// >
- /// > The DW_CFA_def_cfa_sf instruction takes two operands: an unsigned
- /// > LEB128 value representing a register number and a signed LEB128
- /// > factored offset. This instruction is identical to DW_CFA_def_cfa
- /// > except that the second operand is signed and factored. The resulting
- /// > offset is factored_offset * data_alignment_factor.
- DefCfaSf {
- /// The target register's number.
- register: Register,
- /// The factored offset.
- factored_offset: i64,
- },
-
- /// > 3. DW_CFA_def_cfa_register
- /// >
- /// > The DW_CFA_def_cfa_register instruction takes a single unsigned LEB128
- /// > operand representing a register number. The required action is to
- /// > define the current CFA rule to use the provided register (but to keep
- /// > the old offset). This operation is valid only if the current CFA rule
- /// > is defined to use a register and offset.
- DefCfaRegister {
- /// The target register's number.
- register: Register,
- },
-
- /// > 4. DW_CFA_def_cfa_offset
- /// >
- /// > The DW_CFA_def_cfa_offset instruction takes a single unsigned LEB128
- /// > operand representing a (non-factored) offset. The required action is
- /// > to define the current CFA rule to use the provided offset (but to keep
- /// > the old register). This operation is valid only if the current CFA
- /// > rule is defined to use a register and offset.
- DefCfaOffset {
- /// The non-factored offset.
- offset: u64,
- },
-
- /// > 5. DW_CFA_def_cfa_offset_sf
- /// >
- /// > The DW_CFA_def_cfa_offset_sf instruction takes a signed LEB128 operand
- /// > representing a factored offset. This instruction is identical to
- /// > DW_CFA_def_cfa_offset except that the operand is signed and
- /// > factored. The resulting offset is factored_offset *
- /// > data_alignment_factor. This operation is valid only if the current CFA
- /// > rule is defined to use a register and offset.
- DefCfaOffsetSf {
- /// The factored offset.
- factored_offset: i64,
- },
-
- /// > 6. DW_CFA_def_cfa_expression
- /// >
- /// > The DW_CFA_def_cfa_expression instruction takes a single operand
- /// > encoded as a DW_FORM_exprloc value representing a DWARF
- /// > expression. The required action is to establish that expression as the
- /// > means by which the current CFA is computed.
- DefCfaExpression {
- /// The DWARF expression.
- expression: Expression<R>,
- },
-
- // 6.4.2.3 Register Rule Instructions
- /// > 1. DW_CFA_undefined
- /// >
- /// > The DW_CFA_undefined instruction takes a single unsigned LEB128
- /// > operand that represents a register number. The required action is to
- /// > set the rule for the specified register to “undefined.”
- Undefined {
- /// The target register's number.
- register: Register,
- },
-
- /// > 2. DW_CFA_same_value
- /// >
- /// > The DW_CFA_same_value instruction takes a single unsigned LEB128
- /// > operand that represents a register number. The required action is to
- /// > set the rule for the specified register to “same value.”
- SameValue {
- /// The target register's number.
- register: Register,
- },
-
- /// The `Offset` instruction represents both `DW_CFA_offset` and
- /// `DW_CFA_offset_extended`.
- ///
- /// > 3. DW_CFA_offset
- /// >
- /// > The DW_CFA_offset instruction takes two operands: a register number
- /// > (encoded with the opcode) and an unsigned LEB128 constant representing
- /// > a factored offset. The required action is to change the rule for the
- /// > register indicated by the register number to be an offset(N) rule
- /// > where the value of N is factored offset * data_alignment_factor.
- Offset {
- /// The target register's number.
- register: Register,
- /// The factored offset.
- factored_offset: u64,
- },
-
- /// > 5. DW_CFA_offset_extended_sf
- /// >
- /// > The DW_CFA_offset_extended_sf instruction takes two operands: an
- /// > unsigned LEB128 value representing a register number and a signed
- /// > LEB128 factored offset. This instruction is identical to
- /// > DW_CFA_offset_extended except that the second operand is signed and
- /// > factored. The resulting offset is factored_offset *
- /// > data_alignment_factor.
- OffsetExtendedSf {
- /// The target register's number.
- register: Register,
- /// The factored offset.
- factored_offset: i64,
- },
-
- /// > 6. DW_CFA_val_offset
- /// >
- /// > The DW_CFA_val_offset instruction takes two unsigned LEB128 operands
- /// > representing a register number and a factored offset. The required
- /// > action is to change the rule for the register indicated by the
- /// > register number to be a val_offset(N) rule where the value of N is
- /// > factored_offset * data_alignment_factor.
- ValOffset {
- /// The target register's number.
- register: Register,
- /// The factored offset.
- factored_offset: u64,
- },
-
- /// > 7. DW_CFA_val_offset_sf
- /// >
- /// > The DW_CFA_val_offset_sf instruction takes two operands: an unsigned
- /// > LEB128 value representing a register number and a signed LEB128
- /// > factored offset. This instruction is identical to DW_CFA_val_offset
- /// > except that the second operand is signed and factored. The resulting
- /// > offset is factored_offset * data_alignment_factor.
- ValOffsetSf {
- /// The target register's number.
- register: Register,
- /// The factored offset.
- factored_offset: i64,
- },
-
- /// > 8. DW_CFA_register
- /// >
- /// > The DW_CFA_register instruction takes two unsigned LEB128 operands
- /// > representing register numbers. The required action is to set the rule
- /// > for the first register to be register(R) where R is the second
- /// > register.
- Register {
- /// The number of the register whose rule is being changed.
- dest_register: Register,
- /// The number of the register where the other register's value can be
- /// found.
- src_register: Register,
- },
-
- /// > 9. DW_CFA_expression
- /// >
- /// > The DW_CFA_expression instruction takes two operands: an unsigned
- /// > LEB128 value representing a register number, and a DW_FORM_block value
- /// > representing a DWARF expression. The required action is to change the
- /// > rule for the register indicated by the register number to be an
- /// > expression(E) rule where E is the DWARF expression. That is, the DWARF
- /// > expression computes the address. The value of the CFA is pushed on the
- /// > DWARF evaluation stack prior to execution of the DWARF expression.
- Expression {
- /// The target register's number.
- register: Register,
- /// The DWARF expression.
- expression: Expression<R>,
- },
-
- /// > 10. DW_CFA_val_expression
- /// >
- /// > The DW_CFA_val_expression instruction takes two operands: an unsigned
- /// > LEB128 value representing a register number, and a DW_FORM_block value
- /// > representing a DWARF expression. The required action is to change the
- /// > rule for the register indicated by the register number to be a
- /// > val_expression(E) rule where E is the DWARF expression. That is, the
- /// > DWARF expression computes the value of the given register. The value
- /// > of the CFA is pushed on the DWARF evaluation stack prior to execution
- /// > of the DWARF expression.
- ValExpression {
- /// The target register's number.
- register: Register,
- /// The DWARF expression.
- expression: Expression<R>,
- },
-
- /// The `Restore` instruction represents both `DW_CFA_restore` and
- /// `DW_CFA_restore_extended`.
- ///
- /// > 11. DW_CFA_restore
- /// >
- /// > The DW_CFA_restore instruction takes a single operand (encoded with
- /// > the opcode) that represents a register number. The required action is
- /// > to change the rule for the indicated register to the rule assigned it
- /// > by the initial_instructions in the CIE.
- Restore {
- /// The register to be reset.
- register: Register,
- },
-
- // 6.4.2.4 Row State Instructions
- /// > 1. DW_CFA_remember_state
- /// >
- /// > The DW_CFA_remember_state instruction takes no operands. The required
- /// > action is to push the set of rules for every register onto an implicit
- /// > stack.
- RememberState,
-
- /// > 2. DW_CFA_restore_state
- /// >
- /// > The DW_CFA_restore_state instruction takes no operands. The required
- /// > action is to pop the set of rules off the implicit stack and place
- /// > them in the current row.
- RestoreState,
-
- /// > DW_CFA_GNU_args_size
- /// >
- /// > GNU Extension
- /// >
- /// > The DW_CFA_GNU_args_size instruction takes an unsigned LEB128 operand
- /// > representing an argument size. This instruction specifies the total of
- /// > the size of the arguments which have been pushed onto the stack.
- ArgsSize {
- /// The size of the arguments which have been pushed onto the stack
- size: u64,
- },
-
- /// > DW_CFA_AARCH64_negate_ra_state
- /// >
- /// > AArch64 Extension
- /// >
- /// > The DW_CFA_AARCH64_negate_ra_state operation negates bit 0 of the
- /// > RA_SIGN_STATE pseudo-register. It does not take any operands. The
- /// > DW_CFA_AARCH64_negate_ra_state must not be mixed with other DWARF Register
- /// > Rule Instructions on the RA_SIGN_STATE pseudo-register in one Common
- /// > Information Entry (CIE) and Frame Descriptor Entry (FDE) program sequence.
- NegateRaState,
-
- // 6.4.2.5 Padding Instruction
- /// > 1. DW_CFA_nop
- /// >
- /// > The DW_CFA_nop instruction has no operands and no required actions. It
- /// > is used as padding to make a CIE or FDE an appropriate size.
- Nop,
-}
-
-const CFI_INSTRUCTION_HIGH_BITS_MASK: u8 = 0b1100_0000;
-const CFI_INSTRUCTION_LOW_BITS_MASK: u8 = !CFI_INSTRUCTION_HIGH_BITS_MASK;
-
-impl<R: Reader> CallFrameInstruction<R> {
- fn parse(
- input: &mut R,
- address_encoding: Option<DwEhPe>,
- parameters: &PointerEncodingParameters<R>,
- vendor: Vendor,
- ) -> Result<CallFrameInstruction<R>> {
- let instruction = input.read_u8()?;
- let high_bits = instruction & CFI_INSTRUCTION_HIGH_BITS_MASK;
-
- if high_bits == constants::DW_CFA_advance_loc.0 {
- let delta = instruction & CFI_INSTRUCTION_LOW_BITS_MASK;
- return Ok(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(delta),
- });
- }
-
- if high_bits == constants::DW_CFA_offset.0 {
- let register = Register((instruction & CFI_INSTRUCTION_LOW_BITS_MASK).into());
- let offset = input.read_uleb128()?;
- return Ok(CallFrameInstruction::Offset {
- register,
- factored_offset: offset,
- });
- }
-
- if high_bits == constants::DW_CFA_restore.0 {
- let register = Register((instruction & CFI_INSTRUCTION_LOW_BITS_MASK).into());
- return Ok(CallFrameInstruction::Restore { register });
- }
-
- debug_assert_eq!(high_bits, 0);
- let instruction = constants::DwCfa(instruction);
-
- match instruction {
- constants::DW_CFA_nop => Ok(CallFrameInstruction::Nop),
-
- constants::DW_CFA_set_loc => {
- let address = if let Some(encoding) = address_encoding {
- parse_encoded_pointer(encoding, parameters, input)?.direct()?
- } else {
- input.read_address(parameters.address_size)?
- };
- Ok(CallFrameInstruction::SetLoc { address })
- }
-
- constants::DW_CFA_advance_loc1 => {
- let delta = input.read_u8()?;
- Ok(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(delta),
- })
- }
-
- constants::DW_CFA_advance_loc2 => {
- let delta = input.read_u16()?;
- Ok(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(delta),
- })
- }
-
- constants::DW_CFA_advance_loc4 => {
- let delta = input.read_u32()?;
- Ok(CallFrameInstruction::AdvanceLoc { delta })
- }
-
- constants::DW_CFA_offset_extended => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let offset = input.read_uleb128()?;
- Ok(CallFrameInstruction::Offset {
- register,
- factored_offset: offset,
- })
- }
-
- constants::DW_CFA_restore_extended => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- Ok(CallFrameInstruction::Restore { register })
- }
-
- constants::DW_CFA_undefined => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- Ok(CallFrameInstruction::Undefined { register })
- }
-
- constants::DW_CFA_same_value => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- Ok(CallFrameInstruction::SameValue { register })
- }
-
- constants::DW_CFA_register => {
- let dest = input.read_uleb128().and_then(Register::from_u64)?;
- let src = input.read_uleb128().and_then(Register::from_u64)?;
- Ok(CallFrameInstruction::Register {
- dest_register: dest,
- src_register: src,
- })
- }
-
- constants::DW_CFA_remember_state => Ok(CallFrameInstruction::RememberState),
-
- constants::DW_CFA_restore_state => Ok(CallFrameInstruction::RestoreState),
-
- constants::DW_CFA_def_cfa => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let offset = input.read_uleb128()?;
- Ok(CallFrameInstruction::DefCfa { register, offset })
- }
-
- constants::DW_CFA_def_cfa_register => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- Ok(CallFrameInstruction::DefCfaRegister { register })
- }
-
- constants::DW_CFA_def_cfa_offset => {
- let offset = input.read_uleb128()?;
- Ok(CallFrameInstruction::DefCfaOffset { offset })
- }
-
- constants::DW_CFA_def_cfa_expression => {
- let len = input.read_uleb128().and_then(R::Offset::from_u64)?;
- let expression = input.split(len)?;
- Ok(CallFrameInstruction::DefCfaExpression {
- expression: Expression(expression),
- })
- }
-
- constants::DW_CFA_expression => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let len = input.read_uleb128().and_then(R::Offset::from_u64)?;
- let expression = input.split(len)?;
- Ok(CallFrameInstruction::Expression {
- register,
- expression: Expression(expression),
- })
- }
-
- constants::DW_CFA_offset_extended_sf => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let offset = input.read_sleb128()?;
- Ok(CallFrameInstruction::OffsetExtendedSf {
- register,
- factored_offset: offset,
- })
- }
-
- constants::DW_CFA_def_cfa_sf => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let offset = input.read_sleb128()?;
- Ok(CallFrameInstruction::DefCfaSf {
- register,
- factored_offset: offset,
- })
- }
-
- constants::DW_CFA_def_cfa_offset_sf => {
- let offset = input.read_sleb128()?;
- Ok(CallFrameInstruction::DefCfaOffsetSf {
- factored_offset: offset,
- })
- }
-
- constants::DW_CFA_val_offset => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let offset = input.read_uleb128()?;
- Ok(CallFrameInstruction::ValOffset {
- register,
- factored_offset: offset,
- })
- }
-
- constants::DW_CFA_val_offset_sf => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let offset = input.read_sleb128()?;
- Ok(CallFrameInstruction::ValOffsetSf {
- register,
- factored_offset: offset,
- })
- }
-
- constants::DW_CFA_val_expression => {
- let register = input.read_uleb128().and_then(Register::from_u64)?;
- let len = input.read_uleb128().and_then(R::Offset::from_u64)?;
- let expression = input.split(len)?;
- Ok(CallFrameInstruction::ValExpression {
- register,
- expression: Expression(expression),
- })
- }
-
- constants::DW_CFA_GNU_args_size => {
- let size = input.read_uleb128()?;
- Ok(CallFrameInstruction::ArgsSize { size })
- }
-
- constants::DW_CFA_AARCH64_negate_ra_state if vendor == Vendor::AArch64 => {
- Ok(CallFrameInstruction::NegateRaState)
- }
-
- otherwise => Err(Error::UnknownCallFrameInstruction(otherwise)),
- }
- }
-}
-
-/// A lazy iterator parsing call frame instructions.
-///
-/// Can be [used with
-/// `FallibleIterator`](./index.html#using-with-fallibleiterator).
-#[derive(Clone, Debug)]
-pub struct CallFrameInstructionIter<'a, R: Reader> {
- input: R,
- address_encoding: Option<constants::DwEhPe>,
- parameters: PointerEncodingParameters<'a, R>,
- vendor: Vendor,
-}
-
-impl<'a, R: Reader> CallFrameInstructionIter<'a, R> {
- /// Parse the next call frame instruction.
- pub fn next(&mut self) -> Result<Option<CallFrameInstruction<R>>> {
- if self.input.is_empty() {
- return Ok(None);
- }
-
- match CallFrameInstruction::parse(
- &mut self.input,
- self.address_encoding,
- &self.parameters,
- self.vendor,
- ) {
- Ok(instruction) => Ok(Some(instruction)),
- Err(e) => {
- self.input.empty();
- Err(e)
- }
- }
- }
-}
-
-#[cfg(feature = "fallible-iterator")]
-impl<'a, R: Reader> fallible_iterator::FallibleIterator for CallFrameInstructionIter<'a, R> {
- type Item = CallFrameInstruction<R>;
- type Error = Error;
-
- fn next(&mut self) -> ::core::result::Result<Option<Self::Item>, Self::Error> {
- CallFrameInstructionIter::next(self)
- }
-}
-
-/// Parse a `DW_EH_PE_*` pointer encoding.
-#[doc(hidden)]
-#[inline]
-fn parse_pointer_encoding<R: Reader>(input: &mut R) -> Result<constants::DwEhPe> {
- let eh_pe = input.read_u8()?;
- let eh_pe = constants::DwEhPe(eh_pe);
-
- if eh_pe.is_valid_encoding() {
- Ok(eh_pe)
- } else {
- Err(Error::UnknownPointerEncoding)
- }
-}
-
-/// A decoded pointer.
-#[derive(Copy, Clone, Debug, PartialEq, Eq)]
-pub enum Pointer {
- /// This value is the decoded pointer value.
- Direct(u64),
-
- /// This value is *not* the pointer value, but points to the address of
- /// where the real pointer value lives. In other words, deref this pointer
- /// to get the real pointer value.
- ///
- /// Chase this pointer at your own risk: do you trust the DWARF data it came
- /// from?
- Indirect(u64),
-}
-
-impl Default for Pointer {
- #[inline]
- fn default() -> Self {
- Pointer::Direct(0)
- }
-}
-
-impl Pointer {
- #[inline]
- fn new(encoding: constants::DwEhPe, address: u64) -> Pointer {
- if encoding.is_indirect() {
- Pointer::Indirect(address)
- } else {
- Pointer::Direct(address)
- }
- }
-
- /// Return the direct pointer value.
- #[inline]
- pub fn direct(self) -> Result<u64> {
- match self {
- Pointer::Direct(p) => Ok(p),
- Pointer::Indirect(_) => Err(Error::UnsupportedPointerEncoding),
- }
- }
-
- /// Return the pointer value, discarding indirectness information.
- #[inline]
- pub fn pointer(self) -> u64 {
- match self {
- Pointer::Direct(p) | Pointer::Indirect(p) => p,
- }
- }
-}
-
-#[derive(Clone, Debug)]
-struct PointerEncodingParameters<'a, R: Reader> {
- bases: &'a SectionBaseAddresses,
- func_base: Option<u64>,
- address_size: u8,
- section: &'a R,
-}
-
-fn parse_encoded_pointer<R: Reader>(
- encoding: constants::DwEhPe,
- parameters: &PointerEncodingParameters<R>,
- input: &mut R,
-) -> Result<Pointer> {
- // TODO: check this once only in parse_pointer_encoding
- if !encoding.is_valid_encoding() {
- return Err(Error::UnknownPointerEncoding);
- }
-
- if encoding == constants::DW_EH_PE_omit {
- return Err(Error::CannotParseOmitPointerEncoding);
- }
-
- let base = match encoding.application() {
- constants::DW_EH_PE_absptr => 0,
- constants::DW_EH_PE_pcrel => {
- if let Some(section_base) = parameters.bases.section {
- let offset_from_section = input.offset_from(parameters.section);
- section_base.wrapping_add(offset_from_section.into_u64())
- } else {
- return Err(Error::PcRelativePointerButSectionBaseIsUndefined);
- }
- }
- constants::DW_EH_PE_textrel => {
- if let Some(text) = parameters.bases.text {
- text
- } else {
- return Err(Error::TextRelativePointerButTextBaseIsUndefined);
- }
- }
- constants::DW_EH_PE_datarel => {
- if let Some(data) = parameters.bases.data {
- data
- } else {
- return Err(Error::DataRelativePointerButDataBaseIsUndefined);
- }
- }
- constants::DW_EH_PE_funcrel => {
- if let Some(func) = parameters.func_base {
- func
- } else {
- return Err(Error::FuncRelativePointerInBadContext);
- }
- }
- constants::DW_EH_PE_aligned => return Err(Error::UnsupportedPointerEncoding),
- _ => unreachable!(),
- };
-
- let offset = match encoding.format() {
- // Unsigned variants.
- constants::DW_EH_PE_absptr => input.read_address(parameters.address_size),
- constants::DW_EH_PE_uleb128 => input.read_uleb128(),
- constants::DW_EH_PE_udata2 => input.read_u16().map(u64::from),
- constants::DW_EH_PE_udata4 => input.read_u32().map(u64::from),
- constants::DW_EH_PE_udata8 => input.read_u64(),
-
- // Signed variants. Here we sign extend the values (happens by
- // default when casting a signed integer to a larger range integer
- // in Rust), return them as u64, and rely on wrapping addition to do
- // the right thing when adding these offsets to their bases.
- constants::DW_EH_PE_sleb128 => input.read_sleb128().map(|a| a as u64),
- constants::DW_EH_PE_sdata2 => input.read_i16().map(|a| a as u64),
- constants::DW_EH_PE_sdata4 => input.read_i32().map(|a| a as u64),
- constants::DW_EH_PE_sdata8 => input.read_i64().map(|a| a as u64),
-
- // That was all of the valid encoding formats.
- _ => unreachable!(),
- }?;
-
- Ok(Pointer::new(encoding, base.wrapping_add(offset)))
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
- use super::{parse_cfi_entry, AugmentationData, RegisterRuleMap, UnwindContext};
- use crate::common::Format;
- use crate::constants;
- use crate::endianity::{BigEndian, Endianity, LittleEndian, NativeEndian};
- use crate::read::{
- EndianSlice, Error, Expression, Pointer, ReaderOffsetId, Result, Section as ReadSection,
- };
- use crate::test_util::GimliSectionMethods;
- use alloc::boxed::Box;
- use alloc::vec::Vec;
- use core::marker::PhantomData;
- use core::mem;
- use core::u64;
- use test_assembler::{Endian, Label, LabelMaker, LabelOrNum, Section, ToLabelOrNum};
-
- // Ensure each test tries to read the same section kind that it wrote.
- #[derive(Clone, Copy)]
- struct SectionKind<Section>(PhantomData<Section>);
-
- impl<T> SectionKind<T> {
- fn endian<'input, E>(self) -> Endian
- where
- E: Endianity,
- T: UnwindSection<EndianSlice<'input, E>>,
- T::Offset: UnwindOffset<usize>,
- {
- if E::default().is_big_endian() {
- Endian::Big
- } else {
- Endian::Little
- }
- }
-
- fn section<'input, E>(self, contents: &'input [u8]) -> T
- where
- E: Endianity,
- T: UnwindSection<EndianSlice<'input, E>> + ReadSection<EndianSlice<'input, E>>,
- T::Offset: UnwindOffset<usize>,
- {
- EndianSlice::new(contents, E::default()).into()
- }
- }
-
- fn debug_frame_le<'a>() -> SectionKind<DebugFrame<EndianSlice<'a, LittleEndian>>> {
- SectionKind(PhantomData)
- }
-
- fn debug_frame_be<'a>() -> SectionKind<DebugFrame<EndianSlice<'a, BigEndian>>> {
- SectionKind(PhantomData)
- }
-
- fn eh_frame_le<'a>() -> SectionKind<EhFrame<EndianSlice<'a, LittleEndian>>> {
- SectionKind(PhantomData)
- }
-
- fn parse_fde<Section, O, F, R>(
- section: Section,
- input: &mut R,
- get_cie: F,
- ) -> Result<FrameDescriptionEntry<R>>
- where
- R: Reader,
- Section: UnwindSection<R, Offset = O>,
- O: UnwindOffset<R::Offset>,
- F: FnMut(&Section, &BaseAddresses, O) -> Result<CommonInformationEntry<R>>,
- {
- let bases = Default::default();
- match parse_cfi_entry(&bases, &section, input) {
- Ok(Some(CieOrFde::Fde(partial))) => partial.parse(get_cie),
- Ok(_) => Err(Error::NoEntryAtGivenOffset),
- Err(e) => Err(e),
- }
- }
-
- // Mixin methods for `Section` to help define binary test data.
-
- trait CfiSectionMethods: GimliSectionMethods {
- fn cie<'aug, 'input, E, T>(
- self,
- _kind: SectionKind<T>,
- augmentation: Option<&'aug str>,
- cie: &mut CommonInformationEntry<EndianSlice<'input, E>>,
- ) -> Self
- where
- E: Endianity,
- T: UnwindSection<EndianSlice<'input, E>>,
- T::Offset: UnwindOffset;
- fn fde<'a, 'input, E, T, L>(
- self,
- _kind: SectionKind<T>,
- cie_offset: L,
- fde: &mut FrameDescriptionEntry<EndianSlice<'input, E>>,
- ) -> Self
- where
- E: Endianity,
- T: UnwindSection<EndianSlice<'input, E>>,
- T::Offset: UnwindOffset,
- L: ToLabelOrNum<'a, u64>;
- }
-
- impl CfiSectionMethods for Section {
- fn cie<'aug, 'input, E, T>(
- self,
- _kind: SectionKind<T>,
- augmentation: Option<&'aug str>,
- cie: &mut CommonInformationEntry<EndianSlice<'input, E>>,
- ) -> Self
- where
- E: Endianity,
- T: UnwindSection<EndianSlice<'input, E>>,
- T::Offset: UnwindOffset,
- {
- cie.offset = self.size() as _;
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let section = match cie.format {
- Format::Dwarf32 => self.D32(&length).mark(&start).D32(0xffff_ffff),
- Format::Dwarf64 => {
- let section = self.D32(0xffff_ffff);
- section.D64(&length).mark(&start).D64(0xffff_ffff_ffff_ffff)
- }
- };
-
- let mut section = section.D8(cie.version);
-
- if let Some(augmentation) = augmentation {
- section = section.append_bytes(augmentation.as_bytes());
- }
-
- // Null terminator for augmentation string.
- let section = section.D8(0);
-
- let section = if T::has_address_and_segment_sizes(cie.version) {
- section.D8(cie.address_size).D8(cie.segment_size)
- } else {
- section
- };
-
- let section = section
- .uleb(cie.code_alignment_factor)
- .sleb(cie.data_alignment_factor)
- .uleb(cie.return_address_register.0.into())
- .append_bytes(cie.initial_instructions.slice())
- .mark(&end);
-
- cie.length = (&end - &start) as usize;
- length.set_const(cie.length as u64);
-
- section
- }
-
- fn fde<'a, 'input, E, T, L>(
- self,
- _kind: SectionKind<T>,
- cie_offset: L,
- fde: &mut FrameDescriptionEntry<EndianSlice<'input, E>>,
- ) -> Self
- where
- E: Endianity,
- T: UnwindSection<EndianSlice<'input, E>>,
- T::Offset: UnwindOffset,
- L: ToLabelOrNum<'a, u64>,
- {
- fde.offset = self.size() as _;
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- assert_eq!(fde.format, fde.cie.format);
-
- let section = match T::cie_offset_encoding(fde.format) {
- CieOffsetEncoding::U32 => {
- let section = self.D32(&length).mark(&start);
- match cie_offset.to_labelornum() {
- LabelOrNum::Label(ref l) => section.D32(l),
- LabelOrNum::Num(o) => section.D32(o as u32),
- }
- }
- CieOffsetEncoding::U64 => {
- let section = self.D32(0xffff_ffff);
- section.D64(&length).mark(&start).D64(cie_offset)
- }
- };
-
- let section = match fde.cie.segment_size {
- 0 => section,
- 4 => section.D32(fde.initial_segment as u32),
- 8 => section.D64(fde.initial_segment),
- x => panic!("Unsupported test segment size: {}", x),
- };
-
- let section = match fde.cie.address_size {
- 4 => section
- .D32(fde.initial_address() as u32)
- .D32(fde.len() as u32),
- 8 => section.D64(fde.initial_address()).D64(fde.len()),
- x => panic!("Unsupported address size: {}", x),
- };
-
- let section = if let Some(ref augmentation) = fde.augmentation {
- let cie_aug = fde
- .cie
- .augmentation
- .expect("FDE has augmentation, but CIE doesn't");
-
- if let Some(lsda) = augmentation.lsda {
- // We only support writing `DW_EH_PE_absptr` here.
- assert_eq!(
- cie_aug
- .lsda
- .expect("FDE has lsda, but CIE doesn't")
- .format(),
- constants::DW_EH_PE_absptr
- );
-
- // Augmentation data length
- let section = section.uleb(u64::from(fde.cie.address_size));
- match fde.cie.address_size {
- 4 => section.D32({
- let x: u64 = lsda.pointer();
- x as u32
- }),
- 8 => section.D64({
- let x: u64 = lsda.pointer();
- x
- }),
- x => panic!("Unsupported address size: {}", x),
- }
- } else {
- // Even if we don't have any augmentation data, if there is
- // an augmentation defined, we need to put the length in.
- section.uleb(0)
- }
- } else {
- section
- };
-
- let section = section.append_bytes(fde.instructions.slice()).mark(&end);
-
- fde.length = (&end - &start) as usize;
- length.set_const(fde.length as u64);
-
- section
- }
- }
-
- trait ResultExt {
- fn map_eof(self, input: &[u8]) -> Self;
- }
-
- impl<T> ResultExt for Result<T> {
- fn map_eof(self, input: &[u8]) -> Self {
- match self {
- Err(Error::UnexpectedEof(id)) => {
- let id = ReaderOffsetId(id.0 - input.as_ptr() as u64);
- Err(Error::UnexpectedEof(id))
- }
- r => r,
- }
- }
- }
-
- fn assert_parse_cie<'input, E>(
- kind: SectionKind<DebugFrame<EndianSlice<'input, E>>>,
- section: Section,
- address_size: u8,
- expected: Result<(
- EndianSlice<'input, E>,
- CommonInformationEntry<EndianSlice<'input, E>>,
- )>,
- ) where
- E: Endianity,
- {
- let section = section.get_contents().unwrap();
- let mut debug_frame = kind.section(&section);
- debug_frame.set_address_size(address_size);
- let input = &mut EndianSlice::new(&section, E::default());
- let bases = Default::default();
- let result = CommonInformationEntry::parse(&bases, &debug_frame, input);
- let result = result.map(|cie| (*input, cie)).map_eof(&section);
- assert_eq!(result, expected);
- }
-
- #[test]
- fn test_parse_cie_incomplete_length_32() {
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian()).L16(5);
- assert_parse_cie(
- kind,
- section,
- 8,
- Err(Error::UnexpectedEof(ReaderOffsetId(0))),
- );
- }
-
- #[test]
- fn test_parse_cie_incomplete_length_64() {
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .L32(0xffff_ffff)
- .L32(12345);
- assert_parse_cie(
- kind,
- section,
- 8,
- Err(Error::UnexpectedEof(ReaderOffsetId(4))),
- );
- }
-
- #[test]
- fn test_parse_cie_incomplete_id_32() {
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- // The length is not large enough to contain the ID.
- .B32(3)
- .B32(0xffff_ffff);
- assert_parse_cie(
- kind,
- section,
- 8,
- Err(Error::UnexpectedEof(ReaderOffsetId(4))),
- );
- }
-
- #[test]
- fn test_parse_cie_bad_id_32() {
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- // Initial length
- .B32(4)
- // Not the CIE Id.
- .B32(0xbad1_bad2);
- assert_parse_cie(kind, section, 8, Err(Error::NotCieId));
- }
-
- #[test]
- fn test_parse_cie_32_bad_version() {
- let mut cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 99,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 2,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian()).cie(kind, None, &mut cie);
- assert_parse_cie(kind, section, 4, Err(Error::UnknownVersion(99)));
- }
-
- #[test]
- fn test_parse_cie_unknown_augmentation() {
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let augmentation = Some("replicant");
- let expected_rest = [1, 2, 3];
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- // Initial length
- .L32(&length)
- .mark(&start)
- // CIE Id
- .L32(0xffff_ffff)
- // Version
- .D8(4)
- // Augmentation
- .append_bytes(augmentation.unwrap().as_bytes())
- // Null terminator
- .D8(0)
- // Extra augmented data that we can't understand.
- .L32(1)
- .L32(2)
- .L32(3)
- .L32(4)
- .L32(5)
- .L32(6)
- .mark(&end)
- .append_bytes(&expected_rest);
-
- let expected_length = (&end - &start) as u64;
- length.set_const(expected_length);
-
- assert_parse_cie(kind, section, 8, Err(Error::UnknownAugmentation));
- }
-
- fn test_parse_cie(format: Format, version: u8, address_size: u8) {
- let expected_rest = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let expected_instrs: Vec<_> = (0..4).map(|_| constants::DW_CFA_nop.0).collect();
-
- let mut cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format,
- version,
- augmentation: None,
- address_size,
- segment_size: 0,
- code_alignment_factor: 16,
- data_alignment_factor: 32,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&expected_instrs, LittleEndian),
- };
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .cie(kind, None, &mut cie)
- .append_bytes(&expected_rest);
-
- assert_parse_cie(
- kind,
- section,
- address_size,
- Ok((EndianSlice::new(&expected_rest, LittleEndian), cie)),
- );
- }
-
- #[test]
- fn test_parse_cie_32_ok() {
- test_parse_cie(Format::Dwarf32, 1, 4);
- test_parse_cie(Format::Dwarf32, 1, 8);
- test_parse_cie(Format::Dwarf32, 4, 4);
- test_parse_cie(Format::Dwarf32, 4, 8);
- }
-
- #[test]
- fn test_parse_cie_64_ok() {
- test_parse_cie(Format::Dwarf64, 1, 4);
- test_parse_cie(Format::Dwarf64, 1, 8);
- test_parse_cie(Format::Dwarf64, 4, 4);
- test_parse_cie(Format::Dwarf64, 4, 8);
- }
-
- #[test]
- fn test_parse_cie_length_too_big() {
- let expected_instrs: Vec<_> = (0..13).map(|_| constants::DW_CFA_nop.0).collect();
-
- let mut cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 0,
- data_alignment_factor: 0,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&expected_instrs, LittleEndian),
- };
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian()).cie(kind, None, &mut cie);
-
- let mut contents = section.get_contents().unwrap();
-
- // Overwrite the length to be too big.
- contents[0] = 0;
- contents[1] = 0;
- contents[2] = 0;
- contents[3] = 255;
-
- let debug_frame = DebugFrame::new(&contents, LittleEndian);
- let bases = Default::default();
- assert_eq!(
- CommonInformationEntry::parse(
- &bases,
- &debug_frame,
- &mut EndianSlice::new(&contents, LittleEndian)
- )
- .map_eof(&contents),
- Err(Error::UnexpectedEof(ReaderOffsetId(4)))
- );
- }
-
- #[test]
- fn test_parse_fde_incomplete_length_32() {
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian()).L16(5);
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, LittleEndian);
- assert_eq!(
- parse_fde(debug_frame, rest, UnwindSection::cie_from_offset).map_eof(&section),
- Err(Error::UnexpectedEof(ReaderOffsetId(0)))
- );
- }
-
- #[test]
- fn test_parse_fde_incomplete_length_64() {
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .L32(0xffff_ffff)
- .L32(12345);
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, LittleEndian);
- assert_eq!(
- parse_fde(debug_frame, rest, UnwindSection::cie_from_offset).map_eof(&section),
- Err(Error::UnexpectedEof(ReaderOffsetId(4)))
- );
- }
-
- #[test]
- fn test_parse_fde_incomplete_cie_pointer_32() {
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- // The length is not large enough to contain the CIE pointer.
- .B32(3)
- .B32(1994);
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, BigEndian);
- assert_eq!(
- parse_fde(debug_frame, rest, UnwindSection::cie_from_offset).map_eof(&section),
- Err(Error::UnexpectedEof(ReaderOffsetId(4)))
- );
- }
-
- #[test]
- fn test_parse_fde_32_ok() {
- let expected_rest = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let cie_offset = 0xbad0_bad1;
- let expected_instrs: Vec<_> = (0..7).map(|_| constants::DW_CFA_nop.0).collect();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 100,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- // DWARF32 with a 64 bit address size! Holy moly!
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 3,
- data_alignment_factor: 2,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 39,
- augmentation: None,
- instructions: EndianSlice::new(&expected_instrs, LittleEndian),
- };
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&expected_rest);
-
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, LittleEndian);
-
- let get_cie = |_: &_, _: &_, offset| {
- assert_eq!(offset, DebugFrameOffset(cie_offset as usize));
- Ok(cie.clone())
- };
-
- assert_eq!(parse_fde(debug_frame, rest, get_cie), Ok(fde));
- assert_eq!(*rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_fde_32_with_segment_ok() {
- let expected_rest = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let cie_offset = 0xbad0_bad1;
- let expected_instrs: Vec<_> = (0..92).map(|_| constants::DW_CFA_nop.0).collect();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 100,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 4,
- code_alignment_factor: 3,
- data_alignment_factor: 2,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0xbadb_ad11,
- initial_address: 0xfeed_beef,
- address_range: 999,
- augmentation: None,
- instructions: EndianSlice::new(&expected_instrs, LittleEndian),
- };
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&expected_rest);
-
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, LittleEndian);
-
- let get_cie = |_: &_, _: &_, offset| {
- assert_eq!(offset, DebugFrameOffset(cie_offset as usize));
- Ok(cie.clone())
- };
-
- assert_eq!(parse_fde(debug_frame, rest, get_cie), Ok(fde));
- assert_eq!(*rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_fde_64_ok() {
- let expected_rest = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let cie_offset = 0xbad0_bad1;
- let expected_instrs: Vec<_> = (0..7).map(|_| constants::DW_CFA_nop.0).collect();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 100,
- format: Format::Dwarf64,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 3,
- data_alignment_factor: 2,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf64,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 999,
- augmentation: None,
- instructions: EndianSlice::new(&expected_instrs, LittleEndian),
- };
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&expected_rest);
-
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, LittleEndian);
-
- let get_cie = |_: &_, _: &_, offset| {
- assert_eq!(offset, DebugFrameOffset(cie_offset as usize));
- Ok(cie.clone())
- };
-
- assert_eq!(parse_fde(debug_frame, rest, get_cie), Ok(fde));
- assert_eq!(*rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_entry_on_cie_32_ok() {
- let expected_rest = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let expected_instrs: Vec<_> = (0..4).map(|_| constants::DW_CFA_nop.0).collect();
-
- let mut cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 16,
- data_alignment_factor: 32,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&expected_instrs, BigEndian),
- };
-
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- .cie(kind, None, &mut cie)
- .append_bytes(&expected_rest);
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, BigEndian);
-
- let bases = Default::default();
- assert_eq!(
- parse_cfi_entry(&bases, &debug_frame, rest),
- Ok(Some(CieOrFde::Cie(cie)))
- );
- assert_eq!(*rest, EndianSlice::new(&expected_rest, BigEndian));
- }
-
- #[test]
- fn test_parse_cfi_entry_on_fde_32_ok() {
- let cie_offset = 0x1234_5678;
- let expected_rest = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let expected_instrs: Vec<_> = (0..4).map(|_| constants::DW_CFA_nop.0).collect();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 16,
- data_alignment_factor: 32,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&[], BigEndian),
- };
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 39,
- augmentation: None,
- instructions: EndianSlice::new(&expected_instrs, BigEndian),
- };
-
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&expected_rest);
-
- let section = section.get_contents().unwrap();
- let debug_frame = kind.section(&section);
- let rest = &mut EndianSlice::new(&section, BigEndian);
-
- let bases = Default::default();
- match parse_cfi_entry(&bases, &debug_frame, rest) {
- Ok(Some(CieOrFde::Fde(partial))) => {
- assert_eq!(*rest, EndianSlice::new(&expected_rest, BigEndian));
-
- assert_eq!(partial.length, fde.length);
- assert_eq!(partial.format, fde.format);
- assert_eq!(partial.cie_offset, DebugFrameOffset(cie_offset as usize));
-
- let get_cie = |_: &_, _: &_, offset| {
- assert_eq!(offset, DebugFrameOffset(cie_offset as usize));
- Ok(cie.clone())
- };
-
- assert_eq!(partial.parse(get_cie), Ok(fde));
- }
- otherwise => panic!("Unexpected result: {:#?}", otherwise),
- }
- }
-
- #[test]
- fn test_cfi_entries_iter() {
- let expected_instrs1: Vec<_> = (0..4).map(|_| constants::DW_CFA_nop.0).collect();
-
- let expected_instrs2: Vec<_> = (0..8).map(|_| constants::DW_CFA_nop.0).collect();
-
- let expected_instrs3: Vec<_> = (0..12).map(|_| constants::DW_CFA_nop.0).collect();
-
- let expected_instrs4: Vec<_> = (0..16).map(|_| constants::DW_CFA_nop.0).collect();
-
- let mut cie1 = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 2,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&expected_instrs1, BigEndian),
- };
-
- let mut cie2 = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 3,
- data_alignment_factor: 2,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&expected_instrs2, BigEndian),
- };
-
- let cie1_location = Label::new();
- let cie2_location = Label::new();
-
- // Write the CIEs first so that their length gets set before we clone
- // them into the FDEs and our equality assertions down the line end up
- // with all the CIEs always having he correct length.
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- .mark(&cie1_location)
- .cie(kind, None, &mut cie1)
- .mark(&cie2_location)
- .cie(kind, None, &mut cie2);
-
- let mut fde1 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie1.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 39,
- augmentation: None,
- instructions: EndianSlice::new(&expected_instrs3, BigEndian),
- };
-
- let mut fde2 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie2.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_face,
- address_range: 9000,
- augmentation: None,
- instructions: EndianSlice::new(&expected_instrs4, BigEndian),
- };
-
- let section =
- section
- .fde(kind, &cie1_location, &mut fde1)
- .fde(kind, &cie2_location, &mut fde2);
-
- section.start().set_const(0);
-
- let cie1_offset = cie1_location.value().unwrap() as usize;
- let cie2_offset = cie2_location.value().unwrap() as usize;
-
- let contents = section.get_contents().unwrap();
- let debug_frame = kind.section(&contents);
-
- let bases = Default::default();
- let mut entries = debug_frame.entries(&bases);
-
- assert_eq!(entries.next(), Ok(Some(CieOrFde::Cie(cie1.clone()))));
- assert_eq!(entries.next(), Ok(Some(CieOrFde::Cie(cie2.clone()))));
-
- match entries.next() {
- Ok(Some(CieOrFde::Fde(partial))) => {
- assert_eq!(partial.length, fde1.length);
- assert_eq!(partial.format, fde1.format);
- assert_eq!(partial.cie_offset, DebugFrameOffset(cie1_offset));
-
- let get_cie = |_: &_, _: &_, offset| {
- assert_eq!(offset, DebugFrameOffset(cie1_offset));
- Ok(cie1.clone())
- };
- assert_eq!(partial.parse(get_cie), Ok(fde1));
- }
- otherwise => panic!("Unexpected result: {:#?}", otherwise),
- }
-
- match entries.next() {
- Ok(Some(CieOrFde::Fde(partial))) => {
- assert_eq!(partial.length, fde2.length);
- assert_eq!(partial.format, fde2.format);
- assert_eq!(partial.cie_offset, DebugFrameOffset(cie2_offset));
-
- let get_cie = |_: &_, _: &_, offset| {
- assert_eq!(offset, DebugFrameOffset(cie2_offset));
- Ok(cie2.clone())
- };
- assert_eq!(partial.parse(get_cie), Ok(fde2));
- }
- otherwise => panic!("Unexpected result: {:#?}", otherwise),
- }
-
- assert_eq!(entries.next(), Ok(None));
- }
-
- #[test]
- fn test_parse_cie_from_offset() {
- let filler = [1, 2, 3, 4, 5, 6, 7, 8, 9];
- let instrs: Vec<_> = (0..5).map(|_| constants::DW_CFA_nop.0).collect();
-
- let mut cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf64,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 4,
- data_alignment_factor: 8,
- return_address_register: Register(12),
- initial_instructions: EndianSlice::new(&instrs, LittleEndian),
- };
-
- let cie_location = Label::new();
-
- let kind = debug_frame_le();
- let section = Section::with_endian(kind.endian())
- .append_bytes(&filler)
- .mark(&cie_location)
- .cie(kind, None, &mut cie)
- .append_bytes(&filler);
-
- section.start().set_const(0);
-
- let cie_offset = DebugFrameOffset(cie_location.value().unwrap() as usize);
-
- let contents = section.get_contents().unwrap();
- let debug_frame = kind.section(&contents);
- let bases = Default::default();
-
- assert_eq!(debug_frame.cie_from_offset(&bases, cie_offset), Ok(cie));
- }
-
- fn parse_cfi_instruction<R: Reader + Default>(
- input: &mut R,
- address_size: u8,
- ) -> Result<CallFrameInstruction<R>> {
- let parameters = &PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size,
- section: &R::default(),
- };
- CallFrameInstruction::parse(input, None, parameters, Vendor::Default)
- }
-
- #[test]
- fn test_parse_cfi_instruction_advance_loc() {
- let expected_rest = [1, 2, 3, 4];
- let expected_delta = 42;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_advance_loc.0 | expected_delta)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(expected_delta),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_offset() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 3;
- let expected_offset = 1997;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_offset.0 | expected_reg)
- .uleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Offset {
- register: Register(expected_reg.into()),
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_restore() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 3;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_restore.0 | expected_reg)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Restore {
- register: Register(expected_reg.into()),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_nop() {
- let expected_rest = [1, 2, 3, 4];
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_nop.0)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Nop)
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_set_loc() {
- let expected_rest = [1, 2, 3, 4];
- let expected_addr = 0xdead_beef;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_set_loc.0)
- .L64(expected_addr)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::SetLoc {
- address: expected_addr,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_set_loc_encoding() {
- let text_base = 0xfeed_face;
- let addr_offset = 0xbeef;
- let expected_addr = text_base + addr_offset;
- let expected_rest = [1, 2, 3, 4];
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_set_loc.0)
- .L64(addr_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- let parameters = &PointerEncodingParameters {
- bases: &BaseAddresses::default().set_text(text_base).eh_frame,
- func_base: None,
- address_size: 8,
- section: &EndianSlice::new(&[], LittleEndian),
- };
- assert_eq!(
- CallFrameInstruction::parse(
- input,
- Some(constants::DW_EH_PE_textrel),
- parameters,
- Vendor::Default
- ),
- Ok(CallFrameInstruction::SetLoc {
- address: expected_addr,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_advance_loc1() {
- let expected_rest = [1, 2, 3, 4];
- let expected_delta = 8;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_advance_loc1.0)
- .D8(expected_delta)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(expected_delta),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_advance_loc2() {
- let expected_rest = [1, 2, 3, 4];
- let expected_delta = 500;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_advance_loc2.0)
- .L16(expected_delta)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(expected_delta),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_advance_loc4() {
- let expected_rest = [1, 2, 3, 4];
- let expected_delta = 1 << 20;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_advance_loc4.0)
- .L32(expected_delta)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::AdvanceLoc {
- delta: expected_delta,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_offset_extended() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 7;
- let expected_offset = 33;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_offset_extended.0)
- .uleb(expected_reg.into())
- .uleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Offset {
- register: Register(expected_reg),
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_restore_extended() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 7;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_restore_extended.0)
- .uleb(expected_reg.into())
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Restore {
- register: Register(expected_reg),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_undefined() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 7;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_undefined.0)
- .uleb(expected_reg.into())
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Undefined {
- register: Register(expected_reg),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_same_value() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 7;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_same_value.0)
- .uleb(expected_reg.into())
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::SameValue {
- register: Register(expected_reg),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_register() {
- let expected_rest = [1, 2, 3, 4];
- let expected_dest_reg = 7;
- let expected_src_reg = 8;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_register.0)
- .uleb(expected_dest_reg.into())
- .uleb(expected_src_reg.into())
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Register {
- dest_register: Register(expected_dest_reg),
- src_register: Register(expected_src_reg),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_remember_state() {
- let expected_rest = [1, 2, 3, 4];
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_remember_state.0)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::RememberState)
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_restore_state() {
- let expected_rest = [1, 2, 3, 4];
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_restore_state.0)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::RestoreState)
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_def_cfa() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 2;
- let expected_offset = 0;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_def_cfa.0)
- .uleb(expected_reg.into())
- .uleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::DefCfa {
- register: Register(expected_reg),
- offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_def_cfa_register() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 2;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_def_cfa_register.0)
- .uleb(expected_reg.into())
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::DefCfaRegister {
- register: Register(expected_reg),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_def_cfa_offset() {
- let expected_rest = [1, 2, 3, 4];
- let expected_offset = 23;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_def_cfa_offset.0)
- .uleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::DefCfaOffset {
- offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_def_cfa_expression() {
- let expected_rest = [1, 2, 3, 4];
- let expected_expr = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_def_cfa_expression.0)
- .D8(&length)
- .mark(&start)
- .append_bytes(&expected_expr)
- .mark(&end)
- .append_bytes(&expected_rest);
-
- length.set_const((&end - &start) as u64);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
-
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::DefCfaExpression {
- expression: Expression(EndianSlice::new(&expected_expr, LittleEndian)),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_expression() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 99;
- let expected_expr = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_expression.0)
- .uleb(expected_reg.into())
- .D8(&length)
- .mark(&start)
- .append_bytes(&expected_expr)
- .mark(&end)
- .append_bytes(&expected_rest);
-
- length.set_const((&end - &start) as u64);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
-
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::Expression {
- register: Register(expected_reg),
- expression: Expression(EndianSlice::new(&expected_expr, LittleEndian)),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_offset_extended_sf() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 7;
- let expected_offset = -33;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_offset_extended_sf.0)
- .uleb(expected_reg.into())
- .sleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::OffsetExtendedSf {
- register: Register(expected_reg),
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_def_cfa_sf() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 2;
- let expected_offset = -9999;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_def_cfa_sf.0)
- .uleb(expected_reg.into())
- .sleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::DefCfaSf {
- register: Register(expected_reg),
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_def_cfa_offset_sf() {
- let expected_rest = [1, 2, 3, 4];
- let expected_offset = -123;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_def_cfa_offset_sf.0)
- .sleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::DefCfaOffsetSf {
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_val_offset() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 50;
- let expected_offset = 23;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_val_offset.0)
- .uleb(expected_reg.into())
- .uleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::ValOffset {
- register: Register(expected_reg),
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_val_offset_sf() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 50;
- let expected_offset = -23;
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_val_offset_sf.0)
- .uleb(expected_reg.into())
- .sleb(expected_offset)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::ValOffsetSf {
- register: Register(expected_reg),
- factored_offset: expected_offset,
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_val_expression() {
- let expected_rest = [1, 2, 3, 4];
- let expected_reg = 50;
- let expected_expr = [2, 2, 1, 1, 5, 5];
-
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_val_expression.0)
- .uleb(expected_reg.into())
- .D8(&length)
- .mark(&start)
- .append_bytes(&expected_expr)
- .mark(&end)
- .append_bytes(&expected_rest);
-
- length.set_const((&end - &start) as u64);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
-
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Ok(CallFrameInstruction::ValExpression {
- register: Register(expected_reg),
- expression: Expression(EndianSlice::new(&expected_expr, LittleEndian)),
- })
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_negate_ra_state() {
- let expected_rest = [1, 2, 3, 4];
- let section = Section::with_endian(Endian::Little)
- .D8(constants::DW_CFA_AARCH64_negate_ra_state.0)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- let parameters = &PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 8,
- section: &EndianSlice::default(),
- };
- assert_eq!(
- CallFrameInstruction::parse(input, None, parameters, Vendor::AArch64),
- Ok(CallFrameInstruction::NegateRaState)
- );
- assert_eq!(*input, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_cfi_instruction_unknown_instruction() {
- let expected_rest = [1, 2, 3, 4];
- let unknown_instr = constants::DwCfa(0b0011_1111);
- let section = Section::with_endian(Endian::Little)
- .D8(unknown_instr.0)
- .append_bytes(&expected_rest);
- let contents = section.get_contents().unwrap();
- let input = &mut EndianSlice::new(&contents, LittleEndian);
- assert_eq!(
- parse_cfi_instruction(input, 8),
- Err(Error::UnknownCallFrameInstruction(unknown_instr))
- );
- }
-
- #[test]
- fn test_call_frame_instruction_iter_ok() {
- let expected_reg = 50;
- let expected_expr = [2, 2, 1, 1, 5, 5];
- let expected_delta = 230;
-
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let section = Section::with_endian(Endian::Big)
- .D8(constants::DW_CFA_val_expression.0)
- .uleb(expected_reg.into())
- .D8(&length)
- .mark(&start)
- .append_bytes(&expected_expr)
- .mark(&end)
- .D8(constants::DW_CFA_advance_loc1.0)
- .D8(expected_delta);
-
- length.set_const((&end - &start) as u64);
- let contents = section.get_contents().unwrap();
- let input = EndianSlice::new(&contents, BigEndian);
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 8,
- section: &EndianSlice::default(),
- };
- let mut iter = CallFrameInstructionIter {
- input,
- address_encoding: None,
- parameters,
- vendor: Vendor::Default,
- };
-
- assert_eq!(
- iter.next(),
- Ok(Some(CallFrameInstruction::ValExpression {
- register: Register(expected_reg),
- expression: Expression(EndianSlice::new(&expected_expr, BigEndian)),
- }))
- );
-
- assert_eq!(
- iter.next(),
- Ok(Some(CallFrameInstruction::AdvanceLoc {
- delta: u32::from(expected_delta),
- }))
- );
-
- assert_eq!(iter.next(), Ok(None));
- }
-
- #[test]
- fn test_call_frame_instruction_iter_err() {
- // DW_CFA_advance_loc1 without an operand.
- let section = Section::with_endian(Endian::Big).D8(constants::DW_CFA_advance_loc1.0);
-
- let contents = section.get_contents().unwrap();
- let input = EndianSlice::new(&contents, BigEndian);
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 8,
- section: &EndianSlice::default(),
- };
- let mut iter = CallFrameInstructionIter {
- input,
- address_encoding: None,
- parameters,
- vendor: Vendor::Default,
- };
-
- assert_eq!(
- iter.next().map_eof(&contents),
- Err(Error::UnexpectedEof(ReaderOffsetId(1)))
- );
- assert_eq!(iter.next(), Ok(None));
- }
-
- fn assert_eval<'a, I>(
- mut initial_ctx: UnwindContext<EndianSlice<'a, LittleEndian>>,
- expected_ctx: UnwindContext<EndianSlice<'a, LittleEndian>>,
- cie: CommonInformationEntry<EndianSlice<'a, LittleEndian>>,
- fde: Option<FrameDescriptionEntry<EndianSlice<'a, LittleEndian>>>,
- instructions: I,
- ) where
- I: AsRef<
- [(
- Result<bool>,
- CallFrameInstruction<EndianSlice<'a, LittleEndian>>,
- )],
- >,
- {
- {
- let section = &DebugFrame::from(EndianSlice::default());
- let bases = &BaseAddresses::default();
- let mut table = match fde {
- Some(fde) => UnwindTable::new_for_fde(section, bases, &mut initial_ctx, &fde),
- None => UnwindTable::new_for_cie(section, bases, &mut initial_ctx, &cie),
- };
- for &(ref expected_result, ref instruction) in instructions.as_ref() {
- assert_eq!(*expected_result, table.evaluate(instruction.clone()));
- }
- }
-
- assert_eq!(expected_ctx, initial_ctx);
- }
-
- fn make_test_cie<'a>() -> CommonInformationEntry<EndianSlice<'a, LittleEndian>> {
- CommonInformationEntry {
- offset: 0,
- format: Format::Dwarf64,
- length: 0,
- return_address_register: Register(0),
- version: 4,
- address_size: mem::size_of::<usize>() as u8,
- initial_instructions: EndianSlice::new(&[], LittleEndian),
- augmentation: None,
- segment_size: 0,
- data_alignment_factor: 2,
- code_alignment_factor: 3,
- }
- }
-
- #[test]
- fn test_eval_set_loc() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected.row_mut().end_address = 42;
- let instructions = [(Ok(true), CallFrameInstruction::SetLoc { address: 42 })];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_set_loc_backwards() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.row_mut().start_address = 999;
- let expected = ctx.clone();
- let instructions = [(
- Err(Error::InvalidAddressRange),
- CallFrameInstruction::SetLoc { address: 42 },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_advance_loc() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.row_mut().start_address = 3;
- let mut expected = ctx.clone();
- expected.row_mut().end_address = 3 + 2 * cie.code_alignment_factor;
- let instructions = [(Ok(true), CallFrameInstruction::AdvanceLoc { delta: 2 })];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_advance_loc_overflow() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.row_mut().start_address = u64::MAX;
- let mut expected = ctx.clone();
- expected.row_mut().end_address = 42 * cie.code_alignment_factor - 1;
- let instructions = [(Ok(true), CallFrameInstruction::AdvanceLoc { delta: 42 })];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected.set_cfa(CfaRule::RegisterAndOffset {
- register: Register(42),
- offset: 36,
- });
- let instructions = [(
- Ok(false),
- CallFrameInstruction::DefCfa {
- register: Register(42),
- offset: 36,
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa_sf() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected.set_cfa(CfaRule::RegisterAndOffset {
- register: Register(42),
- offset: 36 * cie.data_alignment_factor as i64,
- });
- let instructions = [(
- Ok(false),
- CallFrameInstruction::DefCfaSf {
- register: Register(42),
- factored_offset: 36,
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa_register() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.set_cfa(CfaRule::RegisterAndOffset {
- register: Register(3),
- offset: 8,
- });
- let mut expected = ctx.clone();
- expected.set_cfa(CfaRule::RegisterAndOffset {
- register: Register(42),
- offset: 8,
- });
- let instructions = [(
- Ok(false),
- CallFrameInstruction::DefCfaRegister {
- register: Register(42),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa_register_invalid_context() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.set_cfa(CfaRule::Expression(Expression(EndianSlice::new(
- &[],
- LittleEndian,
- ))));
- let expected = ctx.clone();
- let instructions = [(
- Err(Error::CfiInstructionInInvalidContext),
- CallFrameInstruction::DefCfaRegister {
- register: Register(42),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa_offset() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.set_cfa(CfaRule::RegisterAndOffset {
- register: Register(3),
- offset: 8,
- });
- let mut expected = ctx.clone();
- expected.set_cfa(CfaRule::RegisterAndOffset {
- register: Register(3),
- offset: 42,
- });
- let instructions = [(Ok(false), CallFrameInstruction::DefCfaOffset { offset: 42 })];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa_offset_invalid_context() {
- let cie = make_test_cie();
- let mut ctx = UnwindContext::new();
- ctx.set_cfa(CfaRule::Expression(Expression(EndianSlice::new(
- &[],
- LittleEndian,
- ))));
- let expected = ctx.clone();
- let instructions = [(
- Err(Error::CfiInstructionInInvalidContext),
- CallFrameInstruction::DefCfaOffset { offset: 1993 },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_def_cfa_expression() {
- let expr = [1, 2, 3, 4];
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected.set_cfa(CfaRule::Expression(Expression(EndianSlice::new(
- &expr,
- LittleEndian,
- ))));
- let instructions = [(
- Ok(false),
- CallFrameInstruction::DefCfaExpression {
- expression: Expression(EndianSlice::new(&expr, LittleEndian)),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_undefined() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(Register(5), RegisterRule::Undefined)
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::Undefined {
- register: Register(5),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_same_value() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(Register(0), RegisterRule::SameValue)
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::SameValue {
- register: Register(0),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_offset() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- Register(2),
- RegisterRule::Offset(3 * cie.data_alignment_factor),
- )
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::Offset {
- register: Register(2),
- factored_offset: 3,
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_offset_extended_sf() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- Register(4),
- RegisterRule::Offset(-3 * cie.data_alignment_factor),
- )
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::OffsetExtendedSf {
- register: Register(4),
- factored_offset: -3,
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_val_offset() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- Register(5),
- RegisterRule::ValOffset(7 * cie.data_alignment_factor),
- )
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::ValOffset {
- register: Register(5),
- factored_offset: 7,
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_val_offset_sf() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- Register(5),
- RegisterRule::ValOffset(-7 * cie.data_alignment_factor),
- )
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::ValOffsetSf {
- register: Register(5),
- factored_offset: -7,
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_expression() {
- let expr = [1, 2, 3, 4];
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- Register(9),
- RegisterRule::Expression(Expression(EndianSlice::new(&expr, LittleEndian))),
- )
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::Expression {
- register: Register(9),
- expression: Expression(EndianSlice::new(&expr, LittleEndian)),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_val_expression() {
- let expr = [1, 2, 3, 4];
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- Register(9),
- RegisterRule::ValExpression(Expression(EndianSlice::new(&expr, LittleEndian))),
- )
- .unwrap();
- let instructions = [(
- Ok(false),
- CallFrameInstruction::ValExpression {
- register: Register(9),
- expression: Expression(EndianSlice::new(&expr, LittleEndian)),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_restore() {
- let cie = make_test_cie();
- let fde = FrameDescriptionEntry {
- offset: 0,
- format: Format::Dwarf64,
- length: 0,
- address_range: 0,
- augmentation: None,
- initial_address: 0,
- initial_segment: 0,
- cie: cie.clone(),
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let mut ctx = UnwindContext::new();
- ctx.set_register_rule(Register(0), RegisterRule::Offset(1))
- .unwrap();
- ctx.save_initial_rules().unwrap();
- let expected = ctx.clone();
- ctx.set_register_rule(Register(0), RegisterRule::Offset(2))
- .unwrap();
-
- let instructions = [(
- Ok(false),
- CallFrameInstruction::Restore {
- register: Register(0),
- },
- )];
- assert_eval(ctx, expected, cie, Some(fde), instructions);
- }
-
- #[test]
- fn test_eval_restore_havent_saved_initial_context() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let expected = ctx.clone();
- let instructions = [(
- Err(Error::CfiInstructionInInvalidContext),
- CallFrameInstruction::Restore {
- register: Register(0),
- },
- )];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_remember_state() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected.push_row().unwrap();
- let instructions = [(Ok(false), CallFrameInstruction::RememberState)];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_restore_state() {
- let cie = make_test_cie();
-
- let mut ctx = UnwindContext::new();
- ctx.set_start_address(1);
- ctx.set_register_rule(Register(0), RegisterRule::SameValue)
- .unwrap();
- let mut expected = ctx.clone();
- ctx.push_row().unwrap();
- ctx.set_start_address(2);
- ctx.set_register_rule(Register(0), RegisterRule::Offset(16))
- .unwrap();
-
- // Restore state should preserve current location.
- expected.set_start_address(2);
-
- let instructions = [
- // First one pops just fine.
- (Ok(false), CallFrameInstruction::RestoreState),
- // Second pop would try to pop out of bounds.
- (
- Err(Error::PopWithEmptyStack),
- CallFrameInstruction::RestoreState,
- ),
- ];
-
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_negate_ra_state() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(crate::AArch64::RA_SIGN_STATE, RegisterRule::Constant(1))
- .unwrap();
- let instructions = [(Ok(false), CallFrameInstruction::NegateRaState)];
- assert_eval(ctx, expected, cie, None, instructions);
-
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(crate::AArch64::RA_SIGN_STATE, RegisterRule::Constant(0))
- .unwrap();
- let instructions = [
- (Ok(false), CallFrameInstruction::NegateRaState),
- (Ok(false), CallFrameInstruction::NegateRaState),
- ];
- assert_eval(ctx, expected, cie, None, instructions);
-
- // NegateRaState can't be used with other instructions.
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let mut expected = ctx.clone();
- expected
- .set_register_rule(
- crate::AArch64::RA_SIGN_STATE,
- RegisterRule::Offset(cie.data_alignment_factor as i64),
- )
- .unwrap();
- let instructions = [
- (
- Ok(false),
- CallFrameInstruction::Offset {
- register: crate::AArch64::RA_SIGN_STATE,
- factored_offset: 1,
- },
- ),
- (
- Err(Error::CfiInstructionInInvalidContext),
- CallFrameInstruction::NegateRaState,
- ),
- ];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_eval_nop() {
- let cie = make_test_cie();
- let ctx = UnwindContext::new();
- let expected = ctx.clone();
- let instructions = [(Ok(false), CallFrameInstruction::Nop)];
- assert_eval(ctx, expected, cie, None, instructions);
- }
-
- #[test]
- fn test_unwind_table_cie_no_rule() {
- let initial_instructions = Section::with_endian(Endian::Little)
- // The CFA is -12 from register 4.
- .D8(constants::DW_CFA_def_cfa_sf.0)
- .uleb(4)
- .sleb(-12)
- .append_repeated(constants::DW_CFA_nop.0, 4);
- let initial_instructions = initial_instructions.get_contents().unwrap();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&initial_instructions, LittleEndian),
- };
-
- let instructions = Section::with_endian(Endian::Little)
- // A bunch of nop padding.
- .append_repeated(constants::DW_CFA_nop.0, 8);
- let instructions = instructions.get_contents().unwrap();
-
- let fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0,
- address_range: 100,
- augmentation: None,
- instructions: EndianSlice::new(&instructions, LittleEndian),
- };
-
- let section = &DebugFrame::from(EndianSlice::default());
- let bases = &BaseAddresses::default();
- let mut ctx = Box::new(UnwindContext::new());
-
- let mut table = fde
- .rows(section, bases, &mut ctx)
- .expect("Should run initial program OK");
- assert!(table.ctx.is_initialized);
- let expected_initial_rule = (Register(0), RegisterRule::Undefined);
- assert_eq!(table.ctx.initial_rule, Some(expected_initial_rule));
-
- {
- let row = table.next_row().expect("Should evaluate first row OK");
- let expected = UnwindTableRow {
- start_address: 0,
- end_address: 100,
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [].iter().collect(),
- };
- assert_eq!(Some(&expected), row);
- }
-
- // All done!
- assert_eq!(Ok(None), table.next_row());
- assert_eq!(Ok(None), table.next_row());
- }
-
- #[test]
- fn test_unwind_table_cie_single_rule() {
- let initial_instructions = Section::with_endian(Endian::Little)
- // The CFA is -12 from register 4.
- .D8(constants::DW_CFA_def_cfa_sf.0)
- .uleb(4)
- .sleb(-12)
- // Register 3 is 4 from the CFA.
- .D8(constants::DW_CFA_offset.0 | 3)
- .uleb(4)
- .append_repeated(constants::DW_CFA_nop.0, 4);
- let initial_instructions = initial_instructions.get_contents().unwrap();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&initial_instructions, LittleEndian),
- };
-
- let instructions = Section::with_endian(Endian::Little)
- // A bunch of nop padding.
- .append_repeated(constants::DW_CFA_nop.0, 8);
- let instructions = instructions.get_contents().unwrap();
-
- let fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0,
- address_range: 100,
- augmentation: None,
- instructions: EndianSlice::new(&instructions, LittleEndian),
- };
-
- let section = &DebugFrame::from(EndianSlice::default());
- let bases = &BaseAddresses::default();
- let mut ctx = Box::new(UnwindContext::new());
-
- let mut table = fde
- .rows(section, bases, &mut ctx)
- .expect("Should run initial program OK");
- assert!(table.ctx.is_initialized);
- let expected_initial_rule = (Register(3), RegisterRule::Offset(4));
- assert_eq!(table.ctx.initial_rule, Some(expected_initial_rule));
-
- {
- let row = table.next_row().expect("Should evaluate first row OK");
- let expected = UnwindTableRow {
- start_address: 0,
- end_address: 100,
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [(Register(3), RegisterRule::Offset(4))].iter().collect(),
- };
- assert_eq!(Some(&expected), row);
- }
-
- // All done!
- assert_eq!(Ok(None), table.next_row());
- assert_eq!(Ok(None), table.next_row());
- }
-
- #[test]
- fn test_unwind_table_cie_invalid_rule() {
- let initial_instructions1 = Section::with_endian(Endian::Little)
- // Test that stack length is reset.
- .D8(constants::DW_CFA_remember_state.0)
- // Test that stack value is reset (different register from that used later).
- .D8(constants::DW_CFA_offset.0 | 4)
- .uleb(8)
- // Invalid due to missing operands.
- .D8(constants::DW_CFA_offset.0);
- let initial_instructions1 = initial_instructions1.get_contents().unwrap();
-
- let cie1 = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&initial_instructions1, LittleEndian),
- };
-
- let initial_instructions2 = Section::with_endian(Endian::Little)
- // Register 3 is 4 from the CFA.
- .D8(constants::DW_CFA_offset.0 | 3)
- .uleb(4)
- .append_repeated(constants::DW_CFA_nop.0, 4);
- let initial_instructions2 = initial_instructions2.get_contents().unwrap();
-
- let cie2 = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&initial_instructions2, LittleEndian),
- };
-
- let fde1 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie1.clone(),
- initial_segment: 0,
- initial_address: 0,
- address_range: 100,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let fde2 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie2.clone(),
- initial_segment: 0,
- initial_address: 0,
- address_range: 100,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let section = &DebugFrame::from(EndianSlice::default());
- let bases = &BaseAddresses::default();
- let mut ctx = Box::new(UnwindContext::new());
-
- let table = fde1
- .rows(section, bases, &mut ctx)
- .map_eof(&initial_instructions1);
- assert_eq!(table.err(), Some(Error::UnexpectedEof(ReaderOffsetId(4))));
- assert!(!ctx.is_initialized);
- assert_eq!(ctx.stack.len(), 2);
- assert_eq!(ctx.initial_rule, None);
-
- let _table = fde2
- .rows(section, bases, &mut ctx)
- .expect("Should run initial program OK");
- assert!(ctx.is_initialized);
- assert_eq!(ctx.stack.len(), 1);
- let expected_initial_rule = (Register(3), RegisterRule::Offset(4));
- assert_eq!(ctx.initial_rule, Some(expected_initial_rule));
- }
-
- #[test]
- fn test_unwind_table_next_row() {
- let initial_instructions = Section::with_endian(Endian::Little)
- // The CFA is -12 from register 4.
- .D8(constants::DW_CFA_def_cfa_sf.0)
- .uleb(4)
- .sleb(-12)
- // Register 0 is 8 from the CFA.
- .D8(constants::DW_CFA_offset.0 | 0)
- .uleb(8)
- // Register 3 is 4 from the CFA.
- .D8(constants::DW_CFA_offset.0 | 3)
- .uleb(4)
- .append_repeated(constants::DW_CFA_nop.0, 4);
- let initial_instructions = initial_instructions.get_contents().unwrap();
-
- let cie = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&initial_instructions, LittleEndian),
- };
-
- let instructions = Section::with_endian(Endian::Little)
- // Initial instructions form a row, advance the address by 1.
- .D8(constants::DW_CFA_advance_loc1.0)
- .D8(1)
- // Register 0 is -16 from the CFA.
- .D8(constants::DW_CFA_offset_extended_sf.0)
- .uleb(0)
- .sleb(-16)
- // Finish this row, advance the address by 32.
- .D8(constants::DW_CFA_advance_loc1.0)
- .D8(32)
- // Register 3 is -4 from the CFA.
- .D8(constants::DW_CFA_offset_extended_sf.0)
- .uleb(3)
- .sleb(-4)
- // Finish this row, advance the address by 64.
- .D8(constants::DW_CFA_advance_loc1.0)
- .D8(64)
- // Register 5 is 4 from the CFA.
- .D8(constants::DW_CFA_offset.0 | 5)
- .uleb(4)
- // A bunch of nop padding.
- .append_repeated(constants::DW_CFA_nop.0, 8);
- let instructions = instructions.get_contents().unwrap();
-
- let fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0,
- address_range: 100,
- augmentation: None,
- instructions: EndianSlice::new(&instructions, LittleEndian),
- };
-
- let section = &DebugFrame::from(EndianSlice::default());
- let bases = &BaseAddresses::default();
- let mut ctx = Box::new(UnwindContext::new());
-
- let mut table = fde
- .rows(section, bases, &mut ctx)
- .expect("Should run initial program OK");
- assert!(table.ctx.is_initialized);
- assert!(table.ctx.initial_rule.is_none());
- let expected_initial_rules: RegisterRuleMap<_> = [
- (Register(0), RegisterRule::Offset(8)),
- (Register(3), RegisterRule::Offset(4)),
- ]
- .iter()
- .collect();
- assert_eq!(table.ctx.stack[0].registers, expected_initial_rules);
-
- {
- let row = table.next_row().expect("Should evaluate first row OK");
- let expected = UnwindTableRow {
- start_address: 0,
- end_address: 1,
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [
- (Register(0), RegisterRule::Offset(8)),
- (Register(3), RegisterRule::Offset(4)),
- ]
- .iter()
- .collect(),
- };
- assert_eq!(Some(&expected), row);
- }
-
- {
- let row = table.next_row().expect("Should evaluate second row OK");
- let expected = UnwindTableRow {
- start_address: 1,
- end_address: 33,
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [
- (Register(0), RegisterRule::Offset(-16)),
- (Register(3), RegisterRule::Offset(4)),
- ]
- .iter()
- .collect(),
- };
- assert_eq!(Some(&expected), row);
- }
-
- {
- let row = table.next_row().expect("Should evaluate third row OK");
- let expected = UnwindTableRow {
- start_address: 33,
- end_address: 97,
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [
- (Register(0), RegisterRule::Offset(-16)),
- (Register(3), RegisterRule::Offset(-4)),
- ]
- .iter()
- .collect(),
- };
- assert_eq!(Some(&expected), row);
- }
-
- {
- let row = table.next_row().expect("Should evaluate fourth row OK");
- let expected = UnwindTableRow {
- start_address: 97,
- end_address: 100,
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [
- (Register(0), RegisterRule::Offset(-16)),
- (Register(3), RegisterRule::Offset(-4)),
- (Register(5), RegisterRule::Offset(4)),
- ]
- .iter()
- .collect(),
- };
- assert_eq!(Some(&expected), row);
- }
-
- // All done!
- assert_eq!(Ok(None), table.next_row());
- assert_eq!(Ok(None), table.next_row());
- }
-
- #[test]
- fn test_unwind_info_for_address_ok() {
- let instrs1 = Section::with_endian(Endian::Big)
- // The CFA is -12 from register 4.
- .D8(constants::DW_CFA_def_cfa_sf.0)
- .uleb(4)
- .sleb(-12);
- let instrs1 = instrs1.get_contents().unwrap();
-
- let instrs2: Vec<_> = (0..8).map(|_| constants::DW_CFA_nop.0).collect();
-
- let instrs3 = Section::with_endian(Endian::Big)
- // Initial instructions form a row, advance the address by 100.
- .D8(constants::DW_CFA_advance_loc1.0)
- .D8(100)
- // Register 0 is -16 from the CFA.
- .D8(constants::DW_CFA_offset_extended_sf.0)
- .uleb(0)
- .sleb(-16);
- let instrs3 = instrs3.get_contents().unwrap();
-
- let instrs4: Vec<_> = (0..16).map(|_| constants::DW_CFA_nop.0).collect();
-
- let mut cie1 = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 8,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(3),
- initial_instructions: EndianSlice::new(&instrs1, BigEndian),
- };
-
- let mut cie2 = CommonInformationEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- version: 4,
- augmentation: None,
- address_size: 4,
- segment_size: 0,
- code_alignment_factor: 1,
- data_alignment_factor: 1,
- return_address_register: Register(1),
- initial_instructions: EndianSlice::new(&instrs2, BigEndian),
- };
-
- let cie1_location = Label::new();
- let cie2_location = Label::new();
-
- // Write the CIEs first so that their length gets set before we clone
- // them into the FDEs and our equality assertions down the line end up
- // with all the CIEs always having he correct length.
- let kind = debug_frame_be();
- let section = Section::with_endian(kind.endian())
- .mark(&cie1_location)
- .cie(kind, None, &mut cie1)
- .mark(&cie2_location)
- .cie(kind, None, &mut cie2);
-
- let mut fde1 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie1.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 200,
- augmentation: None,
- instructions: EndianSlice::new(&instrs3, BigEndian),
- };
-
- let mut fde2 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie2.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_face,
- address_range: 9000,
- augmentation: None,
- instructions: EndianSlice::new(&instrs4, BigEndian),
- };
-
- let section =
- section
- .fde(kind, &cie1_location, &mut fde1)
- .fde(kind, &cie2_location, &mut fde2);
- section.start().set_const(0);
-
- let contents = section.get_contents().unwrap();
- let debug_frame = kind.section(&contents);
-
- // Get the second row of the unwind table in `instrs3`.
- let bases = Default::default();
- let mut ctx = Box::new(UnwindContext::new());
- let result = debug_frame.unwind_info_for_address(
- &bases,
- &mut ctx,
- 0xfeed_beef + 150,
- DebugFrame::cie_from_offset,
- );
- assert!(result.is_ok());
- let unwind_info = result.unwrap();
-
- assert_eq!(
- *unwind_info,
- UnwindTableRow {
- start_address: fde1.initial_address() + 100,
- end_address: fde1.initial_address() + fde1.len(),
- saved_args_size: 0,
- cfa: CfaRule::RegisterAndOffset {
- register: Register(4),
- offset: -12,
- },
- registers: [(Register(0), RegisterRule::Offset(-16))].iter().collect(),
- }
- );
- }
-
- #[test]
- fn test_unwind_info_for_address_not_found() {
- let debug_frame = DebugFrame::new(&[], NativeEndian);
- let bases = Default::default();
- let mut ctx = Box::new(UnwindContext::new());
- let result = debug_frame.unwind_info_for_address(
- &bases,
- &mut ctx,
- 0xbadb_ad99,
- DebugFrame::cie_from_offset,
- );
- assert!(result.is_err());
- assert_eq!(result.unwrap_err(), Error::NoUnwindInfoForAddress);
- }
-
- #[test]
- fn test_eh_frame_hdr_unknown_version() {
- let bases = BaseAddresses::default();
- let buf = &[42];
- let result = EhFrameHdr::new(buf, NativeEndian).parse(&bases, 8);
- assert!(result.is_err());
- assert_eq!(result.unwrap_err(), Error::UnknownVersion(42));
- }
-
- #[test]
- fn test_eh_frame_hdr_omit_ehptr() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0xff)
- .L8(0x03)
- .L8(0x0b)
- .L32(2)
- .L32(10)
- .L32(1)
- .L32(20)
- .L32(2)
- .L32(0);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_err());
- assert_eq!(result.unwrap_err(), Error::CannotParseOmitPointerEncoding);
- }
-
- #[test]
- fn test_eh_frame_hdr_omit_count() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0x0b)
- .L8(0xff)
- .L8(0x0b)
- .L32(0x12345);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_ok());
- let result = result.unwrap();
- assert_eq!(result.eh_frame_ptr(), Pointer::Direct(0x12345));
- assert!(result.table().is_none());
- }
-
- #[test]
- fn test_eh_frame_hdr_omit_table() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0x0b)
- .L8(0x03)
- .L8(0xff)
- .L32(0x12345)
- .L32(2);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_ok());
- let result = result.unwrap();
- assert_eq!(result.eh_frame_ptr(), Pointer::Direct(0x12345));
- assert!(result.table().is_none());
- }
-
- #[test]
- fn test_eh_frame_hdr_varlen_table() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0x0b)
- .L8(0x03)
- .L8(0x01)
- .L32(0x12345)
- .L32(2);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_ok());
- let result = result.unwrap();
- assert_eq!(result.eh_frame_ptr(), Pointer::Direct(0x12345));
- let table = result.table();
- assert!(table.is_some());
- let table = table.unwrap();
- assert_eq!(
- table.lookup(0, &bases),
- Err(Error::VariableLengthSearchTable)
- );
- }
-
- #[test]
- fn test_eh_frame_hdr_indirect_length() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0x0b)
- .L8(0x83)
- .L8(0x0b)
- .L32(0x12345)
- .L32(2);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_err());
- assert_eq!(result.unwrap_err(), Error::UnsupportedPointerEncoding);
- }
-
- #[test]
- fn test_eh_frame_hdr_indirect_ptrs() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0x8b)
- .L8(0x03)
- .L8(0x8b)
- .L32(0x12345)
- .L32(2)
- .L32(10)
- .L32(1)
- .L32(20)
- .L32(2);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_ok());
- let result = result.unwrap();
- assert_eq!(result.eh_frame_ptr(), Pointer::Indirect(0x12345));
- let table = result.table();
- assert!(table.is_some());
- let table = table.unwrap();
- assert_eq!(
- table.lookup(0, &bases),
- Err(Error::UnsupportedPointerEncoding)
- );
- }
-
- #[test]
- fn test_eh_frame_hdr_good() {
- let section = Section::with_endian(Endian::Little)
- .L8(1)
- .L8(0x0b)
- .L8(0x03)
- .L8(0x0b)
- .L32(0x12345)
- .L32(2)
- .L32(10)
- .L32(1)
- .L32(20)
- .L32(2);
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let result = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(result.is_ok());
- let result = result.unwrap();
- assert_eq!(result.eh_frame_ptr(), Pointer::Direct(0x12345));
- let table = result.table();
- assert!(table.is_some());
- let table = table.unwrap();
- assert_eq!(table.lookup(0, &bases), Ok(Pointer::Direct(1)));
- assert_eq!(table.lookup(9, &bases), Ok(Pointer::Direct(1)));
- assert_eq!(table.lookup(10, &bases), Ok(Pointer::Direct(1)));
- assert_eq!(table.lookup(11, &bases), Ok(Pointer::Direct(1)));
- assert_eq!(table.lookup(19, &bases), Ok(Pointer::Direct(1)));
- assert_eq!(table.lookup(20, &bases), Ok(Pointer::Direct(2)));
- assert_eq!(table.lookup(21, &bases), Ok(Pointer::Direct(2)));
- assert_eq!(table.lookup(100_000, &bases), Ok(Pointer::Direct(2)));
- }
-
- #[test]
- fn test_eh_frame_fde_for_address_good() {
- // First, setup eh_frame
- // Write the CIE first so that its length gets set before we clone it
- // into the FDE.
- let mut cie = make_test_cie();
- cie.format = Format::Dwarf32;
- cie.version = 1;
-
- let start_of_cie = Label::new();
- let end_of_cie = Label::new();
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .append_repeated(0, 16)
- .mark(&start_of_cie)
- .cie(kind, None, &mut cie)
- .mark(&end_of_cie);
-
- let mut fde1 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 9,
- address_range: 4,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
- let mut fde2 = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 20,
- address_range: 8,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let start_of_fde1 = Label::new();
- let start_of_fde2 = Label::new();
-
- let section = section
- // +4 for the FDE length before the CIE offset.
- .mark(&start_of_fde1)
- .fde(kind, (&start_of_fde1 - &start_of_cie + 4) as u64, &mut fde1)
- .mark(&start_of_fde2)
- .fde(kind, (&start_of_fde2 - &start_of_cie + 4) as u64, &mut fde2);
-
- section.start().set_const(0);
- let section = section.get_contents().unwrap();
- let eh_frame = kind.section(&section);
-
- // Setup eh_frame_hdr
- let section = Section::with_endian(kind.endian())
- .L8(1)
- .L8(0x0b)
- .L8(0x03)
- .L8(0x0b)
- .L32(0x12345)
- .L32(2)
- .L32(10)
- .L32(0x12345 + start_of_fde1.value().unwrap() as u32)
- .L32(20)
- .L32(0x12345 + start_of_fde2.value().unwrap() as u32);
-
- let section = section.get_contents().unwrap();
- let bases = BaseAddresses::default();
- let eh_frame_hdr = EhFrameHdr::new(&section, LittleEndian).parse(&bases, 8);
- assert!(eh_frame_hdr.is_ok());
- let eh_frame_hdr = eh_frame_hdr.unwrap();
-
- let table = eh_frame_hdr.table();
- assert!(table.is_some());
- let table = table.unwrap();
-
- let bases = Default::default();
- let mut iter = table.iter(&bases);
- assert_eq!(
- iter.next(),
- Ok(Some((
- Pointer::Direct(10),
- Pointer::Direct(0x12345 + start_of_fde1.value().unwrap() as u64)
- )))
- );
- assert_eq!(
- iter.next(),
- Ok(Some((
- Pointer::Direct(20),
- Pointer::Direct(0x12345 + start_of_fde2.value().unwrap() as u64)
- )))
- );
- assert_eq!(iter.next(), Ok(None));
-
- assert_eq!(
- table.iter(&bases).nth(0),
- Ok(Some((
- Pointer::Direct(10),
- Pointer::Direct(0x12345 + start_of_fde1.value().unwrap() as u64)
- )))
- );
-
- assert_eq!(
- table.iter(&bases).nth(1),
- Ok(Some((
- Pointer::Direct(20),
- Pointer::Direct(0x12345 + start_of_fde2.value().unwrap() as u64)
- )))
- );
- assert_eq!(table.iter(&bases).nth(2), Ok(None));
-
- let f = |_: &_, _: &_, o: EhFrameOffset| {
- assert_eq!(o, EhFrameOffset(start_of_cie.value().unwrap() as usize));
- Ok(cie.clone())
- };
- assert_eq!(
- table.fde_for_address(&eh_frame, &bases, 9, f),
- Ok(fde1.clone())
- );
- assert_eq!(
- table.fde_for_address(&eh_frame, &bases, 10, f),
- Ok(fde1.clone())
- );
- assert_eq!(table.fde_for_address(&eh_frame, &bases, 11, f), Ok(fde1));
- assert_eq!(
- table.fde_for_address(&eh_frame, &bases, 19, f),
- Err(Error::NoUnwindInfoForAddress)
- );
- assert_eq!(
- table.fde_for_address(&eh_frame, &bases, 20, f),
- Ok(fde2.clone())
- );
- assert_eq!(table.fde_for_address(&eh_frame, &bases, 21, f), Ok(fde2));
- assert_eq!(
- table.fde_for_address(&eh_frame, &bases, 100_000, f),
- Err(Error::NoUnwindInfoForAddress)
- );
- }
-
- #[test]
- fn test_eh_frame_stops_at_zero_length() {
- let section = Section::with_endian(Endian::Little).L32(0);
- let section = section.get_contents().unwrap();
- let rest = &mut EndianSlice::new(&section, LittleEndian);
- let bases = Default::default();
-
- assert_eq!(
- parse_cfi_entry(&bases, &EhFrame::new(&*section, LittleEndian), rest),
- Ok(None)
- );
-
- assert_eq!(
- EhFrame::new(&section, LittleEndian).cie_from_offset(&bases, EhFrameOffset(0)),
- Err(Error::NoEntryAtGivenOffset)
- );
- }
-
- fn resolve_cie_offset(buf: &[u8], cie_offset: usize) -> Result<usize> {
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf64,
- cie: make_test_cie(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 39,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .append_bytes(&buf)
- .fde(kind, cie_offset as u64, &mut fde)
- .append_bytes(&buf);
-
- let section = section.get_contents().unwrap();
- let eh_frame = kind.section(&section);
- let input = &mut EndianSlice::new(&section[buf.len()..], LittleEndian);
-
- let bases = Default::default();
- match parse_cfi_entry(&bases, &eh_frame, input) {
- Ok(Some(CieOrFde::Fde(partial))) => Ok(partial.cie_offset.0),
- Err(e) => Err(e),
- otherwise => panic!("Unexpected result: {:#?}", otherwise),
- }
- }
-
- #[test]
- fn test_eh_frame_resolve_cie_offset_ok() {
- let buf = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
- let cie_offset = 2;
- // + 4 for size of length field
- assert_eq!(
- resolve_cie_offset(&buf, buf.len() + 4 - cie_offset),
- Ok(cie_offset)
- );
- }
-
- #[test]
- fn test_eh_frame_resolve_cie_offset_out_of_bounds() {
- let buf = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
- assert_eq!(
- resolve_cie_offset(&buf, buf.len() + 4 + 2),
- Err(Error::OffsetOutOfBounds)
- );
- }
-
- #[test]
- fn test_eh_frame_resolve_cie_offset_underflow() {
- let buf = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
- assert_eq!(
- resolve_cie_offset(&buf, ::core::usize::MAX),
- Err(Error::OffsetOutOfBounds)
- );
- }
-
- #[test]
- fn test_eh_frame_fde_ok() {
- let mut cie = make_test_cie();
- cie.format = Format::Dwarf32;
- cie.version = 1;
-
- let start_of_cie = Label::new();
- let end_of_cie = Label::new();
-
- // Write the CIE first so that its length gets set before we clone it
- // into the FDE.
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .append_repeated(0, 16)
- .mark(&start_of_cie)
- .cie(kind, None, &mut cie)
- .mark(&end_of_cie);
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 999,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let section = section
- // +4 for the FDE length before the CIE offset.
- .fde(kind, (&end_of_cie - &start_of_cie + 4) as u64, &mut fde);
-
- section.start().set_const(0);
- let section = section.get_contents().unwrap();
- let eh_frame = kind.section(&section);
- let section = EndianSlice::new(&section, LittleEndian);
-
- let mut offset = None;
- match parse_fde(
- eh_frame,
- &mut section.range_from(end_of_cie.value().unwrap() as usize..),
- |_, _, o| {
- offset = Some(o);
- assert_eq!(o, EhFrameOffset(start_of_cie.value().unwrap() as usize));
- Ok(cie.clone())
- },
- ) {
- Ok(actual) => assert_eq!(actual, fde),
- otherwise => panic!("Unexpected result {:?}", otherwise),
- }
- assert!(offset.is_some());
- }
-
- #[test]
- fn test_eh_frame_fde_out_of_bounds() {
- let mut cie = make_test_cie();
- cie.version = 1;
-
- let end_of_cie = Label::new();
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf64,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_beef,
- address_range: 999,
- augmentation: None,
- instructions: EndianSlice::new(&[], LittleEndian),
- };
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .cie(kind, None, &mut cie)
- .mark(&end_of_cie)
- .fde(kind, 99_999_999_999_999, &mut fde);
-
- section.start().set_const(0);
- let section = section.get_contents().unwrap();
- let eh_frame = kind.section(&section);
- let section = EndianSlice::new(&section, LittleEndian);
-
- let result = parse_fde(
- eh_frame,
- &mut section.range_from(end_of_cie.value().unwrap() as usize..),
- UnwindSection::cie_from_offset,
- );
- assert_eq!(result, Err(Error::OffsetOutOfBounds));
- }
-
- #[test]
- fn test_augmentation_parse_not_z_augmentation() {
- let augmentation = &mut EndianSlice::new(b"wtf", NativeEndian);
- let bases = Default::default();
- let address_size = 8;
- let section = EhFrame::new(&[], NativeEndian);
- let input = &mut EndianSlice::new(&[], NativeEndian);
- assert_eq!(
- Augmentation::parse(augmentation, &bases, address_size, &section, input),
- Err(Error::UnknownAugmentation)
- );
- }
-
- #[test]
- fn test_augmentation_parse_just_signal_trampoline() {
- let aug_str = &mut EndianSlice::new(b"S", LittleEndian);
- let bases = Default::default();
- let address_size = 8;
- let section = EhFrame::new(&[], LittleEndian);
- let input = &mut EndianSlice::new(&[], LittleEndian);
-
- let mut augmentation = Augmentation::default();
- augmentation.is_signal_trampoline = true;
-
- assert_eq!(
- Augmentation::parse(aug_str, &bases, address_size, &section, input),
- Ok(augmentation)
- );
- }
-
- #[test]
- fn test_augmentation_parse_unknown_part_of_z_augmentation() {
- // The 'Z' character is not defined by the z-style augmentation.
- let bases = Default::default();
- let address_size = 8;
- let section = Section::with_endian(Endian::Little)
- .uleb(4)
- .append_repeated(4, 4)
- .get_contents()
- .unwrap();
- let section = EhFrame::new(&section, LittleEndian);
- let input = &mut section.section().clone();
- let augmentation = &mut EndianSlice::new(b"zZ", LittleEndian);
- assert_eq!(
- Augmentation::parse(augmentation, &bases, address_size, &section, input),
- Err(Error::UnknownAugmentation)
- );
- }
-
- #[test]
- #[allow(non_snake_case)]
- fn test_augmentation_parse_L() {
- let bases = Default::default();
- let address_size = 8;
- let rest = [9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let section = Section::with_endian(Endian::Little)
- .uleb(1)
- .D8(constants::DW_EH_PE_uleb128.0)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = EhFrame::new(&section, LittleEndian);
- let input = &mut section.section().clone();
- let aug_str = &mut EndianSlice::new(b"zL", LittleEndian);
-
- let mut augmentation = Augmentation::default();
- augmentation.lsda = Some(constants::DW_EH_PE_uleb128);
-
- assert_eq!(
- Augmentation::parse(aug_str, &bases, address_size, &section, input),
- Ok(augmentation)
- );
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- #[allow(non_snake_case)]
- fn test_augmentation_parse_P() {
- let bases = Default::default();
- let address_size = 8;
- let rest = [9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let section = Section::with_endian(Endian::Little)
- .uleb(9)
- .D8(constants::DW_EH_PE_udata8.0)
- .L64(0xf00d_f00d)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = EhFrame::new(&section, LittleEndian);
- let input = &mut section.section().clone();
- let aug_str = &mut EndianSlice::new(b"zP", LittleEndian);
-
- let mut augmentation = Augmentation::default();
- augmentation.personality = Some((constants::DW_EH_PE_udata8, Pointer::Direct(0xf00d_f00d)));
-
- assert_eq!(
- Augmentation::parse(aug_str, &bases, address_size, &section, input),
- Ok(augmentation)
- );
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- #[allow(non_snake_case)]
- fn test_augmentation_parse_R() {
- let bases = Default::default();
- let address_size = 8;
- let rest = [9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let section = Section::with_endian(Endian::Little)
- .uleb(1)
- .D8(constants::DW_EH_PE_udata4.0)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = EhFrame::new(&section, LittleEndian);
- let input = &mut section.section().clone();
- let aug_str = &mut EndianSlice::new(b"zR", LittleEndian);
-
- let mut augmentation = Augmentation::default();
- augmentation.fde_address_encoding = Some(constants::DW_EH_PE_udata4);
-
- assert_eq!(
- Augmentation::parse(aug_str, &bases, address_size, &section, input),
- Ok(augmentation)
- );
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- #[allow(non_snake_case)]
- fn test_augmentation_parse_S() {
- let bases = Default::default();
- let address_size = 8;
- let rest = [9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let section = Section::with_endian(Endian::Little)
- .uleb(0)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = EhFrame::new(&section, LittleEndian);
- let input = &mut section.section().clone();
- let aug_str = &mut EndianSlice::new(b"zS", LittleEndian);
-
- let mut augmentation = Augmentation::default();
- augmentation.is_signal_trampoline = true;
-
- assert_eq!(
- Augmentation::parse(aug_str, &bases, address_size, &section, input),
- Ok(augmentation)
- );
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- fn test_augmentation_parse_all() {
- let bases = Default::default();
- let address_size = 8;
- let rest = [9, 8, 7, 6, 5, 4, 3, 2, 1];
-
- let section = Section::with_endian(Endian::Little)
- .uleb(1 + 9 + 1)
- // L
- .D8(constants::DW_EH_PE_uleb128.0)
- // P
- .D8(constants::DW_EH_PE_udata8.0)
- .L64(0x1bad_f00d)
- // R
- .D8(constants::DW_EH_PE_uleb128.0)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = EhFrame::new(&section, LittleEndian);
- let input = &mut section.section().clone();
- let aug_str = &mut EndianSlice::new(b"zLPRS", LittleEndian);
-
- let augmentation = Augmentation {
- lsda: Some(constants::DW_EH_PE_uleb128),
- personality: Some((constants::DW_EH_PE_udata8, Pointer::Direct(0x1bad_f00d))),
- fde_address_encoding: Some(constants::DW_EH_PE_uleb128),
- is_signal_trampoline: true,
- };
-
- assert_eq!(
- Augmentation::parse(aug_str, &bases, address_size, &section, input),
- Ok(augmentation)
- );
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- fn test_eh_frame_fde_no_augmentation() {
- let instrs = [1, 2, 3, 4];
- let cie_offset = 1;
-
- let mut cie = make_test_cie();
- cie.format = Format::Dwarf32;
- cie.version = 1;
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_face,
- address_range: 9000,
- augmentation: None,
- instructions: EndianSlice::new(&instrs, LittleEndian),
- };
-
- let rest = [1, 2, 3, 4];
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = kind.section(&section);
- let input = &mut section.section().clone();
-
- let result = parse_fde(section, input, |_, _, _| Ok(cie.clone()));
- assert_eq!(result, Ok(fde));
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- fn test_eh_frame_fde_empty_augmentation() {
- let instrs = [1, 2, 3, 4];
- let cie_offset = 1;
-
- let mut cie = make_test_cie();
- cie.format = Format::Dwarf32;
- cie.version = 1;
- cie.augmentation = Some(Augmentation::default());
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_face,
- address_range: 9000,
- augmentation: Some(AugmentationData::default()),
- instructions: EndianSlice::new(&instrs, LittleEndian),
- };
-
- let rest = [1, 2, 3, 4];
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = kind.section(&section);
- let input = &mut section.section().clone();
-
- let result = parse_fde(section, input, |_, _, _| Ok(cie.clone()));
- assert_eq!(result, Ok(fde));
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- fn test_eh_frame_fde_lsda_augmentation() {
- let instrs = [1, 2, 3, 4];
- let cie_offset = 1;
-
- let mut cie = make_test_cie();
- cie.format = Format::Dwarf32;
- cie.version = 1;
- cie.augmentation = Some(Augmentation::default());
- cie.augmentation.as_mut().unwrap().lsda = Some(constants::DW_EH_PE_absptr);
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_face,
- address_range: 9000,
- augmentation: Some(AugmentationData {
- lsda: Some(Pointer::Direct(0x1122_3344)),
- }),
- instructions: EndianSlice::new(&instrs, LittleEndian),
- };
-
- let rest = [1, 2, 3, 4];
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = kind.section(&section);
- let input = &mut section.section().clone();
-
- let result = parse_fde(section, input, |_, _, _| Ok(cie.clone()));
- assert_eq!(result, Ok(fde));
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- fn test_eh_frame_fde_lsda_function_relative() {
- let instrs = [1, 2, 3, 4];
- let cie_offset = 1;
-
- let mut cie = make_test_cie();
- cie.format = Format::Dwarf32;
- cie.version = 1;
- cie.augmentation = Some(Augmentation::default());
- cie.augmentation.as_mut().unwrap().lsda = Some(constants::DwEhPe(
- constants::DW_EH_PE_funcrel.0 | constants::DW_EH_PE_absptr.0,
- ));
-
- let mut fde = FrameDescriptionEntry {
- offset: 0,
- length: 0,
- format: Format::Dwarf32,
- cie: cie.clone(),
- initial_segment: 0,
- initial_address: 0xfeed_face,
- address_range: 9000,
- augmentation: Some(AugmentationData {
- lsda: Some(Pointer::Direct(0xbeef)),
- }),
- instructions: EndianSlice::new(&instrs, LittleEndian),
- };
-
- let rest = [1, 2, 3, 4];
-
- let kind = eh_frame_le();
- let section = Section::with_endian(kind.endian())
- .append_repeated(10, 10)
- .fde(kind, cie_offset, &mut fde)
- .append_bytes(&rest)
- .get_contents()
- .unwrap();
- let section = kind.section(&section);
- let input = &mut section.section().range_from(10..);
-
- // Adjust the FDE's augmentation to be relative to the function.
- fde.augmentation.as_mut().unwrap().lsda = Some(Pointer::Direct(0xfeed_face + 0xbeef));
-
- let result = parse_fde(section, input, |_, _, _| Ok(cie.clone()));
- assert_eq!(result, Ok(fde));
- assert_eq!(*input, EndianSlice::new(&rest, LittleEndian));
- }
-
- #[test]
- fn test_eh_frame_cie_personality_function_relative_bad_context() {
- let instrs = [1, 2, 3, 4];
-
- let length = Label::new();
- let start = Label::new();
- let end = Label::new();
-
- let aug_len = Label::new();
- let aug_start = Label::new();
- let aug_end = Label::new();
-
- let section = Section::with_endian(Endian::Little)
- // Length
- .L32(&length)
- .mark(&start)
- // CIE ID
- .L32(0)
- // Version
- .D8(1)
- // Augmentation
- .append_bytes(b"zP\0")
- // Code alignment factor
- .uleb(1)
- // Data alignment factor
- .sleb(1)
- // Return address register
- .uleb(1)
- // Augmentation data length. This is a uleb, be we rely on the value
- // being less than 2^7 and therefore a valid uleb (can't use Label
- // with uleb).
- .D8(&aug_len)
- .mark(&aug_start)
- // Augmentation data. Personality encoding and then encoded pointer.
- .D8(constants::DW_EH_PE_funcrel.0 | constants::DW_EH_PE_uleb128.0)
- .uleb(1)
- .mark(&aug_end)
- // Initial instructions
- .append_bytes(&instrs)
- .mark(&end);
-
- length.set_const((&end - &start) as u64);
- aug_len.set_const((&aug_end - &aug_start) as u64);
-
- let section = section.get_contents().unwrap();
- let section = EhFrame::new(&section, LittleEndian);
-
- let bases = BaseAddresses::default();
- let mut iter = section.entries(&bases);
- assert_eq!(iter.next(), Err(Error::FuncRelativePointerInBadContext));
- }
-
- #[test]
- fn register_rule_map_eq() {
- // Different order, but still equal.
- let map1: RegisterRuleMap<EndianSlice<LittleEndian>> = [
- (Register(0), RegisterRule::SameValue),
- (Register(3), RegisterRule::Offset(1)),
- ]
- .iter()
- .collect();
- let map2: RegisterRuleMap<EndianSlice<LittleEndian>> = [
- (Register(3), RegisterRule::Offset(1)),
- (Register(0), RegisterRule::SameValue),
- ]
- .iter()
- .collect();
- assert_eq!(map1, map2);
- assert_eq!(map2, map1);
-
- // Not equal.
- let map3: RegisterRuleMap<EndianSlice<LittleEndian>> = [
- (Register(0), RegisterRule::SameValue),
- (Register(2), RegisterRule::Offset(1)),
- ]
- .iter()
- .collect();
- let map4: RegisterRuleMap<EndianSlice<LittleEndian>> = [
- (Register(3), RegisterRule::Offset(1)),
- (Register(0), RegisterRule::SameValue),
- ]
- .iter()
- .collect();
- assert!(map3 != map4);
- assert!(map4 != map3);
-
- // One has undefined explicitly set, other implicitly has undefined.
- let mut map5 = RegisterRuleMap::<EndianSlice<LittleEndian>>::default();
- map5.set(Register(0), RegisterRule::SameValue).unwrap();
- map5.set(Register(0), RegisterRule::Undefined).unwrap();
- let map6 = RegisterRuleMap::<EndianSlice<LittleEndian>>::default();
- assert_eq!(map5, map6);
- assert_eq!(map6, map5);
- }
-
- #[test]
- fn iter_register_rules() {
- let mut row = UnwindTableRow::<EndianSlice<LittleEndian>>::default();
- row.registers = [
- (Register(0), RegisterRule::SameValue),
- (Register(1), RegisterRule::Offset(1)),
- (Register(2), RegisterRule::ValOffset(2)),
- ]
- .iter()
- .collect();
-
- let mut found0 = false;
- let mut found1 = false;
- let mut found2 = false;
-
- for &(register, ref rule) in row.registers() {
- match register.0 {
- 0 => {
- assert_eq!(found0, false);
- found0 = true;
- assert_eq!(*rule, RegisterRule::SameValue);
- }
- 1 => {
- assert_eq!(found1, false);
- found1 = true;
- assert_eq!(*rule, RegisterRule::Offset(1));
- }
- 2 => {
- assert_eq!(found2, false);
- found2 = true;
- assert_eq!(*rule, RegisterRule::ValOffset(2));
- }
- x => panic!("Unexpected register rule: ({}, {:?})", x, rule),
- }
- }
-
- assert_eq!(found0, true);
- assert_eq!(found1, true);
- assert_eq!(found2, true);
- }
-
- #[test]
- #[cfg(target_pointer_width = "64")]
- fn size_of_unwind_ctx() {
- use core::mem;
- let size = mem::size_of::<UnwindContext<EndianSlice<NativeEndian>>>();
- let max_size = 30968;
- if size > max_size {
- assert_eq!(size, max_size);
- }
- }
-
- #[test]
- #[cfg(target_pointer_width = "64")]
- fn size_of_register_rule_map() {
- use core::mem;
- let size = mem::size_of::<RegisterRuleMap<EndianSlice<NativeEndian>>>();
- let max_size = 6152;
- if size > max_size {
- assert_eq!(size, max_size);
- }
- }
-
- #[test]
- fn test_parse_pointer_encoding_ok() {
- use crate::endianity::NativeEndian;
- let expected =
- constants::DwEhPe(constants::DW_EH_PE_uleb128.0 | constants::DW_EH_PE_pcrel.0);
- let input = [expected.0, 1, 2, 3, 4];
- let input = &mut EndianSlice::new(&input, NativeEndian);
- assert_eq!(parse_pointer_encoding(input), Ok(expected));
- assert_eq!(*input, EndianSlice::new(&[1, 2, 3, 4], NativeEndian));
- }
-
- #[test]
- fn test_parse_pointer_encoding_bad_encoding() {
- use crate::endianity::NativeEndian;
- let expected =
- constants::DwEhPe((constants::DW_EH_PE_sdata8.0 + 1) | constants::DW_EH_PE_pcrel.0);
- let input = [expected.0, 1, 2, 3, 4];
- let input = &mut EndianSlice::new(&input, NativeEndian);
- assert_eq!(
- Err(Error::UnknownPointerEncoding),
- parse_pointer_encoding(input)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_absptr() {
- let encoding = constants::DW_EH_PE_absptr;
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L32(0xf00d_f00d)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0xf00d_f00d))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_pcrel() {
- let encoding = constants::DW_EH_PE_pcrel;
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .append_repeated(0, 0x10)
- .L32(0x1)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input.range_from(0x10..);
-
- let parameters = PointerEncodingParameters {
- bases: &BaseAddresses::default().set_eh_frame(0x100).eh_frame,
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x111))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_pcrel_undefined() {
- let encoding = constants::DW_EH_PE_pcrel;
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::PcRelativePointerButSectionBaseIsUndefined)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_textrel() {
- let encoding = constants::DW_EH_PE_textrel;
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L32(0x1)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &BaseAddresses::default().set_text(0x10).eh_frame,
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x11))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_textrel_undefined() {
- let encoding = constants::DW_EH_PE_textrel;
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::TextRelativePointerButTextBaseIsUndefined)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_datarel() {
- let encoding = constants::DW_EH_PE_datarel;
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L32(0x1)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &BaseAddresses::default().set_got(0x10).eh_frame,
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x11))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_datarel_undefined() {
- let encoding = constants::DW_EH_PE_datarel;
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::DataRelativePointerButDataBaseIsUndefined)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_funcrel() {
- let encoding = constants::DW_EH_PE_funcrel;
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L32(0x1)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: Some(0x10),
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x11))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_funcrel_undefined() {
- let encoding = constants::DW_EH_PE_funcrel;
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::FuncRelativePointerInBadContext)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_uleb128() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_uleb128.0);
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .uleb(0x12_3456)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x12_3456))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_udata2() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_udata2.0);
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L16(0x1234)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x1234))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_udata4() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_udata4.0);
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L32(0x1234_5678)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x1234_5678))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_udata8() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_udata8.0);
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .L64(0x1234_5678_1234_5678)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x1234_5678_1234_5678))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_sleb128() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_textrel.0 | constants::DW_EH_PE_sleb128.0);
- let expected_rest = [1, 2, 3, 4];
-
- let input = Section::with_endian(Endian::Little)
- .sleb(-0x1111)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &BaseAddresses::default().set_text(0x1111_1111).eh_frame,
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(0x1111_0000))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_sdata2() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_sdata2.0);
- let expected_rest = [1, 2, 3, 4];
- let expected = 0x111 as i16;
-
- let input = Section::with_endian(Endian::Little)
- .L16(expected as u16)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(expected as u64))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_sdata4() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_sdata4.0);
- let expected_rest = [1, 2, 3, 4];
- let expected = 0x111_1111 as i32;
-
- let input = Section::with_endian(Endian::Little)
- .L32(expected as u32)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(expected as u64))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_sdata8() {
- let encoding =
- constants::DwEhPe(constants::DW_EH_PE_absptr.0 | constants::DW_EH_PE_sdata8.0);
- let expected_rest = [1, 2, 3, 4];
- let expected = -0x11_1111_1222_2222 as i64;
-
- let input = Section::with_endian(Endian::Little)
- .L64(expected as u64)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Direct(expected as u64))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-
- #[test]
- fn test_parse_encoded_pointer_omit() {
- let encoding = constants::DW_EH_PE_omit;
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::CannotParseOmitPointerEncoding)
- );
- assert_eq!(rest, input);
- }
-
- #[test]
- fn test_parse_encoded_pointer_bad_encoding() {
- let encoding = constants::DwEhPe(constants::DW_EH_PE_sdata8.0 + 1);
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::UnknownPointerEncoding)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_aligned() {
- // FIXME: support this encoding!
-
- let encoding = constants::DW_EH_PE_aligned;
-
- let input = Section::with_endian(Endian::Little).L32(0x1);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Err(Error::UnsupportedPointerEncoding)
- );
- }
-
- #[test]
- fn test_parse_encoded_pointer_indirect() {
- let expected_rest = [1, 2, 3, 4];
- let encoding = constants::DW_EH_PE_indirect;
-
- let input = Section::with_endian(Endian::Little)
- .L32(0x1234_5678)
- .append_bytes(&expected_rest);
- let input = input.get_contents().unwrap();
- let input = EndianSlice::new(&input, LittleEndian);
- let mut rest = input;
-
- let parameters = PointerEncodingParameters {
- bases: &SectionBaseAddresses::default(),
- func_base: None,
- address_size: 4,
- section: &input,
- };
- assert_eq!(
- parse_encoded_pointer(encoding, &parameters, &mut rest),
- Ok(Pointer::Indirect(0x1234_5678))
- );
- assert_eq!(rest, EndianSlice::new(&expected_rest, LittleEndian));
- }
-}