diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/memchr/src/arch/generic/packedpair.rs | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/memchr/src/arch/generic/packedpair.rs')
-rw-r--r-- | vendor/memchr/src/arch/generic/packedpair.rs | 317 |
1 files changed, 0 insertions, 317 deletions
diff --git a/vendor/memchr/src/arch/generic/packedpair.rs b/vendor/memchr/src/arch/generic/packedpair.rs deleted file mode 100644 index 8d97cf2..0000000 --- a/vendor/memchr/src/arch/generic/packedpair.rs +++ /dev/null @@ -1,317 +0,0 @@ -/*! -Generic crate-internal routines for the "packed pair" SIMD algorithm. - -The "packed pair" algorithm is based on the [generic SIMD] algorithm. The main -difference is that it (by default) uses a background distribution of byte -frequencies to heuristically select the pair of bytes to search for. - -[generic SIMD]: http://0x80.pl/articles/simd-strfind.html#first-and-last -*/ - -use crate::{ - arch::all::{is_equal_raw, packedpair::Pair}, - ext::Pointer, - vector::{MoveMask, Vector}, -}; - -/// A generic architecture dependent "packed pair" finder. -/// -/// This finder picks two bytes that it believes have high predictive power -/// for indicating an overall match of a needle. Depending on whether -/// `Finder::find` or `Finder::find_prefilter` is used, it reports offsets -/// where the needle matches or could match. In the prefilter case, candidates -/// are reported whenever the [`Pair`] of bytes given matches. -/// -/// This is architecture dependent because it uses specific vector operations -/// to look for occurrences of the pair of bytes. -/// -/// This type is not meant to be exported and is instead meant to be used as -/// the implementation for architecture specific facades. Why? Because it's a -/// bit of a quirky API that requires `inline(always)` annotations. And pretty -/// much everything has safety obligations due (at least) to the caller needing -/// to inline calls into routines marked with -/// `#[target_feature(enable = "...")]`. -#[derive(Clone, Copy, Debug)] -pub(crate) struct Finder<V> { - pair: Pair, - v1: V, - v2: V, - min_haystack_len: usize, -} - -impl<V: Vector> Finder<V> { - /// Create a new pair searcher. The searcher returned can either report - /// exact matches of `needle` or act as a prefilter and report candidate - /// positions of `needle`. - /// - /// # Safety - /// - /// Callers must ensure that whatever vector type this routine is called - /// with is supported by the current environment. - /// - /// Callers must also ensure that `needle.len() >= 2`. - #[inline(always)] - pub(crate) unsafe fn new(needle: &[u8], pair: Pair) -> Finder<V> { - let max_index = pair.index1().max(pair.index2()); - let min_haystack_len = - core::cmp::max(needle.len(), usize::from(max_index) + V::BYTES); - let v1 = V::splat(needle[usize::from(pair.index1())]); - let v2 = V::splat(needle[usize::from(pair.index2())]); - Finder { pair, v1, v2, min_haystack_len } - } - - /// Searches the given haystack for the given needle. The needle given - /// should be the same as the needle that this finder was initialized - /// with. - /// - /// # Panics - /// - /// When `haystack.len()` is less than [`Finder::min_haystack_len`]. - /// - /// # Safety - /// - /// Since this is meant to be used with vector functions, callers need to - /// specialize this inside of a function with a `target_feature` attribute. - /// Therefore, callers must ensure that whatever target feature is being - /// used supports the vector functions that this function is specialized - /// for. (For the specific vector functions used, see the Vector trait - /// implementations.) - #[inline(always)] - pub(crate) unsafe fn find( - &self, - haystack: &[u8], - needle: &[u8], - ) -> Option<usize> { - assert!( - haystack.len() >= self.min_haystack_len, - "haystack too small, should be at least {} but got {}", - self.min_haystack_len, - haystack.len(), - ); - - let all = V::Mask::all_zeros_except_least_significant(0); - let start = haystack.as_ptr(); - let end = start.add(haystack.len()); - let max = end.sub(self.min_haystack_len); - let mut cur = start; - - // N.B. I did experiment with unrolling the loop to deal with size(V) - // bytes at a time and 2*size(V) bytes at a time. The double unroll - // was marginally faster while the quadruple unroll was unambiguously - // slower. In the end, I decided the complexity from unrolling wasn't - // worth it. I used the memmem/krate/prebuilt/huge-en/ benchmarks to - // compare. - while cur <= max { - if let Some(chunki) = self.find_in_chunk(needle, cur, end, all) { - return Some(matched(start, cur, chunki)); - } - cur = cur.add(V::BYTES); - } - if cur < end { - let remaining = end.distance(cur); - debug_assert!( - remaining < self.min_haystack_len, - "remaining bytes should be smaller than the minimum haystack \ - length of {}, but there are {} bytes remaining", - self.min_haystack_len, - remaining, - ); - if remaining < needle.len() { - return None; - } - debug_assert!( - max < cur, - "after main loop, cur should have exceeded max", - ); - let overlap = cur.distance(max); - debug_assert!( - overlap > 0, - "overlap ({}) must always be non-zero", - overlap, - ); - debug_assert!( - overlap < V::BYTES, - "overlap ({}) cannot possibly be >= than a vector ({})", - overlap, - V::BYTES, - ); - // The mask has all of its bits set except for the first N least - // significant bits, where N=overlap. This way, any matches that - // occur in find_in_chunk within the overlap are automatically - // ignored. - let mask = V::Mask::all_zeros_except_least_significant(overlap); - cur = max; - let m = self.find_in_chunk(needle, cur, end, mask); - if let Some(chunki) = m { - return Some(matched(start, cur, chunki)); - } - } - None - } - - /// Searches the given haystack for offsets that represent candidate - /// matches of the `needle` given to this finder's constructor. The offsets - /// returned, if they are a match, correspond to the starting offset of - /// `needle` in the given `haystack`. - /// - /// # Panics - /// - /// When `haystack.len()` is less than [`Finder::min_haystack_len`]. - /// - /// # Safety - /// - /// Since this is meant to be used with vector functions, callers need to - /// specialize this inside of a function with a `target_feature` attribute. - /// Therefore, callers must ensure that whatever target feature is being - /// used supports the vector functions that this function is specialized - /// for. (For the specific vector functions used, see the Vector trait - /// implementations.) - #[inline(always)] - pub(crate) unsafe fn find_prefilter( - &self, - haystack: &[u8], - ) -> Option<usize> { - assert!( - haystack.len() >= self.min_haystack_len, - "haystack too small, should be at least {} but got {}", - self.min_haystack_len, - haystack.len(), - ); - - let start = haystack.as_ptr(); - let end = start.add(haystack.len()); - let max = end.sub(self.min_haystack_len); - let mut cur = start; - - // N.B. I did experiment with unrolling the loop to deal with size(V) - // bytes at a time and 2*size(V) bytes at a time. The double unroll - // was marginally faster while the quadruple unroll was unambiguously - // slower. In the end, I decided the complexity from unrolling wasn't - // worth it. I used the memmem/krate/prebuilt/huge-en/ benchmarks to - // compare. - while cur <= max { - if let Some(chunki) = self.find_prefilter_in_chunk(cur) { - return Some(matched(start, cur, chunki)); - } - cur = cur.add(V::BYTES); - } - if cur < end { - // This routine immediately quits if a candidate match is found. - // That means that if we're here, no candidate matches have been - // found at or before 'ptr'. Thus, we don't need to mask anything - // out even though we might technically search part of the haystack - // that we've already searched (because we know it can't match). - cur = max; - if let Some(chunki) = self.find_prefilter_in_chunk(cur) { - return Some(matched(start, cur, chunki)); - } - } - None - } - - /// Search for an occurrence of our byte pair from the needle in the chunk - /// pointed to by cur, with the end of the haystack pointed to by end. - /// When an occurrence is found, memcmp is run to check if a match occurs - /// at the corresponding position. - /// - /// `mask` should have bits set corresponding the positions in the chunk - /// in which matches are considered. This is only used for the last vector - /// load where the beginning of the vector might have overlapped with the - /// last load in the main loop. The mask lets us avoid visiting positions - /// that have already been discarded as matches. - /// - /// # Safety - /// - /// It must be safe to do an unaligned read of size(V) bytes starting at - /// both (cur + self.index1) and (cur + self.index2). It must also be safe - /// to do unaligned loads on cur up to (end - needle.len()). - #[inline(always)] - unsafe fn find_in_chunk( - &self, - needle: &[u8], - cur: *const u8, - end: *const u8, - mask: V::Mask, - ) -> Option<usize> { - let index1 = usize::from(self.pair.index1()); - let index2 = usize::from(self.pair.index2()); - let chunk1 = V::load_unaligned(cur.add(index1)); - let chunk2 = V::load_unaligned(cur.add(index2)); - let eq1 = chunk1.cmpeq(self.v1); - let eq2 = chunk2.cmpeq(self.v2); - - let mut offsets = eq1.and(eq2).movemask().and(mask); - while offsets.has_non_zero() { - let offset = offsets.first_offset(); - let cur = cur.add(offset); - if end.sub(needle.len()) < cur { - return None; - } - if is_equal_raw(needle.as_ptr(), cur, needle.len()) { - return Some(offset); - } - offsets = offsets.clear_least_significant_bit(); - } - None - } - - /// Search for an occurrence of our byte pair from the needle in the chunk - /// pointed to by cur, with the end of the haystack pointed to by end. - /// When an occurrence is found, memcmp is run to check if a match occurs - /// at the corresponding position. - /// - /// # Safety - /// - /// It must be safe to do an unaligned read of size(V) bytes starting at - /// both (cur + self.index1) and (cur + self.index2). It must also be safe - /// to do unaligned reads on cur up to (end - needle.len()). - #[inline(always)] - unsafe fn find_prefilter_in_chunk(&self, cur: *const u8) -> Option<usize> { - let index1 = usize::from(self.pair.index1()); - let index2 = usize::from(self.pair.index2()); - let chunk1 = V::load_unaligned(cur.add(index1)); - let chunk2 = V::load_unaligned(cur.add(index2)); - let eq1 = chunk1.cmpeq(self.v1); - let eq2 = chunk2.cmpeq(self.v2); - - let offsets = eq1.and(eq2).movemask(); - if !offsets.has_non_zero() { - return None; - } - Some(offsets.first_offset()) - } - - /// Returns the pair of offsets (into the needle) used to check as a - /// predicate before confirming whether a needle exists at a particular - /// position. - #[inline] - pub(crate) fn pair(&self) -> &Pair { - &self.pair - } - - /// Returns the minimum haystack length that this `Finder` can search. - /// - /// Providing a haystack to this `Finder` shorter than this length is - /// guaranteed to result in a panic. - #[inline(always)] - pub(crate) fn min_haystack_len(&self) -> usize { - self.min_haystack_len - } -} - -/// Accepts a chunk-relative offset and returns a haystack relative offset. -/// -/// This used to be marked `#[cold]` and `#[inline(never)]`, but I couldn't -/// observe a consistent measureable difference between that and just inlining -/// it. So we go with inlining it. -/// -/// # Safety -/// -/// Same at `ptr::offset_from` in addition to `cur >= start`. -#[inline(always)] -unsafe fn matched(start: *const u8, cur: *const u8, chunki: usize) -> usize { - cur.distance(start) + chunki -} - -// If you're looking for tests, those are run for each instantiation of the -// above code. So for example, see arch::x86_64::sse2::packedpair. |