summaryrefslogtreecommitdiff
path: root/vendor/num-rational/src/lib.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/num-rational/src/lib.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/num-rational/src/lib.rs')
-rw-r--r--vendor/num-rational/src/lib.rs3106
1 files changed, 3106 insertions, 0 deletions
diff --git a/vendor/num-rational/src/lib.rs b/vendor/num-rational/src/lib.rs
new file mode 100644
index 0000000..bf209ad
--- /dev/null
+++ b/vendor/num-rational/src/lib.rs
@@ -0,0 +1,3106 @@
+// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Rational numbers
+//!
+//! ## Compatibility
+//!
+//! The `num-rational` crate is tested for rustc 1.31 and greater.
+
+#![doc(html_root_url = "https://docs.rs/num-rational/0.4")]
+#![no_std]
+// Ratio ops often use other "suspicious" ops
+#![allow(clippy::suspicious_arithmetic_impl)]
+#![allow(clippy::suspicious_op_assign_impl)]
+
+#[cfg(feature = "std")]
+#[macro_use]
+extern crate std;
+
+use core::cmp;
+use core::fmt;
+use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex};
+use core::hash::{Hash, Hasher};
+use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub};
+use core::str::FromStr;
+#[cfg(feature = "std")]
+use std::error::Error;
+
+#[cfg(feature = "num-bigint")]
+use num_bigint::{BigInt, BigUint, Sign, ToBigInt};
+
+use num_integer::Integer;
+use num_traits::float::FloatCore;
+use num_traits::ToPrimitive;
+use num_traits::{
+ Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Inv, Num, NumCast, One,
+ Pow, Signed, Zero,
+};
+
+mod pow;
+
+/// Represents the ratio between two numbers.
+#[derive(Copy, Clone, Debug)]
+#[allow(missing_docs)]
+pub struct Ratio<T> {
+ /// Numerator.
+ numer: T,
+ /// Denominator.
+ denom: T,
+}
+
+/// Alias for a `Ratio` of machine-sized integers.
+#[deprecated(
+ since = "0.4.0",
+ note = "it's better to use a specific size, like `Rational32` or `Rational64`"
+)]
+pub type Rational = Ratio<isize>;
+/// Alias for a `Ratio` of 32-bit-sized integers.
+pub type Rational32 = Ratio<i32>;
+/// Alias for a `Ratio` of 64-bit-sized integers.
+pub type Rational64 = Ratio<i64>;
+
+#[cfg(feature = "num-bigint")]
+/// Alias for arbitrary precision rationals.
+pub type BigRational = Ratio<BigInt>;
+
+/// These method are `const` for Rust 1.31 and later.
+impl<T> Ratio<T> {
+ /// Creates a `Ratio` without checking for `denom == 0` or reducing.
+ ///
+ /// **There are several methods that will panic if used on a `Ratio` with
+ /// `denom == 0`.**
+ #[inline]
+ pub const fn new_raw(numer: T, denom: T) -> Ratio<T> {
+ Ratio { numer, denom }
+ }
+
+ /// Gets an immutable reference to the numerator.
+ #[inline]
+ pub const fn numer(&self) -> &T {
+ &self.numer
+ }
+
+ /// Gets an immutable reference to the denominator.
+ #[inline]
+ pub const fn denom(&self) -> &T {
+ &self.denom
+ }
+}
+
+impl<T: Clone + Integer> Ratio<T> {
+ /// Creates a new `Ratio`.
+ ///
+ /// **Panics if `denom` is zero.**
+ #[inline]
+ pub fn new(numer: T, denom: T) -> Ratio<T> {
+ let mut ret = Ratio::new_raw(numer, denom);
+ ret.reduce();
+ ret
+ }
+
+ /// Creates a `Ratio` representing the integer `t`.
+ #[inline]
+ pub fn from_integer(t: T) -> Ratio<T> {
+ Ratio::new_raw(t, One::one())
+ }
+
+ /// Converts to an integer, rounding towards zero.
+ #[inline]
+ pub fn to_integer(&self) -> T {
+ self.trunc().numer
+ }
+
+ /// Returns true if the rational number is an integer (denominator is 1).
+ #[inline]
+ pub fn is_integer(&self) -> bool {
+ self.denom.is_one()
+ }
+
+ /// Puts self into lowest terms, with `denom` > 0.
+ ///
+ /// **Panics if `denom` is zero.**
+ fn reduce(&mut self) {
+ if self.denom.is_zero() {
+ panic!("denominator == 0");
+ }
+ if self.numer.is_zero() {
+ self.denom.set_one();
+ return;
+ }
+ if self.numer == self.denom {
+ self.set_one();
+ return;
+ }
+ let g: T = self.numer.gcd(&self.denom);
+
+ // FIXME(#5992): assignment operator overloads
+ // T: Clone + Integer != T: Clone + NumAssign
+
+ #[inline]
+ fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) {
+ let y = core::mem::replace(x, T::zero());
+ *x = f(y);
+ }
+
+ // self.numer /= g;
+ replace_with(&mut self.numer, |x| x / g.clone());
+
+ // self.denom /= g;
+ replace_with(&mut self.denom, |x| x / g);
+
+ // keep denom positive!
+ if self.denom < T::zero() {
+ replace_with(&mut self.numer, |x| T::zero() - x);
+ replace_with(&mut self.denom, |x| T::zero() - x);
+ }
+ }
+
+ /// Returns a reduced copy of self.
+ ///
+ /// In general, it is not necessary to use this method, as the only
+ /// method of procuring a non-reduced fraction is through `new_raw`.
+ ///
+ /// **Panics if `denom` is zero.**
+ pub fn reduced(&self) -> Ratio<T> {
+ let mut ret = self.clone();
+ ret.reduce();
+ ret
+ }
+
+ /// Returns the reciprocal.
+ ///
+ /// **Panics if the `Ratio` is zero.**
+ #[inline]
+ pub fn recip(&self) -> Ratio<T> {
+ self.clone().into_recip()
+ }
+
+ #[inline]
+ fn into_recip(self) -> Ratio<T> {
+ match self.numer.cmp(&T::zero()) {
+ cmp::Ordering::Equal => panic!("division by zero"),
+ cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer),
+ cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer),
+ }
+ }
+
+ /// Rounds towards minus infinity.
+ #[inline]
+ pub fn floor(&self) -> Ratio<T> {
+ if *self < Zero::zero() {
+ let one: T = One::one();
+ Ratio::from_integer(
+ (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(),
+ )
+ } else {
+ Ratio::from_integer(self.numer.clone() / self.denom.clone())
+ }
+ }
+
+ /// Rounds towards plus infinity.
+ #[inline]
+ pub fn ceil(&self) -> Ratio<T> {
+ if *self < Zero::zero() {
+ Ratio::from_integer(self.numer.clone() / self.denom.clone())
+ } else {
+ let one: T = One::one();
+ Ratio::from_integer(
+ (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(),
+ )
+ }
+ }
+
+ /// Rounds to the nearest integer. Rounds half-way cases away from zero.
+ #[inline]
+ pub fn round(&self) -> Ratio<T> {
+ let zero: Ratio<T> = Zero::zero();
+ let one: T = One::one();
+ let two: T = one.clone() + one.clone();
+
+ // Find unsigned fractional part of rational number
+ let mut fractional = self.fract();
+ if fractional < zero {
+ fractional = zero - fractional
+ };
+
+ // The algorithm compares the unsigned fractional part with 1/2, that
+ // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
+ // a >= (b/2)+1. This avoids overflow issues.
+ let half_or_larger = if fractional.denom.is_even() {
+ fractional.numer >= fractional.denom / two
+ } else {
+ fractional.numer >= (fractional.denom / two) + one
+ };
+
+ if half_or_larger {
+ let one: Ratio<T> = One::one();
+ if *self >= Zero::zero() {
+ self.trunc() + one
+ } else {
+ self.trunc() - one
+ }
+ } else {
+ self.trunc()
+ }
+ }
+
+ /// Rounds towards zero.
+ #[inline]
+ pub fn trunc(&self) -> Ratio<T> {
+ Ratio::from_integer(self.numer.clone() / self.denom.clone())
+ }
+
+ /// Returns the fractional part of a number, with division rounded towards zero.
+ ///
+ /// Satisfies `self == self.trunc() + self.fract()`.
+ #[inline]
+ pub fn fract(&self) -> Ratio<T> {
+ Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
+ }
+
+ /// Raises the `Ratio` to the power of an exponent.
+ #[inline]
+ pub fn pow(&self, expon: i32) -> Ratio<T>
+ where
+ for<'a> &'a T: Pow<u32, Output = T>,
+ {
+ Pow::pow(self, expon)
+ }
+}
+
+#[cfg(feature = "num-bigint")]
+impl Ratio<BigInt> {
+ /// Converts a float into a rational number.
+ pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> {
+ if !f.is_finite() {
+ return None;
+ }
+ let (mantissa, exponent, sign) = f.integer_decode();
+ let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };
+ if exponent < 0 {
+ let one: BigInt = One::one();
+ let denom: BigInt = one << ((-exponent) as usize);
+ let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
+ Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
+ } else {
+ let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
+ numer <<= exponent as usize;
+ Some(Ratio::from_integer(BigInt::from_biguint(
+ bigint_sign,
+ numer,
+ )))
+ }
+ }
+}
+
+impl<T: Clone + Integer> Default for Ratio<T> {
+ /// Returns zero
+ fn default() -> Self {
+ Ratio::zero()
+ }
+}
+
+// From integer
+impl<T> From<T> for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ fn from(x: T) -> Ratio<T> {
+ Ratio::from_integer(x)
+ }
+}
+
+// From pair (through the `new` constructor)
+impl<T> From<(T, T)> for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ fn from(pair: (T, T)) -> Ratio<T> {
+ Ratio::new(pair.0, pair.1)
+ }
+}
+
+// Comparisons
+
+// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
+// for those multiplications to overflow fixed-size integers, so we need to take care.
+
+impl<T: Clone + Integer> Ord for Ratio<T> {
+ #[inline]
+ fn cmp(&self, other: &Self) -> cmp::Ordering {
+ // With equal denominators, the numerators can be directly compared
+ if self.denom == other.denom {
+ let ord = self.numer.cmp(&other.numer);
+ return if self.denom < T::zero() {
+ ord.reverse()
+ } else {
+ ord
+ };
+ }
+
+ // With equal numerators, the denominators can be inversely compared
+ if self.numer == other.numer {
+ if self.numer.is_zero() {
+ return cmp::Ordering::Equal;
+ }
+ let ord = self.denom.cmp(&other.denom);
+ return if self.numer < T::zero() {
+ ord
+ } else {
+ ord.reverse()
+ };
+ }
+
+ // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the
+ // division below, or even always avoid it for BigInt and BigUint.
+ // FIXME- future breaking change to add Checked* to Integer?
+
+ // Compare as floored integers and remainders
+ let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
+ let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
+ match self_int.cmp(&other_int) {
+ cmp::Ordering::Greater => cmp::Ordering::Greater,
+ cmp::Ordering::Less => cmp::Ordering::Less,
+ cmp::Ordering::Equal => {
+ match (self_rem.is_zero(), other_rem.is_zero()) {
+ (true, true) => cmp::Ordering::Equal,
+ (true, false) => cmp::Ordering::Less,
+ (false, true) => cmp::Ordering::Greater,
+ (false, false) => {
+ // Compare the reciprocals of the remaining fractions in reverse
+ let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
+ let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
+ self_recip.cmp(&other_recip).reverse()
+ }
+ }
+ }
+ }
+ }
+}
+
+impl<T: Clone + Integer> PartialOrd for Ratio<T> {
+ #[inline]
+ fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
+ Some(self.cmp(other))
+ }
+}
+
+impl<T: Clone + Integer> PartialEq for Ratio<T> {
+ #[inline]
+ fn eq(&self, other: &Self) -> bool {
+ self.cmp(other) == cmp::Ordering::Equal
+ }
+}
+
+impl<T: Clone + Integer> Eq for Ratio<T> {}
+
+// NB: We can't just `#[derive(Hash)]`, because it needs to agree
+// with `Eq` even for non-reduced ratios.
+impl<T: Clone + Integer + Hash> Hash for Ratio<T> {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ recurse(&self.numer, &self.denom, state);
+
+ fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) {
+ if !denom.is_zero() {
+ let (int, rem) = numer.div_mod_floor(denom);
+ int.hash(state);
+ recurse(denom, &rem, state);
+ } else {
+ denom.hash(state);
+ }
+ }
+ }
+}
+
+mod iter_sum_product {
+ use crate::Ratio;
+ use core::iter::{Product, Sum};
+ use num_integer::Integer;
+ use num_traits::{One, Zero};
+
+ impl<T: Integer + Clone> Sum for Ratio<T> {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = Ratio<T>>,
+ {
+ iter.fold(Self::zero(), |sum, num| sum + num)
+ }
+ }
+
+ impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = &'a Ratio<T>>,
+ {
+ iter.fold(Self::zero(), |sum, num| sum + num)
+ }
+ }
+
+ impl<T: Integer + Clone> Product for Ratio<T> {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = Ratio<T>>,
+ {
+ iter.fold(Self::one(), |prod, num| prod * num)
+ }
+ }
+
+ impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = &'a Ratio<T>>,
+ {
+ iter.fold(Self::one(), |prod, num| prod * num)
+ }
+ }
+}
+
+mod opassign {
+ use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
+
+ use crate::Ratio;
+ use num_integer::Integer;
+ use num_traits::NumAssign;
+
+ impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> {
+ fn add_assign(&mut self, other: Ratio<T>) {
+ if self.denom == other.denom {
+ self.numer += other.numer
+ } else {
+ let lcm = self.denom.lcm(&other.denom);
+ let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
+ let rhs_numer = other.numer * (lcm.clone() / other.denom);
+ self.numer = lhs_numer + rhs_numer;
+ self.denom = lcm;
+ }
+ self.reduce();
+ }
+ }
+
+ // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd))
+ impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> {
+ fn div_assign(&mut self, other: Ratio<T>) {
+ let gcd_ac = self.numer.gcd(&other.numer);
+ let gcd_bd = self.denom.gcd(&other.denom);
+ self.numer /= gcd_ac.clone();
+ self.numer *= other.denom / gcd_bd.clone();
+ self.denom /= gcd_bd;
+ self.denom *= other.numer / gcd_ac;
+ self.reduce(); // TODO: remove this line. see #8.
+ }
+ }
+
+ // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc))
+ impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> {
+ fn mul_assign(&mut self, other: Ratio<T>) {
+ let gcd_ad = self.numer.gcd(&other.denom);
+ let gcd_bc = self.denom.gcd(&other.numer);
+ self.numer /= gcd_ad.clone();
+ self.numer *= other.numer / gcd_bc.clone();
+ self.denom /= gcd_bc;
+ self.denom *= other.denom / gcd_ad;
+ self.reduce(); // TODO: remove this line. see #8.
+ }
+ }
+
+ impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> {
+ fn rem_assign(&mut self, other: Ratio<T>) {
+ if self.denom == other.denom {
+ self.numer %= other.numer
+ } else {
+ let lcm = self.denom.lcm(&other.denom);
+ let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
+ let rhs_numer = other.numer * (lcm.clone() / other.denom);
+ self.numer = lhs_numer % rhs_numer;
+ self.denom = lcm;
+ }
+ self.reduce();
+ }
+ }
+
+ impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> {
+ fn sub_assign(&mut self, other: Ratio<T>) {
+ if self.denom == other.denom {
+ self.numer -= other.numer
+ } else {
+ let lcm = self.denom.lcm(&other.denom);
+ let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
+ let rhs_numer = other.numer * (lcm.clone() / other.denom);
+ self.numer = lhs_numer - rhs_numer;
+ self.denom = lcm;
+ }
+ self.reduce();
+ }
+ }
+
+ // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b
+ impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> {
+ fn add_assign(&mut self, other: T) {
+ self.numer += self.denom.clone() * other;
+ self.reduce();
+ }
+ }
+
+ impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> {
+ fn div_assign(&mut self, other: T) {
+ let gcd = self.numer.gcd(&other);
+ self.numer /= gcd.clone();
+ self.denom *= other / gcd;
+ self.reduce(); // TODO: remove this line. see #8.
+ }
+ }
+
+ impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> {
+ fn mul_assign(&mut self, other: T) {
+ let gcd = self.denom.gcd(&other);
+ self.denom /= gcd.clone();
+ self.numer *= other / gcd;
+ self.reduce(); // TODO: remove this line. see #8.
+ }
+ }
+
+ // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b
+ impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> {
+ fn rem_assign(&mut self, other: T) {
+ self.numer %= self.denom.clone() * other;
+ self.reduce();
+ }
+ }
+
+ // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b
+ impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> {
+ fn sub_assign(&mut self, other: T) {
+ self.numer -= self.denom.clone() * other;
+ self.reduce();
+ }
+ }
+
+ macro_rules! forward_op_assign {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> {
+ #[inline]
+ fn $method(&mut self, other: &Ratio<T>) {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> {
+ #[inline]
+ fn $method(&mut self, other: &T) {
+ self.$method(other.clone())
+ }
+ }
+ };
+ }
+
+ forward_op_assign!(impl AddAssign, add_assign);
+ forward_op_assign!(impl DivAssign, div_assign);
+ forward_op_assign!(impl MulAssign, mul_assign);
+ forward_op_assign!(impl RemAssign, rem_assign);
+ forward_op_assign!(impl SubAssign, sub_assign);
+}
+
+macro_rules! forward_ref_ref_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> {
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn $method(self, other: &'b Ratio<T>) -> Ratio<T> {
+ self.clone().$method(other.clone())
+ }
+ }
+ impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> {
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn $method(self, other: &'b T) -> Ratio<T> {
+ self.clone().$method(other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_val_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T>
+ where
+ T: Clone + Integer,
+ {
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn $method(self, other: Ratio<T>) -> Ratio<T> {
+ self.clone().$method(other)
+ }
+ }
+ impl<'a, T> $imp<T> for &'a Ratio<T>
+ where
+ T: Clone + Integer,
+ {
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn $method(self, other: T) -> Ratio<T> {
+ self.clone().$method(other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_ref_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T>
+ where
+ T: Clone + Integer,
+ {
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn $method(self, other: &Ratio<T>) -> Ratio<T> {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a, T> $imp<&'a T> for Ratio<T>
+ where
+ T: Clone + Integer,
+ {
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn $method(self, other: &T) -> Ratio<T> {
+ self.$method(other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_all_binop {
+ (impl $imp:ident, $method:ident) => {
+ forward_ref_ref_binop!(impl $imp, $method);
+ forward_ref_val_binop!(impl $imp, $method);
+ forward_val_ref_binop!(impl $imp, $method);
+ };
+}
+
+// Arithmetic
+forward_all_binop!(impl Mul, mul);
+// a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc))
+impl<T> Mul<Ratio<T>> for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ type Output = Ratio<T>;
+ #[inline]
+ fn mul(self, rhs: Ratio<T>) -> Ratio<T> {
+ let gcd_ad = self.numer.gcd(&rhs.denom);
+ let gcd_bc = self.denom.gcd(&rhs.numer);
+ Ratio::new(
+ self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()),
+ self.denom / gcd_bc * (rhs.denom / gcd_ad),
+ )
+ }
+}
+// a/b * c/1 = (a*c) / (b*1) = (a*c) / b
+impl<T> Mul<T> for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ type Output = Ratio<T>;
+ #[inline]
+ fn mul(self, rhs: T) -> Ratio<T> {
+ let gcd = self.denom.gcd(&rhs);
+ Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd)
+ }
+}
+
+forward_all_binop!(impl Div, div);
+// (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd))
+impl<T> Div<Ratio<T>> for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn div(self, rhs: Ratio<T>) -> Ratio<T> {
+ let gcd_ac = self.numer.gcd(&rhs.numer);
+ let gcd_bd = self.denom.gcd(&rhs.denom);
+ Ratio::new(
+ self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()),
+ self.denom / gcd_bd * (rhs.numer / gcd_ac),
+ )
+ }
+}
+// (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c)
+impl<T> Div<T> for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn div(self, rhs: T) -> Ratio<T> {
+ let gcd = self.numer.gcd(&rhs);
+ Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd))
+ }
+}
+
+macro_rules! arith_impl {
+ (impl $imp:ident, $method:ident) => {
+ forward_all_binop!(impl $imp, $method);
+ // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d)
+ impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
+ type Output = Ratio<T>;
+ #[inline]
+ fn $method(self, rhs: Ratio<T>) -> Ratio<T> {
+ if self.denom == rhs.denom {
+ return Ratio::new(self.numer.$method(rhs.numer), rhs.denom);
+ }
+ let lcm = self.denom.lcm(&rhs.denom);
+ let lhs_numer = self.numer * (lcm.clone() / self.denom);
+ let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom);
+ Ratio::new(lhs_numer.$method(rhs_numer), lcm)
+ }
+ }
+ // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern
+ impl<T: Clone + Integer> $imp<T> for Ratio<T> {
+ type Output = Ratio<T>;
+ #[inline]
+ fn $method(self, rhs: T) -> Ratio<T> {
+ Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom)
+ }
+ }
+ };
+}
+
+arith_impl!(impl Add, add);
+arith_impl!(impl Sub, sub);
+arith_impl!(impl Rem, rem);
+
+// a/b * c/d = (a*c)/(b*d)
+impl<T> CheckedMul for Ratio<T>
+where
+ T: Clone + Integer + CheckedMul,
+{
+ #[inline]
+ fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
+ let gcd_ad = self.numer.gcd(&rhs.denom);
+ let gcd_bc = self.denom.gcd(&rhs.numer);
+ Some(Ratio::new(
+ (self.numer.clone() / gcd_ad.clone())
+ .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?,
+ (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?,
+ ))
+ }
+}
+
+// (a/b) / (c/d) = (a*d)/(b*c)
+impl<T> CheckedDiv for Ratio<T>
+where
+ T: Clone + Integer + CheckedMul,
+{
+ #[inline]
+ fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
+ if rhs.is_zero() {
+ return None;
+ }
+ let (numer, denom) = if self.denom == rhs.denom {
+ (self.numer.clone(), rhs.numer.clone())
+ } else if self.numer == rhs.numer {
+ (rhs.denom.clone(), self.denom.clone())
+ } else {
+ let gcd_ac = self.numer.gcd(&rhs.numer);
+ let gcd_bd = self.denom.gcd(&rhs.denom);
+ (
+ (self.numer.clone() / gcd_ac.clone())
+ .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?,
+ (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?,
+ )
+ };
+ // Manual `reduce()`, avoiding sharp edges
+ if denom.is_zero() {
+ None
+ } else if numer.is_zero() {
+ Some(Self::zero())
+ } else if numer == denom {
+ Some(Self::one())
+ } else {
+ let g = numer.gcd(&denom);
+ let numer = numer / g.clone();
+ let denom = denom / g;
+ let raw = if denom < T::zero() {
+ // We need to keep denom positive, but 2's-complement MIN may
+ // overflow negation -- instead we can check multiplying -1.
+ let n1 = T::zero() - T::one();
+ Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?)
+ } else {
+ Ratio::new_raw(numer, denom)
+ };
+ Some(raw)
+ }
+ }
+}
+
+// As arith_impl! but for Checked{Add,Sub} traits
+macro_rules! checked_arith_impl {
+ (impl $imp:ident, $method:ident) => {
+ impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> {
+ #[inline]
+ fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
+ let gcd = self.denom.clone().gcd(&rhs.denom);
+ let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?;
+ let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?;
+ let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?;
+ Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm))
+ }
+ }
+ };
+}
+
+// a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d)
+checked_arith_impl!(impl CheckedAdd, checked_add);
+
+// a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d)
+checked_arith_impl!(impl CheckedSub, checked_sub);
+
+impl<T> Neg for Ratio<T>
+where
+ T: Clone + Integer + Neg<Output = T>,
+{
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn neg(self) -> Ratio<T> {
+ Ratio::new_raw(-self.numer, self.denom)
+ }
+}
+
+impl<'a, T> Neg for &'a Ratio<T>
+where
+ T: Clone + Integer + Neg<Output = T>,
+{
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn neg(self) -> Ratio<T> {
+ -self.clone()
+ }
+}
+
+impl<T> Inv for Ratio<T>
+where
+ T: Clone + Integer,
+{
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn inv(self) -> Ratio<T> {
+ self.recip()
+ }
+}
+
+impl<'a, T> Inv for &'a Ratio<T>
+where
+ T: Clone + Integer,
+{
+ type Output = Ratio<T>;
+
+ #[inline]
+ fn inv(self) -> Ratio<T> {
+ self.recip()
+ }
+}
+
+// Constants
+impl<T: Clone + Integer> Zero for Ratio<T> {
+ #[inline]
+ fn zero() -> Ratio<T> {
+ Ratio::new_raw(Zero::zero(), One::one())
+ }
+
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.numer.is_zero()
+ }
+
+ #[inline]
+ fn set_zero(&mut self) {
+ self.numer.set_zero();
+ self.denom.set_one();
+ }
+}
+
+impl<T: Clone + Integer> One for Ratio<T> {
+ #[inline]
+ fn one() -> Ratio<T> {
+ Ratio::new_raw(One::one(), One::one())
+ }
+
+ #[inline]
+ fn is_one(&self) -> bool {
+ self.numer == self.denom
+ }
+
+ #[inline]
+ fn set_one(&mut self) {
+ self.numer.set_one();
+ self.denom.set_one();
+ }
+}
+
+impl<T: Clone + Integer> Num for Ratio<T> {
+ type FromStrRadixErr = ParseRatioError;
+
+ /// Parses `numer/denom` where the numbers are in base `radix`.
+ fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
+ if s.splitn(2, '/').count() == 2 {
+ let mut parts = s.splitn(2, '/').map(|ss| {
+ T::from_str_radix(ss, radix).map_err(|_| ParseRatioError {
+ kind: RatioErrorKind::ParseError,
+ })
+ });
+ let numer: T = parts.next().unwrap()?;
+ let denom: T = parts.next().unwrap()?;
+ if denom.is_zero() {
+ Err(ParseRatioError {
+ kind: RatioErrorKind::ZeroDenominator,
+ })
+ } else {
+ Ok(Ratio::new(numer, denom))
+ }
+ } else {
+ Err(ParseRatioError {
+ kind: RatioErrorKind::ParseError,
+ })
+ }
+ }
+}
+
+impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
+ #[inline]
+ fn abs(&self) -> Ratio<T> {
+ if self.is_negative() {
+ -self.clone()
+ } else {
+ self.clone()
+ }
+ }
+
+ #[inline]
+ fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
+ if *self <= *other {
+ Zero::zero()
+ } else {
+ self - other
+ }
+ }
+
+ #[inline]
+ fn signum(&self) -> Ratio<T> {
+ if self.is_positive() {
+ Self::one()
+ } else if self.is_zero() {
+ Self::zero()
+ } else {
+ -Self::one()
+ }
+ }
+
+ #[inline]
+ fn is_positive(&self) -> bool {
+ (self.numer.is_positive() && self.denom.is_positive())
+ || (self.numer.is_negative() && self.denom.is_negative())
+ }
+
+ #[inline]
+ fn is_negative(&self) -> bool {
+ (self.numer.is_negative() && self.denom.is_positive())
+ || (self.numer.is_positive() && self.denom.is_negative())
+ }
+}
+
+// String conversions
+macro_rules! impl_formatting {
+ ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => {
+ impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> {
+ #[cfg(feature = "std")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ let pre_pad = if self.denom.is_one() {
+ format!($fmt_str, self.numer)
+ } else {
+ if f.alternate() {
+ format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom)
+ } else {
+ format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom)
+ }
+ };
+ // TODO: replace with strip_prefix, when stabalized
+ let (pre_pad, non_negative) = {
+ if pre_pad.starts_with("-") {
+ (&pre_pad[1..], false)
+ } else {
+ (&pre_pad[..], true)
+ }
+ };
+ f.pad_integral(non_negative, $prefix, pre_pad)
+ }
+ #[cfg(not(feature = "std"))]
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ let plus = if f.sign_plus() && self.numer >= T::zero() {
+ "+"
+ } else {
+ ""
+ };
+ if self.denom.is_one() {
+ if f.alternate() {
+ write!(f, concat!("{}", $fmt_alt), plus, self.numer)
+ } else {
+ write!(f, concat!("{}", $fmt_str), plus, self.numer)
+ }
+ } else {
+ if f.alternate() {
+ write!(
+ f,
+ concat!("{}", $fmt_alt, "/", $fmt_alt),
+ plus, self.numer, self.denom
+ )
+ } else {
+ write!(
+ f,
+ concat!("{}", $fmt_str, "/", $fmt_str),
+ plus, self.numer, self.denom
+ )
+ }
+ }
+ }
+ }
+ };
+}
+
+impl_formatting!(Display, "", "{}", "{:#}");
+impl_formatting!(Octal, "0o", "{:o}", "{:#o}");
+impl_formatting!(Binary, "0b", "{:b}", "{:#b}");
+impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}");
+impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}");
+impl_formatting!(LowerExp, "", "{:e}", "{:#e}");
+impl_formatting!(UpperExp, "", "{:E}", "{:#E}");
+
+impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
+ type Err = ParseRatioError;
+
+ /// Parses `numer/denom` or just `numer`.
+ fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
+ let mut split = s.splitn(2, '/');
+
+ let n = split.next().ok_or(ParseRatioError {
+ kind: RatioErrorKind::ParseError,
+ })?;
+ let num = FromStr::from_str(n).map_err(|_| ParseRatioError {
+ kind: RatioErrorKind::ParseError,
+ })?;
+
+ let d = split.next().unwrap_or("1");
+ let den = FromStr::from_str(d).map_err(|_| ParseRatioError {
+ kind: RatioErrorKind::ParseError,
+ })?;
+
+ if Zero::is_zero(&den) {
+ Err(ParseRatioError {
+ kind: RatioErrorKind::ZeroDenominator,
+ })
+ } else {
+ Ok(Ratio::new(num, den))
+ }
+ }
+}
+
+impl<T> Into<(T, T)> for Ratio<T> {
+ fn into(self) -> (T, T) {
+ (self.numer, self.denom)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<T> serde::Serialize for Ratio<T>
+where
+ T: serde::Serialize + Clone + Integer + PartialOrd,
+{
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: serde::Serializer,
+ {
+ (self.numer(), self.denom()).serialize(serializer)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de, T> serde::Deserialize<'de> for Ratio<T>
+where
+ T: serde::Deserialize<'de> + Clone + Integer + PartialOrd,
+{
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: serde::Deserializer<'de>,
+ {
+ use serde::de::Error;
+ use serde::de::Unexpected;
+ let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?;
+ if denom.is_zero() {
+ Err(Error::invalid_value(
+ Unexpected::Signed(0),
+ &"a ratio with non-zero denominator",
+ ))
+ } else {
+ Ok(Ratio::new_raw(numer, denom))
+ }
+ }
+}
+
+// FIXME: Bubble up specific errors
+#[derive(Copy, Clone, Debug, PartialEq)]
+pub struct ParseRatioError {
+ kind: RatioErrorKind,
+}
+
+#[derive(Copy, Clone, Debug, PartialEq)]
+enum RatioErrorKind {
+ ParseError,
+ ZeroDenominator,
+}
+
+impl fmt::Display for ParseRatioError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.kind.description().fmt(f)
+ }
+}
+
+#[cfg(feature = "std")]
+impl Error for ParseRatioError {
+ #[allow(deprecated)]
+ fn description(&self) -> &str {
+ self.kind.description()
+ }
+}
+
+impl RatioErrorKind {
+ fn description(&self) -> &'static str {
+ match *self {
+ RatioErrorKind::ParseError => "failed to parse integer",
+ RatioErrorKind::ZeroDenominator => "zero value denominator",
+ }
+ }
+}
+
+#[cfg(feature = "num-bigint")]
+impl FromPrimitive for Ratio<BigInt> {
+ fn from_i64(n: i64) -> Option<Self> {
+ Some(Ratio::from_integer(n.into()))
+ }
+
+ fn from_i128(n: i128) -> Option<Self> {
+ Some(Ratio::from_integer(n.into()))
+ }
+
+ fn from_u64(n: u64) -> Option<Self> {
+ Some(Ratio::from_integer(n.into()))
+ }
+
+ fn from_u128(n: u128) -> Option<Self> {
+ Some(Ratio::from_integer(n.into()))
+ }
+
+ fn from_f32(n: f32) -> Option<Self> {
+ Ratio::from_float(n)
+ }
+
+ fn from_f64(n: f64) -> Option<Self> {
+ Ratio::from_float(n)
+ }
+}
+
+macro_rules! from_primitive_integer {
+ ($typ:ty, $approx:ident) => {
+ impl FromPrimitive for Ratio<$typ> {
+ fn from_i64(n: i64) -> Option<Self> {
+ <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer)
+ }
+
+ fn from_i128(n: i128) -> Option<Self> {
+ <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer)
+ }
+
+ fn from_u64(n: u64) -> Option<Self> {
+ <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer)
+ }
+
+ fn from_u128(n: u128) -> Option<Self> {
+ <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer)
+ }
+
+ fn from_f32(n: f32) -> Option<Self> {
+ $approx(n, 10e-20, 30)
+ }
+
+ fn from_f64(n: f64) -> Option<Self> {
+ $approx(n, 10e-20, 30)
+ }
+ }
+ };
+}
+
+from_primitive_integer!(i8, approximate_float);
+from_primitive_integer!(i16, approximate_float);
+from_primitive_integer!(i32, approximate_float);
+from_primitive_integer!(i64, approximate_float);
+from_primitive_integer!(i128, approximate_float);
+from_primitive_integer!(isize, approximate_float);
+
+from_primitive_integer!(u8, approximate_float_unsigned);
+from_primitive_integer!(u16, approximate_float_unsigned);
+from_primitive_integer!(u32, approximate_float_unsigned);
+from_primitive_integer!(u64, approximate_float_unsigned);
+from_primitive_integer!(u128, approximate_float_unsigned);
+from_primitive_integer!(usize, approximate_float_unsigned);
+
+impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> {
+ pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> {
+ // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems
+ // to work well. Might want to choose something based on the types in the future, e.g.
+ // T::max().recip() and T::bits() or something similar.
+ let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20");
+ approximate_float(f, epsilon, 30)
+ }
+}
+
+fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
+where
+ T: Integer + Signed + Bounded + NumCast + Clone,
+ F: FloatCore + NumCast,
+{
+ let negative = val.is_sign_negative();
+ let abs_val = val.abs();
+
+ let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?;
+
+ // Make negative again if needed
+ Some(if negative { r.neg() } else { r })
+}
+
+// No Unsigned constraint because this also works on positive integers and is called
+// like that, see above
+fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
+where
+ T: Integer + Bounded + NumCast + Clone,
+ F: FloatCore + NumCast,
+{
+ // Continued fractions algorithm
+ // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac
+
+ if val < F::zero() || val.is_nan() {
+ return None;
+ }
+
+ let mut q = val;
+ let mut n0 = T::zero();
+ let mut d0 = T::one();
+ let mut n1 = T::one();
+ let mut d1 = T::zero();
+
+ let t_max = T::max_value();
+ let t_max_f = <F as NumCast>::from(t_max.clone())?;
+
+ // 1/epsilon > T::MAX
+ let epsilon = t_max_f.recip();
+
+ // Overflow
+ if q > t_max_f {
+ return None;
+ }
+
+ for _ in 0..max_iterations {
+ let a = match <T as NumCast>::from(q) {
+ None => break,
+ Some(a) => a,
+ };
+
+ let a_f = match <F as NumCast>::from(a.clone()) {
+ None => break,
+ Some(a_f) => a_f,
+ };
+ let f = q - a_f;
+
+ // Prevent overflow
+ if !a.is_zero()
+ && (n1 > t_max.clone() / a.clone()
+ || d1 > t_max.clone() / a.clone()
+ || a.clone() * n1.clone() > t_max.clone() - n0.clone()
+ || a.clone() * d1.clone() > t_max.clone() - d0.clone())
+ {
+ break;
+ }
+
+ let n = a.clone() * n1.clone() + n0.clone();
+ let d = a.clone() * d1.clone() + d0.clone();
+
+ n0 = n1;
+ d0 = d1;
+ n1 = n.clone();
+ d1 = d.clone();
+
+ // Simplify fraction. Doing so here instead of at the end
+ // allows us to get closer to the target value without overflows
+ let g = Integer::gcd(&n1, &d1);
+ if !g.is_zero() {
+ n1 = n1 / g.clone();
+ d1 = d1 / g.clone();
+ }
+
+ // Close enough?
+ let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) {
+ (Some(n_f), Some(d_f)) => (n_f, d_f),
+ _ => break,
+ };
+ if (n_f / d_f - val).abs() < max_error {
+ break;
+ }
+
+ // Prevent division by ~0
+ if f < epsilon {
+ break;
+ }
+ q = f.recip();
+ }
+
+ // Overflow
+ if d1.is_zero() {
+ return None;
+ }
+
+ Some(Ratio::new(n1, d1))
+}
+
+#[cfg(not(feature = "num-bigint"))]
+macro_rules! to_primitive_small {
+ ($($type_name:ty)*) => ($(
+ impl ToPrimitive for Ratio<$type_name> {
+ fn to_i64(&self) -> Option<i64> {
+ self.to_integer().to_i64()
+ }
+
+ fn to_i128(&self) -> Option<i128> {
+ self.to_integer().to_i128()
+ }
+
+ fn to_u64(&self) -> Option<u64> {
+ self.to_integer().to_u64()
+ }
+
+ fn to_u128(&self) -> Option<u128> {
+ self.to_integer().to_u128()
+ }
+
+ fn to_f64(&self) -> Option<f64> {
+ let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap();
+ if float.is_nan() {
+ None
+ } else {
+ Some(float)
+ }
+ }
+ }
+ )*)
+}
+
+#[cfg(not(feature = "num-bigint"))]
+to_primitive_small!(u8 i8 u16 i16 u32 i32);
+
+#[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))]
+to_primitive_small!(usize isize);
+
+#[cfg(not(feature = "num-bigint"))]
+macro_rules! to_primitive_64 {
+ ($($type_name:ty)*) => ($(
+ impl ToPrimitive for Ratio<$type_name> {
+ fn to_i64(&self) -> Option<i64> {
+ self.to_integer().to_i64()
+ }
+
+ fn to_i128(&self) -> Option<i128> {
+ self.to_integer().to_i128()
+ }
+
+ fn to_u64(&self) -> Option<u64> {
+ self.to_integer().to_u64()
+ }
+
+ fn to_u128(&self) -> Option<u128> {
+ self.to_integer().to_u128()
+ }
+
+ fn to_f64(&self) -> Option<f64> {
+ let float = ratio_to_f64(
+ self.numer as i128,
+ self.denom as i128
+ );
+ if float.is_nan() {
+ None
+ } else {
+ Some(float)
+ }
+ }
+ }
+ )*)
+}
+
+#[cfg(not(feature = "num-bigint"))]
+to_primitive_64!(u64 i64);
+
+#[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))]
+to_primitive_64!(usize isize);
+
+#[cfg(feature = "num-bigint")]
+impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> {
+ fn to_i64(&self) -> Option<i64> {
+ self.to_integer().to_i64()
+ }
+
+ fn to_i128(&self) -> Option<i128> {
+ self.to_integer().to_i128()
+ }
+
+ fn to_u64(&self) -> Option<u64> {
+ self.to_integer().to_u64()
+ }
+
+ fn to_u128(&self) -> Option<u128> {
+ self.to_integer().to_u128()
+ }
+
+ fn to_f64(&self) -> Option<f64> {
+ let float = match (self.numer.to_i64(), self.denom.to_i64()) {
+ (Some(numer), Some(denom)) => ratio_to_f64(
+ <i128 as From<_>>::from(numer),
+ <i128 as From<_>>::from(denom),
+ ),
+ _ => {
+ let numer: BigInt = self.numer.to_bigint()?;
+ let denom: BigInt = self.denom.to_bigint()?;
+ ratio_to_f64(numer, denom)
+ }
+ };
+ if float.is_nan() {
+ None
+ } else {
+ Some(float)
+ }
+ }
+}
+
+trait Bits {
+ fn bits(&self) -> u64;
+}
+
+#[cfg(feature = "num-bigint")]
+impl Bits for BigInt {
+ fn bits(&self) -> u64 {
+ self.bits()
+ }
+}
+
+impl Bits for i128 {
+ fn bits(&self) -> u64 {
+ (128 - self.wrapping_abs().leading_zeros()).into()
+ }
+}
+
+/// Converts a ratio of `T` to an f64.
+///
+/// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than
+/// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`.
+fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>(
+ numer: T,
+ denom: T,
+) -> f64 {
+ use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX};
+
+ assert_eq!(
+ RADIX, 2,
+ "only floating point implementations with radix 2 are supported"
+ );
+
+ // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64.
+ const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS;
+ const MIN_EXACT_INT: i64 = -MAX_EXACT_INT;
+
+ let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap();
+ if !flo_sign.is_normal() {
+ return flo_sign;
+ }
+
+ // Fast track: both sides can losslessly be converted to f64s. In this case, letting the
+ // FPU do the job is faster and easier. In any other case, converting to f64s may lead
+ // to an inexact result: https://stackoverflow.com/questions/56641441/.
+ if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) {
+ if MIN_EXACT_INT <= n && n <= MAX_EXACT_INT && MIN_EXACT_INT <= d && d <= MAX_EXACT_INT {
+ return n.to_f64().unwrap() / d.to_f64().unwrap();
+ }
+ }
+
+ // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will
+ // be used as the mantissa of the resulting float, and the remaining two are for rounding.
+ // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or
+ // 56 bits.
+ let mut numer = numer.abs();
+ let mut denom = denom.abs();
+ let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) {
+ Some(diff) => (true, diff),
+ None => (false, denom.bits() - numer.bits()),
+ };
+
+ // Filter out overflows and underflows. After this step, the signed difference fits in an
+ // isize.
+ if is_diff_positive && absolute_diff > MAX_EXP as u64 {
+ return INFINITY * flo_sign;
+ }
+ if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 {
+ return 0.0 * flo_sign;
+ }
+ let diff = if is_diff_positive {
+ absolute_diff.to_isize().unwrap()
+ } else {
+ -absolute_diff.to_isize().unwrap()
+ };
+
+ // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the
+ // quotient is going to be subnormal, in which case it may have fewer bits.
+ let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2;
+ if shift >= 0 {
+ denom <<= shift as usize
+ } else {
+ numer <<= -shift as usize
+ };
+
+ let (quotient, remainder) = numer.div_rem(&denom);
+
+ // This is guaranteed to fit since we've set up quotient to be at most 56 bits.
+ let mut quotient = quotient.to_u64().unwrap();
+ let n_rounding_bits = {
+ let quotient_bits = 64 - quotient.leading_zeros() as isize;
+ let subnormal_bits = MIN_EXP as isize - shift;
+ quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize
+ } as usize;
+ debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3);
+ let rounding_bit_mask = (1u64 << n_rounding_bits) - 1;
+
+ // Round to 53 bits with round-to-even. For rounding, we need to take into account both
+ // our rounding bits and the division's remainder.
+ let ls_bit = quotient & (1u64 << n_rounding_bits) != 0;
+ let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0;
+ let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0;
+ if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) {
+ quotient += 1u64 << n_rounding_bits;
+ }
+ quotient &= !rounding_bit_mask;
+
+ // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3
+ // trailing zeros, so there is no risk of a rounding error here.
+ let q_float = quotient as f64 * flo_sign;
+ ldexp(q_float, shift as i32)
+}
+
+/// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not
+/// representable.
+fn ldexp(x: f64, exp: i32) -> f64 {
+ use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX};
+
+ assert_eq!(
+ RADIX, 2,
+ "only floating point implementations with radix 2 are supported"
+ );
+
+ const EXPONENT_MASK: u64 = 0x7ff << 52;
+ const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe;
+ const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32;
+
+ if x.is_zero() || x.is_infinite() || x.is_nan() {
+ return x;
+ }
+
+ // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize.
+ if exp > 3 * MAX_EXP {
+ return INFINITY * x.signum();
+ } else if exp < -3 * MAX_EXP {
+ return 0.0 * x.signum();
+ }
+
+ // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range.
+ let (bits, curr_exp) = if !x.is_normal() {
+ // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of
+ // precision or rounding.
+ let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER);
+ let bits = normal_x.to_bits();
+ // This cast is safe because the exponent is at most 0x7fe, which fits in an i32.
+ (
+ bits,
+ ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER,
+ )
+ } else {
+ let bits = x.to_bits();
+ let curr_exp = (bits & EXPONENT_MASK) >> 52;
+ // This cast is safe because the exponent is at most 0x7fe, which fits in an i32.
+ (bits, curr_exp as i32)
+ };
+
+ // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between
+ // -2*MAX_EXP and 2*MAX_EXP.
+ let new_exp = curr_exp + exp;
+
+ if new_exp > MAX_UNSIGNED_EXPONENT {
+ INFINITY * x.signum()
+ } else if new_exp > 0 {
+ // Normal case: exponent is not too large nor subnormal.
+ let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52);
+ f64::from_bits(new_bits)
+ } else if new_exp >= -(MANTISSA_DIGITS as i32) {
+ // Result is subnormal but may not be zero.
+ // In this case, we increase the exponent by 54 to make it normal, then multiply the end
+ // result by 2^-53. This results in a single multiplication with no prior rounding error,
+ // so there is no risk of double rounding.
+ let new_exp = new_exp + MIN_SUBNORMAL_POWER;
+ debug_assert!(new_exp >= 0);
+ let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52);
+ f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER)
+ } else {
+ // Result is zero.
+ return 0.0 * x.signum();
+ }
+}
+
+#[cfg(test)]
+#[cfg(feature = "std")]
+fn hash<T: Hash>(x: &T) -> u64 {
+ use std::collections::hash_map::RandomState;
+ use std::hash::BuildHasher;
+ let mut hasher = <RandomState as BuildHasher>::Hasher::new();
+ x.hash(&mut hasher);
+ hasher.finish()
+}
+
+#[cfg(test)]
+mod test {
+ use super::ldexp;
+ #[cfg(all(feature = "num-bigint"))]
+ use super::BigInt;
+ #[cfg(feature = "num-bigint")]
+ use super::BigRational;
+ use super::{Ratio, Rational64};
+
+ use core::f64;
+ use core::i32;
+ use core::i64;
+ use core::str::FromStr;
+ use num_integer::Integer;
+ use num_traits::ToPrimitive;
+ use num_traits::{FromPrimitive, One, Pow, Signed, Zero};
+
+ pub const _0: Rational64 = Ratio { numer: 0, denom: 1 };
+ pub const _1: Rational64 = Ratio { numer: 1, denom: 1 };
+ pub const _2: Rational64 = Ratio { numer: 2, denom: 1 };
+ pub const _NEG2: Rational64 = Ratio {
+ numer: -2,
+ denom: 1,
+ };
+ pub const _8: Rational64 = Ratio { numer: 8, denom: 1 };
+ pub const _15: Rational64 = Ratio {
+ numer: 15,
+ denom: 1,
+ };
+ pub const _16: Rational64 = Ratio {
+ numer: 16,
+ denom: 1,
+ };
+
+ pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 };
+ pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 };
+ pub const _1_15: Rational64 = Ratio {
+ numer: 1,
+ denom: 15,
+ };
+ pub const _1_16: Rational64 = Ratio {
+ numer: 1,
+ denom: 16,
+ };
+ pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 };
+ pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 };
+ pub const _NEG1_2: Rational64 = Ratio {
+ numer: -1,
+ denom: 2,
+ };
+ pub const _1_NEG2: Rational64 = Ratio {
+ numer: 1,
+ denom: -2,
+ };
+ pub const _NEG1_NEG2: Rational64 = Ratio {
+ numer: -1,
+ denom: -2,
+ };
+ pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 };
+ pub const _NEG1_3: Rational64 = Ratio {
+ numer: -1,
+ denom: 3,
+ };
+ pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 };
+ pub const _NEG2_3: Rational64 = Ratio {
+ numer: -2,
+ denom: 3,
+ };
+ pub const _MIN: Rational64 = Ratio {
+ numer: i64::MIN,
+ denom: 1,
+ };
+ pub const _MIN_P1: Rational64 = Ratio {
+ numer: i64::MIN + 1,
+ denom: 1,
+ };
+ pub const _MAX: Rational64 = Ratio {
+ numer: i64::MAX,
+ denom: 1,
+ };
+ pub const _MAX_M1: Rational64 = Ratio {
+ numer: i64::MAX - 1,
+ denom: 1,
+ };
+ pub const _BILLION: Rational64 = Ratio {
+ numer: 1_000_000_000,
+ denom: 1,
+ };
+
+ #[cfg(feature = "num-bigint")]
+ pub fn to_big(n: Rational64) -> BigRational {
+ Ratio::new(
+ FromPrimitive::from_i64(n.numer).unwrap(),
+ FromPrimitive::from_i64(n.denom).unwrap(),
+ )
+ }
+ #[cfg(not(feature = "num-bigint"))]
+ pub fn to_big(n: Rational64) -> Rational64 {
+ Ratio::new(
+ FromPrimitive::from_i64(n.numer).unwrap(),
+ FromPrimitive::from_i64(n.denom).unwrap(),
+ )
+ }
+
+ #[test]
+ fn test_test_constants() {
+ // check our constants are what Ratio::new etc. would make.
+ assert_eq!(_0, Zero::zero());
+ assert_eq!(_1, One::one());
+ assert_eq!(_2, Ratio::from_integer(2));
+ assert_eq!(_1_2, Ratio::new(1, 2));
+ assert_eq!(_3_2, Ratio::new(3, 2));
+ assert_eq!(_NEG1_2, Ratio::new(-1, 2));
+ assert_eq!(_2, From::from(2));
+ }
+
+ #[test]
+ fn test_new_reduce() {
+ assert_eq!(Ratio::new(2, 2), One::one());
+ assert_eq!(Ratio::new(0, i32::MIN), Zero::zero());
+ assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one());
+ }
+ #[test]
+ #[should_panic]
+ fn test_new_zero() {
+ let _a = Ratio::new(1, 0);
+ }
+
+ #[test]
+ fn test_approximate_float() {
+ assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2)));
+ assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2)));
+ assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1)));
+ assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1)));
+ assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100)));
+ assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100)));
+
+ assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2)));
+ assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1)));
+ assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1)));
+ assert_eq!(Ratio::<i8>::from_f32(127.5f32), None);
+ assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2)));
+ assert_eq!(
+ Ratio::<i8>::from_f32(-126.5f32),
+ Some(Ratio::new(-126i8, 1))
+ );
+ assert_eq!(
+ Ratio::<i8>::from_f32(-127.0f32),
+ Some(Ratio::new(-127i8, 1))
+ );
+ assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None);
+
+ assert_eq!(Ratio::<u8>::from_f32(-127f32), None);
+ assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1)));
+ assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2)));
+ assert_eq!(Ratio::<u8>::from_f32(256f32), None);
+
+ assert_eq!(Ratio::<i64>::from_f64(-10e200), None);
+ assert_eq!(Ratio::<i64>::from_f64(10e200), None);
+ assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None);
+ assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None);
+ assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None);
+ assert_eq!(
+ Ratio::<i64>::from_f64(f64::EPSILON),
+ Some(Ratio::new(1, 4503599627370496))
+ );
+ assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1)));
+ assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1)));
+ }
+
+ #[test]
+ #[allow(clippy::eq_op)]
+ fn test_cmp() {
+ assert!(_0 == _0 && _1 == _1);
+ assert!(_0 != _1 && _1 != _0);
+ assert!(_0 < _1 && !(_1 < _0));
+ assert!(_1 > _0 && !(_0 > _1));
+
+ assert!(_0 <= _0 && _1 <= _1);
+ assert!(_0 <= _1 && !(_1 <= _0));
+
+ assert!(_0 >= _0 && _1 >= _1);
+ assert!(_1 >= _0 && !(_0 >= _1));
+
+ let _0_2: Rational64 = Ratio::new_raw(0, 2);
+ assert_eq!(_0, _0_2);
+ }
+
+ #[test]
+ fn test_cmp_overflow() {
+ use core::cmp::Ordering;
+
+ // issue #7 example:
+ let big = Ratio::new(128u8, 1);
+ let small = big.recip();
+ assert!(big > small);
+
+ // try a few that are closer together
+ // (some matching numer, some matching denom, some neither)
+ let ratios = [
+ Ratio::new(125_i8, 127_i8),
+ Ratio::new(63_i8, 64_i8),
+ Ratio::new(124_i8, 125_i8),
+ Ratio::new(125_i8, 126_i8),
+ Ratio::new(126_i8, 127_i8),
+ Ratio::new(127_i8, 126_i8),
+ ];
+
+ fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
+ #[cfg(feature = "std")]
+ println!("comparing {} and {}", a, b);
+ assert_eq!(a.cmp(&b), ord);
+ assert_eq!(b.cmp(&a), ord.reverse());
+ }
+
+ for (i, &a) in ratios.iter().enumerate() {
+ check_cmp(a, a, Ordering::Equal);
+ check_cmp(-a, a, Ordering::Less);
+ for &b in &ratios[i + 1..] {
+ check_cmp(a, b, Ordering::Less);
+ check_cmp(-a, -b, Ordering::Greater);
+ check_cmp(a.recip(), b.recip(), Ordering::Greater);
+ check_cmp(-a.recip(), -b.recip(), Ordering::Less);
+ }
+ }
+ }
+
+ #[test]
+ fn test_to_integer() {
+ assert_eq!(_0.to_integer(), 0);
+ assert_eq!(_1.to_integer(), 1);
+ assert_eq!(_2.to_integer(), 2);
+ assert_eq!(_1_2.to_integer(), 0);
+ assert_eq!(_3_2.to_integer(), 1);
+ assert_eq!(_NEG1_2.to_integer(), 0);
+ }
+
+ #[test]
+ fn test_numer() {
+ assert_eq!(_0.numer(), &0);
+ assert_eq!(_1.numer(), &1);
+ assert_eq!(_2.numer(), &2);
+ assert_eq!(_1_2.numer(), &1);
+ assert_eq!(_3_2.numer(), &3);
+ assert_eq!(_NEG1_2.numer(), &(-1));
+ }
+ #[test]
+ fn test_denom() {
+ assert_eq!(_0.denom(), &1);
+ assert_eq!(_1.denom(), &1);
+ assert_eq!(_2.denom(), &1);
+ assert_eq!(_1_2.denom(), &2);
+ assert_eq!(_3_2.denom(), &2);
+ assert_eq!(_NEG1_2.denom(), &2);
+ }
+
+ #[test]
+ fn test_is_integer() {
+ assert!(_0.is_integer());
+ assert!(_1.is_integer());
+ assert!(_2.is_integer());
+ assert!(!_1_2.is_integer());
+ assert!(!_3_2.is_integer());
+ assert!(!_NEG1_2.is_integer());
+ }
+
+ #[cfg(not(feature = "std"))]
+ use core::fmt::{self, Write};
+ #[cfg(not(feature = "std"))]
+ #[derive(Debug)]
+ struct NoStdTester {
+ cursor: usize,
+ buf: [u8; NoStdTester::BUF_SIZE],
+ }
+
+ #[cfg(not(feature = "std"))]
+ impl NoStdTester {
+ fn new() -> NoStdTester {
+ NoStdTester {
+ buf: [0; Self::BUF_SIZE],
+ cursor: 0,
+ }
+ }
+
+ fn clear(&mut self) {
+ self.buf = [0; Self::BUF_SIZE];
+ self.cursor = 0;
+ }
+
+ const WRITE_ERR: &'static str = "Formatted output too long";
+ const BUF_SIZE: usize = 32;
+ }
+
+ #[cfg(not(feature = "std"))]
+ impl Write for NoStdTester {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ for byte in s.bytes() {
+ self.buf[self.cursor] = byte;
+ self.cursor += 1;
+ if self.cursor >= self.buf.len() {
+ return Err(fmt::Error {});
+ }
+ }
+ Ok(())
+ }
+ }
+
+ #[cfg(not(feature = "std"))]
+ impl PartialEq<str> for NoStdTester {
+ fn eq(&self, other: &str) -> bool {
+ let other = other.as_bytes();
+ for index in 0..self.cursor {
+ if self.buf.get(index) != other.get(index) {
+ return false;
+ }
+ }
+ true
+ }
+ }
+
+ macro_rules! assert_fmt_eq {
+ ($fmt_args:expr, $string:expr) => {
+ #[cfg(not(feature = "std"))]
+ {
+ let mut tester = NoStdTester::new();
+ write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR);
+ assert_eq!(tester, *$string);
+ tester.clear();
+ }
+ #[cfg(feature = "std")]
+ {
+ assert_eq!(std::fmt::format($fmt_args), $string);
+ }
+ };
+ }
+
+ #[test]
+ fn test_show() {
+ // Test:
+ // :b :o :x, :X, :?
+ // alternate or not (#)
+ // positive and negative
+ // padding
+ // does not test precision (i.e. truncation)
+ assert_fmt_eq!(format_args!("{}", _2), "2");
+ assert_fmt_eq!(format_args!("{:+}", _2), "+2");
+ assert_fmt_eq!(format_args!("{:-}", _2), "2");
+ assert_fmt_eq!(format_args!("{}", _1_2), "1/2");
+ assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); // test negatives
+ assert_fmt_eq!(format_args!("{}", _0), "0");
+ assert_fmt_eq!(format_args!("{}", -_2), "-2");
+ assert_fmt_eq!(format_args!("{:+}", -_2), "-2");
+ assert_fmt_eq!(format_args!("{:b}", _2), "10");
+ assert_fmt_eq!(format_args!("{:#b}", _2), "0b10");
+ assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10");
+ assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10");
+ assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10");
+ assert_fmt_eq!(format_args!("{:b}", _0), "0");
+ assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10");
+ // no std does not support padding
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:010b}", _1_2), "0000001/10");
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10");
+ let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8);
+ assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10");
+ assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10");
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001");
+
+ assert_fmt_eq!(format_args!("{:o}", _8), "10");
+ assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10");
+ assert_fmt_eq!(format_args!("{:o}", _0), "0");
+ assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10");
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:010o}", _1_8), "0000001/10");
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10");
+ assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2");
+ assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2");
+
+ assert_fmt_eq!(format_args!("{:x}", _16), "10");
+ assert_fmt_eq!(format_args!("{:x}", _15), "f");
+ assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10");
+ assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f");
+ assert_fmt_eq!(format_args!("{:x}", _0), "0");
+ assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10");
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:010x}", _1_16), "0000001/10");
+ #[cfg(feature = "std")]
+ assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10");
+ assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2");
+ assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2");
+
+ assert_fmt_eq!(format_args!("{:X}", _16), "10");
+ assert_fmt_eq!(format_args!("{:X}", _15), "F");
+ assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10");
+ assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F");
+ assert_fmt_eq!(format_args!("{:X}", _0), "0");
+ assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:010X}", _1_16), "0000001/10");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10");
+ assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2");
+ assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2");
+
+ #[cfg(has_int_exp_fmt)]
+ {
+ assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0");
+ assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0");
+ assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0");
+ assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9");
+ assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9");
+ assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9");
+ assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9");
+
+ assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0");
+ assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0");
+ assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0");
+ assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9");
+ assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9");
+ assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9");
+ assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9");
+ }
+ }
+
+ mod arith {
+ use super::super::{Ratio, Rational64};
+ use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2};
+ use core::fmt::Debug;
+ use num_integer::Integer;
+ use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign};
+
+ #[test]
+ fn test_add() {
+ fn test(a: Rational64, b: Rational64, c: Rational64) {
+ assert_eq!(a + b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x += b;
+ x
+ },
+ c
+ );
+ assert_eq!(to_big(a) + to_big(b), to_big(c));
+ assert_eq!(a.checked_add(&b), Some(c));
+ assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c)));
+ }
+ fn test_assign(a: Rational64, b: i64, c: Rational64) {
+ assert_eq!(a + b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x += b;
+ x
+ },
+ c
+ );
+ }
+
+ test(_1, _1_2, _3_2);
+ test(_1, _1, _2);
+ test(_1_2, _3_2, _2);
+ test(_1_2, _NEG1_2, _0);
+ test_assign(_1_2, 1, _3_2);
+ }
+
+ #[test]
+ fn test_add_overflow() {
+ // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value())
+ // to Ratio(1+1, T::max_value()) for each integer type.
+ // Previously, this calculation would overflow.
+ fn test_add_typed_overflow<T>()
+ where
+ T: Integer + Bounded + Clone + Debug + NumAssign,
+ {
+ let _1_max = Ratio::new(T::one(), T::max_value());
+ let _2_max = Ratio::new(T::one() + T::one(), T::max_value());
+ assert_eq!(_1_max.clone() + _1_max.clone(), _2_max);
+ assert_eq!(
+ {
+ let mut tmp = _1_max.clone();
+ tmp += _1_max;
+ tmp
+ },
+ _2_max
+ );
+ }
+ test_add_typed_overflow::<u8>();
+ test_add_typed_overflow::<u16>();
+ test_add_typed_overflow::<u32>();
+ test_add_typed_overflow::<u64>();
+ test_add_typed_overflow::<usize>();
+ test_add_typed_overflow::<u128>();
+
+ test_add_typed_overflow::<i8>();
+ test_add_typed_overflow::<i16>();
+ test_add_typed_overflow::<i32>();
+ test_add_typed_overflow::<i64>();
+ test_add_typed_overflow::<isize>();
+ test_add_typed_overflow::<i128>();
+ }
+
+ #[test]
+ fn test_sub() {
+ fn test(a: Rational64, b: Rational64, c: Rational64) {
+ assert_eq!(a - b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x -= b;
+ x
+ },
+ c
+ );
+ assert_eq!(to_big(a) - to_big(b), to_big(c));
+ assert_eq!(a.checked_sub(&b), Some(c));
+ assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c)));
+ }
+ fn test_assign(a: Rational64, b: i64, c: Rational64) {
+ assert_eq!(a - b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x -= b;
+ x
+ },
+ c
+ );
+ }
+
+ test(_1, _1_2, _1_2);
+ test(_3_2, _1_2, _1);
+ test(_1, _NEG1_2, _3_2);
+ test_assign(_1_2, 1, _NEG1_2);
+ }
+
+ #[test]
+ fn test_sub_overflow() {
+ // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero()
+ // for each integer type. Previously, this calculation would overflow.
+ fn test_sub_typed_overflow<T>()
+ where
+ T: Integer + Bounded + Clone + Debug + NumAssign,
+ {
+ let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value());
+ assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer));
+ {
+ let mut tmp: Ratio<T> = _1_max.clone();
+ tmp -= _1_max;
+ assert!(T::is_zero(&tmp.numer));
+ }
+ }
+ test_sub_typed_overflow::<u8>();
+ test_sub_typed_overflow::<u16>();
+ test_sub_typed_overflow::<u32>();
+ test_sub_typed_overflow::<u64>();
+ test_sub_typed_overflow::<usize>();
+ test_sub_typed_overflow::<u128>();
+
+ test_sub_typed_overflow::<i8>();
+ test_sub_typed_overflow::<i16>();
+ test_sub_typed_overflow::<i32>();
+ test_sub_typed_overflow::<i64>();
+ test_sub_typed_overflow::<isize>();
+ test_sub_typed_overflow::<i128>();
+ }
+
+ #[test]
+ fn test_mul() {
+ fn test(a: Rational64, b: Rational64, c: Rational64) {
+ assert_eq!(a * b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x *= b;
+ x
+ },
+ c
+ );
+ assert_eq!(to_big(a) * to_big(b), to_big(c));
+ assert_eq!(a.checked_mul(&b), Some(c));
+ assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c)));
+ }
+ fn test_assign(a: Rational64, b: i64, c: Rational64) {
+ assert_eq!(a * b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x *= b;
+ x
+ },
+ c
+ );
+ }
+
+ test(_1, _1_2, _1_2);
+ test(_1_2, _3_2, Ratio::new(3, 4));
+ test(_1_2, _NEG1_2, Ratio::new(-1, 4));
+ test_assign(_1_2, 2, _1);
+ }
+
+ #[test]
+ fn test_mul_overflow() {
+ fn test_mul_typed_overflow<T>()
+ where
+ T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul,
+ {
+ let two = T::one() + T::one();
+ let _3 = T::one() + T::one() + T::one();
+
+ // 1/big * 2/3 = 1/(max/4*3), where big is max/2
+ // make big = max/2, but also divisible by 2
+ let big = T::max_value() / two.clone() / two.clone() * two.clone();
+ let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone());
+ let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone());
+ assert_eq!(None, big.clone().checked_mul(&_3.clone()));
+ let expected = Ratio::new(T::one(), big / two.clone() * _3.clone());
+ assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone());
+ assert_eq!(
+ Some(expected.clone()),
+ _1_big.clone().checked_mul(&_2_3.clone())
+ );
+ assert_eq!(expected, {
+ let mut tmp = _1_big;
+ tmp *= _2_3;
+ tmp
+ });
+
+ // big/3 * 3 = big/1
+ // make big = max/2, but make it indivisible by 3
+ let big = T::max_value() / two / _3.clone() * _3.clone() + T::one();
+ assert_eq!(None, big.clone().checked_mul(&_3.clone()));
+ let big_3 = Ratio::new(big.clone(), _3.clone());
+ let expected = Ratio::new(big, T::one());
+ assert_eq!(expected, big_3.clone() * _3.clone());
+ assert_eq!(expected, {
+ let mut tmp = big_3;
+ tmp *= _3;
+ tmp
+ });
+ }
+ test_mul_typed_overflow::<u16>();
+ test_mul_typed_overflow::<u8>();
+ test_mul_typed_overflow::<u32>();
+ test_mul_typed_overflow::<u64>();
+ test_mul_typed_overflow::<usize>();
+ test_mul_typed_overflow::<u128>();
+
+ test_mul_typed_overflow::<i8>();
+ test_mul_typed_overflow::<i16>();
+ test_mul_typed_overflow::<i32>();
+ test_mul_typed_overflow::<i64>();
+ test_mul_typed_overflow::<isize>();
+ test_mul_typed_overflow::<i128>();
+ }
+
+ #[test]
+ fn test_div() {
+ fn test(a: Rational64, b: Rational64, c: Rational64) {
+ assert_eq!(a / b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x /= b;
+ x
+ },
+ c
+ );
+ assert_eq!(to_big(a) / to_big(b), to_big(c));
+ assert_eq!(a.checked_div(&b), Some(c));
+ assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c)));
+ }
+ fn test_assign(a: Rational64, b: i64, c: Rational64) {
+ assert_eq!(a / b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x /= b;
+ x
+ },
+ c
+ );
+ }
+
+ test(_1, _1_2, _2);
+ test(_3_2, _1_2, _1 + _2);
+ test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
+ test_assign(_1, 2, _1_2);
+ }
+
+ #[test]
+ fn test_div_overflow() {
+ fn test_div_typed_overflow<T>()
+ where
+ T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul,
+ {
+ let two = T::one() + T::one();
+ let _3 = T::one() + T::one() + T::one();
+
+ // 1/big / 3/2 = 1/(max/4*3), where big is max/2
+ // big ~ max/2, and big is divisible by 2
+ let big = T::max_value() / two.clone() / two.clone() * two.clone();
+ assert_eq!(None, big.clone().checked_mul(&_3.clone()));
+ let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone());
+ let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone());
+ let expected = Ratio::new(T::one(), big / two.clone() * _3.clone());
+ assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone());
+ assert_eq!(
+ Some(expected.clone()),
+ _1_big.clone().checked_div(&_3_two.clone())
+ );
+ assert_eq!(expected, {
+ let mut tmp = _1_big;
+ tmp /= _3_two;
+ tmp
+ });
+
+ // 3/big / 3 = 1/big where big is max/2
+ // big ~ max/2, and big is not divisible by 3
+ let big = T::max_value() / two / _3.clone() * _3.clone() + T::one();
+ assert_eq!(None, big.clone().checked_mul(&_3.clone()));
+ let _3_big = Ratio::new(_3.clone(), big.clone());
+ let expected = Ratio::new(T::one(), big);
+ assert_eq!(expected, _3_big.clone() / _3.clone());
+ assert_eq!(expected, {
+ let mut tmp = _3_big;
+ tmp /= _3;
+ tmp
+ });
+ }
+ test_div_typed_overflow::<u8>();
+ test_div_typed_overflow::<u16>();
+ test_div_typed_overflow::<u32>();
+ test_div_typed_overflow::<u64>();
+ test_div_typed_overflow::<usize>();
+ test_div_typed_overflow::<u128>();
+
+ test_div_typed_overflow::<i8>();
+ test_div_typed_overflow::<i16>();
+ test_div_typed_overflow::<i32>();
+ test_div_typed_overflow::<i64>();
+ test_div_typed_overflow::<isize>();
+ test_div_typed_overflow::<i128>();
+ }
+
+ #[test]
+ fn test_rem() {
+ fn test(a: Rational64, b: Rational64, c: Rational64) {
+ assert_eq!(a % b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x %= b;
+ x
+ },
+ c
+ );
+ assert_eq!(to_big(a) % to_big(b), to_big(c))
+ }
+ fn test_assign(a: Rational64, b: i64, c: Rational64) {
+ assert_eq!(a % b, c);
+ assert_eq!(
+ {
+ let mut x = a;
+ x %= b;
+ x
+ },
+ c
+ );
+ }
+
+ test(_3_2, _1, _1_2);
+ test(_3_2, _1_2, _0);
+ test(_5_2, _3_2, _1);
+ test(_2, _NEG1_2, _0);
+ test(_1_2, _2, _1_2);
+ test_assign(_3_2, 1, _1_2);
+ }
+
+ #[test]
+ fn test_rem_overflow() {
+ // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0
+ // for each integer type. Previously, this calculation would overflow.
+ fn test_rem_typed_overflow<T>()
+ where
+ T: Integer + Bounded + Clone + Debug + NumAssign,
+ {
+ let two = T::one() + T::one();
+ // value near to maximum, but divisible by two
+ let max_div2 = T::max_value() / two.clone() * two.clone();
+ let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2);
+ let _1_two: Ratio<T> = Ratio::new(T::one(), two);
+ assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer));
+ {
+ let mut tmp: Ratio<T> = _1_two;
+ tmp %= _1_max;
+ assert!(T::is_zero(&tmp.numer));
+ }
+ }
+ test_rem_typed_overflow::<u8>();
+ test_rem_typed_overflow::<u16>();
+ test_rem_typed_overflow::<u32>();
+ test_rem_typed_overflow::<u64>();
+ test_rem_typed_overflow::<usize>();
+ test_rem_typed_overflow::<u128>();
+
+ test_rem_typed_overflow::<i8>();
+ test_rem_typed_overflow::<i16>();
+ test_rem_typed_overflow::<i32>();
+ test_rem_typed_overflow::<i64>();
+ test_rem_typed_overflow::<isize>();
+ test_rem_typed_overflow::<i128>();
+ }
+
+ #[test]
+ fn test_neg() {
+ fn test(a: Rational64, b: Rational64) {
+ assert_eq!(-a, b);
+ assert_eq!(-to_big(a), to_big(b))
+ }
+
+ test(_0, _0);
+ test(_1_2, _NEG1_2);
+ test(-_1, _1);
+ }
+ #[test]
+ #[allow(clippy::eq_op)]
+ fn test_zero() {
+ assert_eq!(_0 + _0, _0);
+ assert_eq!(_0 * _0, _0);
+ assert_eq!(_0 * _1, _0);
+ assert_eq!(_0 / _NEG1_2, _0);
+ assert_eq!(_0 - _0, _0);
+ }
+ #[test]
+ #[should_panic]
+ fn test_div_0() {
+ let _a = _1 / _0;
+ }
+
+ #[test]
+ fn test_checked_failures() {
+ let big = Ratio::new(128u8, 1);
+ let small = Ratio::new(1, 128u8);
+ assert_eq!(big.checked_add(&big), None);
+ assert_eq!(small.checked_sub(&big), None);
+ assert_eq!(big.checked_mul(&big), None);
+ assert_eq!(small.checked_div(&big), None);
+ assert_eq!(_1.checked_div(&_0), None);
+ }
+
+ #[test]
+ fn test_checked_zeros() {
+ assert_eq!(_0.checked_add(&_0), Some(_0));
+ assert_eq!(_0.checked_sub(&_0), Some(_0));
+ assert_eq!(_0.checked_mul(&_0), Some(_0));
+ assert_eq!(_0.checked_div(&_0), None);
+ }
+
+ #[test]
+ fn test_checked_min() {
+ assert_eq!(_MIN.checked_add(&_MIN), None);
+ assert_eq!(_MIN.checked_sub(&_MIN), Some(_0));
+ assert_eq!(_MIN.checked_mul(&_MIN), None);
+ assert_eq!(_MIN.checked_div(&_MIN), Some(_1));
+ assert_eq!(_0.checked_add(&_MIN), Some(_MIN));
+ assert_eq!(_0.checked_sub(&_MIN), None);
+ assert_eq!(_0.checked_mul(&_MIN), Some(_0));
+ assert_eq!(_0.checked_div(&_MIN), Some(_0));
+ assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1));
+ assert_eq!(_1.checked_sub(&_MIN), None);
+ assert_eq!(_1.checked_mul(&_MIN), Some(_MIN));
+ assert_eq!(_1.checked_div(&_MIN), None);
+ assert_eq!(_MIN.checked_add(&_0), Some(_MIN));
+ assert_eq!(_MIN.checked_sub(&_0), Some(_MIN));
+ assert_eq!(_MIN.checked_mul(&_0), Some(_0));
+ assert_eq!(_MIN.checked_div(&_0), None);
+ assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1));
+ assert_eq!(_MIN.checked_sub(&_1), None);
+ assert_eq!(_MIN.checked_mul(&_1), Some(_MIN));
+ assert_eq!(_MIN.checked_div(&_1), Some(_MIN));
+ }
+
+ #[test]
+ fn test_checked_max() {
+ assert_eq!(_MAX.checked_add(&_MAX), None);
+ assert_eq!(_MAX.checked_sub(&_MAX), Some(_0));
+ assert_eq!(_MAX.checked_mul(&_MAX), None);
+ assert_eq!(_MAX.checked_div(&_MAX), Some(_1));
+ assert_eq!(_0.checked_add(&_MAX), Some(_MAX));
+ assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1));
+ assert_eq!(_0.checked_mul(&_MAX), Some(_0));
+ assert_eq!(_0.checked_div(&_MAX), Some(_0));
+ assert_eq!(_1.checked_add(&_MAX), None);
+ assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1));
+ assert_eq!(_1.checked_mul(&_MAX), Some(_MAX));
+ assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip()));
+ assert_eq!(_MAX.checked_add(&_0), Some(_MAX));
+ assert_eq!(_MAX.checked_sub(&_0), Some(_MAX));
+ assert_eq!(_MAX.checked_mul(&_0), Some(_0));
+ assert_eq!(_MAX.checked_div(&_0), None);
+ assert_eq!(_MAX.checked_add(&_1), None);
+ assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1));
+ assert_eq!(_MAX.checked_mul(&_1), Some(_MAX));
+ assert_eq!(_MAX.checked_div(&_1), Some(_MAX));
+ }
+
+ #[test]
+ fn test_checked_min_max() {
+ assert_eq!(_MIN.checked_add(&_MAX), Some(-_1));
+ assert_eq!(_MIN.checked_sub(&_MAX), None);
+ assert_eq!(_MIN.checked_mul(&_MAX), None);
+ assert_eq!(
+ _MIN.checked_div(&_MAX),
+ Some(Ratio::new(_MIN.numer, _MAX.numer))
+ );
+ assert_eq!(_MAX.checked_add(&_MIN), Some(-_1));
+ assert_eq!(_MAX.checked_sub(&_MIN), None);
+ assert_eq!(_MAX.checked_mul(&_MIN), None);
+ assert_eq!(_MAX.checked_div(&_MIN), None);
+ }
+ }
+
+ #[test]
+ fn test_round() {
+ assert_eq!(_1_3.ceil(), _1);
+ assert_eq!(_1_3.floor(), _0);
+ assert_eq!(_1_3.round(), _0);
+ assert_eq!(_1_3.trunc(), _0);
+
+ assert_eq!(_NEG1_3.ceil(), _0);
+ assert_eq!(_NEG1_3.floor(), -_1);
+ assert_eq!(_NEG1_3.round(), _0);
+ assert_eq!(_NEG1_3.trunc(), _0);
+
+ assert_eq!(_2_3.ceil(), _1);
+ assert_eq!(_2_3.floor(), _0);
+ assert_eq!(_2_3.round(), _1);
+ assert_eq!(_2_3.trunc(), _0);
+
+ assert_eq!(_NEG2_3.ceil(), _0);
+ assert_eq!(_NEG2_3.floor(), -_1);
+ assert_eq!(_NEG2_3.round(), -_1);
+ assert_eq!(_NEG2_3.trunc(), _0);
+
+ assert_eq!(_1_2.ceil(), _1);
+ assert_eq!(_1_2.floor(), _0);
+ assert_eq!(_1_2.round(), _1);
+ assert_eq!(_1_2.trunc(), _0);
+
+ assert_eq!(_NEG1_2.ceil(), _0);
+ assert_eq!(_NEG1_2.floor(), -_1);
+ assert_eq!(_NEG1_2.round(), -_1);
+ assert_eq!(_NEG1_2.trunc(), _0);
+
+ assert_eq!(_1.ceil(), _1);
+ assert_eq!(_1.floor(), _1);
+ assert_eq!(_1.round(), _1);
+ assert_eq!(_1.trunc(), _1);
+
+ // Overflow checks
+
+ let _neg1 = Ratio::from_integer(-1);
+ let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1);
+ let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX);
+ let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1);
+ let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2);
+ let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX);
+ let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2);
+ let _large_rat7 = Ratio::new(1, i32::MIN + 1);
+ let _large_rat8 = Ratio::new(1, i32::MAX);
+
+ assert_eq!(_large_rat1.round(), One::one());
+ assert_eq!(_large_rat2.round(), One::one());
+ assert_eq!(_large_rat3.round(), One::one());
+ assert_eq!(_large_rat4.round(), One::one());
+ assert_eq!(_large_rat5.round(), _neg1);
+ assert_eq!(_large_rat6.round(), _neg1);
+ assert_eq!(_large_rat7.round(), Zero::zero());
+ assert_eq!(_large_rat8.round(), Zero::zero());
+ }
+
+ #[test]
+ fn test_fract() {
+ assert_eq!(_1.fract(), _0);
+ assert_eq!(_NEG1_2.fract(), _NEG1_2);
+ assert_eq!(_1_2.fract(), _1_2);
+ assert_eq!(_3_2.fract(), _1_2);
+ }
+
+ #[test]
+ fn test_recip() {
+ assert_eq!(_1 * _1.recip(), _1);
+ assert_eq!(_2 * _2.recip(), _1);
+ assert_eq!(_1_2 * _1_2.recip(), _1);
+ assert_eq!(_3_2 * _3_2.recip(), _1);
+ assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
+
+ assert_eq!(_3_2.recip(), _2_3);
+ assert_eq!(_NEG1_2.recip(), _NEG2);
+ assert_eq!(_NEG1_2.recip().denom(), &1);
+ }
+
+ #[test]
+ #[should_panic(expected = "division by zero")]
+ fn test_recip_fail() {
+ let _a = Ratio::new(0, 1).recip();
+ }
+
+ #[test]
+ fn test_pow() {
+ fn test(r: Rational64, e: i32, expected: Rational64) {
+ assert_eq!(r.pow(e), expected);
+ assert_eq!(Pow::pow(r, e), expected);
+ assert_eq!(Pow::pow(r, &e), expected);
+ assert_eq!(Pow::pow(&r, e), expected);
+ assert_eq!(Pow::pow(&r, &e), expected);
+ #[cfg(feature = "num-bigint")]
+ test_big(r, e, expected);
+ }
+
+ #[cfg(feature = "num-bigint")]
+ fn test_big(r: Rational64, e: i32, expected: Rational64) {
+ let r = BigRational::new_raw(r.numer.into(), r.denom.into());
+ let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into());
+ assert_eq!((&r).pow(e), expected);
+ assert_eq!(Pow::pow(r.clone(), e), expected);
+ assert_eq!(Pow::pow(r.clone(), &e), expected);
+ assert_eq!(Pow::pow(&r, e), expected);
+ assert_eq!(Pow::pow(&r, &e), expected);
+ }
+
+ test(_1_2, 2, Ratio::new(1, 4));
+ test(_1_2, -2, Ratio::new(4, 1));
+ test(_1, 1, _1);
+ test(_1, i32::MAX, _1);
+ test(_1, i32::MIN, _1);
+ test(_NEG1_2, 2, _1_2.pow(2i32));
+ test(_NEG1_2, 3, -_1_2.pow(3i32));
+ test(_3_2, 0, _1);
+ test(_3_2, -1, _3_2.recip());
+ test(_3_2, 3, Ratio::new(27, 8));
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn test_to_from_str() {
+ use std::string::{String, ToString};
+ fn test(r: Rational64, s: String) {
+ assert_eq!(FromStr::from_str(&s), Ok(r));
+ assert_eq!(r.to_string(), s);
+ }
+ test(_1, "1".to_string());
+ test(_0, "0".to_string());
+ test(_1_2, "1/2".to_string());
+ test(_3_2, "3/2".to_string());
+ test(_2, "2".to_string());
+ test(_NEG1_2, "-1/2".to_string());
+ }
+ #[test]
+ fn test_from_str_fail() {
+ fn test(s: &str) {
+ let rational: Result<Rational64, _> = FromStr::from_str(s);
+ assert!(rational.is_err());
+ }
+
+ let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"];
+ for &s in xs.iter() {
+ test(s);
+ }
+ }
+
+ #[cfg(feature = "num-bigint")]
+ #[test]
+ fn test_from_float() {
+ use num_traits::float::FloatCore;
+ fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) {
+ let ratio: BigRational = Ratio::from_float(given).unwrap();
+ assert_eq!(
+ ratio,
+ Ratio::new(
+ FromStr::from_str(numer).unwrap(),
+ FromStr::from_str(denom).unwrap()
+ )
+ );
+ }
+
+ // f32
+ test(core::f32::consts::PI, ("13176795", "4194304"));
+ test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
+ test(
+ -(2f32.powf(100.)),
+ ("-1267650600228229401496703205376", "1"),
+ );
+ test(
+ 1.0 / 2f32.powf(100.),
+ ("1", "1267650600228229401496703205376"),
+ );
+ test(684729.48391f32, ("1369459", "2"));
+ test(-8573.5918555f32, ("-4389679", "512"));
+
+ // f64
+ test(
+ core::f64::consts::PI,
+ ("884279719003555", "281474976710656"),
+ );
+ test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
+ test(
+ -(2f64.powf(100.)),
+ ("-1267650600228229401496703205376", "1"),
+ );
+ test(684729.48391f64, ("367611342500051", "536870912"));
+ test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
+ test(
+ 1.0 / 2f64.powf(100.),
+ ("1", "1267650600228229401496703205376"),
+ );
+ }
+
+ #[cfg(feature = "num-bigint")]
+ #[test]
+ fn test_from_float_fail() {
+ use core::{f32, f64};
+
+ assert_eq!(Ratio::from_float(f32::NAN), None);
+ assert_eq!(Ratio::from_float(f32::INFINITY), None);
+ assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
+ assert_eq!(Ratio::from_float(f64::NAN), None);
+ assert_eq!(Ratio::from_float(f64::INFINITY), None);
+ assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
+ }
+
+ #[test]
+ fn test_signed() {
+ assert_eq!(_NEG1_2.abs(), _1_2);
+ assert_eq!(_3_2.abs_sub(&_1_2), _1);
+ assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
+ assert_eq!(_1_2.signum(), One::one());
+ assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one());
+ assert_eq!(_0.signum(), Zero::zero());
+ assert!(_NEG1_2.is_negative());
+ assert!(_1_NEG2.is_negative());
+ assert!(!_NEG1_2.is_positive());
+ assert!(!_1_NEG2.is_positive());
+ assert!(_1_2.is_positive());
+ assert!(_NEG1_NEG2.is_positive());
+ assert!(!_1_2.is_negative());
+ assert!(!_NEG1_NEG2.is_negative());
+ assert!(!_0.is_positive());
+ assert!(!_0.is_negative());
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn test_hash() {
+ assert!(crate::hash(&_0) != crate::hash(&_1));
+ assert!(crate::hash(&_0) != crate::hash(&_3_2));
+
+ // a == b -> hash(a) == hash(b)
+ let a = Rational64::new_raw(4, 2);
+ let b = Rational64::new_raw(6, 3);
+ assert_eq!(a, b);
+ assert_eq!(crate::hash(&a), crate::hash(&b));
+
+ let a = Rational64::new_raw(123456789, 1000);
+ let b = Rational64::new_raw(123456789 * 5, 5000);
+ assert_eq!(a, b);
+ assert_eq!(crate::hash(&a), crate::hash(&b));
+ }
+
+ #[test]
+ fn test_into_pair() {
+ assert_eq!((0, 1), _0.into());
+ assert_eq!((-2, 1), _NEG2.into());
+ assert_eq!((1, -2), _1_NEG2.into());
+ }
+
+ #[test]
+ fn test_from_pair() {
+ assert_eq!(_0, Ratio::from((0, 1)));
+ assert_eq!(_1, Ratio::from((1, 1)));
+ assert_eq!(_NEG2, Ratio::from((-2, 1)));
+ assert_eq!(_1_NEG2, Ratio::from((1, -2)));
+ }
+
+ #[test]
+ fn ratio_iter_sum() {
+ // generic function to assure the iter method can be called
+ // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer>
+ fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] {
+ let mut manual_sum = Ratio::new(T::zero(), T::one());
+ for ratio in slice {
+ manual_sum = manual_sum + ratio;
+ }
+ [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()]
+ }
+ // collect into array so test works on no_std
+ let mut nums = [Ratio::new(0, 1); 1000];
+ for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() {
+ nums[i] = r;
+ }
+ let sums = iter_sums(&nums[..]);
+ assert_eq!(sums[0], sums[1]);
+ assert_eq!(sums[0], sums[2]);
+ }
+
+ #[test]
+ fn ratio_iter_product() {
+ // generic function to assure the iter method can be called
+ // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer>
+ fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] {
+ let mut manual_prod = Ratio::new(T::one(), T::one());
+ for ratio in slice {
+ manual_prod = manual_prod * ratio;
+ }
+ [
+ manual_prod,
+ slice.iter().product(),
+ slice.iter().cloned().product(),
+ ]
+ }
+
+ // collect into array so test works on no_std
+ let mut nums = [Ratio::new(0, 1); 1000];
+ for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() {
+ nums[i] = r;
+ }
+ let products = iter_products(&nums[..]);
+ assert_eq!(products[0], products[1]);
+ assert_eq!(products[0], products[2]);
+ }
+
+ #[test]
+ fn test_num_zero() {
+ let zero = Rational64::zero();
+ assert!(zero.is_zero());
+
+ let mut r = Rational64::new(123, 456);
+ assert!(!r.is_zero());
+ assert_eq!(r + zero, r);
+
+ r.set_zero();
+ assert!(r.is_zero());
+ }
+
+ #[test]
+ fn test_num_one() {
+ let one = Rational64::one();
+ assert!(one.is_one());
+
+ let mut r = Rational64::new(123, 456);
+ assert!(!r.is_one());
+ assert_eq!(r * one, r);
+
+ r.set_one();
+ assert!(r.is_one());
+ }
+
+ #[test]
+ fn test_const() {
+ const N: Ratio<i32> = Ratio::new_raw(123, 456);
+ const N_NUMER: &i32 = N.numer();
+ const N_DENOM: &i32 = N.denom();
+
+ assert_eq!(N_NUMER, &123);
+ assert_eq!(N_DENOM, &456);
+
+ let r = N.reduced();
+ assert_eq!(r.numer(), &(123 / 3));
+ assert_eq!(r.denom(), &(456 / 3));
+ }
+
+ #[test]
+ fn test_ratio_to_i64() {
+ assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap());
+ assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap());
+ assert_eq!(None, Rational64::new(-31, 8).to_u64());
+ }
+
+ #[test]
+ #[cfg(feature = "num-bigint")]
+ fn test_ratio_to_i128() {
+ assert_eq!(
+ 1i128 << 70,
+ Ratio::<i128>::new(1i128 << 77, 1i128 << 7)
+ .to_i128()
+ .unwrap()
+ );
+ }
+
+ #[test]
+ #[cfg(feature = "num-bigint")]
+ fn test_big_ratio_to_f64() {
+ assert_eq!(
+ BigRational::new(
+ "1234567890987654321234567890987654321234567890"
+ .parse()
+ .unwrap(),
+ "3".parse().unwrap()
+ )
+ .to_f64(),
+ Some(411522630329218100000000000000000000000000000f64)
+ );
+ assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324));
+ assert_eq!(
+ // subnormal
+ BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(),
+ Some(2.0f64.powi(-50).powi(21))
+ );
+ assert_eq!(
+ // definite underflow
+ BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(),
+ Some(0.0)
+ );
+ assert_eq!(
+ BigRational::from(BigInt::one() << 1050).to_f64(),
+ Some(core::f64::INFINITY)
+ );
+ assert_eq!(
+ BigRational::from((-BigInt::one()) << 1050).to_f64(),
+ Some(core::f64::NEG_INFINITY)
+ );
+ assert_eq!(
+ BigRational::new(
+ "1234567890987654321234567890".parse().unwrap(),
+ "987654321234567890987654321".parse().unwrap()
+ )
+ .to_f64(),
+ Some(1.2499999893125f64)
+ );
+ assert_eq!(
+ BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(),
+ Some(core::f64::INFINITY)
+ );
+ assert_eq!(
+ BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(),
+ Some(core::f64::NEG_INFINITY)
+ );
+ assert_eq!(
+ BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(),
+ None
+ );
+ }
+
+ #[test]
+ fn test_ratio_to_f64() {
+ assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64));
+ assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64));
+ assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64));
+ assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64));
+ assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64));
+ assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64));
+ assert_eq!(
+ Rational64::new((1 << 52) + 1, 1 << 52).to_f64(),
+ Some(1.0000000000000002f64),
+ );
+ assert_eq!(
+ Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(),
+ Some(1.0000000000000002f64),
+ );
+ assert_eq!(
+ Ratio::<i32>::new_raw(1, 0).to_f64(),
+ Some(core::f64::INFINITY)
+ );
+ assert_eq!(
+ Ratio::<i32>::new_raw(-1, 0).to_f64(),
+ Some(core::f64::NEG_INFINITY)
+ );
+ assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None);
+ }
+
+ #[test]
+ fn test_ldexp() {
+ use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY};
+ assert_eq!(ldexp(1.0, 0), 1.0);
+ assert_eq!(ldexp(1.0, 1), 2.0);
+ assert_eq!(ldexp(0.0, 1), 0.0);
+ assert_eq!(ldexp(-0.0, 1), -0.0);
+
+ // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or
+ // underflow.
+ assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5));
+ assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1));
+ assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3));
+
+ // Case where initial value is subnormal
+ assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4));
+ assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200));
+
+ // Near underflow (2^exp is too small to represent, but not x*2^exp)
+ assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1));
+
+ // Near overflow
+ assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP));
+
+ // Overflow and underflow cases
+ assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0);
+ assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0);
+ assert_eq!(ldexp(1.0, MAX_EXP), INFINITY);
+ assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY);
+
+ // Special values
+ assert_eq!(ldexp(INFINITY, 1), INFINITY);
+ assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY);
+ assert!(ldexp(NAN, 1).is_nan());
+ }
+}