aboutsummaryrefslogtreecommitdiff
path: root/vendor/rand/src/lib.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/rand/src/lib.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/rand/src/lib.rs')
-rw-r--r--vendor/rand/src/lib.rs1220
1 files changed, 1220 insertions, 0 deletions
diff --git a/vendor/rand/src/lib.rs b/vendor/rand/src/lib.rs
new file mode 100644
index 0000000..696ff6f
--- /dev/null
+++ b/vendor/rand/src/lib.rs
@@ -0,0 +1,1220 @@
+// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Utilities for random number generation
+//!
+//! The key functions are `random()` and `Rng::gen()`. These are polymorphic and
+//! so can be used to generate any type that implements `Rand`. Type inference
+//! means that often a simple call to `rand::random()` or `rng.gen()` will
+//! suffice, but sometimes an annotation is required, e.g.
+//! `rand::random::<f64>()`.
+//!
+//! See the `distributions` submodule for sampling random numbers from
+//! distributions like normal and exponential.
+//!
+//! # Usage
+//!
+//! This crate is [on crates.io](https://crates.io/crates/rand) and can be
+//! used by adding `rand` to the dependencies in your project's `Cargo.toml`.
+//!
+//! ```toml
+//! [dependencies]
+//! rand = "0.4"
+//! ```
+//!
+//! and this to your crate root:
+//!
+//! ```rust
+//! extern crate rand;
+//! ```
+//!
+//! # Thread-local RNG
+//!
+//! There is built-in support for a RNG associated with each thread stored
+//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
+//! used implicitly via `random`. This RNG is normally randomly seeded
+//! from an operating-system source of randomness, e.g. `/dev/urandom` on
+//! Unix systems, and will automatically reseed itself from this source
+//! after generating 32 KiB of random data.
+//!
+//! # Cryptographic security
+//!
+//! An application that requires an entropy source for cryptographic purposes
+//! must use `OsRng`, which reads randomness from the source that the operating
+//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on
+//! Windows).
+//! The other random number generators provided by this module are not suitable
+//! for such purposes.
+//!
+//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
+//! This module uses `/dev/urandom` for the following reasons:
+//!
+//! - On Linux, `/dev/random` may block if entropy pool is empty;
+//! `/dev/urandom` will not block. This does not mean that `/dev/random`
+//! provides better output than `/dev/urandom`; the kernel internally runs a
+//! cryptographically secure pseudorandom number generator (CSPRNG) based on
+//! entropy pool for random number generation, so the "quality" of
+//! `/dev/random` is not better than `/dev/urandom` in most cases. However,
+//! this means that `/dev/urandom` can yield somewhat predictable randomness
+//! if the entropy pool is very small, such as immediately after first
+//! booting. Linux 3.17 added the `getrandom(2)` system call which solves
+//! the issue: it blocks if entropy pool is not initialized yet, but it does
+//! not block once initialized. `OsRng` tries to use `getrandom(2)` if
+//! available, and use `/dev/urandom` fallback if not. If an application
+//! does not have `getrandom` and likely to be run soon after first booting,
+//! or on a system with very few entropy sources, one should consider using
+//! `/dev/random` via `ReadRng`.
+//! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no
+//! difference between the two sources. (Also note that, on some systems
+//! e.g. FreeBSD, both `/dev/random` and `/dev/urandom` may block once if
+//! the CSPRNG has not seeded yet.)
+//!
+//! # Examples
+//!
+//! ```rust
+//! use rand::Rng;
+//!
+//! let mut rng = rand::thread_rng();
+//! if rng.gen() { // random bool
+//! println!("i32: {}, u32: {}", rng.gen::<i32>(), rng.gen::<u32>())
+//! }
+//! ```
+//!
+//! ```rust
+//! let tuple = rand::random::<(f64, char)>();
+//! println!("{:?}", tuple)
+//! ```
+//!
+//! ## Monte Carlo estimation of π
+//!
+//! For this example, imagine we have a square with sides of length 2 and a unit
+//! circle, both centered at the origin. Since the area of a unit circle is π,
+//! we have:
+//!
+//! ```text
+//! (area of unit circle) / (area of square) = π / 4
+//! ```
+//!
+//! So if we sample many points randomly from the square, roughly π / 4 of them
+//! should be inside the circle.
+//!
+//! We can use the above fact to estimate the value of π: pick many points in
+//! the square at random, calculate the fraction that fall within the circle,
+//! and multiply this fraction by 4.
+//!
+//! ```
+//! use rand::distributions::{IndependentSample, Range};
+//!
+//! fn main() {
+//! let between = Range::new(-1f64, 1.);
+//! let mut rng = rand::thread_rng();
+//!
+//! let total = 1_000_000;
+//! let mut in_circle = 0;
+//!
+//! for _ in 0..total {
+//! let a = between.ind_sample(&mut rng);
+//! let b = between.ind_sample(&mut rng);
+//! if a*a + b*b <= 1. {
+//! in_circle += 1;
+//! }
+//! }
+//!
+//! // prints something close to 3.14159...
+//! println!("{}", 4. * (in_circle as f64) / (total as f64));
+//! }
+//! ```
+//!
+//! ## Monty Hall Problem
+//!
+//! This is a simulation of the [Monty Hall Problem][]:
+//!
+//! > Suppose you're on a game show, and you're given the choice of three doors:
+//! > Behind one door is a car; behind the others, goats. You pick a door, say
+//! > No. 1, and the host, who knows what's behind the doors, opens another
+//! > door, say No. 3, which has a goat. He then says to you, "Do you want to
+//! > pick door No. 2?" Is it to your advantage to switch your choice?
+//!
+//! The rather unintuitive answer is that you will have a 2/3 chance of winning
+//! if you switch and a 1/3 chance of winning if you don't, so it's better to
+//! switch.
+//!
+//! This program will simulate the game show and with large enough simulation
+//! steps it will indeed confirm that it is better to switch.
+//!
+//! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem
+//!
+//! ```
+//! use rand::Rng;
+//! use rand::distributions::{IndependentSample, Range};
+//!
+//! struct SimulationResult {
+//! win: bool,
+//! switch: bool,
+//! }
+//!
+//! // Run a single simulation of the Monty Hall problem.
+//! fn simulate<R: Rng>(random_door: &Range<u32>, rng: &mut R)
+//! -> SimulationResult {
+//! let car = random_door.ind_sample(rng);
+//!
+//! // This is our initial choice
+//! let mut choice = random_door.ind_sample(rng);
+//!
+//! // The game host opens a door
+//! let open = game_host_open(car, choice, rng);
+//!
+//! // Shall we switch?
+//! let switch = rng.gen();
+//! if switch {
+//! choice = switch_door(choice, open);
+//! }
+//!
+//! SimulationResult { win: choice == car, switch: switch }
+//! }
+//!
+//! // Returns the door the game host opens given our choice and knowledge of
+//! // where the car is. The game host will never open the door with the car.
+//! fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 {
+//! let choices = free_doors(&[car, choice]);
+//! rand::seq::sample_slice(rng, &choices, 1)[0]
+//! }
+//!
+//! // Returns the door we switch to, given our current choice and
+//! // the open door. There will only be one valid door.
+//! fn switch_door(choice: u32, open: u32) -> u32 {
+//! free_doors(&[choice, open])[0]
+//! }
+//!
+//! fn free_doors(blocked: &[u32]) -> Vec<u32> {
+//! (0..3).filter(|x| !blocked.contains(x)).collect()
+//! }
+//!
+//! fn main() {
+//! // The estimation will be more accurate with more simulations
+//! let num_simulations = 10000;
+//!
+//! let mut rng = rand::thread_rng();
+//! let random_door = Range::new(0, 3);
+//!
+//! let (mut switch_wins, mut switch_losses) = (0, 0);
+//! let (mut keep_wins, mut keep_losses) = (0, 0);
+//!
+//! println!("Running {} simulations...", num_simulations);
+//! for _ in 0..num_simulations {
+//! let result = simulate(&random_door, &mut rng);
+//!
+//! match (result.win, result.switch) {
+//! (true, true) => switch_wins += 1,
+//! (true, false) => keep_wins += 1,
+//! (false, true) => switch_losses += 1,
+//! (false, false) => keep_losses += 1,
+//! }
+//! }
+//!
+//! let total_switches = switch_wins + switch_losses;
+//! let total_keeps = keep_wins + keep_losses;
+//!
+//! println!("Switched door {} times with {} wins and {} losses",
+//! total_switches, switch_wins, switch_losses);
+//!
+//! println!("Kept our choice {} times with {} wins and {} losses",
+//! total_keeps, keep_wins, keep_losses);
+//!
+//! // With a large number of simulations, the values should converge to
+//! // 0.667 and 0.333 respectively.
+//! println!("Estimated chance to win if we switch: {}",
+//! switch_wins as f32 / total_switches as f32);
+//! println!("Estimated chance to win if we don't: {}",
+//! keep_wins as f32 / total_keeps as f32);
+//! }
+//! ```
+
+#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
+ html_favicon_url = "https://www.rust-lang.org/favicon.ico",
+ html_root_url = "https://docs.rs/rand/0.4")]
+
+#![deny(missing_debug_implementations)]
+
+#![cfg_attr(not(feature="std"), no_std)]
+#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
+#![cfg_attr(feature = "i128_support", feature(i128_type, i128))]
+
+#[cfg(feature="std")] extern crate std as core;
+#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc;
+
+#[cfg(target_env = "sgx")]
+extern crate rdrand;
+
+#[cfg(target_env = "sgx")]
+extern crate rand_core;
+
+use core::marker;
+use core::mem;
+#[cfg(feature="std")] use std::cell::RefCell;
+#[cfg(feature="std")] use std::io;
+#[cfg(feature="std")] use std::rc::Rc;
+
+// external rngs
+pub use jitter::JitterRng;
+#[cfg(feature="std")] pub use os::OsRng;
+
+// pseudo rngs
+pub use isaac::{IsaacRng, Isaac64Rng};
+pub use chacha::ChaChaRng;
+pub use prng::XorShiftRng;
+
+// local use declarations
+#[cfg(target_pointer_width = "32")]
+use prng::IsaacRng as IsaacWordRng;
+#[cfg(target_pointer_width = "64")]
+use prng::Isaac64Rng as IsaacWordRng;
+
+use distributions::{Range, IndependentSample};
+use distributions::range::SampleRange;
+
+// public modules
+pub mod distributions;
+pub mod jitter;
+#[cfg(feature="std")] pub mod os;
+#[cfg(feature="std")] pub mod read;
+pub mod reseeding;
+#[cfg(any(feature="std", feature = "alloc"))] pub mod seq;
+
+// These tiny modules are here to avoid API breakage, probably only temporarily
+pub mod chacha {
+ //! The ChaCha random number generator.
+ pub use prng::ChaChaRng;
+}
+pub mod isaac {
+ //! The ISAAC random number generator.
+ pub use prng::{IsaacRng, Isaac64Rng};
+}
+
+// private modules
+mod rand_impls;
+mod prng;
+
+
+/// A type that can be randomly generated using an `Rng`.
+///
+/// ## Built-in Implementations
+///
+/// This crate implements `Rand` for various primitive types. Assuming the
+/// provided `Rng` is well-behaved, these implementations generate values with
+/// the following ranges and distributions:
+///
+/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
+/// over all values of the type.
+/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
+/// code points in the range `0...0x10_FFFF`, except for the range
+/// `0xD800...0xDFFF` (the surrogate code points). This includes
+/// unassigned/reserved code points.
+/// * `bool`: Generates `false` or `true`, each with probability 0.5.
+/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
+/// half-open range `[0, 1)`. (The [`Open01`], [`Closed01`], [`Exp1`], and
+/// [`StandardNormal`] wrapper types produce floating point numbers with
+/// alternative ranges or distributions.)
+///
+/// [`Open01`]: struct.Open01.html
+/// [`Closed01`]: struct.Closed01.html
+/// [`Exp1`]: distributions/exponential/struct.Exp1.html
+/// [`StandardNormal`]: distributions/normal/struct.StandardNormal.html
+///
+/// The following aggregate types also implement `Rand` as long as their
+/// component types implement it:
+///
+/// * Tuples and arrays: Each element of the tuple or array is generated
+/// independently, using its own `Rand` implementation.
+/// * `Option<T>`: Returns `None` with probability 0.5; otherwise generates a
+/// random `T` and returns `Some(T)`.
+pub trait Rand : Sized {
+ /// Generates a random instance of this type using the specified source of
+ /// randomness.
+ fn rand<R: Rng>(rng: &mut R) -> Self;
+}
+
+/// A random number generator.
+pub trait Rng {
+ /// Return the next random u32.
+ ///
+ /// This rarely needs to be called directly, prefer `r.gen()` to
+ /// `r.next_u32()`.
+ // FIXME #rust-lang/rfcs#628: Should be implemented in terms of next_u64
+ fn next_u32(&mut self) -> u32;
+
+ /// Return the next random u64.
+ ///
+ /// By default this is implemented in terms of `next_u32`. An
+ /// implementation of this trait must provide at least one of
+ /// these two methods. Similarly to `next_u32`, this rarely needs
+ /// to be called directly, prefer `r.gen()` to `r.next_u64()`.
+ fn next_u64(&mut self) -> u64 {
+ ((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
+ }
+
+ /// Return the next random f32 selected from the half-open
+ /// interval `[0, 1)`.
+ ///
+ /// This uses a technique described by Saito and Matsumoto at
+ /// MCQMC'08. Given that the IEEE floating point numbers are
+ /// uniformly distributed over [1,2), we generate a number in
+ /// this range and then offset it onto the range [0,1). Our
+ /// choice of bits (masking v. shifting) is arbitrary and
+ /// should be immaterial for high quality generators. For low
+ /// quality generators (ex. LCG), prefer bitshifting due to
+ /// correlation between sequential low order bits.
+ ///
+ /// See:
+ /// A PRNG specialized in double precision floating point numbers using
+ /// an affine transition
+ ///
+ /// * <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/dSFMT.pdf>
+ /// * <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/dSFMT-slide-e.pdf>
+ ///
+ /// By default this is implemented in terms of `next_u32`, but a
+ /// random number generator which can generate numbers satisfying
+ /// the requirements directly can overload this for performance.
+ /// It is required that the return value lies in `[0, 1)`.
+ ///
+ /// See `Closed01` for the closed interval `[0,1]`, and
+ /// `Open01` for the open interval `(0,1)`.
+ fn next_f32(&mut self) -> f32 {
+ const UPPER_MASK: u32 = 0x3F800000;
+ const LOWER_MASK: u32 = 0x7FFFFF;
+ let tmp = UPPER_MASK | (self.next_u32() & LOWER_MASK);
+ let result: f32 = unsafe { mem::transmute(tmp) };
+ result - 1.0
+ }
+
+ /// Return the next random f64 selected from the half-open
+ /// interval `[0, 1)`.
+ ///
+ /// By default this is implemented in terms of `next_u64`, but a
+ /// random number generator which can generate numbers satisfying
+ /// the requirements directly can overload this for performance.
+ /// It is required that the return value lies in `[0, 1)`.
+ ///
+ /// See `Closed01` for the closed interval `[0,1]`, and
+ /// `Open01` for the open interval `(0,1)`.
+ fn next_f64(&mut self) -> f64 {
+ const UPPER_MASK: u64 = 0x3FF0000000000000;
+ const LOWER_MASK: u64 = 0xFFFFFFFFFFFFF;
+ let tmp = UPPER_MASK | (self.next_u64() & LOWER_MASK);
+ let result: f64 = unsafe { mem::transmute(tmp) };
+ result - 1.0
+ }
+
+ /// Fill `dest` with random data.
+ ///
+ /// This has a default implementation in terms of `next_u64` and
+ /// `next_u32`, but should be overridden by implementations that
+ /// offer a more efficient solution than just calling those
+ /// methods repeatedly.
+ ///
+ /// This method does *not* have a requirement to bear any fixed
+ /// relationship to the other methods, for example, it does *not*
+ /// have to result in the same output as progressively filling
+ /// `dest` with `self.gen::<u8>()`, and any such behaviour should
+ /// not be relied upon.
+ ///
+ /// This method should guarantee that `dest` is entirely filled
+ /// with new data, and may panic if this is impossible
+ /// (e.g. reading past the end of a file that is being used as the
+ /// source of randomness).
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut v = [0u8; 13579];
+ /// thread_rng().fill_bytes(&mut v);
+ /// println!("{:?}", &v[..]);
+ /// ```
+ fn fill_bytes(&mut self, dest: &mut [u8]) {
+ // this could, in theory, be done by transmuting dest to a
+ // [u64], but this is (1) likely to be undefined behaviour for
+ // LLVM, (2) has to be very careful about alignment concerns,
+ // (3) adds more `unsafe` that needs to be checked, (4)
+ // probably doesn't give much performance gain if
+ // optimisations are on.
+ let mut count = 0;
+ let mut num = 0;
+ for byte in dest.iter_mut() {
+ if count == 0 {
+ // we could micro-optimise here by generating a u32 if
+ // we only need a few more bytes to fill the vector
+ // (i.e. at most 4).
+ num = self.next_u64();
+ count = 8;
+ }
+
+ *byte = (num & 0xff) as u8;
+ num >>= 8;
+ count -= 1;
+ }
+ }
+
+ /// Return a random value of a `Rand` type.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let x: u32 = rng.gen();
+ /// println!("{}", x);
+ /// println!("{:?}", rng.gen::<(f64, bool)>());
+ /// ```
+ #[inline(always)]
+ fn gen<T: Rand>(&mut self) -> T where Self: Sized {
+ Rand::rand(self)
+ }
+
+ /// Return an iterator that will yield an infinite number of randomly
+ /// generated items.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>();
+ /// println!("{:?}", x);
+ /// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5)
+ /// .collect::<Vec<(f64, bool)>>());
+ /// ```
+ fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> where Self: Sized {
+ Generator { rng: self, _marker: marker::PhantomData }
+ }
+
+ /// Generate a random value in the range [`low`, `high`).
+ ///
+ /// This is a convenience wrapper around
+ /// `distributions::Range`. If this function will be called
+ /// repeatedly with the same arguments, one should use `Range`, as
+ /// that will amortize the computations that allow for perfect
+ /// uniformity, as they only happen on initialization.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `low >= high`.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let n: u32 = rng.gen_range(0, 10);
+ /// println!("{}", n);
+ /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
+ /// println!("{}", m);
+ /// ```
+ fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T where Self: Sized {
+ assert!(low < high, "Rng.gen_range called with low >= high");
+ Range::new(low, high).ind_sample(self)
+ }
+
+ /// Return a bool with a 1 in n chance of true
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// println!("{}", rng.gen_weighted_bool(3));
+ /// ```
+ fn gen_weighted_bool(&mut self, n: u32) -> bool where Self: Sized {
+ n <= 1 || self.gen_range(0, n) == 0
+ }
+
+ /// Return an iterator of random characters from the set A-Z,a-z,0-9.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let s: String = thread_rng().gen_ascii_chars().take(10).collect();
+ /// println!("{}", s);
+ /// ```
+ fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> where Self: Sized {
+ AsciiGenerator { rng: self }
+ }
+
+ /// Return a random element from `values`.
+ ///
+ /// Return `None` if `values` is empty.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let choices = [1, 2, 4, 8, 16, 32];
+ /// let mut rng = thread_rng();
+ /// println!("{:?}", rng.choose(&choices));
+ /// assert_eq!(rng.choose(&choices[..0]), None);
+ /// ```
+ fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> where Self: Sized {
+ if values.is_empty() {
+ None
+ } else {
+ Some(&values[self.gen_range(0, values.len())])
+ }
+ }
+
+ /// Return a mutable pointer to a random element from `values`.
+ ///
+ /// Return `None` if `values` is empty.
+ fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> where Self: Sized {
+ if values.is_empty() {
+ None
+ } else {
+ let len = values.len();
+ Some(&mut values[self.gen_range(0, len)])
+ }
+ }
+
+ /// Shuffle a mutable slice in place.
+ ///
+ /// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
+ /// which produces an unbiased permutation.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let mut y = [1, 2, 3];
+ /// rng.shuffle(&mut y);
+ /// println!("{:?}", y);
+ /// rng.shuffle(&mut y);
+ /// println!("{:?}", y);
+ /// ```
+ fn shuffle<T>(&mut self, values: &mut [T]) where Self: Sized {
+ let mut i = values.len();
+ while i >= 2 {
+ // invariant: elements with index >= i have been locked in place.
+ i -= 1;
+ // lock element i in place.
+ values.swap(i, self.gen_range(0, i + 1));
+ }
+ }
+}
+
+impl<'a, R: ?Sized> Rng for &'a mut R where R: Rng {
+ fn next_u32(&mut self) -> u32 {
+ (**self).next_u32()
+ }
+
+ fn next_u64(&mut self) -> u64 {
+ (**self).next_u64()
+ }
+
+ fn next_f32(&mut self) -> f32 {
+ (**self).next_f32()
+ }
+
+ fn next_f64(&mut self) -> f64 {
+ (**self).next_f64()
+ }
+
+ fn fill_bytes(&mut self, dest: &mut [u8]) {
+ (**self).fill_bytes(dest)
+ }
+}
+
+#[cfg(feature="std")]
+impl<R: ?Sized> Rng for Box<R> where R: Rng {
+ fn next_u32(&mut self) -> u32 {
+ (**self).next_u32()
+ }
+
+ fn next_u64(&mut self) -> u64 {
+ (**self).next_u64()
+ }
+
+ fn next_f32(&mut self) -> f32 {
+ (**self).next_f32()
+ }
+
+ fn next_f64(&mut self) -> f64 {
+ (**self).next_f64()
+ }
+
+ fn fill_bytes(&mut self, dest: &mut [u8]) {
+ (**self).fill_bytes(dest)
+ }
+}
+
+/// Iterator which will generate a stream of random items.
+///
+/// This iterator is created via the [`gen_iter`] method on [`Rng`].
+///
+/// [`gen_iter`]: trait.Rng.html#method.gen_iter
+/// [`Rng`]: trait.Rng.html
+#[derive(Debug)]
+pub struct Generator<'a, T, R:'a> {
+ rng: &'a mut R,
+ _marker: marker::PhantomData<fn() -> T>,
+}
+
+impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ Some(self.rng.gen())
+ }
+}
+
+/// Iterator which will continuously generate random ascii characters.
+///
+/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`].
+///
+/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars
+/// [`Rng`]: trait.Rng.html
+#[derive(Debug)]
+pub struct AsciiGenerator<'a, R:'a> {
+ rng: &'a mut R,
+}
+
+impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> {
+ type Item = char;
+
+ fn next(&mut self) -> Option<char> {
+ const GEN_ASCII_STR_CHARSET: &'static [u8] =
+ b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
+ abcdefghijklmnopqrstuvwxyz\
+ 0123456789";
+ Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
+ }
+}
+
+/// A random number generator that can be explicitly seeded to produce
+/// the same stream of randomness multiple times.
+pub trait SeedableRng<Seed>: Rng {
+ /// Reseed an RNG with the given seed.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{Rng, SeedableRng, StdRng};
+ ///
+ /// let seed: &[_] = &[1, 2, 3, 4];
+ /// let mut rng: StdRng = SeedableRng::from_seed(seed);
+ /// println!("{}", rng.gen::<f64>());
+ /// rng.reseed(&[5, 6, 7, 8]);
+ /// println!("{}", rng.gen::<f64>());
+ /// ```
+ fn reseed(&mut self, Seed);
+
+ /// Create a new RNG with the given seed.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use rand::{Rng, SeedableRng, StdRng};
+ ///
+ /// let seed: &[_] = &[1, 2, 3, 4];
+ /// let mut rng: StdRng = SeedableRng::from_seed(seed);
+ /// println!("{}", rng.gen::<f64>());
+ /// ```
+ fn from_seed(seed: Seed) -> Self;
+}
+
+/// A wrapper for generating floating point numbers uniformly in the
+/// open interval `(0,1)` (not including either endpoint).
+///
+/// Use `Closed01` for the closed interval `[0,1]`, and the default
+/// `Rand` implementation for `f32` and `f64` for the half-open
+/// `[0,1)`.
+///
+/// # Example
+/// ```rust
+/// use rand::{random, Open01};
+///
+/// let Open01(val) = random::<Open01<f32>>();
+/// println!("f32 from (0,1): {}", val);
+/// ```
+#[derive(Debug)]
+pub struct Open01<F>(pub F);
+
+/// A wrapper for generating floating point numbers uniformly in the
+/// closed interval `[0,1]` (including both endpoints).
+///
+/// Use `Open01` for the closed interval `(0,1)`, and the default
+/// `Rand` implementation of `f32` and `f64` for the half-open
+/// `[0,1)`.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::{random, Closed01};
+///
+/// let Closed01(val) = random::<Closed01<f32>>();
+/// println!("f32 from [0,1]: {}", val);
+/// ```
+#[derive(Debug)]
+pub struct Closed01<F>(pub F);
+
+/// The standard RNG. This is designed to be efficient on the current
+/// platform.
+#[derive(Copy, Clone, Debug)]
+pub struct StdRng {
+ rng: IsaacWordRng,
+}
+
+impl StdRng {
+ /// Create a randomly seeded instance of `StdRng`.
+ ///
+ /// This is a very expensive operation as it has to read
+ /// randomness from the operating system and use this in an
+ /// expensive seeding operation. If one is only generating a small
+ /// number of random numbers, or doesn't need the utmost speed for
+ /// generating each number, `thread_rng` and/or `random` may be more
+ /// appropriate.
+ ///
+ /// Reading the randomness from the OS may fail, and any error is
+ /// propagated via the `io::Result` return value.
+ #[cfg(feature="std")]
+ pub fn new() -> io::Result<StdRng> {
+ match OsRng::new() {
+ Ok(mut r) => Ok(StdRng { rng: r.gen() }),
+ Err(e1) => {
+ match JitterRng::new() {
+ Ok(mut r) => Ok(StdRng { rng: r.gen() }),
+ Err(_) => {
+ Err(e1)
+ }
+ }
+ }
+ }
+ }
+}
+
+impl Rng for StdRng {
+ #[inline]
+ fn next_u32(&mut self) -> u32 {
+ self.rng.next_u32()
+ }
+
+ #[inline]
+ fn next_u64(&mut self) -> u64 {
+ self.rng.next_u64()
+ }
+}
+
+impl<'a> SeedableRng<&'a [usize]> for StdRng {
+ fn reseed(&mut self, seed: &'a [usize]) {
+ // the internal RNG can just be seeded from the above
+ // randomness.
+ self.rng.reseed(unsafe {mem::transmute(seed)})
+ }
+
+ fn from_seed(seed: &'a [usize]) -> StdRng {
+ StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
+ }
+}
+
+/// Create a weak random number generator with a default algorithm and seed.
+///
+/// It returns the fastest `Rng` algorithm currently available in Rust without
+/// consideration for cryptography or security. If you require a specifically
+/// seeded `Rng` for consistency over time you should pick one algorithm and
+/// create the `Rng` yourself.
+///
+/// This will seed the generator with randomness from thread_rng.
+#[cfg(feature="std")]
+pub fn weak_rng() -> XorShiftRng {
+ thread_rng().gen()
+}
+
+/// Controls how the thread-local RNG is reseeded.
+#[cfg(feature="std")]
+#[derive(Debug)]
+struct ThreadRngReseeder;
+
+#[cfg(feature="std")]
+impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
+ fn reseed(&mut self, rng: &mut StdRng) {
+ match StdRng::new() {
+ Ok(r) => *rng = r,
+ Err(e) => panic!("No entropy available: {}", e),
+ }
+ }
+}
+#[cfg(feature="std")]
+const THREAD_RNG_RESEED_THRESHOLD: u64 = 32_768;
+#[cfg(feature="std")]
+type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;
+
+/// The thread-local RNG.
+#[cfg(feature="std")]
+#[derive(Clone, Debug)]
+pub struct ThreadRng {
+ rng: Rc<RefCell<ThreadRngInner>>,
+}
+
+/// Retrieve the lazily-initialized thread-local random number
+/// generator, seeded by the system. Intended to be used in method
+/// chaining style, e.g. `thread_rng().gen::<i32>()`.
+///
+/// After generating a certain amount of randomness, the RNG will reseed itself
+/// from the operating system or, if the operating system RNG returns an error,
+/// a seed based on the current system time.
+///
+/// The internal RNG used is platform and architecture dependent, even
+/// if the operating system random number generator is rigged to give
+/// the same sequence always. If absolute consistency is required,
+/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
+#[cfg(feature="std")]
+pub fn thread_rng() -> ThreadRng {
+ // used to make space in TLS for a random number generator
+ thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
+ let r = match StdRng::new() {
+ Ok(r) => r,
+ Err(e) => panic!("No entropy available: {}", e),
+ };
+ let rng = reseeding::ReseedingRng::new(r,
+ THREAD_RNG_RESEED_THRESHOLD,
+ ThreadRngReseeder);
+ Rc::new(RefCell::new(rng))
+ });
+
+ ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
+}
+
+#[cfg(feature="std")]
+impl Rng for ThreadRng {
+ fn next_u32(&mut self) -> u32 {
+ self.rng.borrow_mut().next_u32()
+ }
+
+ fn next_u64(&mut self) -> u64 {
+ self.rng.borrow_mut().next_u64()
+ }
+
+ #[inline]
+ fn fill_bytes(&mut self, bytes: &mut [u8]) {
+ self.rng.borrow_mut().fill_bytes(bytes)
+ }
+}
+
+/// Generates a random value using the thread-local random number generator.
+///
+/// `random()` can generate various types of random things, and so may require
+/// type hinting to generate the specific type you want.
+///
+/// This function uses the thread local random number generator. This means
+/// that if you're calling `random()` in a loop, caching the generator can
+/// increase performance. An example is shown below.
+///
+/// # Examples
+///
+/// ```
+/// let x = rand::random::<u8>();
+/// println!("{}", x);
+///
+/// let y = rand::random::<f64>();
+/// println!("{}", y);
+///
+/// if rand::random() { // generates a boolean
+/// println!("Better lucky than good!");
+/// }
+/// ```
+///
+/// Caching the thread local random number generator:
+///
+/// ```
+/// use rand::Rng;
+///
+/// let mut v = vec![1, 2, 3];
+///
+/// for x in v.iter_mut() {
+/// *x = rand::random()
+/// }
+///
+/// // can be made faster by caching thread_rng
+///
+/// let mut rng = rand::thread_rng();
+///
+/// for x in v.iter_mut() {
+/// *x = rng.gen();
+/// }
+/// ```
+#[cfg(feature="std")]
+#[inline]
+pub fn random<T: Rand>() -> T {
+ thread_rng().gen()
+}
+
+/// DEPRECATED: use `seq::sample_iter` instead.
+///
+/// Randomly sample up to `amount` elements from a finite iterator.
+/// The order of elements in the sample is not random.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::{thread_rng, sample};
+///
+/// let mut rng = thread_rng();
+/// let sample = sample(&mut rng, 1..100, 5);
+/// println!("{:?}", sample);
+/// ```
+#[cfg(feature="std")]
+#[inline(always)]
+#[deprecated(since="0.4.0", note="renamed to seq::sample_iter")]
+pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T>
+ where I: IntoIterator<Item=T>,
+ R: Rng,
+{
+ // the legacy sample didn't care whether amount was met
+ seq::sample_iter(rng, iterable, amount)
+ .unwrap_or_else(|e| e)
+}
+
+#[cfg(test)]
+mod test {
+ use super::{Rng, thread_rng, random, SeedableRng, StdRng, weak_rng};
+ use std::iter::repeat;
+
+ pub struct MyRng<R> { inner: R }
+
+ impl<R: Rng> Rng for MyRng<R> {
+ fn next_u32(&mut self) -> u32 {
+ fn next<T: Rng>(t: &mut T) -> u32 {
+ t.next_u32()
+ }
+ next(&mut self.inner)
+ }
+ }
+
+ pub fn rng() -> MyRng<::ThreadRng> {
+ MyRng { inner: ::thread_rng() }
+ }
+
+ struct ConstRng { i: u64 }
+ impl Rng for ConstRng {
+ fn next_u32(&mut self) -> u32 { self.i as u32 }
+ fn next_u64(&mut self) -> u64 { self.i }
+
+ // no fill_bytes on purpose
+ }
+
+ pub fn iter_eq<I, J>(i: I, j: J) -> bool
+ where I: IntoIterator,
+ J: IntoIterator<Item=I::Item>,
+ I::Item: Eq
+ {
+ // make sure the iterators have equal length
+ let mut i = i.into_iter();
+ let mut j = j.into_iter();
+ loop {
+ match (i.next(), j.next()) {
+ (Some(ref ei), Some(ref ej)) if ei == ej => { }
+ (None, None) => return true,
+ _ => return false,
+ }
+ }
+ }
+
+ #[test]
+ fn test_fill_bytes_default() {
+ let mut r = ConstRng { i: 0x11_22_33_44_55_66_77_88 };
+
+ // check every remainder mod 8, both in small and big vectors.
+ let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
+ 80, 81, 82, 83, 84, 85, 86, 87];
+ for &n in lengths.iter() {
+ let mut v = repeat(0u8).take(n).collect::<Vec<_>>();
+ r.fill_bytes(&mut v);
+
+ // use this to get nicer error messages.
+ for (i, &byte) in v.iter().enumerate() {
+ if byte == 0 {
+ panic!("byte {} of {} is zero", i, n)
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_gen_range() {
+ let mut r = thread_rng();
+ for _ in 0..1000 {
+ let a = r.gen_range(-3, 42);
+ assert!(a >= -3 && a < 42);
+ assert_eq!(r.gen_range(0, 1), 0);
+ assert_eq!(r.gen_range(-12, -11), -12);
+ }
+
+ for _ in 0..1000 {
+ let a = r.gen_range(10, 42);
+ assert!(a >= 10 && a < 42);
+ assert_eq!(r.gen_range(0, 1), 0);
+ assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
+ }
+
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gen_range_panic_int() {
+ let mut r = thread_rng();
+ r.gen_range(5, -2);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gen_range_panic_usize() {
+ let mut r = thread_rng();
+ r.gen_range(5, 2);
+ }
+
+ #[test]
+ fn test_gen_weighted_bool() {
+ let mut r = thread_rng();
+ assert_eq!(r.gen_weighted_bool(0), true);
+ assert_eq!(r.gen_weighted_bool(1), true);
+ }
+
+ #[test]
+ fn test_gen_ascii_str() {
+ let mut r = thread_rng();
+ assert_eq!(r.gen_ascii_chars().take(0).count(), 0);
+ assert_eq!(r.gen_ascii_chars().take(10).count(), 10);
+ assert_eq!(r.gen_ascii_chars().take(16).count(), 16);
+ }
+
+ #[test]
+ fn test_gen_vec() {
+ let mut r = thread_rng();
+ assert_eq!(r.gen_iter::<u8>().take(0).count(), 0);
+ assert_eq!(r.gen_iter::<u8>().take(10).count(), 10);
+ assert_eq!(r.gen_iter::<f64>().take(16).count(), 16);
+ }
+
+ #[test]
+ fn test_choose() {
+ let mut r = thread_rng();
+ assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1));
+
+ let v: &[isize] = &[];
+ assert_eq!(r.choose(v), None);
+ }
+
+ #[test]
+ fn test_shuffle() {
+ let mut r = thread_rng();
+ let empty: &mut [isize] = &mut [];
+ r.shuffle(empty);
+ let mut one = [1];
+ r.shuffle(&mut one);
+ let b: &[_] = &[1];
+ assert_eq!(one, b);
+
+ let mut two = [1, 2];
+ r.shuffle(&mut two);
+ assert!(two == [1, 2] || two == [2, 1]);
+
+ let mut x = [1, 1, 1];
+ r.shuffle(&mut x);
+ let b: &[_] = &[1, 1, 1];
+ assert_eq!(x, b);
+ }
+
+ #[test]
+ fn test_thread_rng() {
+ let mut r = thread_rng();
+ r.gen::<i32>();
+ let mut v = [1, 1, 1];
+ r.shuffle(&mut v);
+ let b: &[_] = &[1, 1, 1];
+ assert_eq!(v, b);
+ assert_eq!(r.gen_range(0, 1), 0);
+ }
+
+ #[test]
+ fn test_rng_trait_object() {
+ let mut rng = thread_rng();
+ {
+ let mut r = &mut rng as &mut Rng;
+ r.next_u32();
+ (&mut r).gen::<i32>();
+ let mut v = [1, 1, 1];
+ (&mut r).shuffle(&mut v);
+ let b: &[_] = &[1, 1, 1];
+ assert_eq!(v, b);
+ assert_eq!((&mut r).gen_range(0, 1), 0);
+ }
+ {
+ let mut r = Box::new(rng) as Box<Rng>;
+ r.next_u32();
+ r.gen::<i32>();
+ let mut v = [1, 1, 1];
+ r.shuffle(&mut v);
+ let b: &[_] = &[1, 1, 1];
+ assert_eq!(v, b);
+ assert_eq!(r.gen_range(0, 1), 0);
+ }
+ }
+
+ #[test]
+ fn test_random() {
+ // not sure how to test this aside from just getting some values
+ let _n : usize = random();
+ let _f : f32 = random();
+ let _o : Option<Option<i8>> = random();
+ let _many : ((),
+ (usize,
+ isize,
+ Option<(u32, (bool,))>),
+ (u8, i8, u16, i16, u32, i32, u64, i64),
+ (f32, (f64, (f64,)))) = random();
+ }
+
+ #[test]
+ fn test_std_rng_seeded() {
+ let s = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
+ let mut ra: StdRng = SeedableRng::from_seed(&s[..]);
+ let mut rb: StdRng = SeedableRng::from_seed(&s[..]);
+ assert!(iter_eq(ra.gen_ascii_chars().take(100),
+ rb.gen_ascii_chars().take(100)));
+ }
+
+ #[test]
+ fn test_std_rng_reseed() {
+ let s = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
+ let mut r: StdRng = SeedableRng::from_seed(&s[..]);
+ let string1 = r.gen_ascii_chars().take(100).collect::<String>();
+
+ r.reseed(&s);
+
+ let string2 = r.gen_ascii_chars().take(100).collect::<String>();
+ assert_eq!(string1, string2);
+ }
+
+ #[test]
+ fn test_weak_rng() {
+ let s = weak_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
+ let mut ra: StdRng = SeedableRng::from_seed(&s[..]);
+ let mut rb: StdRng = SeedableRng::from_seed(&s[..]);
+ assert!(iter_eq(ra.gen_ascii_chars().take(100),
+ rb.gen_ascii_chars().take(100)));
+ }
+}