summaryrefslogtreecommitdiff
path: root/vendor/rayon-core/src/registry.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/rayon-core/src/registry.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/rayon-core/src/registry.rs')
-rw-r--r--vendor/rayon-core/src/registry.rs995
1 files changed, 995 insertions, 0 deletions
diff --git a/vendor/rayon-core/src/registry.rs b/vendor/rayon-core/src/registry.rs
new file mode 100644
index 0000000..e4f2ac7
--- /dev/null
+++ b/vendor/rayon-core/src/registry.rs
@@ -0,0 +1,995 @@
+use crate::job::{JobFifo, JobRef, StackJob};
+use crate::latch::{AsCoreLatch, CoreLatch, Latch, LatchRef, LockLatch, OnceLatch, SpinLatch};
+use crate::sleep::Sleep;
+use crate::unwind;
+use crate::{
+ ErrorKind, ExitHandler, PanicHandler, StartHandler, ThreadPoolBuildError, ThreadPoolBuilder,
+ Yield,
+};
+use crossbeam_deque::{Injector, Steal, Stealer, Worker};
+use std::cell::Cell;
+use std::collections::hash_map::DefaultHasher;
+use std::fmt;
+use std::hash::Hasher;
+use std::io;
+use std::mem;
+use std::ptr;
+use std::sync::atomic::{AtomicUsize, Ordering};
+use std::sync::{Arc, Mutex, Once};
+use std::thread;
+use std::usize;
+
+/// Thread builder used for customization via
+/// [`ThreadPoolBuilder::spawn_handler`](struct.ThreadPoolBuilder.html#method.spawn_handler).
+pub struct ThreadBuilder {
+ name: Option<String>,
+ stack_size: Option<usize>,
+ worker: Worker<JobRef>,
+ stealer: Stealer<JobRef>,
+ registry: Arc<Registry>,
+ index: usize,
+}
+
+impl ThreadBuilder {
+ /// Gets the index of this thread in the pool, within `0..num_threads`.
+ pub fn index(&self) -> usize {
+ self.index
+ }
+
+ /// Gets the string that was specified by `ThreadPoolBuilder::name()`.
+ pub fn name(&self) -> Option<&str> {
+ self.name.as_deref()
+ }
+
+ /// Gets the value that was specified by `ThreadPoolBuilder::stack_size()`.
+ pub fn stack_size(&self) -> Option<usize> {
+ self.stack_size
+ }
+
+ /// Executes the main loop for this thread. This will not return until the
+ /// thread pool is dropped.
+ pub fn run(self) {
+ unsafe { main_loop(self) }
+ }
+}
+
+impl fmt::Debug for ThreadBuilder {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("ThreadBuilder")
+ .field("pool", &self.registry.id())
+ .field("index", &self.index)
+ .field("name", &self.name)
+ .field("stack_size", &self.stack_size)
+ .finish()
+ }
+}
+
+/// Generalized trait for spawning a thread in the `Registry`.
+///
+/// This trait is pub-in-private -- E0445 forces us to make it public,
+/// but we don't actually want to expose these details in the API.
+pub trait ThreadSpawn {
+ private_decl! {}
+
+ /// Spawn a thread with the `ThreadBuilder` parameters, and then
+ /// call `ThreadBuilder::run()`.
+ fn spawn(&mut self, thread: ThreadBuilder) -> io::Result<()>;
+}
+
+/// Spawns a thread in the "normal" way with `std::thread::Builder`.
+///
+/// This type is pub-in-private -- E0445 forces us to make it public,
+/// but we don't actually want to expose these details in the API.
+#[derive(Debug, Default)]
+pub struct DefaultSpawn;
+
+impl ThreadSpawn for DefaultSpawn {
+ private_impl! {}
+
+ fn spawn(&mut self, thread: ThreadBuilder) -> io::Result<()> {
+ let mut b = thread::Builder::new();
+ if let Some(name) = thread.name() {
+ b = b.name(name.to_owned());
+ }
+ if let Some(stack_size) = thread.stack_size() {
+ b = b.stack_size(stack_size);
+ }
+ b.spawn(|| thread.run())?;
+ Ok(())
+ }
+}
+
+/// Spawns a thread with a user's custom callback.
+///
+/// This type is pub-in-private -- E0445 forces us to make it public,
+/// but we don't actually want to expose these details in the API.
+#[derive(Debug)]
+pub struct CustomSpawn<F>(F);
+
+impl<F> CustomSpawn<F>
+where
+ F: FnMut(ThreadBuilder) -> io::Result<()>,
+{
+ pub(super) fn new(spawn: F) -> Self {
+ CustomSpawn(spawn)
+ }
+}
+
+impl<F> ThreadSpawn for CustomSpawn<F>
+where
+ F: FnMut(ThreadBuilder) -> io::Result<()>,
+{
+ private_impl! {}
+
+ #[inline]
+ fn spawn(&mut self, thread: ThreadBuilder) -> io::Result<()> {
+ (self.0)(thread)
+ }
+}
+
+pub(super) struct Registry {
+ thread_infos: Vec<ThreadInfo>,
+ sleep: Sleep,
+ injected_jobs: Injector<JobRef>,
+ broadcasts: Mutex<Vec<Worker<JobRef>>>,
+ panic_handler: Option<Box<PanicHandler>>,
+ start_handler: Option<Box<StartHandler>>,
+ exit_handler: Option<Box<ExitHandler>>,
+
+ // When this latch reaches 0, it means that all work on this
+ // registry must be complete. This is ensured in the following ways:
+ //
+ // - if this is the global registry, there is a ref-count that never
+ // gets released.
+ // - if this is a user-created thread-pool, then so long as the thread-pool
+ // exists, it holds a reference.
+ // - when we inject a "blocking job" into the registry with `ThreadPool::install()`,
+ // no adjustment is needed; the `ThreadPool` holds the reference, and since we won't
+ // return until the blocking job is complete, that ref will continue to be held.
+ // - when `join()` or `scope()` is invoked, similarly, no adjustments are needed.
+ // These are always owned by some other job (e.g., one injected by `ThreadPool::install()`)
+ // and that job will keep the pool alive.
+ terminate_count: AtomicUsize,
+}
+
+/// ////////////////////////////////////////////////////////////////////////
+/// Initialization
+
+static mut THE_REGISTRY: Option<Arc<Registry>> = None;
+static THE_REGISTRY_SET: Once = Once::new();
+
+/// Starts the worker threads (if that has not already happened). If
+/// initialization has not already occurred, use the default
+/// configuration.
+pub(super) fn global_registry() -> &'static Arc<Registry> {
+ set_global_registry(default_global_registry)
+ .or_else(|err| unsafe { THE_REGISTRY.as_ref().ok_or(err) })
+ .expect("The global thread pool has not been initialized.")
+}
+
+/// Starts the worker threads (if that has not already happened) with
+/// the given builder.
+pub(super) fn init_global_registry<S>(
+ builder: ThreadPoolBuilder<S>,
+) -> Result<&'static Arc<Registry>, ThreadPoolBuildError>
+where
+ S: ThreadSpawn,
+{
+ set_global_registry(|| Registry::new(builder))
+}
+
+/// Starts the worker threads (if that has not already happened)
+/// by creating a registry with the given callback.
+fn set_global_registry<F>(registry: F) -> Result<&'static Arc<Registry>, ThreadPoolBuildError>
+where
+ F: FnOnce() -> Result<Arc<Registry>, ThreadPoolBuildError>,
+{
+ let mut result = Err(ThreadPoolBuildError::new(
+ ErrorKind::GlobalPoolAlreadyInitialized,
+ ));
+
+ THE_REGISTRY_SET.call_once(|| {
+ result = registry()
+ .map(|registry: Arc<Registry>| unsafe { &*THE_REGISTRY.get_or_insert(registry) })
+ });
+
+ result
+}
+
+fn default_global_registry() -> Result<Arc<Registry>, ThreadPoolBuildError> {
+ let result = Registry::new(ThreadPoolBuilder::new());
+
+ // If we're running in an environment that doesn't support threads at all, we can fall back to
+ // using the current thread alone. This is crude, and probably won't work for non-blocking
+ // calls like `spawn` or `broadcast_spawn`, but a lot of stuff does work fine.
+ //
+ // Notably, this allows current WebAssembly targets to work even though their threading support
+ // is stubbed out, and we won't have to change anything if they do add real threading.
+ let unsupported = matches!(&result, Err(e) if e.is_unsupported());
+ if unsupported && WorkerThread::current().is_null() {
+ let builder = ThreadPoolBuilder::new().num_threads(1).use_current_thread();
+ let fallback_result = Registry::new(builder);
+ if fallback_result.is_ok() {
+ return fallback_result;
+ }
+ }
+
+ result
+}
+
+struct Terminator<'a>(&'a Arc<Registry>);
+
+impl<'a> Drop for Terminator<'a> {
+ fn drop(&mut self) {
+ self.0.terminate()
+ }
+}
+
+impl Registry {
+ pub(super) fn new<S>(
+ mut builder: ThreadPoolBuilder<S>,
+ ) -> Result<Arc<Self>, ThreadPoolBuildError>
+ where
+ S: ThreadSpawn,
+ {
+ // Soft-limit the number of threads that we can actually support.
+ let n_threads = Ord::min(builder.get_num_threads(), crate::max_num_threads());
+
+ let breadth_first = builder.get_breadth_first();
+
+ let (workers, stealers): (Vec<_>, Vec<_>) = (0..n_threads)
+ .map(|_| {
+ let worker = if breadth_first {
+ Worker::new_fifo()
+ } else {
+ Worker::new_lifo()
+ };
+
+ let stealer = worker.stealer();
+ (worker, stealer)
+ })
+ .unzip();
+
+ let (broadcasts, broadcast_stealers): (Vec<_>, Vec<_>) = (0..n_threads)
+ .map(|_| {
+ let worker = Worker::new_fifo();
+ let stealer = worker.stealer();
+ (worker, stealer)
+ })
+ .unzip();
+
+ let registry = Arc::new(Registry {
+ thread_infos: stealers.into_iter().map(ThreadInfo::new).collect(),
+ sleep: Sleep::new(n_threads),
+ injected_jobs: Injector::new(),
+ broadcasts: Mutex::new(broadcasts),
+ terminate_count: AtomicUsize::new(1),
+ panic_handler: builder.take_panic_handler(),
+ start_handler: builder.take_start_handler(),
+ exit_handler: builder.take_exit_handler(),
+ });
+
+ // If we return early or panic, make sure to terminate existing threads.
+ let t1000 = Terminator(&registry);
+
+ for (index, (worker, stealer)) in workers.into_iter().zip(broadcast_stealers).enumerate() {
+ let thread = ThreadBuilder {
+ name: builder.get_thread_name(index),
+ stack_size: builder.get_stack_size(),
+ registry: Arc::clone(&registry),
+ worker,
+ stealer,
+ index,
+ };
+
+ if index == 0 && builder.use_current_thread {
+ if !WorkerThread::current().is_null() {
+ return Err(ThreadPoolBuildError::new(
+ ErrorKind::CurrentThreadAlreadyInPool,
+ ));
+ }
+ // Rather than starting a new thread, we're just taking over the current thread
+ // *without* running the main loop, so we can still return from here.
+ // The WorkerThread is leaked, but we never shutdown the global pool anyway.
+ let worker_thread = Box::into_raw(Box::new(WorkerThread::from(thread)));
+
+ unsafe {
+ WorkerThread::set_current(worker_thread);
+ Latch::set(&registry.thread_infos[index].primed);
+ }
+ continue;
+ }
+
+ if let Err(e) = builder.get_spawn_handler().spawn(thread) {
+ return Err(ThreadPoolBuildError::new(ErrorKind::IOError(e)));
+ }
+ }
+
+ // Returning normally now, without termination.
+ mem::forget(t1000);
+
+ Ok(registry)
+ }
+
+ pub(super) fn current() -> Arc<Registry> {
+ unsafe {
+ let worker_thread = WorkerThread::current();
+ let registry = if worker_thread.is_null() {
+ global_registry()
+ } else {
+ &(*worker_thread).registry
+ };
+ Arc::clone(registry)
+ }
+ }
+
+ /// Returns the number of threads in the current registry. This
+ /// is better than `Registry::current().num_threads()` because it
+ /// avoids incrementing the `Arc`.
+ pub(super) fn current_num_threads() -> usize {
+ unsafe {
+ let worker_thread = WorkerThread::current();
+ if worker_thread.is_null() {
+ global_registry().num_threads()
+ } else {
+ (*worker_thread).registry.num_threads()
+ }
+ }
+ }
+
+ /// Returns the current `WorkerThread` if it's part of this `Registry`.
+ pub(super) fn current_thread(&self) -> Option<&WorkerThread> {
+ unsafe {
+ let worker = WorkerThread::current().as_ref()?;
+ if worker.registry().id() == self.id() {
+ Some(worker)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Returns an opaque identifier for this registry.
+ pub(super) fn id(&self) -> RegistryId {
+ // We can rely on `self` not to change since we only ever create
+ // registries that are boxed up in an `Arc` (see `new()` above).
+ RegistryId {
+ addr: self as *const Self as usize,
+ }
+ }
+
+ pub(super) fn num_threads(&self) -> usize {
+ self.thread_infos.len()
+ }
+
+ pub(super) fn catch_unwind(&self, f: impl FnOnce()) {
+ if let Err(err) = unwind::halt_unwinding(f) {
+ // If there is no handler, or if that handler itself panics, then we abort.
+ let abort_guard = unwind::AbortIfPanic;
+ if let Some(ref handler) = self.panic_handler {
+ handler(err);
+ mem::forget(abort_guard);
+ }
+ }
+ }
+
+ /// Waits for the worker threads to get up and running. This is
+ /// meant to be used for benchmarking purposes, primarily, so that
+ /// you can get more consistent numbers by having everything
+ /// "ready to go".
+ pub(super) fn wait_until_primed(&self) {
+ for info in &self.thread_infos {
+ info.primed.wait();
+ }
+ }
+
+ /// Waits for the worker threads to stop. This is used for testing
+ /// -- so we can check that termination actually works.
+ #[cfg(test)]
+ pub(super) fn wait_until_stopped(&self) {
+ for info in &self.thread_infos {
+ info.stopped.wait();
+ }
+ }
+
+ /// ////////////////////////////////////////////////////////////////////////
+ /// MAIN LOOP
+ ///
+ /// So long as all of the worker threads are hanging out in their
+ /// top-level loop, there is no work to be done.
+
+ /// Push a job into the given `registry`. If we are running on a
+ /// worker thread for the registry, this will push onto the
+ /// deque. Else, it will inject from the outside (which is slower).
+ pub(super) fn inject_or_push(&self, job_ref: JobRef) {
+ let worker_thread = WorkerThread::current();
+ unsafe {
+ if !worker_thread.is_null() && (*worker_thread).registry().id() == self.id() {
+ (*worker_thread).push(job_ref);
+ } else {
+ self.inject(job_ref);
+ }
+ }
+ }
+
+ /// Push a job into the "external jobs" queue; it will be taken by
+ /// whatever worker has nothing to do. Use this if you know that
+ /// you are not on a worker of this registry.
+ pub(super) fn inject(&self, injected_job: JobRef) {
+ // It should not be possible for `state.terminate` to be true
+ // here. It is only set to true when the user creates (and
+ // drops) a `ThreadPool`; and, in that case, they cannot be
+ // calling `inject()` later, since they dropped their
+ // `ThreadPool`.
+ debug_assert_ne!(
+ self.terminate_count.load(Ordering::Acquire),
+ 0,
+ "inject() sees state.terminate as true"
+ );
+
+ let queue_was_empty = self.injected_jobs.is_empty();
+
+ self.injected_jobs.push(injected_job);
+ self.sleep.new_injected_jobs(1, queue_was_empty);
+ }
+
+ fn has_injected_job(&self) -> bool {
+ !self.injected_jobs.is_empty()
+ }
+
+ fn pop_injected_job(&self) -> Option<JobRef> {
+ loop {
+ match self.injected_jobs.steal() {
+ Steal::Success(job) => return Some(job),
+ Steal::Empty => return None,
+ Steal::Retry => {}
+ }
+ }
+ }
+
+ /// Push a job into each thread's own "external jobs" queue; it will be
+ /// executed only on that thread, when it has nothing else to do locally,
+ /// before it tries to steal other work.
+ ///
+ /// **Panics** if not given exactly as many jobs as there are threads.
+ pub(super) fn inject_broadcast(&self, injected_jobs: impl ExactSizeIterator<Item = JobRef>) {
+ assert_eq!(self.num_threads(), injected_jobs.len());
+ {
+ let broadcasts = self.broadcasts.lock().unwrap();
+
+ // It should not be possible for `state.terminate` to be true
+ // here. It is only set to true when the user creates (and
+ // drops) a `ThreadPool`; and, in that case, they cannot be
+ // calling `inject_broadcast()` later, since they dropped their
+ // `ThreadPool`.
+ debug_assert_ne!(
+ self.terminate_count.load(Ordering::Acquire),
+ 0,
+ "inject_broadcast() sees state.terminate as true"
+ );
+
+ assert_eq!(broadcasts.len(), injected_jobs.len());
+ for (worker, job_ref) in broadcasts.iter().zip(injected_jobs) {
+ worker.push(job_ref);
+ }
+ }
+ for i in 0..self.num_threads() {
+ self.sleep.notify_worker_latch_is_set(i);
+ }
+ }
+
+ /// If already in a worker-thread of this registry, just execute `op`.
+ /// Otherwise, inject `op` in this thread-pool. Either way, block until `op`
+ /// completes and return its return value. If `op` panics, that panic will
+ /// be propagated as well. The second argument indicates `true` if injection
+ /// was performed, `false` if executed directly.
+ pub(super) fn in_worker<OP, R>(&self, op: OP) -> R
+ where
+ OP: FnOnce(&WorkerThread, bool) -> R + Send,
+ R: Send,
+ {
+ unsafe {
+ let worker_thread = WorkerThread::current();
+ if worker_thread.is_null() {
+ self.in_worker_cold(op)
+ } else if (*worker_thread).registry().id() != self.id() {
+ self.in_worker_cross(&*worker_thread, op)
+ } else {
+ // Perfectly valid to give them a `&T`: this is the
+ // current thread, so we know the data structure won't be
+ // invalidated until we return.
+ op(&*worker_thread, false)
+ }
+ }
+ }
+
+ #[cold]
+ unsafe fn in_worker_cold<OP, R>(&self, op: OP) -> R
+ where
+ OP: FnOnce(&WorkerThread, bool) -> R + Send,
+ R: Send,
+ {
+ thread_local!(static LOCK_LATCH: LockLatch = LockLatch::new());
+
+ LOCK_LATCH.with(|l| {
+ // This thread isn't a member of *any* thread pool, so just block.
+ debug_assert!(WorkerThread::current().is_null());
+ let job = StackJob::new(
+ |injected| {
+ let worker_thread = WorkerThread::current();
+ assert!(injected && !worker_thread.is_null());
+ op(&*worker_thread, true)
+ },
+ LatchRef::new(l),
+ );
+ self.inject(job.as_job_ref());
+ job.latch.wait_and_reset(); // Make sure we can use the same latch again next time.
+
+ job.into_result()
+ })
+ }
+
+ #[cold]
+ unsafe fn in_worker_cross<OP, R>(&self, current_thread: &WorkerThread, op: OP) -> R
+ where
+ OP: FnOnce(&WorkerThread, bool) -> R + Send,
+ R: Send,
+ {
+ // This thread is a member of a different pool, so let it process
+ // other work while waiting for this `op` to complete.
+ debug_assert!(current_thread.registry().id() != self.id());
+ let latch = SpinLatch::cross(current_thread);
+ let job = StackJob::new(
+ |injected| {
+ let worker_thread = WorkerThread::current();
+ assert!(injected && !worker_thread.is_null());
+ op(&*worker_thread, true)
+ },
+ latch,
+ );
+ self.inject(job.as_job_ref());
+ current_thread.wait_until(&job.latch);
+ job.into_result()
+ }
+
+ /// Increments the terminate counter. This increment should be
+ /// balanced by a call to `terminate`, which will decrement. This
+ /// is used when spawning asynchronous work, which needs to
+ /// prevent the registry from terminating so long as it is active.
+ ///
+ /// Note that blocking functions such as `join` and `scope` do not
+ /// need to concern themselves with this fn; their context is
+ /// responsible for ensuring the current thread-pool will not
+ /// terminate until they return.
+ ///
+ /// The global thread-pool always has an outstanding reference
+ /// (the initial one). Custom thread-pools have one outstanding
+ /// reference that is dropped when the `ThreadPool` is dropped:
+ /// since installing the thread-pool blocks until any joins/scopes
+ /// complete, this ensures that joins/scopes are covered.
+ ///
+ /// The exception is `::spawn()`, which can create a job outside
+ /// of any blocking scope. In that case, the job itself holds a
+ /// terminate count and is responsible for invoking `terminate()`
+ /// when finished.
+ pub(super) fn increment_terminate_count(&self) {
+ let previous = self.terminate_count.fetch_add(1, Ordering::AcqRel);
+ debug_assert!(previous != 0, "registry ref count incremented from zero");
+ assert!(
+ previous != std::usize::MAX,
+ "overflow in registry ref count"
+ );
+ }
+
+ /// Signals that the thread-pool which owns this registry has been
+ /// dropped. The worker threads will gradually terminate, once any
+ /// extant work is completed.
+ pub(super) fn terminate(&self) {
+ if self.terminate_count.fetch_sub(1, Ordering::AcqRel) == 1 {
+ for (i, thread_info) in self.thread_infos.iter().enumerate() {
+ unsafe { OnceLatch::set_and_tickle_one(&thread_info.terminate, self, i) };
+ }
+ }
+ }
+
+ /// Notify the worker that the latch they are sleeping on has been "set".
+ pub(super) fn notify_worker_latch_is_set(&self, target_worker_index: usize) {
+ self.sleep.notify_worker_latch_is_set(target_worker_index);
+ }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
+pub(super) struct RegistryId {
+ addr: usize,
+}
+
+struct ThreadInfo {
+ /// Latch set once thread has started and we are entering into the
+ /// main loop. Used to wait for worker threads to become primed,
+ /// primarily of interest for benchmarking.
+ primed: LockLatch,
+
+ /// Latch is set once worker thread has completed. Used to wait
+ /// until workers have stopped; only used for tests.
+ stopped: LockLatch,
+
+ /// The latch used to signal that terminated has been requested.
+ /// This latch is *set* by the `terminate` method on the
+ /// `Registry`, once the registry's main "terminate" counter
+ /// reaches zero.
+ terminate: OnceLatch,
+
+ /// the "stealer" half of the worker's deque
+ stealer: Stealer<JobRef>,
+}
+
+impl ThreadInfo {
+ fn new(stealer: Stealer<JobRef>) -> ThreadInfo {
+ ThreadInfo {
+ primed: LockLatch::new(),
+ stopped: LockLatch::new(),
+ terminate: OnceLatch::new(),
+ stealer,
+ }
+ }
+}
+
+/// ////////////////////////////////////////////////////////////////////////
+/// WorkerThread identifiers
+
+pub(super) struct WorkerThread {
+ /// the "worker" half of our local deque
+ worker: Worker<JobRef>,
+
+ /// the "stealer" half of the worker's broadcast deque
+ stealer: Stealer<JobRef>,
+
+ /// local queue used for `spawn_fifo` indirection
+ fifo: JobFifo,
+
+ index: usize,
+
+ /// A weak random number generator.
+ rng: XorShift64Star,
+
+ registry: Arc<Registry>,
+}
+
+// This is a bit sketchy, but basically: the WorkerThread is
+// allocated on the stack of the worker on entry and stored into this
+// thread local variable. So it will remain valid at least until the
+// worker is fully unwound. Using an unsafe pointer avoids the need
+// for a RefCell<T> etc.
+thread_local! {
+ static WORKER_THREAD_STATE: Cell<*const WorkerThread> = const { Cell::new(ptr::null()) };
+}
+
+impl From<ThreadBuilder> for WorkerThread {
+ fn from(thread: ThreadBuilder) -> Self {
+ Self {
+ worker: thread.worker,
+ stealer: thread.stealer,
+ fifo: JobFifo::new(),
+ index: thread.index,
+ rng: XorShift64Star::new(),
+ registry: thread.registry,
+ }
+ }
+}
+
+impl Drop for WorkerThread {
+ fn drop(&mut self) {
+ // Undo `set_current`
+ WORKER_THREAD_STATE.with(|t| {
+ assert!(t.get().eq(&(self as *const _)));
+ t.set(ptr::null());
+ });
+ }
+}
+
+impl WorkerThread {
+ /// Gets the `WorkerThread` index for the current thread; returns
+ /// NULL if this is not a worker thread. This pointer is valid
+ /// anywhere on the current thread.
+ #[inline]
+ pub(super) fn current() -> *const WorkerThread {
+ WORKER_THREAD_STATE.with(Cell::get)
+ }
+
+ /// Sets `self` as the worker thread index for the current thread.
+ /// This is done during worker thread startup.
+ unsafe fn set_current(thread: *const WorkerThread) {
+ WORKER_THREAD_STATE.with(|t| {
+ assert!(t.get().is_null());
+ t.set(thread);
+ });
+ }
+
+ /// Returns the registry that owns this worker thread.
+ #[inline]
+ pub(super) fn registry(&self) -> &Arc<Registry> {
+ &self.registry
+ }
+
+ /// Our index amongst the worker threads (ranges from `0..self.num_threads()`).
+ #[inline]
+ pub(super) fn index(&self) -> usize {
+ self.index
+ }
+
+ #[inline]
+ pub(super) unsafe fn push(&self, job: JobRef) {
+ let queue_was_empty = self.worker.is_empty();
+ self.worker.push(job);
+ self.registry.sleep.new_internal_jobs(1, queue_was_empty);
+ }
+
+ #[inline]
+ pub(super) unsafe fn push_fifo(&self, job: JobRef) {
+ self.push(self.fifo.push(job));
+ }
+
+ #[inline]
+ pub(super) fn local_deque_is_empty(&self) -> bool {
+ self.worker.is_empty()
+ }
+
+ /// Attempts to obtain a "local" job -- typically this means
+ /// popping from the top of the stack, though if we are configured
+ /// for breadth-first execution, it would mean dequeuing from the
+ /// bottom.
+ #[inline]
+ pub(super) fn take_local_job(&self) -> Option<JobRef> {
+ let popped_job = self.worker.pop();
+
+ if popped_job.is_some() {
+ return popped_job;
+ }
+
+ loop {
+ match self.stealer.steal() {
+ Steal::Success(job) => return Some(job),
+ Steal::Empty => return None,
+ Steal::Retry => {}
+ }
+ }
+ }
+
+ fn has_injected_job(&self) -> bool {
+ !self.stealer.is_empty() || self.registry.has_injected_job()
+ }
+
+ /// Wait until the latch is set. Try to keep busy by popping and
+ /// stealing tasks as necessary.
+ #[inline]
+ pub(super) unsafe fn wait_until<L: AsCoreLatch + ?Sized>(&self, latch: &L) {
+ let latch = latch.as_core_latch();
+ if !latch.probe() {
+ self.wait_until_cold(latch);
+ }
+ }
+
+ #[cold]
+ unsafe fn wait_until_cold(&self, latch: &CoreLatch) {
+ // the code below should swallow all panics and hence never
+ // unwind; but if something does wrong, we want to abort,
+ // because otherwise other code in rayon may assume that the
+ // latch has been signaled, and that can lead to random memory
+ // accesses, which would be *very bad*
+ let abort_guard = unwind::AbortIfPanic;
+
+ 'outer: while !latch.probe() {
+ // Check for local work *before* we start marking ourself idle,
+ // especially to avoid modifying shared sleep state.
+ if let Some(job) = self.take_local_job() {
+ self.execute(job);
+ continue;
+ }
+
+ let mut idle_state = self.registry.sleep.start_looking(self.index);
+ while !latch.probe() {
+ if let Some(job) = self.find_work() {
+ self.registry.sleep.work_found();
+ self.execute(job);
+ // The job might have injected local work, so go back to the outer loop.
+ continue 'outer;
+ } else {
+ self.registry
+ .sleep
+ .no_work_found(&mut idle_state, latch, || self.has_injected_job())
+ }
+ }
+
+ // If we were sleepy, we are not anymore. We "found work" --
+ // whatever the surrounding thread was doing before it had to wait.
+ self.registry.sleep.work_found();
+ break;
+ }
+
+ mem::forget(abort_guard); // successful execution, do not abort
+ }
+
+ unsafe fn wait_until_out_of_work(&self) {
+ debug_assert_eq!(self as *const _, WorkerThread::current());
+ let registry = &*self.registry;
+ let index = self.index;
+
+ self.wait_until(&registry.thread_infos[index].terminate);
+
+ // Should not be any work left in our queue.
+ debug_assert!(self.take_local_job().is_none());
+
+ // Let registry know we are done
+ Latch::set(&registry.thread_infos[index].stopped);
+ }
+
+ fn find_work(&self) -> Option<JobRef> {
+ // Try to find some work to do. We give preference first
+ // to things in our local deque, then in other workers
+ // deques, and finally to injected jobs from the
+ // outside. The idea is to finish what we started before
+ // we take on something new.
+ self.take_local_job()
+ .or_else(|| self.steal())
+ .or_else(|| self.registry.pop_injected_job())
+ }
+
+ pub(super) fn yield_now(&self) -> Yield {
+ match self.find_work() {
+ Some(job) => unsafe {
+ self.execute(job);
+ Yield::Executed
+ },
+ None => Yield::Idle,
+ }
+ }
+
+ pub(super) fn yield_local(&self) -> Yield {
+ match self.take_local_job() {
+ Some(job) => unsafe {
+ self.execute(job);
+ Yield::Executed
+ },
+ None => Yield::Idle,
+ }
+ }
+
+ #[inline]
+ pub(super) unsafe fn execute(&self, job: JobRef) {
+ job.execute();
+ }
+
+ /// Try to steal a single job and return it.
+ ///
+ /// This should only be done as a last resort, when there is no
+ /// local work to do.
+ fn steal(&self) -> Option<JobRef> {
+ // we only steal when we don't have any work to do locally
+ debug_assert!(self.local_deque_is_empty());
+
+ // otherwise, try to steal
+ let thread_infos = &self.registry.thread_infos.as_slice();
+ let num_threads = thread_infos.len();
+ if num_threads <= 1 {
+ return None;
+ }
+
+ loop {
+ let mut retry = false;
+ let start = self.rng.next_usize(num_threads);
+ let job = (start..num_threads)
+ .chain(0..start)
+ .filter(move |&i| i != self.index)
+ .find_map(|victim_index| {
+ let victim = &thread_infos[victim_index];
+ match victim.stealer.steal() {
+ Steal::Success(job) => Some(job),
+ Steal::Empty => None,
+ Steal::Retry => {
+ retry = true;
+ None
+ }
+ }
+ });
+ if job.is_some() || !retry {
+ return job;
+ }
+ }
+ }
+}
+
+/// ////////////////////////////////////////////////////////////////////////
+
+unsafe fn main_loop(thread: ThreadBuilder) {
+ let worker_thread = &WorkerThread::from(thread);
+ WorkerThread::set_current(worker_thread);
+ let registry = &*worker_thread.registry;
+ let index = worker_thread.index;
+
+ // let registry know we are ready to do work
+ Latch::set(&registry.thread_infos[index].primed);
+
+ // Worker threads should not panic. If they do, just abort, as the
+ // internal state of the threadpool is corrupted. Note that if
+ // **user code** panics, we should catch that and redirect.
+ let abort_guard = unwind::AbortIfPanic;
+
+ // Inform a user callback that we started a thread.
+ if let Some(ref handler) = registry.start_handler {
+ registry.catch_unwind(|| handler(index));
+ }
+
+ worker_thread.wait_until_out_of_work();
+
+ // Normal termination, do not abort.
+ mem::forget(abort_guard);
+
+ // Inform a user callback that we exited a thread.
+ if let Some(ref handler) = registry.exit_handler {
+ registry.catch_unwind(|| handler(index));
+ // We're already exiting the thread, there's nothing else to do.
+ }
+}
+
+/// If already in a worker-thread, just execute `op`. Otherwise,
+/// execute `op` in the default thread-pool. Either way, block until
+/// `op` completes and return its return value. If `op` panics, that
+/// panic will be propagated as well. The second argument indicates
+/// `true` if injection was performed, `false` if executed directly.
+pub(super) fn in_worker<OP, R>(op: OP) -> R
+where
+ OP: FnOnce(&WorkerThread, bool) -> R + Send,
+ R: Send,
+{
+ unsafe {
+ let owner_thread = WorkerThread::current();
+ if !owner_thread.is_null() {
+ // Perfectly valid to give them a `&T`: this is the
+ // current thread, so we know the data structure won't be
+ // invalidated until we return.
+ op(&*owner_thread, false)
+ } else {
+ global_registry().in_worker(op)
+ }
+ }
+}
+
+/// [xorshift*] is a fast pseudorandom number generator which will
+/// even tolerate weak seeding, as long as it's not zero.
+///
+/// [xorshift*]: https://en.wikipedia.org/wiki/Xorshift#xorshift*
+struct XorShift64Star {
+ state: Cell<u64>,
+}
+
+impl XorShift64Star {
+ fn new() -> Self {
+ // Any non-zero seed will do -- this uses the hash of a global counter.
+ let mut seed = 0;
+ while seed == 0 {
+ let mut hasher = DefaultHasher::new();
+ static COUNTER: AtomicUsize = AtomicUsize::new(0);
+ hasher.write_usize(COUNTER.fetch_add(1, Ordering::Relaxed));
+ seed = hasher.finish();
+ }
+
+ XorShift64Star {
+ state: Cell::new(seed),
+ }
+ }
+
+ fn next(&self) -> u64 {
+ let mut x = self.state.get();
+ debug_assert_ne!(x, 0);
+ x ^= x >> 12;
+ x ^= x << 25;
+ x ^= x >> 27;
+ self.state.set(x);
+ x.wrapping_mul(0x2545_f491_4f6c_dd1d)
+ }
+
+ /// Return a value from `0..n`.
+ fn next_usize(&self, n: usize) -> usize {
+ (self.next() % n as u64) as usize
+ }
+}