diff options
author | Valentin Popov <valentin@popov.link> | 2024-01-08 00:21:28 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-01-08 00:21:28 +0300 |
commit | 1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch) | |
tree | 7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/serde_json/src/lexical/errors.rs | |
parent | 5ecd8cf2cba827454317368b68571df0d13d7842 (diff) | |
download | fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip |
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/serde_json/src/lexical/errors.rs')
-rw-r--r-- | vendor/serde_json/src/lexical/errors.rs | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/vendor/serde_json/src/lexical/errors.rs b/vendor/serde_json/src/lexical/errors.rs new file mode 100644 index 0000000..f4f41cd --- /dev/null +++ b/vendor/serde_json/src/lexical/errors.rs @@ -0,0 +1,132 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Estimate the error in an 80-bit approximation of a float. +//! +//! This estimates the error in a floating-point representation. +//! +//! This implementation is loosely based off the Golang implementation, +//! found here: <https://golang.org/src/strconv/atof.go> + +use super::float::*; +use super::num::*; +use super::rounding::*; + +pub(crate) trait FloatErrors { + /// Get the full error scale. + fn error_scale() -> u32; + /// Get the half error scale. + fn error_halfscale() -> u32; + /// Determine if the number of errors is tolerable for float precision. + fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool; +} + +/// Check if the error is accurate with a round-nearest rounding scheme. +#[inline] +fn nearest_error_is_accurate(errors: u64, fp: &ExtendedFloat, extrabits: u64) -> bool { + // Round-to-nearest, need to use the halfway point. + if extrabits == 65 { + // Underflow, we have a shift larger than the mantissa. + // Representation is valid **only** if the value is close enough + // overflow to the next bit within errors. If it overflows, + // the representation is **not** valid. + !fp.mant.overflowing_add(errors).1 + } else { + let mask: u64 = lower_n_mask(extrabits); + let extra: u64 = fp.mant & mask; + + // Round-to-nearest, need to check if we're close to halfway. + // IE, b10100 | 100000, where `|` signifies the truncation point. + let halfway: u64 = lower_n_halfway(extrabits); + let cmp1 = halfway.wrapping_sub(errors) < extra; + let cmp2 = extra < halfway.wrapping_add(errors); + + // If both comparisons are true, we have significant rounding error, + // and the value cannot be exactly represented. Otherwise, the + // representation is valid. + !(cmp1 && cmp2) + } +} + +impl FloatErrors for u64 { + #[inline] + fn error_scale() -> u32 { + 8 + } + + #[inline] + fn error_halfscale() -> u32 { + u64::error_scale() / 2 + } + + #[inline] + fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool { + // Determine if extended-precision float is a good approximation. + // If the error has affected too many units, the float will be + // inaccurate, or if the representation is too close to halfway + // that any operations could affect this halfway representation. + // See the documentation for dtoa for more information. + let bias = -(F::EXPONENT_BIAS - F::MANTISSA_SIZE); + let denormal_exp = bias - 63; + // This is always a valid u32, since (denormal_exp - fp.exp) + // will always be positive and the significand size is {23, 52}. + let extrabits = if fp.exp <= denormal_exp { + 64 - F::MANTISSA_SIZE + denormal_exp - fp.exp + } else { + 63 - F::MANTISSA_SIZE + }; + + // Our logic is as follows: we want to determine if the actual + // mantissa and the errors during calculation differ significantly + // from the rounding point. The rounding point for round-nearest + // is the halfway point, IE, this when the truncated bits start + // with b1000..., while the rounding point for the round-toward + // is when the truncated bits are equal to 0. + // To do so, we can check whether the rounding point +/- the error + // are >/< the actual lower n bits. + // + // For whether we need to use signed or unsigned types for this + // analysis, see this example, using u8 rather than u64 to simplify + // things. + // + // # Comparisons + // cmp1 = (halfway - errors) < extra + // cmp1 = extra < (halfway + errors) + // + // # Large Extrabits, Low Errors + // + // extrabits = 8 + // halfway = 0b10000000 + // extra = 0b10000010 + // errors = 0b00000100 + // halfway - errors = 0b01111100 + // halfway + errors = 0b10000100 + // + // Unsigned: + // halfway - errors = 124 + // halfway + errors = 132 + // extra = 130 + // cmp1 = true + // cmp2 = true + // Signed: + // halfway - errors = 124 + // halfway + errors = -124 + // extra = -126 + // cmp1 = false + // cmp2 = true + // + // # Conclusion + // + // Since errors will always be small, and since we want to detect + // if the representation is accurate, we need to use an **unsigned** + // type for comparisons. + + let extrabits = extrabits as u64; + let errors = count as u64; + if extrabits > 65 { + // Underflow, we have a literal 0. + return true; + } + + nearest_error_is_accurate(errors, fp, extrabits) + } +} |