aboutsummaryrefslogtreecommitdiff
path: root/vendor/serde_json/src/lexical/errors.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/serde_json/src/lexical/errors.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/serde_json/src/lexical/errors.rs')
-rw-r--r--vendor/serde_json/src/lexical/errors.rs132
1 files changed, 132 insertions, 0 deletions
diff --git a/vendor/serde_json/src/lexical/errors.rs b/vendor/serde_json/src/lexical/errors.rs
new file mode 100644
index 0000000..f4f41cd
--- /dev/null
+++ b/vendor/serde_json/src/lexical/errors.rs
@@ -0,0 +1,132 @@
+// Adapted from https://github.com/Alexhuszagh/rust-lexical.
+
+//! Estimate the error in an 80-bit approximation of a float.
+//!
+//! This estimates the error in a floating-point representation.
+//!
+//! This implementation is loosely based off the Golang implementation,
+//! found here: <https://golang.org/src/strconv/atof.go>
+
+use super::float::*;
+use super::num::*;
+use super::rounding::*;
+
+pub(crate) trait FloatErrors {
+ /// Get the full error scale.
+ fn error_scale() -> u32;
+ /// Get the half error scale.
+ fn error_halfscale() -> u32;
+ /// Determine if the number of errors is tolerable for float precision.
+ fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool;
+}
+
+/// Check if the error is accurate with a round-nearest rounding scheme.
+#[inline]
+fn nearest_error_is_accurate(errors: u64, fp: &ExtendedFloat, extrabits: u64) -> bool {
+ // Round-to-nearest, need to use the halfway point.
+ if extrabits == 65 {
+ // Underflow, we have a shift larger than the mantissa.
+ // Representation is valid **only** if the value is close enough
+ // overflow to the next bit within errors. If it overflows,
+ // the representation is **not** valid.
+ !fp.mant.overflowing_add(errors).1
+ } else {
+ let mask: u64 = lower_n_mask(extrabits);
+ let extra: u64 = fp.mant & mask;
+
+ // Round-to-nearest, need to check if we're close to halfway.
+ // IE, b10100 | 100000, where `|` signifies the truncation point.
+ let halfway: u64 = lower_n_halfway(extrabits);
+ let cmp1 = halfway.wrapping_sub(errors) < extra;
+ let cmp2 = extra < halfway.wrapping_add(errors);
+
+ // If both comparisons are true, we have significant rounding error,
+ // and the value cannot be exactly represented. Otherwise, the
+ // representation is valid.
+ !(cmp1 && cmp2)
+ }
+}
+
+impl FloatErrors for u64 {
+ #[inline]
+ fn error_scale() -> u32 {
+ 8
+ }
+
+ #[inline]
+ fn error_halfscale() -> u32 {
+ u64::error_scale() / 2
+ }
+
+ #[inline]
+ fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool {
+ // Determine if extended-precision float is a good approximation.
+ // If the error has affected too many units, the float will be
+ // inaccurate, or if the representation is too close to halfway
+ // that any operations could affect this halfway representation.
+ // See the documentation for dtoa for more information.
+ let bias = -(F::EXPONENT_BIAS - F::MANTISSA_SIZE);
+ let denormal_exp = bias - 63;
+ // This is always a valid u32, since (denormal_exp - fp.exp)
+ // will always be positive and the significand size is {23, 52}.
+ let extrabits = if fp.exp <= denormal_exp {
+ 64 - F::MANTISSA_SIZE + denormal_exp - fp.exp
+ } else {
+ 63 - F::MANTISSA_SIZE
+ };
+
+ // Our logic is as follows: we want to determine if the actual
+ // mantissa and the errors during calculation differ significantly
+ // from the rounding point. The rounding point for round-nearest
+ // is the halfway point, IE, this when the truncated bits start
+ // with b1000..., while the rounding point for the round-toward
+ // is when the truncated bits are equal to 0.
+ // To do so, we can check whether the rounding point +/- the error
+ // are >/< the actual lower n bits.
+ //
+ // For whether we need to use signed or unsigned types for this
+ // analysis, see this example, using u8 rather than u64 to simplify
+ // things.
+ //
+ // # Comparisons
+ // cmp1 = (halfway - errors) < extra
+ // cmp1 = extra < (halfway + errors)
+ //
+ // # Large Extrabits, Low Errors
+ //
+ // extrabits = 8
+ // halfway = 0b10000000
+ // extra = 0b10000010
+ // errors = 0b00000100
+ // halfway - errors = 0b01111100
+ // halfway + errors = 0b10000100
+ //
+ // Unsigned:
+ // halfway - errors = 124
+ // halfway + errors = 132
+ // extra = 130
+ // cmp1 = true
+ // cmp2 = true
+ // Signed:
+ // halfway - errors = 124
+ // halfway + errors = -124
+ // extra = -126
+ // cmp1 = false
+ // cmp2 = true
+ //
+ // # Conclusion
+ //
+ // Since errors will always be small, and since we want to detect
+ // if the representation is accurate, we need to use an **unsigned**
+ // type for comparisons.
+
+ let extrabits = extrabits as u64;
+ let errors = count as u64;
+ if extrabits > 65 {
+ // Underflow, we have a literal 0.
+ return true;
+ }
+
+ nearest_error_is_accurate(errors, fp, extrabits)
+ }
+}