aboutsummaryrefslogtreecommitdiff
path: root/vendor/serde_json/src/lexical/errors.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/serde_json/src/lexical/errors.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/serde_json/src/lexical/errors.rs')
-rw-r--r--vendor/serde_json/src/lexical/errors.rs132
1 files changed, 0 insertions, 132 deletions
diff --git a/vendor/serde_json/src/lexical/errors.rs b/vendor/serde_json/src/lexical/errors.rs
deleted file mode 100644
index f4f41cd..0000000
--- a/vendor/serde_json/src/lexical/errors.rs
+++ /dev/null
@@ -1,132 +0,0 @@
-// Adapted from https://github.com/Alexhuszagh/rust-lexical.
-
-//! Estimate the error in an 80-bit approximation of a float.
-//!
-//! This estimates the error in a floating-point representation.
-//!
-//! This implementation is loosely based off the Golang implementation,
-//! found here: <https://golang.org/src/strconv/atof.go>
-
-use super::float::*;
-use super::num::*;
-use super::rounding::*;
-
-pub(crate) trait FloatErrors {
- /// Get the full error scale.
- fn error_scale() -> u32;
- /// Get the half error scale.
- fn error_halfscale() -> u32;
- /// Determine if the number of errors is tolerable for float precision.
- fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool;
-}
-
-/// Check if the error is accurate with a round-nearest rounding scheme.
-#[inline]
-fn nearest_error_is_accurate(errors: u64, fp: &ExtendedFloat, extrabits: u64) -> bool {
- // Round-to-nearest, need to use the halfway point.
- if extrabits == 65 {
- // Underflow, we have a shift larger than the mantissa.
- // Representation is valid **only** if the value is close enough
- // overflow to the next bit within errors. If it overflows,
- // the representation is **not** valid.
- !fp.mant.overflowing_add(errors).1
- } else {
- let mask: u64 = lower_n_mask(extrabits);
- let extra: u64 = fp.mant & mask;
-
- // Round-to-nearest, need to check if we're close to halfway.
- // IE, b10100 | 100000, where `|` signifies the truncation point.
- let halfway: u64 = lower_n_halfway(extrabits);
- let cmp1 = halfway.wrapping_sub(errors) < extra;
- let cmp2 = extra < halfway.wrapping_add(errors);
-
- // If both comparisons are true, we have significant rounding error,
- // and the value cannot be exactly represented. Otherwise, the
- // representation is valid.
- !(cmp1 && cmp2)
- }
-}
-
-impl FloatErrors for u64 {
- #[inline]
- fn error_scale() -> u32 {
- 8
- }
-
- #[inline]
- fn error_halfscale() -> u32 {
- u64::error_scale() / 2
- }
-
- #[inline]
- fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool {
- // Determine if extended-precision float is a good approximation.
- // If the error has affected too many units, the float will be
- // inaccurate, or if the representation is too close to halfway
- // that any operations could affect this halfway representation.
- // See the documentation for dtoa for more information.
- let bias = -(F::EXPONENT_BIAS - F::MANTISSA_SIZE);
- let denormal_exp = bias - 63;
- // This is always a valid u32, since (denormal_exp - fp.exp)
- // will always be positive and the significand size is {23, 52}.
- let extrabits = if fp.exp <= denormal_exp {
- 64 - F::MANTISSA_SIZE + denormal_exp - fp.exp
- } else {
- 63 - F::MANTISSA_SIZE
- };
-
- // Our logic is as follows: we want to determine if the actual
- // mantissa and the errors during calculation differ significantly
- // from the rounding point. The rounding point for round-nearest
- // is the halfway point, IE, this when the truncated bits start
- // with b1000..., while the rounding point for the round-toward
- // is when the truncated bits are equal to 0.
- // To do so, we can check whether the rounding point +/- the error
- // are >/< the actual lower n bits.
- //
- // For whether we need to use signed or unsigned types for this
- // analysis, see this example, using u8 rather than u64 to simplify
- // things.
- //
- // # Comparisons
- // cmp1 = (halfway - errors) < extra
- // cmp1 = extra < (halfway + errors)
- //
- // # Large Extrabits, Low Errors
- //
- // extrabits = 8
- // halfway = 0b10000000
- // extra = 0b10000010
- // errors = 0b00000100
- // halfway - errors = 0b01111100
- // halfway + errors = 0b10000100
- //
- // Unsigned:
- // halfway - errors = 124
- // halfway + errors = 132
- // extra = 130
- // cmp1 = true
- // cmp2 = true
- // Signed:
- // halfway - errors = 124
- // halfway + errors = -124
- // extra = -126
- // cmp1 = false
- // cmp2 = true
- //
- // # Conclusion
- //
- // Since errors will always be small, and since we want to detect
- // if the representation is accurate, we need to use an **unsigned**
- // type for comparisons.
-
- let extrabits = extrabits as u64;
- let errors = count as u64;
- if extrabits > 65 {
- // Underflow, we have a literal 0.
- return true;
- }
-
- nearest_error_is_accurate(errors, fp, extrabits)
- }
-}