aboutsummaryrefslogtreecommitdiff
path: root/vendor/smawk/tests/complexity.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/smawk/tests/complexity.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/smawk/tests/complexity.rs')
-rw-r--r--vendor/smawk/tests/complexity.rs83
1 files changed, 83 insertions, 0 deletions
diff --git a/vendor/smawk/tests/complexity.rs b/vendor/smawk/tests/complexity.rs
new file mode 100644
index 0000000..c9881ea
--- /dev/null
+++ b/vendor/smawk/tests/complexity.rs
@@ -0,0 +1,83 @@
+#![cfg(feature = "ndarray")]
+
+use ndarray::{Array1, Array2};
+use rand::SeedableRng;
+use rand_chacha::ChaCha20Rng;
+use smawk::online_column_minima;
+
+mod random_monge;
+use random_monge::random_monge_matrix;
+
+#[derive(Debug)]
+struct LinRegression {
+ alpha: f64,
+ beta: f64,
+ r_squared: f64,
+}
+
+/// Square an expression. Works equally well for floats and matrices.
+macro_rules! squared {
+ ($x:expr) => {
+ $x * $x
+ };
+}
+
+/// Compute the mean of a 1-dimensional array.
+macro_rules! mean {
+ ($a:expr) => {
+ $a.mean().expect("Mean of empty array")
+ };
+}
+
+/// Compute a simple linear regression from the list of values.
+///
+/// See <https://en.wikipedia.org/wiki/Simple_linear_regression>.
+fn linear_regression(values: &[(usize, i32)]) -> LinRegression {
+ let xs = values.iter().map(|&(x, _)| x as f64).collect::<Array1<_>>();
+ let ys = values.iter().map(|&(_, y)| y as f64).collect::<Array1<_>>();
+
+ let xs_mean = mean!(&xs);
+ let ys_mean = mean!(&ys);
+ let xs_ys_mean = mean!(&xs * &ys);
+
+ let cov_xs_ys = ((&xs - xs_mean) * (&ys - ys_mean)).sum();
+ let var_xs = squared!(&xs - xs_mean).sum();
+
+ let beta = cov_xs_ys / var_xs;
+ let alpha = ys_mean - beta * xs_mean;
+ let r_squared = squared!(xs_ys_mean - xs_mean * ys_mean)
+ / ((mean!(&xs * &xs) - squared!(xs_mean)) * (mean!(&ys * &ys) - squared!(ys_mean)));
+
+ LinRegression {
+ alpha: alpha,
+ beta: beta,
+ r_squared: r_squared,
+ }
+}
+
+/// Check that the number of matrix accesses in `online_column_minima`
+/// grows as O(*n*) for *n* ✕ *n* matrix.
+#[test]
+fn online_linear_complexity() {
+ let mut rng = ChaCha20Rng::seed_from_u64(0);
+ let mut data = vec![];
+
+ for &size in &[1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100] {
+ let matrix: Array2<i32> = random_monge_matrix(size, size, &mut rng);
+ let count = std::cell::RefCell::new(0);
+ online_column_minima(0, size, |_, i, j| {
+ *count.borrow_mut() += 1;
+ matrix[[i, j]]
+ });
+ data.push((size, count.into_inner()));
+ }
+
+ let lin_reg = linear_regression(&data);
+ assert!(
+ lin_reg.r_squared > 0.95,
+ "r² = {:.4} is lower than expected for a linear fit\nData points: {:?}\n{:?}",
+ lin_reg.r_squared,
+ data,
+ lin_reg
+ );
+}