summaryrefslogtreecommitdiff
path: root/vendor/spin/src/mutex/spin.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/spin/src/mutex/spin.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/spin/src/mutex/spin.rs')
-rw-r--r--vendor/spin/src/mutex/spin.rs543
1 files changed, 543 insertions, 0 deletions
diff --git a/vendor/spin/src/mutex/spin.rs b/vendor/spin/src/mutex/spin.rs
new file mode 100644
index 0000000..fc97472
--- /dev/null
+++ b/vendor/spin/src/mutex/spin.rs
@@ -0,0 +1,543 @@
+//! A naïve spinning mutex.
+//!
+//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case
+//! latency is theoretically infinite.
+
+use crate::{
+ atomic::{AtomicBool, Ordering},
+ RelaxStrategy, Spin,
+};
+use core::{
+ cell::UnsafeCell,
+ fmt,
+ marker::PhantomData,
+ mem::ManuallyDrop,
+ ops::{Deref, DerefMut},
+};
+
+/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data.
+///
+/// # Example
+///
+/// ```
+/// use spin;
+///
+/// let lock = spin::mutex::SpinMutex::<_>::new(0);
+///
+/// // Modify the data
+/// *lock.lock() = 2;
+///
+/// // Read the data
+/// let answer = *lock.lock();
+/// assert_eq!(answer, 2);
+/// ```
+///
+/// # Thread safety example
+///
+/// ```
+/// use spin;
+/// use std::sync::{Arc, Barrier};
+///
+/// let thread_count = 1000;
+/// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0));
+///
+/// // We use a barrier to ensure the readout happens after all writing
+/// let barrier = Arc::new(Barrier::new(thread_count + 1));
+///
+/// # let mut ts = Vec::new();
+/// for _ in (0..thread_count) {
+/// let my_barrier = barrier.clone();
+/// let my_lock = spin_mutex.clone();
+/// # let t =
+/// std::thread::spawn(move || {
+/// let mut guard = my_lock.lock();
+/// *guard += 1;
+///
+/// // Release the lock to prevent a deadlock
+/// drop(guard);
+/// my_barrier.wait();
+/// });
+/// # ts.push(t);
+/// }
+///
+/// barrier.wait();
+///
+/// let answer = { *spin_mutex.lock() };
+/// assert_eq!(answer, thread_count);
+///
+/// # for t in ts {
+/// # t.join().unwrap();
+/// # }
+/// ```
+pub struct SpinMutex<T: ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ pub(crate) lock: AtomicBool,
+ data: UnsafeCell<T>,
+}
+
+/// A guard that provides mutable data access.
+///
+/// When the guard falls out of scope it will release the lock.
+pub struct SpinMutexGuard<'a, T: ?Sized + 'a> {
+ lock: &'a AtomicBool,
+ data: *mut T,
+}
+
+// Same unsafe impls as `std::sync::Mutex`
+unsafe impl<T: ?Sized + Send, R> Sync for SpinMutex<T, R> {}
+unsafe impl<T: ?Sized + Send, R> Send for SpinMutex<T, R> {}
+
+unsafe impl<T: ?Sized + Sync> Sync for SpinMutexGuard<'_, T> {}
+unsafe impl<T: ?Sized + Send> Send for SpinMutexGuard<'_, T> {}
+
+impl<T, R> SpinMutex<T, R> {
+ /// Creates a new [`SpinMutex`] wrapping the supplied data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use spin::mutex::SpinMutex;
+ ///
+ /// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(());
+ ///
+ /// fn demo() {
+ /// let lock = MUTEX.lock();
+ /// // do something with lock
+ /// drop(lock);
+ /// }
+ /// ```
+ #[inline(always)]
+ pub const fn new(data: T) -> Self {
+ SpinMutex {
+ lock: AtomicBool::new(false),
+ data: UnsafeCell::new(data),
+ phantom: PhantomData,
+ }
+ }
+
+ /// Consumes this [`SpinMutex`] and unwraps the underlying data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ /// assert_eq!(42, lock.into_inner());
+ /// ```
+ #[inline(always)]
+ pub fn into_inner(self) -> T {
+ // We know statically that there are no outstanding references to
+ // `self` so there's no need to lock.
+ let SpinMutex { data, .. } = self;
+ data.into_inner()
+ }
+
+ /// Returns a mutable pointer to the underlying data.
+ ///
+ /// This is mostly meant to be used for applications which require manual unlocking, but where
+ /// storing both the lock and the pointer to the inner data gets inefficient.
+ ///
+ /// # Example
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ ///
+ /// unsafe {
+ /// core::mem::forget(lock.lock());
+ ///
+ /// assert_eq!(lock.as_mut_ptr().read(), 42);
+ /// lock.as_mut_ptr().write(58);
+ ///
+ /// lock.force_unlock();
+ /// }
+ ///
+ /// assert_eq!(*lock.lock(), 58);
+ ///
+ /// ```
+ #[inline(always)]
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.data.get()
+ }
+}
+
+impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R> {
+ /// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data.
+ ///
+ /// The returned value may be dereferenced for data access
+ /// and the lock will be dropped when the guard falls out of scope.
+ ///
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(0);
+ /// {
+ /// let mut data = lock.lock();
+ /// // The lock is now locked and the data can be accessed
+ /// *data += 1;
+ /// // The lock is implicitly dropped at the end of the scope
+ /// }
+ /// ```
+ #[inline(always)]
+ pub fn lock(&self) -> SpinMutexGuard<T> {
+ // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
+ // when called in a loop.
+ while self
+ .lock
+ .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
+ .is_err()
+ {
+ // Wait until the lock looks unlocked before retrying
+ while self.is_locked() {
+ R::relax();
+ }
+ }
+
+ SpinMutexGuard {
+ lock: &self.lock,
+ data: unsafe { &mut *self.data.get() },
+ }
+ }
+}
+
+impl<T: ?Sized, R> SpinMutex<T, R> {
+ /// Returns `true` if the lock is currently held.
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ #[inline(always)]
+ pub fn is_locked(&self) -> bool {
+ self.lock.load(Ordering::Relaxed)
+ }
+
+ /// Force unlock this [`SpinMutex`].
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the lock is not held by the current
+ /// thread. However, this can be useful in some instances for exposing the
+ /// lock to FFI that doesn't know how to deal with RAII.
+ #[inline(always)]
+ pub unsafe fn force_unlock(&self) {
+ self.lock.store(false, Ordering::Release);
+ }
+
+ /// Try to lock this [`SpinMutex`], returning a lock guard if successful.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ ///
+ /// let maybe_guard = lock.try_lock();
+ /// assert!(maybe_guard.is_some());
+ ///
+ /// // `maybe_guard` is still held, so the second call fails
+ /// let maybe_guard2 = lock.try_lock();
+ /// assert!(maybe_guard2.is_none());
+ /// ```
+ #[inline(always)]
+ pub fn try_lock(&self) -> Option<SpinMutexGuard<T>> {
+ // The reason for using a strong compare_exchange is explained here:
+ // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
+ if self
+ .lock
+ .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ Some(SpinMutexGuard {
+ lock: &self.lock,
+ data: unsafe { &mut *self.data.get() },
+ })
+ } else {
+ None
+ }
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
+ /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
+ /// such, this is a 'zero-cost' operation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let mut lock = spin::mutex::SpinMutex::<_>::new(0);
+ /// *lock.get_mut() = 10;
+ /// assert_eq!(*lock.lock(), 10);
+ /// ```
+ #[inline(always)]
+ pub fn get_mut(&mut self) -> &mut T {
+ // We know statically that there are no other references to `self`, so
+ // there's no need to lock the inner mutex.
+ unsafe { &mut *self.data.get() }
+ }
+}
+
+impl<T: ?Sized + fmt::Debug, R> fmt::Debug for SpinMutex<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.try_lock() {
+ Some(guard) => write!(f, "Mutex {{ data: ")
+ .and_then(|()| (&*guard).fmt(f))
+ .and_then(|()| write!(f, "}}")),
+ None => write!(f, "Mutex {{ <locked> }}"),
+ }
+ }
+}
+
+impl<T: ?Sized + Default, R> Default for SpinMutex<T, R> {
+ fn default() -> Self {
+ Self::new(Default::default())
+ }
+}
+
+impl<T, R> From<T> for SpinMutex<T, R> {
+ fn from(data: T) -> Self {
+ Self::new(data)
+ }
+}
+
+impl<'a, T: ?Sized> SpinMutexGuard<'a, T> {
+ /// Leak the lock guard, yielding a mutable reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original [`SpinMutex`].
+ ///
+ /// ```
+ /// let mylock = spin::mutex::SpinMutex::<_>::new(0);
+ ///
+ /// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock());
+ ///
+ /// *data = 1;
+ /// assert_eq!(*data, 1);
+ /// ```
+ #[inline(always)]
+ pub fn leak(this: Self) -> &'a mut T {
+ // Use ManuallyDrop to avoid stacked-borrow invalidation
+ let mut this = ManuallyDrop::new(this);
+ // We know statically that only we are referencing data
+ unsafe { &mut *this.data }
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ // We know statically that only we are referencing data
+ unsafe { &*self.data }
+ }
+}
+
+impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ // We know statically that only we are referencing data
+ unsafe { &mut *self.data }
+ }
+}
+
+impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> {
+ /// The dropping of the MutexGuard will release the lock it was created from.
+ fn drop(&mut self) {
+ self.lock.store(false, Ordering::Release);
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for SpinMutex<(), R> {
+ type GuardMarker = lock_api_crate::GuardSend;
+
+ const INIT: Self = Self::new(());
+
+ fn lock(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(Self::lock(self));
+ }
+
+ fn try_lock(&self) -> bool {
+ // Prevent guard destructor running
+ Self::try_lock(self).map(core::mem::forget).is_some()
+ }
+
+ unsafe fn unlock(&self) {
+ self.force_unlock();
+ }
+
+ fn is_locked(&self) -> bool {
+ Self::is_locked(self)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ type SpinMutex<T> = super::SpinMutex<T>;
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let m = SpinMutex::<_>::new(());
+ drop(m.lock());
+ drop(m.lock());
+ }
+
+ #[test]
+ fn lots_and_lots() {
+ static M: SpinMutex<()> = SpinMutex::<_>::new(());
+ static mut CNT: u32 = 0;
+ const J: u32 = 1000;
+ const K: u32 = 3;
+
+ fn inc() {
+ for _ in 0..J {
+ unsafe {
+ let _g = M.lock();
+ CNT += 1;
+ }
+ }
+ }
+
+ let (tx, rx) = channel();
+ let mut ts = Vec::new();
+ for _ in 0..K {
+ let tx2 = tx.clone();
+ ts.push(thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ }));
+ let tx2 = tx.clone();
+ ts.push(thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ }));
+ }
+
+ drop(tx);
+ for _ in 0..2 * K {
+ rx.recv().unwrap();
+ }
+ assert_eq!(unsafe { CNT }, J * K * 2);
+
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn try_lock() {
+ let mutex = SpinMutex::<_>::new(42);
+
+ // First lock succeeds
+ let a = mutex.try_lock();
+ assert_eq!(a.as_ref().map(|r| **r), Some(42));
+
+ // Additional lock fails
+ let b = mutex.try_lock();
+ assert!(b.is_none());
+
+ // After dropping lock, it succeeds again
+ ::core::mem::drop(a);
+ let c = mutex.try_lock();
+ assert_eq!(c.as_ref().map(|r| **r), Some(42));
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = SpinMutex::<_>::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = SpinMutex::<_>::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_mutex_arc_nested() {
+ // Tests nested mutexes and access
+ // to underlying data.
+ let arc = Arc::new(SpinMutex::<_>::new(1));
+ let arc2 = Arc::new(SpinMutex::<_>::new(arc));
+ let (tx, rx) = channel();
+ let t = thread::spawn(move || {
+ let lock = arc2.lock();
+ let lock2 = lock.lock();
+ assert_eq!(*lock2, 1);
+ tx.send(()).unwrap();
+ });
+ rx.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_mutex_arc_access_in_unwind() {
+ let arc = Arc::new(SpinMutex::<_>::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || -> () {
+ struct Unwinder {
+ i: Arc<SpinMutex<i32>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ *self.i.lock() += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.lock();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_mutex_unsized() {
+ let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]);
+ {
+ let b = &mut *mutex.lock();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*mutex.lock(), comp);
+ }
+
+ #[test]
+ fn test_mutex_force_lock() {
+ let lock = SpinMutex::<_>::new(());
+ ::std::mem::forget(lock.lock());
+ unsafe {
+ lock.force_unlock();
+ }
+ assert!(lock.try_lock().is_some());
+ }
+}