aboutsummaryrefslogtreecommitdiff
path: root/vendor/strsim/src/lib.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/strsim/src/lib.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/strsim/src/lib.rs')
-rw-r--r--vendor/strsim/src/lib.rs1307
1 files changed, 1307 insertions, 0 deletions
diff --git a/vendor/strsim/src/lib.rs b/vendor/strsim/src/lib.rs
new file mode 100644
index 0000000..8118277
--- /dev/null
+++ b/vendor/strsim/src/lib.rs
@@ -0,0 +1,1307 @@
+//! This library implements string similarity metrics.
+
+#![forbid(unsafe_code)]
+#![allow(
+ // these casts are sometimes needed. They restrict the length of input iterators
+ // but there isn't really any way around this except for always working with
+ // 128 bit types
+ clippy::cast_possible_wrap,
+ clippy::cast_sign_loss,
+ clippy::cast_precision_loss,
+ // not practical
+ clippy::needless_pass_by_value,
+ clippy::similar_names,
+ // noisy
+ clippy::missing_errors_doc,
+ clippy::missing_panics_doc,
+ clippy::must_use_candidate,
+ // todo https://github.com/rapidfuzz/strsim-rs/issues/59
+ clippy::range_plus_one
+)]
+
+use std::char;
+use std::cmp::{max, min};
+use std::collections::HashMap;
+use std::convert::TryFrom;
+use std::error::Error;
+use std::fmt::{self, Display, Formatter};
+use std::hash::Hash;
+use std::mem;
+use std::str::Chars;
+
+#[derive(Debug, PartialEq)]
+pub enum StrSimError {
+ DifferentLengthArgs,
+}
+
+impl Display for StrSimError {
+ fn fmt(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
+ let text = match self {
+ StrSimError::DifferentLengthArgs => "Differing length arguments provided",
+ };
+
+ write!(fmt, "{text}")
+ }
+}
+
+impl Error for StrSimError {}
+
+pub type HammingResult = Result<usize, StrSimError>;
+
+/// Calculates the number of positions in the two sequences where the elements
+/// differ. Returns an error if the sequences have different lengths.
+pub fn generic_hamming<Iter1, Iter2, Elem1, Elem2>(a: Iter1, b: Iter2) -> HammingResult
+where
+ Iter1: IntoIterator<Item = Elem1>,
+ Iter2: IntoIterator<Item = Elem2>,
+ Elem1: PartialEq<Elem2>,
+{
+ let (mut ita, mut itb) = (a.into_iter(), b.into_iter());
+ let mut count = 0;
+ loop {
+ match (ita.next(), itb.next()) {
+ (Some(x), Some(y)) => {
+ if x != y {
+ count += 1;
+ }
+ }
+ (None, None) => return Ok(count),
+ _ => return Err(StrSimError::DifferentLengthArgs),
+ }
+ }
+}
+
+/// Calculates the number of positions in the two strings where the characters
+/// differ. Returns an error if the strings have different lengths.
+///
+/// ```
+/// use strsim::{hamming, StrSimError::DifferentLengthArgs};
+///
+/// assert_eq!(Ok(3), hamming("hamming", "hammers"));
+///
+/// assert_eq!(Err(DifferentLengthArgs), hamming("hamming", "ham"));
+/// ```
+pub fn hamming(a: &str, b: &str) -> HammingResult {
+ generic_hamming(a.chars(), b.chars())
+}
+
+/// Calculates the Jaro similarity between two sequences. The returned value
+/// is between 0.0 and 1.0 (higher value means more similar).
+pub fn generic_jaro<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> f64
+where
+ &'a Iter1: IntoIterator<Item = Elem1>,
+ &'b Iter2: IntoIterator<Item = Elem2>,
+ Elem1: PartialEq<Elem2>,
+{
+ let a_len = a.into_iter().count();
+ let b_len = b.into_iter().count();
+
+ if a_len == 0 && b_len == 0 {
+ return 1.0;
+ } else if a_len == 0 || b_len == 0 {
+ return 0.0;
+ }
+
+ let mut search_range = max(a_len, b_len) / 2;
+ search_range = search_range.saturating_sub(1);
+
+ // combine memory allocations to reduce runtime
+ let mut flags_memory = vec![false; a_len + b_len];
+ let (a_flags, b_flags) = flags_memory.split_at_mut(a_len);
+
+ let mut matches = 0_usize;
+
+ for (i, a_elem) in a.into_iter().enumerate() {
+ // prevent integer wrapping
+ let min_bound = if i > search_range {
+ i - search_range
+ } else {
+ 0
+ };
+
+ let max_bound = min(b_len, i + search_range + 1);
+
+ for (j, b_elem) in b.into_iter().enumerate().take(max_bound) {
+ if min_bound <= j && a_elem == b_elem && !b_flags[j] {
+ a_flags[i] = true;
+ b_flags[j] = true;
+ matches += 1;
+ break;
+ }
+ }
+ }
+
+ let mut transpositions = 0_usize;
+ if matches != 0 {
+ let mut b_iter = b_flags.iter().zip(b);
+ for (a_flag, ch1) in a_flags.iter().zip(a) {
+ if *a_flag {
+ loop {
+ if let Some((b_flag, ch2)) = b_iter.next() {
+ if !*b_flag {
+ continue;
+ }
+
+ if ch1 != ch2 {
+ transpositions += 1;
+ }
+ break;
+ }
+ }
+ }
+ }
+ }
+ transpositions /= 2;
+
+ if matches == 0 {
+ 0.0
+ } else {
+ ((matches as f64 / a_len as f64)
+ + (matches as f64 / b_len as f64)
+ + ((matches - transpositions) as f64 / matches as f64))
+ / 3.0
+ }
+}
+
+struct StringWrapper<'a>(&'a str);
+
+impl<'a, 'b> IntoIterator for &'a StringWrapper<'b> {
+ type Item = char;
+ type IntoIter = Chars<'b>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.0.chars()
+ }
+}
+
+/// Calculates the Jaro similarity between two strings. The returned value
+/// is between 0.0 and 1.0 (higher value means more similar).
+///
+/// ```
+/// use strsim::jaro;
+///
+/// assert!((0.392 - jaro("Friedrich Nietzsche", "Jean-Paul Sartre")).abs() <
+/// 0.001);
+/// ```
+pub fn jaro(a: &str, b: &str) -> f64 {
+ generic_jaro(&StringWrapper(a), &StringWrapper(b))
+}
+
+/// Like Jaro but gives a boost to sequences that have a common prefix.
+pub fn generic_jaro_winkler<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> f64
+where
+ &'a Iter1: IntoIterator<Item = Elem1>,
+ &'b Iter2: IntoIterator<Item = Elem2>,
+ Elem1: PartialEq<Elem2>,
+{
+ let sim = generic_jaro(a, b);
+
+ if sim > 0.7 {
+ let prefix_length = a
+ .into_iter()
+ .take(4)
+ .zip(b)
+ .take_while(|(a_elem, b_elem)| a_elem == b_elem)
+ .count();
+
+ sim + 0.1 * prefix_length as f64 * (1.0 - sim)
+ } else {
+ sim
+ }
+}
+
+/// Like Jaro but gives a boost to strings that have a common prefix.
+///
+/// ```
+/// use strsim::jaro_winkler;
+///
+/// assert!((0.866 - jaro_winkler("cheeseburger", "cheese fries")).abs() <
+/// 0.001);
+/// ```
+pub fn jaro_winkler(a: &str, b: &str) -> f64 {
+ generic_jaro_winkler(&StringWrapper(a), &StringWrapper(b))
+}
+
+/// Calculates the minimum number of insertions, deletions, and substitutions
+/// required to change one sequence into the other.
+///
+/// ```
+/// use strsim::generic_levenshtein;
+///
+/// assert_eq!(3, generic_levenshtein(&[1,2,3], &[1,2,3,4,5,6]));
+/// ```
+pub fn generic_levenshtein<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> usize
+where
+ &'a Iter1: IntoIterator<Item = Elem1>,
+ &'b Iter2: IntoIterator<Item = Elem2>,
+ Elem1: PartialEq<Elem2>,
+{
+ let b_len = b.into_iter().count();
+
+ let mut cache: Vec<usize> = (1..b_len + 1).collect();
+
+ let mut result = b_len;
+
+ for (i, a_elem) in a.into_iter().enumerate() {
+ result = i + 1;
+ let mut distance_b = i;
+
+ for (j, b_elem) in b.into_iter().enumerate() {
+ let cost = usize::from(a_elem != b_elem);
+ let distance_a = distance_b + cost;
+ distance_b = cache[j];
+ result = min(result + 1, min(distance_a, distance_b + 1));
+ cache[j] = result;
+ }
+ }
+
+ result
+}
+
+/// Calculates the minimum number of insertions, deletions, and substitutions
+/// required to change one string into the other.
+///
+/// ```
+/// use strsim::levenshtein;
+///
+/// assert_eq!(3, levenshtein("kitten", "sitting"));
+/// ```
+pub fn levenshtein(a: &str, b: &str) -> usize {
+ generic_levenshtein(&StringWrapper(a), &StringWrapper(b))
+}
+
+/// Calculates a normalized score of the Levenshtein algorithm between 0.0 and
+/// 1.0 (inclusive), where 1.0 means the strings are the same.
+///
+/// ```
+/// use strsim::normalized_levenshtein;
+///
+/// assert!((normalized_levenshtein("kitten", "sitting") - 0.57142).abs() < 0.00001);
+/// assert!((normalized_levenshtein("", "") - 1.0).abs() < 0.00001);
+/// assert!(normalized_levenshtein("", "second").abs() < 0.00001);
+/// assert!(normalized_levenshtein("first", "").abs() < 0.00001);
+/// assert!((normalized_levenshtein("string", "string") - 1.0).abs() < 0.00001);
+/// ```
+pub fn normalized_levenshtein(a: &str, b: &str) -> f64 {
+ if a.is_empty() && b.is_empty() {
+ return 1.0;
+ }
+ 1.0 - (levenshtein(a, b) as f64) / (a.chars().count().max(b.chars().count()) as f64)
+}
+
+/// Like Levenshtein but allows for adjacent transpositions. Each substring can
+/// only be edited once.
+///
+/// ```
+/// use strsim::osa_distance;
+///
+/// assert_eq!(3, osa_distance("ab", "bca"));
+/// ```
+pub fn osa_distance(a: &str, b: &str) -> usize {
+ let b_len = b.chars().count();
+ // 0..=b_len behaves like 0..b_len.saturating_add(1) which could be a different size
+ // this leads to significantly worse code gen when swapping the vectors below
+ let mut prev_two_distances: Vec<usize> = (0..b_len + 1).collect();
+ let mut prev_distances: Vec<usize> = (0..b_len + 1).collect();
+ let mut curr_distances: Vec<usize> = vec![0; b_len + 1];
+
+ let mut prev_a_char = char::MAX;
+ let mut prev_b_char = char::MAX;
+
+ for (i, a_char) in a.chars().enumerate() {
+ curr_distances[0] = i + 1;
+
+ for (j, b_char) in b.chars().enumerate() {
+ let cost = usize::from(a_char != b_char);
+ curr_distances[j + 1] = min(
+ curr_distances[j] + 1,
+ min(prev_distances[j + 1] + 1, prev_distances[j] + cost),
+ );
+ if i > 0 && j > 0 && a_char != b_char && a_char == prev_b_char && b_char == prev_a_char
+ {
+ curr_distances[j + 1] = min(curr_distances[j + 1], prev_two_distances[j - 1] + 1);
+ }
+
+ prev_b_char = b_char;
+ }
+
+ mem::swap(&mut prev_two_distances, &mut prev_distances);
+ mem::swap(&mut prev_distances, &mut curr_distances);
+ prev_a_char = a_char;
+ }
+
+ // access prev_distances instead of curr_distances since we swapped
+ // them above. In case a is empty this would still contain the correct value
+ // from initializing the last element to b_len
+ prev_distances[b_len]
+}
+
+/* Returns the final index for a value in a single vector that represents a fixed
+2d grid */
+fn flat_index(i: usize, j: usize, width: usize) -> usize {
+ j * width + i
+}
+
+/// Like optimal string alignment, but substrings can be edited an unlimited
+/// number of times, and the triangle inequality holds.
+///
+/// ```
+/// use strsim::generic_damerau_levenshtein;
+///
+/// assert_eq!(2, generic_damerau_levenshtein(&[1,2], &[2,3,1]));
+/// ```
+pub fn generic_damerau_levenshtein<Elem>(a_elems: &[Elem], b_elems: &[Elem]) -> usize
+where
+ Elem: Eq + Hash + Clone,
+{
+ let a_len = a_elems.len();
+ let b_len = b_elems.len();
+
+ if a_len == 0 {
+ return b_len;
+ }
+ if b_len == 0 {
+ return a_len;
+ }
+
+ let width = a_len + 2;
+ let mut distances = vec![0; (a_len + 2) * (b_len + 2)];
+ let max_distance = a_len + b_len;
+ distances[0] = max_distance;
+
+ for i in 0..(a_len + 1) {
+ distances[flat_index(i + 1, 0, width)] = max_distance;
+ distances[flat_index(i + 1, 1, width)] = i;
+ }
+
+ for j in 0..(b_len + 1) {
+ distances[flat_index(0, j + 1, width)] = max_distance;
+ distances[flat_index(1, j + 1, width)] = j;
+ }
+
+ let mut elems: HashMap<Elem, usize> = HashMap::with_capacity(64);
+
+ for i in 1..(a_len + 1) {
+ let mut db = 0;
+
+ for j in 1..(b_len + 1) {
+ let k = match elems.get(&b_elems[j - 1]) {
+ Some(&value) => value,
+ None => 0,
+ };
+
+ let insertion_cost = distances[flat_index(i, j + 1, width)] + 1;
+ let deletion_cost = distances[flat_index(i + 1, j, width)] + 1;
+ let transposition_cost =
+ distances[flat_index(k, db, width)] + (i - k - 1) + 1 + (j - db - 1);
+
+ let mut substitution_cost = distances[flat_index(i, j, width)] + 1;
+ if a_elems[i - 1] == b_elems[j - 1] {
+ db = j;
+ substitution_cost -= 1;
+ }
+
+ distances[flat_index(i + 1, j + 1, width)] = min(
+ substitution_cost,
+ min(insertion_cost, min(deletion_cost, transposition_cost)),
+ );
+ }
+
+ elems.insert(a_elems[i - 1].clone(), i);
+ }
+
+ distances[flat_index(a_len + 1, b_len + 1, width)]
+}
+
+#[derive(Clone, Copy, PartialEq, Eq)]
+struct RowId {
+ val: isize,
+}
+
+impl Default for RowId {
+ fn default() -> Self {
+ Self { val: -1 }
+ }
+}
+
+#[derive(Default, Clone)]
+struct GrowingHashmapMapElemChar<ValueType> {
+ key: u32,
+ value: ValueType,
+}
+
+/// specialized hashmap to store user provided types
+/// this implementation relies on a couple of base assumptions in order to simplify the implementation
+/// - the hashmap does not have an upper limit of included items
+/// - the default value for the `ValueType` can be used as a dummy value to indicate an empty cell
+/// - elements can't be removed
+/// - only allocates memory on first write access.
+/// This improves performance for hashmaps that are never written to
+struct GrowingHashmapChar<ValueType> {
+ used: i32,
+ fill: i32,
+ mask: i32,
+ map: Option<Vec<GrowingHashmapMapElemChar<ValueType>>>,
+}
+
+impl<ValueType> Default for GrowingHashmapChar<ValueType>
+where
+ ValueType: Default + Clone + Eq,
+{
+ fn default() -> Self {
+ Self {
+ used: 0,
+ fill: 0,
+ mask: -1,
+ map: None,
+ }
+ }
+}
+
+impl<ValueType> GrowingHashmapChar<ValueType>
+where
+ ValueType: Default + Clone + Eq + Copy,
+{
+ fn get(&self, key: u32) -> ValueType {
+ self.map
+ .as_ref()
+ .map_or_else(|| Default::default(), |map| map[self.lookup(key)].value)
+ }
+
+ fn get_mut(&mut self, key: u32) -> &mut ValueType {
+ if self.map.is_none() {
+ self.allocate();
+ }
+
+ let mut i = self.lookup(key);
+ if self
+ .map
+ .as_ref()
+ .expect("map should have been created above")[i]
+ .value
+ == Default::default()
+ {
+ self.fill += 1;
+ // resize when 2/3 full
+ if self.fill * 3 >= (self.mask + 1) * 2 {
+ self.grow((self.used + 1) * 2);
+ i = self.lookup(key);
+ }
+
+ self.used += 1;
+ }
+
+ let elem = &mut self
+ .map
+ .as_mut()
+ .expect("map should have been created above")[i];
+ elem.key = key;
+ &mut elem.value
+ }
+
+ fn allocate(&mut self) {
+ self.mask = 8 - 1;
+ self.map = Some(vec![GrowingHashmapMapElemChar::default(); 8]);
+ }
+
+ /// lookup key inside the hashmap using a similar collision resolution
+ /// strategy to `CPython` and `Ruby`
+ fn lookup(&self, key: u32) -> usize {
+ let hash = key;
+ let mut i = hash as usize & self.mask as usize;
+
+ let map = self
+ .map
+ .as_ref()
+ .expect("callers have to ensure map is allocated");
+
+ if map[i].value == Default::default() || map[i].key == key {
+ return i;
+ }
+
+ let mut perturb = key;
+ loop {
+ i = (i * 5 + perturb as usize + 1) & self.mask as usize;
+
+ if map[i].value == Default::default() || map[i].key == key {
+ return i;
+ }
+
+ perturb >>= 5;
+ }
+ }
+
+ fn grow(&mut self, min_used: i32) {
+ let mut new_size = self.mask + 1;
+ while new_size <= min_used {
+ new_size <<= 1;
+ }
+
+ self.fill = self.used;
+ self.mask = new_size - 1;
+
+ let old_map = std::mem::replace(
+ self.map
+ .as_mut()
+ .expect("callers have to ensure map is allocated"),
+ vec![GrowingHashmapMapElemChar::<ValueType>::default(); new_size as usize],
+ );
+
+ for elem in old_map {
+ if elem.value != Default::default() {
+ let j = self.lookup(elem.key);
+ let new_elem = &mut self.map.as_mut().expect("map created above")[j];
+ new_elem.key = elem.key;
+ new_elem.value = elem.value;
+ self.used -= 1;
+ if self.used == 0 {
+ break;
+ }
+ }
+ }
+
+ self.used = self.fill;
+ }
+}
+
+struct HybridGrowingHashmapChar<ValueType> {
+ map: GrowingHashmapChar<ValueType>,
+ extended_ascii: [ValueType; 256],
+}
+
+impl<ValueType> HybridGrowingHashmapChar<ValueType>
+where
+ ValueType: Default + Clone + Copy + Eq,
+{
+ fn get(&self, key: char) -> ValueType {
+ let value = key as u32;
+ if value <= 255 {
+ let val_u8 = u8::try_from(value).expect("we check the bounds above");
+ self.extended_ascii[usize::from(val_u8)]
+ } else {
+ self.map.get(value)
+ }
+ }
+
+ fn get_mut(&mut self, key: char) -> &mut ValueType {
+ let value = key as u32;
+ if value <= 255 {
+ let val_u8 = u8::try_from(value).expect("we check the bounds above");
+ &mut self.extended_ascii[usize::from(val_u8)]
+ } else {
+ self.map.get_mut(value)
+ }
+ }
+}
+
+impl<ValueType> Default for HybridGrowingHashmapChar<ValueType>
+where
+ ValueType: Default + Clone + Copy + Eq,
+{
+ fn default() -> Self {
+ HybridGrowingHashmapChar {
+ map: GrowingHashmapChar::default(),
+ extended_ascii: [Default::default(); 256],
+ }
+ }
+}
+
+fn damerau_levenshtein_impl<Iter1, Iter2>(s1: Iter1, len1: usize, s2: Iter2, len2: usize) -> usize
+where
+ Iter1: Iterator<Item = char> + Clone,
+ Iter2: Iterator<Item = char> + Clone,
+{
+ // The implementations is based on the paper
+ // `Linear space string correction algorithm using the Damerau-Levenshtein distance`
+ // from Chunchun Zhao and Sartaj Sahni
+ //
+ // It has a runtime complexity of `O(N*M)` and a memory usage of `O(N+M)`.
+ let max_val = max(len1, len2) as isize + 1;
+
+ let mut last_row_id = HybridGrowingHashmapChar::<RowId>::default();
+
+ let size = len2 + 2;
+ let mut fr = vec![max_val; size];
+ let mut r1 = vec![max_val; size];
+ let mut r: Vec<isize> = (max_val..max_val + 1)
+ .chain(0..(size - 1) as isize)
+ .collect();
+
+ for (i, ch1) in s1.enumerate().map(|(i, ch1)| (i + 1, ch1)) {
+ mem::swap(&mut r, &mut r1);
+ let mut last_col_id: isize = -1;
+ let mut last_i2l1 = r[1];
+ r[1] = i as isize;
+ let mut t = max_val;
+
+ for (j, ch2) in s2.clone().enumerate().map(|(j, ch2)| (j + 1, ch2)) {
+ let diag = r1[j] + isize::from(ch1 != ch2);
+ let left = r[j] + 1;
+ let up = r1[j + 1] + 1;
+ let mut temp = min(diag, min(left, up));
+
+ if ch1 == ch2 {
+ last_col_id = j as isize; // last occurence of s1_i
+ fr[j + 1] = r1[j - 1]; // save H_k-1,j-2
+ t = last_i2l1; // save H_i-2,l-1
+ } else {
+ let k = last_row_id.get(ch2).val;
+ let l = last_col_id;
+
+ if j as isize - l == 1 {
+ let transpose = fr[j + 1] + (i as isize - k);
+ temp = min(temp, transpose);
+ } else if i as isize - k == 1 {
+ let transpose = t + (j as isize - l);
+ temp = min(temp, transpose);
+ }
+ }
+
+ last_i2l1 = r[j + 1];
+ r[j + 1] = temp;
+ }
+ last_row_id.get_mut(ch1).val = i as isize;
+ }
+
+ r[len2 + 1] as usize
+}
+
+/// Like optimal string alignment, but substrings can be edited an unlimited
+/// number of times, and the triangle inequality holds.
+///
+/// ```
+/// use strsim::damerau_levenshtein;
+///
+/// assert_eq!(2, damerau_levenshtein("ab", "bca"));
+/// ```
+pub fn damerau_levenshtein(a: &str, b: &str) -> usize {
+ damerau_levenshtein_impl(a.chars(), a.chars().count(), b.chars(), b.chars().count())
+}
+
+/// Calculates a normalized score of the Damerau–Levenshtein algorithm between
+/// 0.0 and 1.0 (inclusive), where 1.0 means the strings are the same.
+///
+/// ```
+/// use strsim::normalized_damerau_levenshtein;
+///
+/// assert!((normalized_damerau_levenshtein("levenshtein", "löwenbräu") - 0.27272).abs() < 0.00001);
+/// assert!((normalized_damerau_levenshtein("", "") - 1.0).abs() < 0.00001);
+/// assert!(normalized_damerau_levenshtein("", "flower").abs() < 0.00001);
+/// assert!(normalized_damerau_levenshtein("tree", "").abs() < 0.00001);
+/// assert!((normalized_damerau_levenshtein("sunglasses", "sunglasses") - 1.0).abs() < 0.00001);
+/// ```
+pub fn normalized_damerau_levenshtein(a: &str, b: &str) -> f64 {
+ if a.is_empty() && b.is_empty() {
+ return 1.0;
+ }
+
+ let len1 = a.chars().count();
+ let len2 = b.chars().count();
+ let dist = damerau_levenshtein_impl(a.chars(), len1, b.chars(), len2);
+ 1.0 - (dist as f64) / (max(len1, len2) as f64)
+}
+
+/// Returns an Iterator of char tuples.
+fn bigrams(s: &str) -> impl Iterator<Item = (char, char)> + '_ {
+ s.chars().zip(s.chars().skip(1))
+}
+
+/// Calculates a Sørensen-Dice similarity distance using bigrams.
+/// See <https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient>.
+///
+/// ```
+/// use strsim::sorensen_dice;
+///
+/// assert_eq!(1.0, sorensen_dice("", ""));
+/// assert_eq!(0.0, sorensen_dice("", "a"));
+/// assert_eq!(0.0, sorensen_dice("french", "quebec"));
+/// assert_eq!(1.0, sorensen_dice("ferris", "ferris"));
+/// assert_eq!(0.8888888888888888, sorensen_dice("feris", "ferris"));
+/// ```
+pub fn sorensen_dice(a: &str, b: &str) -> f64 {
+ // implementation guided by
+ // https://github.com/aceakash/string-similarity/blob/f83ba3cd7bae874c20c429774e911ae8cff8bced/src/index.js#L6
+
+ let a: String = a.chars().filter(|&x| !char::is_whitespace(x)).collect();
+ let b: String = b.chars().filter(|&x| !char::is_whitespace(x)).collect();
+
+ if a == b {
+ return 1.0;
+ }
+
+ if a.len() < 2 || b.len() < 2 {
+ return 0.0;
+ }
+
+ let mut a_bigrams: HashMap<(char, char), usize> = HashMap::new();
+
+ for bigram in bigrams(&a) {
+ *a_bigrams.entry(bigram).or_insert(0) += 1;
+ }
+
+ let mut intersection_size = 0_usize;
+
+ for bigram in bigrams(&b) {
+ a_bigrams.entry(bigram).and_modify(|bi| {
+ if *bi > 0 {
+ *bi -= 1;
+ intersection_size += 1;
+ }
+ });
+ }
+
+ (2 * intersection_size) as f64 / (a.len() + b.len() - 2) as f64
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ macro_rules! assert_delta {
+ ($x:expr, $y:expr) => {
+ assert_delta!($x, $y, 1e-5);
+ };
+ ($x:expr, $y:expr, $d:expr) => {
+ if ($x - $y).abs() > $d {
+ panic!(
+ "assertion failed: actual: `{}`, expected: `{}`: \
+ actual not within < {} of expected",
+ $x, $y, $d
+ );
+ }
+ };
+ }
+
+ #[test]
+ fn bigrams_iterator() {
+ let mut bi = bigrams("abcde");
+
+ assert_eq!(Some(('a', 'b')), bi.next());
+ assert_eq!(Some(('b', 'c')), bi.next());
+ assert_eq!(Some(('c', 'd')), bi.next());
+ assert_eq!(Some(('d', 'e')), bi.next());
+ assert_eq!(None, bi.next());
+ }
+
+ fn assert_hamming_dist(dist: usize, str1: &str, str2: &str) {
+ assert_eq!(Ok(dist), hamming(str1, str2));
+ }
+
+ #[test]
+ fn hamming_empty() {
+ assert_hamming_dist(0, "", "")
+ }
+
+ #[test]
+ fn hamming_same() {
+ assert_hamming_dist(0, "hamming", "hamming")
+ }
+
+ #[test]
+ fn hamming_numbers() {
+ assert_eq!(Ok(1), generic_hamming(&[1, 2, 4], &[1, 2, 3]));
+ }
+
+ #[test]
+ fn hamming_diff() {
+ assert_hamming_dist(3, "hamming", "hammers")
+ }
+
+ #[test]
+ fn hamming_diff_multibyte() {
+ assert_hamming_dist(2, "hamming", "h香mmüng");
+ }
+
+ #[test]
+ fn hamming_unequal_length() {
+ assert_eq!(
+ Err(StrSimError::DifferentLengthArgs),
+ generic_hamming("ham".chars(), "hamming".chars())
+ );
+ }
+
+ #[test]
+ fn hamming_names() {
+ assert_hamming_dist(14, "Friedrich Nietzs", "Jean-Paul Sartre")
+ }
+
+ #[test]
+ fn jaro_both_empty() {
+ assert_eq!(1.0, jaro("", ""));
+ }
+
+ #[test]
+ fn jaro_first_empty() {
+ assert_eq!(0.0, jaro("", "jaro"));
+ }
+
+ #[test]
+ fn jaro_second_empty() {
+ assert_eq!(0.0, jaro("distance", ""));
+ }
+
+ #[test]
+ fn jaro_same() {
+ assert_eq!(1.0, jaro("jaro", "jaro"));
+ }
+
+ #[test]
+ fn jaro_multibyte() {
+ assert_delta!(0.818, jaro("testabctest", "testöঙ香test"), 0.001);
+ assert_delta!(0.818, jaro("testöঙ香test", "testabctest"), 0.001);
+ }
+
+ #[test]
+ fn jaro_diff_short() {
+ assert_delta!(0.767, jaro("dixon", "dicksonx"), 0.001);
+ }
+
+ #[test]
+ fn jaro_diff_one_character() {
+ assert_eq!(0.0, jaro("a", "b"));
+ }
+
+ #[test]
+ fn jaro_same_one_character() {
+ assert_eq!(1.0, jaro("a", "a"));
+ }
+
+ #[test]
+ fn generic_jaro_diff() {
+ assert_eq!(0.0, generic_jaro(&[1, 2], &[3, 4]));
+ }
+
+ #[test]
+ fn jaro_diff_one_and_two() {
+ assert_delta!(0.83, jaro("a", "ab"), 0.01);
+ }
+
+ #[test]
+ fn jaro_diff_two_and_one() {
+ assert_delta!(0.83, jaro("ab", "a"), 0.01);
+ }
+
+ #[test]
+ fn jaro_diff_no_transposition() {
+ assert_delta!(0.822, jaro("dwayne", "duane"), 0.001);
+ }
+
+ #[test]
+ fn jaro_diff_with_transposition() {
+ assert_delta!(0.944, jaro("martha", "marhta"), 0.001);
+ assert_delta!(0.6, jaro("a jke", "jane a k"), 0.001);
+ }
+
+ #[test]
+ fn jaro_names() {
+ assert_delta!(
+ 0.392,
+ jaro("Friedrich Nietzsche", "Jean-Paul Sartre"),
+ 0.001
+ );
+ }
+
+ #[test]
+ fn jaro_winkler_both_empty() {
+ assert_eq!(1.0, jaro_winkler("", ""));
+ }
+
+ #[test]
+ fn jaro_winkler_first_empty() {
+ assert_eq!(0.0, jaro_winkler("", "jaro-winkler"));
+ }
+
+ #[test]
+ fn jaro_winkler_second_empty() {
+ assert_eq!(0.0, jaro_winkler("distance", ""));
+ }
+
+ #[test]
+ fn jaro_winkler_same() {
+ assert_eq!(1.0, jaro_winkler("Jaro-Winkler", "Jaro-Winkler"));
+ }
+
+ #[test]
+ fn jaro_winkler_multibyte() {
+ assert_delta!(0.89, jaro_winkler("testabctest", "testöঙ香test"), 0.001);
+ assert_delta!(0.89, jaro_winkler("testöঙ香test", "testabctest"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_diff_short() {
+ assert_delta!(0.813, jaro_winkler("dixon", "dicksonx"), 0.001);
+ assert_delta!(0.813, jaro_winkler("dicksonx", "dixon"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_diff_one_character() {
+ assert_eq!(0.0, jaro_winkler("a", "b"));
+ }
+
+ #[test]
+ fn jaro_winkler_same_one_character() {
+ assert_eq!(1.0, jaro_winkler("a", "a"));
+ }
+
+ #[test]
+ fn jaro_winkler_diff_no_transposition() {
+ assert_delta!(0.84, jaro_winkler("dwayne", "duane"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_diff_with_transposition() {
+ assert_delta!(0.961, jaro_winkler("martha", "marhta"), 0.001);
+ assert_delta!(0.6, jaro_winkler("a jke", "jane a k"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_names() {
+ assert_delta!(
+ 0.452,
+ jaro_winkler("Friedrich Nietzsche", "Fran-Paul Sartre"),
+ 0.001
+ );
+ }
+
+ #[test]
+ fn jaro_winkler_long_prefix() {
+ assert_delta!(0.866, jaro_winkler("cheeseburger", "cheese fries"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_more_names() {
+ assert_delta!(0.868, jaro_winkler("Thorkel", "Thorgier"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_length_of_one() {
+ assert_delta!(0.738, jaro_winkler("Dinsdale", "D"), 0.001);
+ }
+
+ #[test]
+ fn jaro_winkler_very_long_prefix() {
+ assert_delta!(
+ 0.98519,
+ jaro_winkler("thequickbrownfoxjumpedoverx", "thequickbrownfoxjumpedovery")
+ );
+ }
+
+ #[test]
+ fn levenshtein_empty() {
+ assert_eq!(0, levenshtein("", ""));
+ }
+
+ #[test]
+ fn levenshtein_same() {
+ assert_eq!(0, levenshtein("levenshtein", "levenshtein"));
+ }
+
+ #[test]
+ fn levenshtein_diff_short() {
+ assert_eq!(3, levenshtein("kitten", "sitting"));
+ }
+
+ #[test]
+ fn levenshtein_diff_with_space() {
+ assert_eq!(5, levenshtein("hello, world", "bye, world"));
+ }
+
+ #[test]
+ fn levenshtein_diff_multibyte() {
+ assert_eq!(3, levenshtein("öঙ香", "abc"));
+ assert_eq!(3, levenshtein("abc", "öঙ香"));
+ }
+
+ #[test]
+ fn levenshtein_diff_longer() {
+ let a = "The quick brown fox jumped over the angry dog.";
+ let b = "Lorem ipsum dolor sit amet, dicta latine an eam.";
+ assert_eq!(37, levenshtein(a, b));
+ }
+
+ #[test]
+ fn levenshtein_first_empty() {
+ assert_eq!(7, levenshtein("", "sitting"));
+ }
+
+ #[test]
+ fn levenshtein_second_empty() {
+ assert_eq!(6, levenshtein("kitten", ""));
+ }
+
+ #[test]
+ fn normalized_levenshtein_diff_short() {
+ assert_delta!(0.57142, normalized_levenshtein("kitten", "sitting"));
+ }
+
+ #[test]
+ fn normalized_levenshtein_for_empty_strings() {
+ assert_delta!(1.0, normalized_levenshtein("", ""));
+ }
+
+ #[test]
+ fn normalized_levenshtein_first_empty() {
+ assert_delta!(0.0, normalized_levenshtein("", "second"));
+ }
+
+ #[test]
+ fn normalized_levenshtein_second_empty() {
+ assert_delta!(0.0, normalized_levenshtein("first", ""));
+ }
+
+ #[test]
+ fn normalized_levenshtein_identical_strings() {
+ assert_delta!(1.0, normalized_levenshtein("identical", "identical"));
+ }
+
+ #[test]
+ fn osa_distance_empty() {
+ assert_eq!(0, osa_distance("", ""));
+ }
+
+ #[test]
+ fn osa_distance_same() {
+ assert_eq!(0, osa_distance("damerau", "damerau"));
+ }
+
+ #[test]
+ fn osa_distance_first_empty() {
+ assert_eq!(7, osa_distance("", "damerau"));
+ }
+
+ #[test]
+ fn osa_distance_second_empty() {
+ assert_eq!(7, osa_distance("damerau", ""));
+ }
+
+ #[test]
+ fn osa_distance_diff() {
+ assert_eq!(3, osa_distance("ca", "abc"));
+ }
+
+ #[test]
+ fn osa_distance_diff_short() {
+ assert_eq!(3, osa_distance("damerau", "aderua"));
+ }
+
+ #[test]
+ fn osa_distance_diff_reversed() {
+ assert_eq!(3, osa_distance("aderua", "damerau"));
+ }
+
+ #[test]
+ fn osa_distance_diff_multibyte() {
+ assert_eq!(3, osa_distance("öঙ香", "abc"));
+ assert_eq!(3, osa_distance("abc", "öঙ香"));
+ }
+
+ #[test]
+ fn osa_distance_diff_unequal_length() {
+ assert_eq!(6, osa_distance("damerau", "aderuaxyz"));
+ }
+
+ #[test]
+ fn osa_distance_diff_unequal_length_reversed() {
+ assert_eq!(6, osa_distance("aderuaxyz", "damerau"));
+ }
+
+ #[test]
+ fn osa_distance_diff_comedians() {
+ assert_eq!(5, osa_distance("Stewart", "Colbert"));
+ }
+
+ #[test]
+ fn osa_distance_many_transpositions() {
+ assert_eq!(4, osa_distance("abcdefghijkl", "bacedfgihjlk"));
+ }
+
+ #[test]
+ fn osa_distance_diff_longer() {
+ let a = "The quick brown fox jumped over the angry dog.";
+ let b = "Lehem ipsum dolor sit amet, dicta latine an eam.";
+ assert_eq!(36, osa_distance(a, b));
+ }
+
+ #[test]
+ fn osa_distance_beginning_transposition() {
+ assert_eq!(1, osa_distance("foobar", "ofobar"));
+ }
+
+ #[test]
+ fn osa_distance_end_transposition() {
+ assert_eq!(1, osa_distance("specter", "spectre"));
+ }
+
+ #[test]
+ fn osa_distance_restricted_edit() {
+ assert_eq!(4, osa_distance("a cat", "an abct"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_empty() {
+ assert_eq!(0, damerau_levenshtein("", ""));
+ }
+
+ #[test]
+ fn damerau_levenshtein_same() {
+ assert_eq!(0, damerau_levenshtein("damerau", "damerau"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_first_empty() {
+ assert_eq!(7, damerau_levenshtein("", "damerau"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_second_empty() {
+ assert_eq!(7, damerau_levenshtein("damerau", ""));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff() {
+ assert_eq!(2, damerau_levenshtein("ca", "abc"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_short() {
+ assert_eq!(3, damerau_levenshtein("damerau", "aderua"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_reversed() {
+ assert_eq!(3, damerau_levenshtein("aderua", "damerau"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_multibyte() {
+ assert_eq!(3, damerau_levenshtein("öঙ香", "abc"));
+ assert_eq!(3, damerau_levenshtein("abc", "öঙ香"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_unequal_length() {
+ assert_eq!(6, damerau_levenshtein("damerau", "aderuaxyz"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_unequal_length_reversed() {
+ assert_eq!(6, damerau_levenshtein("aderuaxyz", "damerau"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_comedians() {
+ assert_eq!(5, damerau_levenshtein("Stewart", "Colbert"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_many_transpositions() {
+ assert_eq!(4, damerau_levenshtein("abcdefghijkl", "bacedfgihjlk"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_diff_longer() {
+ let a = "The quick brown fox jumped over the angry dog.";
+ let b = "Lehem ipsum dolor sit amet, dicta latine an eam.";
+ assert_eq!(36, damerau_levenshtein(a, b));
+ }
+
+ #[test]
+ fn damerau_levenshtein_beginning_transposition() {
+ assert_eq!(1, damerau_levenshtein("foobar", "ofobar"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_end_transposition() {
+ assert_eq!(1, damerau_levenshtein("specter", "spectre"));
+ }
+
+ #[test]
+ fn damerau_levenshtein_unrestricted_edit() {
+ assert_eq!(3, damerau_levenshtein("a cat", "an abct"));
+ }
+
+ #[test]
+ fn normalized_damerau_levenshtein_diff_short() {
+ assert_delta!(
+ 0.27272,
+ normalized_damerau_levenshtein("levenshtein", "löwenbräu")
+ );
+ }
+
+ #[test]
+ fn normalized_damerau_levenshtein_for_empty_strings() {
+ assert_delta!(1.0, normalized_damerau_levenshtein("", ""));
+ }
+
+ #[test]
+ fn normalized_damerau_levenshtein_first_empty() {
+ assert_delta!(0.0, normalized_damerau_levenshtein("", "flower"));
+ }
+
+ #[test]
+ fn normalized_damerau_levenshtein_second_empty() {
+ assert_delta!(0.0, normalized_damerau_levenshtein("tree", ""));
+ }
+
+ #[test]
+ fn normalized_damerau_levenshtein_identical_strings() {
+ assert_delta!(
+ 1.0,
+ normalized_damerau_levenshtein("sunglasses", "sunglasses")
+ );
+ }
+
+ #[test]
+ fn sorensen_dice_all() {
+ // test cases taken from
+ // https://github.com/aceakash/string-similarity/blob/f83ba3cd7bae874c20c429774e911ae8cff8bced/src/spec/index.spec.js#L11
+
+ assert_delta!(1.0, sorensen_dice("a", "a"));
+ assert_delta!(0.0, sorensen_dice("a", "b"));
+ assert_delta!(1.0, sorensen_dice("", ""));
+ assert_delta!(0.0, sorensen_dice("a", ""));
+ assert_delta!(0.0, sorensen_dice("", "a"));
+ assert_delta!(1.0, sorensen_dice("apple event", "apple event"));
+ assert_delta!(0.90909, sorensen_dice("iphone", "iphone x"));
+ assert_delta!(0.0, sorensen_dice("french", "quebec"));
+ assert_delta!(1.0, sorensen_dice("france", "france"));
+ assert_delta!(0.2, sorensen_dice("fRaNce", "france"));
+ assert_delta!(0.8, sorensen_dice("healed", "sealed"));
+ assert_delta!(
+ 0.78788,
+ sorensen_dice("web applications", "applications of the web")
+ );
+ assert_delta!(
+ 0.92,
+ sorensen_dice(
+ "this will have a typo somewhere",
+ "this will huve a typo somewhere"
+ )
+ );
+ assert_delta!(
+ 0.60606,
+ sorensen_dice(
+ "Olive-green table for sale, in extremely good condition.",
+ "For sale: table in very good condition, olive green in colour."
+ )
+ );
+ assert_delta!(
+ 0.25581,
+ sorensen_dice(
+ "Olive-green table for sale, in extremely good condition.",
+ "For sale: green Subaru Impreza, 210,000 miles"
+ )
+ );
+ assert_delta!(
+ 0.14118,
+ sorensen_dice(
+ "Olive-green table for sale, in extremely good condition.",
+ "Wanted: mountain bike with at least 21 gears."
+ )
+ );
+ assert_delta!(
+ 0.77419,
+ sorensen_dice("this has one extra word", "this has one word")
+ );
+ }
+}