diff options
Diffstat (limited to 'vendor/bytemuck/src')
-rw-r--r-- | vendor/bytemuck/src/allocation.rs | 689 | ||||
-rw-r--r-- | vendor/bytemuck/src/anybitpattern.rs | 61 | ||||
-rw-r--r-- | vendor/bytemuck/src/checked.rs | 522 | ||||
-rw-r--r-- | vendor/bytemuck/src/contiguous.rs | 202 | ||||
-rw-r--r-- | vendor/bytemuck/src/internal.rs | 402 | ||||
-rw-r--r-- | vendor/bytemuck/src/lib.rs | 457 | ||||
-rw-r--r-- | vendor/bytemuck/src/must.rs | 203 | ||||
-rw-r--r-- | vendor/bytemuck/src/no_uninit.rs | 80 | ||||
-rw-r--r-- | vendor/bytemuck/src/offset_of.rs | 135 | ||||
-rw-r--r-- | vendor/bytemuck/src/pod.rs | 165 | ||||
-rw-r--r-- | vendor/bytemuck/src/pod_in_option.rs | 27 | ||||
-rw-r--r-- | vendor/bytemuck/src/transparent.rs | 288 | ||||
-rw-r--r-- | vendor/bytemuck/src/zeroable.rs | 245 | ||||
-rw-r--r-- | vendor/bytemuck/src/zeroable_in_option.rs | 35 |
14 files changed, 0 insertions, 3511 deletions
diff --git a/vendor/bytemuck/src/allocation.rs b/vendor/bytemuck/src/allocation.rs deleted file mode 100644 index a2633b5..0000000 --- a/vendor/bytemuck/src/allocation.rs +++ /dev/null @@ -1,689 +0,0 @@ -#![cfg(feature = "extern_crate_alloc")] - -//! Stuff to boost things in the `alloc` crate. -//! -//! * You must enable the `extern_crate_alloc` feature of `bytemuck` or you will -//! not be able to use this module! This is generally done by adding the -//! feature to the dependency in Cargo.toml like so: -//! -//! `bytemuck = { version = "VERSION_YOU_ARE_USING", features = -//! ["extern_crate_alloc"]}` - -use super::*; -#[cfg(target_has_atomic = "ptr")] -use alloc::sync::Arc; -use alloc::{ - alloc::{alloc_zeroed, Layout}, - boxed::Box, - rc::Rc, - vec, - vec::Vec, -}; - -/// As [`try_cast_box`](try_cast_box), but unwraps for you. -#[inline] -pub fn cast_box<A: NoUninit, B: AnyBitPattern>(input: Box<A>) -> Box<B> { - try_cast_box(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a [`Box`](alloc::boxed::Box). -/// -/// On failure you get back an error along with the starting `Box`. -/// -/// ## Failure -/// -/// * The start and end content type of the `Box` must have the exact same -/// alignment. -/// * The start and end size of the `Box` must have the exact same size. -#[inline] -pub fn try_cast_box<A: NoUninit, B: AnyBitPattern>( - input: Box<A>, -) -> Result<Box<B>, (PodCastError, Box<A>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - Err((PodCastError::SizeMismatch, input)) - } else { - // Note(Lokathor): This is much simpler than with the Vec casting! - let ptr: *mut B = Box::into_raw(input) as *mut B; - Ok(unsafe { Box::from_raw(ptr) }) - } -} - -/// Allocates a `Box<T>` with all of the contents being zeroed out. -/// -/// This uses the global allocator to create a zeroed allocation and _then_ -/// turns it into a Box. In other words, it's 100% assured that the zeroed data -/// won't be put temporarily on the stack. You can make a box of any size -/// without fear of a stack overflow. -/// -/// ## Failure -/// -/// This fails if the allocation fails. -#[inline] -pub fn try_zeroed_box<T: Zeroable>() -> Result<Box<T>, ()> { - if size_of::<T>() == 0 { - // This will not allocate but simply create a dangling pointer. - let dangling = core::ptr::NonNull::dangling().as_ptr(); - return Ok(unsafe { Box::from_raw(dangling) }); - } - let layout = Layout::new::<T>(); - let ptr = unsafe { alloc_zeroed(layout) }; - if ptr.is_null() { - // we don't know what the error is because `alloc_zeroed` is a dumb API - Err(()) - } else { - Ok(unsafe { Box::<T>::from_raw(ptr as *mut T) }) - } -} - -/// As [`try_zeroed_box`], but unwraps for you. -#[inline] -pub fn zeroed_box<T: Zeroable>() -> Box<T> { - try_zeroed_box().unwrap() -} - -/// Allocates a `Vec<T>` of length and capacity exactly equal to `length` and -/// all elements zeroed. -/// -/// ## Failure -/// -/// This fails if the allocation fails, or if a layout cannot be calculated for -/// the allocation. -pub fn try_zeroed_vec<T: Zeroable>(length: usize) -> Result<Vec<T>, ()> { - if length == 0 { - Ok(Vec::new()) - } else { - let boxed_slice = try_zeroed_slice_box(length)?; - Ok(boxed_slice.into_vec()) - } -} - -/// As [`try_zeroed_vec`] but unwraps for you -pub fn zeroed_vec<T: Zeroable>(length: usize) -> Vec<T> { - try_zeroed_vec(length).unwrap() -} - -/// Allocates a `Box<[T]>` with all contents being zeroed out. -/// -/// This uses the global allocator to create a zeroed allocation and _then_ -/// turns it into a Box. In other words, it's 100% assured that the zeroed data -/// won't be put temporarily on the stack. You can make a box of any size -/// without fear of a stack overflow. -/// -/// ## Failure -/// -/// This fails if the allocation fails, or if a layout cannot be calculated for -/// the allocation. -#[inline] -pub fn try_zeroed_slice_box<T: Zeroable>( - length: usize, -) -> Result<Box<[T]>, ()> { - if size_of::<T>() == 0 || length == 0 { - // This will not allocate but simply create a dangling slice pointer. - let dangling = core::ptr::NonNull::dangling().as_ptr(); - let dangling_slice = core::ptr::slice_from_raw_parts_mut(dangling, length); - return Ok(unsafe { Box::from_raw(dangling_slice) }); - } - let layout = core::alloc::Layout::array::<T>(length).map_err(|_| ())?; - let ptr = unsafe { alloc_zeroed(layout) }; - if ptr.is_null() { - // we don't know what the error is because `alloc_zeroed` is a dumb API - Err(()) - } else { - let slice = - unsafe { core::slice::from_raw_parts_mut(ptr as *mut T, length) }; - Ok(unsafe { Box::<[T]>::from_raw(slice) }) - } -} - -/// As [`try_zeroed_slice_box`](try_zeroed_slice_box), but unwraps for you. -pub fn zeroed_slice_box<T: Zeroable>(length: usize) -> Box<[T]> { - try_zeroed_slice_box(length).unwrap() -} - -/// As [`try_cast_slice_box`](try_cast_slice_box), but unwraps for you. -#[inline] -pub fn cast_slice_box<A: NoUninit, B: AnyBitPattern>( - input: Box<[A]>, -) -> Box<[B]> { - try_cast_slice_box(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a `Box<[T]>`. -/// -/// On failure you get back an error along with the starting `Box<[T]>`. -/// -/// ## Failure -/// -/// * The start and end content type of the `Box<[T]>` must have the exact same -/// alignment. -/// * The start and end content size in bytes of the `Box<[T]>` must be the -/// exact same. -#[inline] -pub fn try_cast_slice_box<A: NoUninit, B: AnyBitPattern>( - input: Box<[A]>, -) -> Result<Box<[B]>, (PodCastError, Box<[A]>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - if size_of::<A>() * input.len() % size_of::<B>() != 0 { - // If the size in bytes of the underlying buffer does not match an exact - // multiple of the size of B, we cannot cast between them. - Err((PodCastError::SizeMismatch, input)) - } else { - // Because the size is an exact multiple, we can now change the length - // of the slice and recreate the Box - // NOTE: This is a valid operation because according to the docs of - // std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc - // the block must be the same Layout that is used to dealloc the block. - // Luckily, Layout only stores two things, the alignment, and the size in - // bytes. So as long as both of those stay the same, the Layout will - // remain a valid input to dealloc. - let length = size_of::<A>() * input.len() / size_of::<B>(); - let box_ptr: *mut A = Box::into_raw(input) as *mut A; - let ptr: *mut [B] = - unsafe { core::slice::from_raw_parts_mut(box_ptr as *mut B, length) }; - Ok(unsafe { Box::<[B]>::from_raw(ptr) }) - } - } else { - let box_ptr: *mut [A] = Box::into_raw(input); - let ptr: *mut [B] = box_ptr as *mut [B]; - Ok(unsafe { Box::<[B]>::from_raw(ptr) }) - } -} - -/// As [`try_cast_vec`](try_cast_vec), but unwraps for you. -#[inline] -pub fn cast_vec<A: NoUninit, B: AnyBitPattern>(input: Vec<A>) -> Vec<B> { - try_cast_vec(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a [`Vec`](alloc::vec::Vec). -/// -/// On failure you get back an error along with the starting `Vec`. -/// -/// ## Failure -/// -/// * The start and end content type of the `Vec` must have the exact same -/// alignment. -/// * The start and end content size in bytes of the `Vec` must be the exact -/// same. -/// * The start and end capacity in bytes of the `Vec` must be the exact same. -#[inline] -pub fn try_cast_vec<A: NoUninit, B: AnyBitPattern>( - input: Vec<A>, -) -> Result<Vec<B>, (PodCastError, Vec<A>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - if size_of::<A>() * input.len() % size_of::<B>() != 0 - || size_of::<A>() * input.capacity() % size_of::<B>() != 0 - { - // If the size in bytes of the underlying buffer does not match an exact - // multiple of the size of B, we cannot cast between them. - // Note that we have to pay special attention to make sure that both - // length and capacity are valid under B, as we do not want to - // change which bytes are considered part of the initialized slice - // of the Vec - Err((PodCastError::SizeMismatch, input)) - } else { - // Because the size is an exact multiple, we can now change the length and - // capacity and recreate the Vec - // NOTE: This is a valid operation because according to the docs of - // std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc - // the block must be the same Layout that is used to dealloc the block. - // Luckily, Layout only stores two things, the alignment, and the size in - // bytes. So as long as both of those stay the same, the Layout will - // remain a valid input to dealloc. - - // Note(Lokathor): First we record the length and capacity, which don't - // have any secret provenance metadata. - let length: usize = size_of::<A>() * input.len() / size_of::<B>(); - let capacity: usize = size_of::<A>() * input.capacity() / size_of::<B>(); - // Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with - // ManuallyDrop, because if we used `core::mem::forget` after taking the - // pointer then that would invalidate our pointer. In nightly there's a - // "into raw parts" method, which we can switch this too eventually. - let mut manual_drop_vec = ManuallyDrop::new(input); - let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr(); - let ptr: *mut B = vec_ptr as *mut B; - Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) }) - } - } else { - // Note(Lokathor): First we record the length and capacity, which don't have - // any secret provenance metadata. - let length: usize = input.len(); - let capacity: usize = input.capacity(); - // Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with - // ManuallyDrop, because if we used `core::mem::forget` after taking the - // pointer then that would invalidate our pointer. In nightly there's a - // "into raw parts" method, which we can switch this too eventually. - let mut manual_drop_vec = ManuallyDrop::new(input); - let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr(); - let ptr: *mut B = vec_ptr as *mut B; - Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) }) - } -} - -/// This "collects" a slice of pod data into a vec of a different pod type. -/// -/// Unlike with [`cast_slice`] and [`cast_slice_mut`], this will always work. -/// -/// The output vec will be of a minimal size/capacity to hold the slice given. -/// -/// ```rust -/// # use bytemuck::*; -/// let halfwords: [u16; 4] = [5, 6, 7, 8]; -/// let vec_of_words: Vec<u32> = pod_collect_to_vec(&halfwords); -/// if cfg!(target_endian = "little") { -/// assert_eq!(&vec_of_words[..], &[0x0006_0005, 0x0008_0007][..]) -/// } else { -/// assert_eq!(&vec_of_words[..], &[0x0005_0006, 0x0007_0008][..]) -/// } -/// ``` -pub fn pod_collect_to_vec<A: NoUninit, B: NoUninit + AnyBitPattern>( - src: &[A], -) -> Vec<B> { - let src_size = size_of_val(src); - // Note(Lokathor): dst_count is rounded up so that the dest will always be at - // least as many bytes as the src. - let dst_count = src_size / size_of::<B>() - + if src_size % size_of::<B>() != 0 { 1 } else { 0 }; - let mut dst = vec![B::zeroed(); dst_count]; - - let src_bytes: &[u8] = cast_slice(src); - let dst_bytes: &mut [u8] = cast_slice_mut(&mut dst[..]); - dst_bytes[..src_size].copy_from_slice(src_bytes); - dst -} - -/// As [`try_cast_rc`](try_cast_rc), but unwraps for you. -#[inline] -pub fn cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>( - input: Rc<A>, -) -> Rc<B> { - try_cast_rc(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a [`Rc`](alloc::rc::Rc). -/// -/// On failure you get back an error along with the starting `Rc`. -/// -/// The bounds on this function are the same as [`cast_mut`], because a user -/// could call `Rc::get_unchecked_mut` on the output, which could be observable -/// in the input. -/// -/// ## Failure -/// -/// * The start and end content type of the `Rc` must have the exact same -/// alignment. -/// * The start and end size of the `Rc` must have the exact same size. -#[inline] -pub fn try_cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>( - input: Rc<A>, -) -> Result<Rc<B>, (PodCastError, Rc<A>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - Err((PodCastError::SizeMismatch, input)) - } else { - // Safety: Rc::from_raw requires size and alignment match, which is met. - let ptr: *const B = Rc::into_raw(input) as *const B; - Ok(unsafe { Rc::from_raw(ptr) }) - } -} - -/// As [`try_cast_arc`](try_cast_arc), but unwraps for you. -#[inline] -#[cfg(target_has_atomic = "ptr")] -pub fn cast_arc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>( - input: Arc<A>, -) -> Arc<B> { - try_cast_arc(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a [`Arc`](alloc::sync::Arc). -/// -/// On failure you get back an error along with the starting `Arc`. -/// -/// The bounds on this function are the same as [`cast_mut`], because a user -/// could call `Rc::get_unchecked_mut` on the output, which could be observable -/// in the input. -/// -/// ## Failure -/// -/// * The start and end content type of the `Arc` must have the exact same -/// alignment. -/// * The start and end size of the `Arc` must have the exact same size. -#[inline] -#[cfg(target_has_atomic = "ptr")] -pub fn try_cast_arc< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - input: Arc<A>, -) -> Result<Arc<B>, (PodCastError, Arc<A>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - Err((PodCastError::SizeMismatch, input)) - } else { - // Safety: Arc::from_raw requires size and alignment match, which is met. - let ptr: *const B = Arc::into_raw(input) as *const B; - Ok(unsafe { Arc::from_raw(ptr) }) - } -} - -/// As [`try_cast_slice_rc`](try_cast_slice_rc), but unwraps for you. -#[inline] -pub fn cast_slice_rc< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - input: Rc<[A]>, -) -> Rc<[B]> { - try_cast_slice_rc(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a `Rc<[T]>`. -/// -/// On failure you get back an error along with the starting `Rc<[T]>`. -/// -/// The bounds on this function are the same as [`cast_mut`], because a user -/// could call `Rc::get_unchecked_mut` on the output, which could be observable -/// in the input. -/// -/// ## Failure -/// -/// * The start and end content type of the `Rc<[T]>` must have the exact same -/// alignment. -/// * The start and end content size in bytes of the `Rc<[T]>` must be the exact -/// same. -#[inline] -pub fn try_cast_slice_rc< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - input: Rc<[A]>, -) -> Result<Rc<[B]>, (PodCastError, Rc<[A]>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - if size_of::<A>() * input.len() % size_of::<B>() != 0 { - // If the size in bytes of the underlying buffer does not match an exact - // multiple of the size of B, we cannot cast between them. - Err((PodCastError::SizeMismatch, input)) - } else { - // Because the size is an exact multiple, we can now change the length - // of the slice and recreate the Rc - // NOTE: This is a valid operation because according to the docs of - // std::rc::Rc::from_raw(), the type U that was in the original Rc<U> - // acquired from Rc::into_raw() must have the same size alignment and - // size of the type T in the new Rc<T>. So as long as both the size - // and alignment stay the same, the Rc will remain a valid Rc. - let length = size_of::<A>() * input.len() / size_of::<B>(); - let rc_ptr: *const A = Rc::into_raw(input) as *const A; - // Must use ptr::slice_from_raw_parts, because we cannot make an - // intermediate const reference, because it has mutable provenance, - // nor an intermediate mutable reference, because it could be aliased. - let ptr = core::ptr::slice_from_raw_parts(rc_ptr as *const B, length); - Ok(unsafe { Rc::<[B]>::from_raw(ptr) }) - } - } else { - let rc_ptr: *const [A] = Rc::into_raw(input); - let ptr: *const [B] = rc_ptr as *const [B]; - Ok(unsafe { Rc::<[B]>::from_raw(ptr) }) - } -} - -/// As [`try_cast_slice_arc`](try_cast_slice_arc), but unwraps for you. -#[inline] -#[cfg(target_has_atomic = "ptr")] -pub fn cast_slice_arc< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - input: Arc<[A]>, -) -> Arc<[B]> { - try_cast_slice_arc(input).map_err(|(e, _v)| e).unwrap() -} - -/// Attempts to cast the content type of a `Arc<[T]>`. -/// -/// On failure you get back an error along with the starting `Arc<[T]>`. -/// -/// The bounds on this function are the same as [`cast_mut`], because a user -/// could call `Rc::get_unchecked_mut` on the output, which could be observable -/// in the input. -/// -/// ## Failure -/// -/// * The start and end content type of the `Arc<[T]>` must have the exact same -/// alignment. -/// * The start and end content size in bytes of the `Arc<[T]>` must be the -/// exact same. -#[inline] -#[cfg(target_has_atomic = "ptr")] -pub fn try_cast_slice_arc< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - input: Arc<[A]>, -) -> Result<Arc<[B]>, (PodCastError, Arc<[A]>)> { - if align_of::<A>() != align_of::<B>() { - Err((PodCastError::AlignmentMismatch, input)) - } else if size_of::<A>() != size_of::<B>() { - if size_of::<A>() * input.len() % size_of::<B>() != 0 { - // If the size in bytes of the underlying buffer does not match an exact - // multiple of the size of B, we cannot cast between them. - Err((PodCastError::SizeMismatch, input)) - } else { - // Because the size is an exact multiple, we can now change the length - // of the slice and recreate the Arc - // NOTE: This is a valid operation because according to the docs of - // std::sync::Arc::from_raw(), the type U that was in the original Arc<U> - // acquired from Arc::into_raw() must have the same size alignment and - // size of the type T in the new Arc<T>. So as long as both the size - // and alignment stay the same, the Arc will remain a valid Arc. - let length = size_of::<A>() * input.len() / size_of::<B>(); - let arc_ptr: *const A = Arc::into_raw(input) as *const A; - // Must use ptr::slice_from_raw_parts, because we cannot make an - // intermediate const reference, because it has mutable provenance, - // nor an intermediate mutable reference, because it could be aliased. - let ptr = core::ptr::slice_from_raw_parts(arc_ptr as *const B, length); - Ok(unsafe { Arc::<[B]>::from_raw(ptr) }) - } - } else { - let arc_ptr: *const [A] = Arc::into_raw(input); - let ptr: *const [B] = arc_ptr as *const [B]; - Ok(unsafe { Arc::<[B]>::from_raw(ptr) }) - } -} - -/// An extension trait for `TransparentWrapper` and alloc types. -pub trait TransparentWrapperAlloc<Inner: ?Sized>: - TransparentWrapper<Inner> -{ - /// Convert a vec of the inner type into a vec of the wrapper type. - fn wrap_vec(s: Vec<Inner>) -> Vec<Self> - where - Self: Sized, - Inner: Sized, - { - let mut s = core::mem::ManuallyDrop::new(s); - - let length = s.len(); - let capacity = s.capacity(); - let ptr = s.as_mut_ptr(); - - unsafe { - // SAFETY: - // * ptr comes from Vec (and will not be double-dropped) - // * the two types have the identical representation - // * the len and capacity fields are valid - Vec::from_raw_parts(ptr as *mut Self, length, capacity) - } - } - - /// Convert a box to the inner type into a box to the wrapper - /// type. - #[inline] - fn wrap_box(s: Box<Inner>) -> Box<Self> { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - - unsafe { - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the sizes are unspecified. - // - // SAFETY: - // * The unsafe contract requires that pointers to Inner and Self have - // identical representations - // * Box is guaranteed to have representation identical to a (non-null) - // pointer - // * The pointer comes from a box (and thus satisfies all safety - // requirements of Box) - let inner_ptr: *mut Inner = Box::into_raw(s); - let wrapper_ptr: *mut Self = transmute!(inner_ptr); - Box::from_raw(wrapper_ptr) - } - } - - /// Convert an [`Rc`](alloc::rc::Rc) to the inner type into an `Rc` to the - /// wrapper type. - #[inline] - fn wrap_rc(s: Rc<Inner>) -> Rc<Self> { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - - unsafe { - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the layout of Rc is unspecified. - // - // SAFETY: - // * The unsafe contract requires that pointers to Inner and Self have - // identical representations, and that the size and alignment of Inner - // and Self are the same, which meets the safety requirements of - // Rc::from_raw - let inner_ptr: *const Inner = Rc::into_raw(s); - let wrapper_ptr: *const Self = transmute!(inner_ptr); - Rc::from_raw(wrapper_ptr) - } - } - - /// Convert an [`Arc`](alloc::sync::Arc) to the inner type into an `Arc` to - /// the wrapper type. - #[inline] - #[cfg(target_has_atomic = "ptr")] - fn wrap_arc(s: Arc<Inner>) -> Arc<Self> { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - - unsafe { - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the layout of Arc is unspecified. - // - // SAFETY: - // * The unsafe contract requires that pointers to Inner and Self have - // identical representations, and that the size and alignment of Inner - // and Self are the same, which meets the safety requirements of - // Arc::from_raw - let inner_ptr: *const Inner = Arc::into_raw(s); - let wrapper_ptr: *const Self = transmute!(inner_ptr); - Arc::from_raw(wrapper_ptr) - } - } - - /// Convert a vec of the wrapper type into a vec of the inner type. - fn peel_vec(s: Vec<Self>) -> Vec<Inner> - where - Self: Sized, - Inner: Sized, - { - let mut s = core::mem::ManuallyDrop::new(s); - - let length = s.len(); - let capacity = s.capacity(); - let ptr = s.as_mut_ptr(); - - unsafe { - // SAFETY: - // * ptr comes from Vec (and will not be double-dropped) - // * the two types have the identical representation - // * the len and capacity fields are valid - Vec::from_raw_parts(ptr as *mut Inner, length, capacity) - } - } - - /// Convert a box to the wrapper type into a box to the inner - /// type. - #[inline] - fn peel_box(s: Box<Self>) -> Box<Inner> { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - - unsafe { - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the sizes are unspecified. - // - // SAFETY: - // * The unsafe contract requires that pointers to Inner and Self have - // identical representations - // * Box is guaranteed to have representation identical to a (non-null) - // pointer - // * The pointer comes from a box (and thus satisfies all safety - // requirements of Box) - let wrapper_ptr: *mut Self = Box::into_raw(s); - let inner_ptr: *mut Inner = transmute!(wrapper_ptr); - Box::from_raw(inner_ptr) - } - } - - /// Convert an [`Rc`](alloc::rc::Rc) to the wrapper type into an `Rc` to the - /// inner type. - #[inline] - fn peel_rc(s: Rc<Self>) -> Rc<Inner> { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - - unsafe { - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the layout of Rc is unspecified. - // - // SAFETY: - // * The unsafe contract requires that pointers to Inner and Self have - // identical representations, and that the size and alignment of Inner - // and Self are the same, which meets the safety requirements of - // Rc::from_raw - let wrapper_ptr: *const Self = Rc::into_raw(s); - let inner_ptr: *const Inner = transmute!(wrapper_ptr); - Rc::from_raw(inner_ptr) - } - } - - /// Convert an [`Arc`](alloc::sync::Arc) to the wrapper type into an `Arc` to - /// the inner type. - #[inline] - #[cfg(target_has_atomic = "ptr")] - fn peel_arc(s: Arc<Self>) -> Arc<Inner> { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - - unsafe { - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the layout of Arc is unspecified. - // - // SAFETY: - // * The unsafe contract requires that pointers to Inner and Self have - // identical representations, and that the size and alignment of Inner - // and Self are the same, which meets the safety requirements of - // Arc::from_raw - let wrapper_ptr: *const Self = Arc::into_raw(s); - let inner_ptr: *const Inner = transmute!(wrapper_ptr); - Arc::from_raw(inner_ptr) - } - } -} - -impl<I: ?Sized, T: ?Sized + TransparentWrapper<I>> TransparentWrapperAlloc<I> for T {} diff --git a/vendor/bytemuck/src/anybitpattern.rs b/vendor/bytemuck/src/anybitpattern.rs deleted file mode 100644 index a759738..0000000 --- a/vendor/bytemuck/src/anybitpattern.rs +++ /dev/null @@ -1,61 +0,0 @@ -use crate::{Pod, Zeroable}; - -/// Marker trait for "plain old data" types that are valid for any bit pattern. -/// -/// The requirements for this is very similar to [`Pod`], -/// except that the type can allow uninit (or padding) bytes. -/// This limits what you can do with a type of this kind, but also broadens the -/// included types to `repr(C)` `struct`s that contain padding as well as -/// `union`s. Notably, you can only cast *immutable* references and *owned* -/// values into [`AnyBitPattern`] types, not *mutable* references. -/// -/// [`Pod`] is a subset of [`AnyBitPattern`], meaning that any `T: Pod` is also -/// [`AnyBitPattern`] but any `T: AnyBitPattern` is not necessarily [`Pod`]. -/// -/// [`AnyBitPattern`] is a subset of [`Zeroable`], meaning that any `T: -/// AnyBitPattern` is also [`Zeroable`], but any `T: Zeroable` is not -/// necessarily [`AnyBitPattern ] -/// -/// # Derive -/// -/// A `#[derive(AnyBitPattern)]` macro is provided under the `derive` feature -/// flag which will automatically validate the requirements of this trait and -/// implement the trait for you for both structs and enums. This is the -/// recommended method for implementing the trait, however it's also possible to -/// do manually. If you implement it manually, you *must* carefully follow the -/// below safety rules. -/// -/// * *NOTE: even `C-style`, fieldless enums are intentionally **excluded** from -/// this trait, since it is **unsound** for an enum to have a discriminant value -/// that is not one of its defined variants. -/// -/// # Safety -/// -/// Similar to [`Pod`] except we disregard the rule about it must not contain -/// uninit bytes. Still, this is a quite strong guarantee about a type, so *be -/// careful* when implementing it manually. -/// -/// * The type must be inhabited (eg: no -/// [Infallible](core::convert::Infallible)). -/// * The type must be valid for any bit pattern of its backing memory. -/// * Structs need to have all fields also be `AnyBitPattern`. -/// * It is disallowed for types to contain pointer types, `Cell`, `UnsafeCell`, -/// atomics, and any other forms of interior mutability. -/// * More precisely: A shared reference to the type must allow reads, and -/// *only* reads. RustBelt's separation logic is based on the notion that a -/// type is allowed to define a sharing predicate, its own invariant that must -/// hold for shared references, and this predicate is the reasoning that allow -/// it to deal with atomic and cells etc. We require the sharing predicate to -/// be trivial and permit only read-only access. -/// * There's probably more, don't mess it up (I mean it). -pub unsafe trait AnyBitPattern: - Zeroable + Sized + Copy + 'static -{ -} - -unsafe impl<T: Pod> AnyBitPattern for T {} - -#[cfg(feature = "zeroable_maybe_uninit")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "zeroable_maybe_uninit")))] -unsafe impl<T> AnyBitPattern for core::mem::MaybeUninit<T> where T: AnyBitPattern -{} diff --git a/vendor/bytemuck/src/checked.rs b/vendor/bytemuck/src/checked.rs deleted file mode 100644 index 722c31d..0000000 --- a/vendor/bytemuck/src/checked.rs +++ /dev/null @@ -1,522 +0,0 @@ -//! Checked versions of the casting functions exposed in crate root -//! that support [`CheckedBitPattern`] types. - -use crate::{ - internal::{self, something_went_wrong}, - AnyBitPattern, NoUninit, -}; - -/// A marker trait that allows types that have some invalid bit patterns to be -/// used in places that otherwise require [`AnyBitPattern`] or [`Pod`] types by -/// performing a runtime check on a perticular set of bits. This is particularly -/// useful for types like fieldless ('C-style') enums, [`char`], bool, and -/// structs containing them. -/// -/// To do this, we define a `Bits` type which is a type with equivalent layout -/// to `Self` other than the invalid bit patterns which disallow `Self` from -/// being [`AnyBitPattern`]. This `Bits` type must itself implement -/// [`AnyBitPattern`]. Then, we implement a function that checks whether a -/// certain instance of the `Bits` is also a valid bit pattern of `Self`. If -/// this check passes, then we can allow casting from the `Bits` to `Self` (and -/// therefore, any type which is able to be cast to `Bits` is also able to be -/// cast to `Self`). -/// -/// [`AnyBitPattern`] is a subset of [`CheckedBitPattern`], meaning that any `T: -/// AnyBitPattern` is also [`CheckedBitPattern`]. This means you can also use -/// any [`AnyBitPattern`] type in the checked versions of casting functions in -/// this module. If it's possible, prefer implementing [`AnyBitPattern`] for -/// your type directly instead of [`CheckedBitPattern`] as it gives greater -/// flexibility. -/// -/// # Derive -/// -/// A `#[derive(CheckedBitPattern)]` macro is provided under the `derive` -/// feature flag which will automatically validate the requirements of this -/// trait and implement the trait for you for both enums and structs. This is -/// the recommended method for implementing the trait, however it's also -/// possible to do manually. -/// -/// # Example -/// -/// If manually implementing the trait, we can do something like so: -/// -/// ```rust -/// use bytemuck::{CheckedBitPattern, NoUninit}; -/// -/// #[repr(u32)] -/// #[derive(Copy, Clone)] -/// enum MyEnum { -/// Variant0 = 0, -/// Variant1 = 1, -/// Variant2 = 2, -/// } -/// -/// unsafe impl CheckedBitPattern for MyEnum { -/// type Bits = u32; -/// -/// fn is_valid_bit_pattern(bits: &u32) -> bool { -/// match *bits { -/// 0 | 1 | 2 => true, -/// _ => false, -/// } -/// } -/// } -/// -/// // It is often useful to also implement `NoUninit` on our `CheckedBitPattern` types. -/// // This will allow us to do casting of mutable references (and mutable slices). -/// // It is not always possible to do so, but in this case we have no padding so it is. -/// unsafe impl NoUninit for MyEnum {} -/// ``` -/// -/// We can now use relevant casting functions. For example, -/// -/// ```rust -/// # use bytemuck::{CheckedBitPattern, NoUninit}; -/// # #[repr(u32)] -/// # #[derive(Copy, Clone, PartialEq, Eq, Debug)] -/// # enum MyEnum { -/// # Variant0 = 0, -/// # Variant1 = 1, -/// # Variant2 = 2, -/// # } -/// # unsafe impl NoUninit for MyEnum {} -/// # unsafe impl CheckedBitPattern for MyEnum { -/// # type Bits = u32; -/// # fn is_valid_bit_pattern(bits: &u32) -> bool { -/// # match *bits { -/// # 0 | 1 | 2 => true, -/// # _ => false, -/// # } -/// # } -/// # } -/// use bytemuck::{bytes_of, bytes_of_mut}; -/// use bytemuck::checked; -/// -/// let bytes = bytes_of(&2u32); -/// let result = checked::try_from_bytes::<MyEnum>(bytes); -/// assert_eq!(result, Ok(&MyEnum::Variant2)); -/// -/// // Fails for invalid discriminant -/// let bytes = bytes_of(&100u32); -/// let result = checked::try_from_bytes::<MyEnum>(bytes); -/// assert!(result.is_err()); -/// -/// // Since we implemented NoUninit, we can also cast mutably from an original type -/// // that is `NoUninit + AnyBitPattern`: -/// let mut my_u32 = 2u32; -/// { -/// let as_enum_mut = checked::cast_mut::<_, MyEnum>(&mut my_u32); -/// assert_eq!(as_enum_mut, &mut MyEnum::Variant2); -/// *as_enum_mut = MyEnum::Variant0; -/// } -/// assert_eq!(my_u32, 0u32); -/// ``` -/// -/// # Safety -/// -/// * `Self` *must* have the same layout as the specified `Bits` except for -/// the possible invalid bit patterns being checked during -/// [`is_valid_bit_pattern`]. -/// * This almost certainly means your type must be `#[repr(C)]` or a similar -/// specified repr, but if you think you know better, you probably don't. If -/// you still think you know better, be careful and have fun. And don't mess -/// it up (I mean it). -/// * If [`is_valid_bit_pattern`] returns true, then the bit pattern contained -/// in `bits` must also be valid for an instance of `Self`. -/// * Probably more, don't mess it up (I mean it 2.0) -/// -/// [`is_valid_bit_pattern`]: CheckedBitPattern::is_valid_bit_pattern -/// [`Pod`]: crate::Pod -pub unsafe trait CheckedBitPattern: Copy { - /// `Self` *must* have the same layout as the specified `Bits` except for - /// the possible invalid bit patterns being checked during - /// [`is_valid_bit_pattern`]. - /// - /// [`is_valid_bit_pattern`]: CheckedBitPattern::is_valid_bit_pattern - type Bits: AnyBitPattern; - - /// If this function returns true, then it must be valid to reinterpret `bits` - /// as `&Self`. - fn is_valid_bit_pattern(bits: &Self::Bits) -> bool; -} - -unsafe impl<T: AnyBitPattern> CheckedBitPattern for T { - type Bits = T; - - #[inline(always)] - fn is_valid_bit_pattern(_bits: &T) -> bool { - true - } -} - -unsafe impl CheckedBitPattern for char { - type Bits = u32; - - #[inline] - fn is_valid_bit_pattern(bits: &Self::Bits) -> bool { - core::char::from_u32(*bits).is_some() - } -} - -unsafe impl CheckedBitPattern for bool { - type Bits = u8; - - #[inline] - fn is_valid_bit_pattern(bits: &Self::Bits) -> bool { - match *bits { - 0 | 1 => true, - _ => false, - } - } -} - -// Rust 1.70.0 documents that NonZero[int] has the same layout as [int]. -macro_rules! impl_checked_for_nonzero { - ($($nonzero:ty: $primitive:ty),* $(,)?) => { - $( - unsafe impl CheckedBitPattern for $nonzero { - type Bits = $primitive; - - #[inline] - fn is_valid_bit_pattern(bits: &Self::Bits) -> bool { - *bits != 0 - } - } - )* - }; -} -impl_checked_for_nonzero! { - core::num::NonZeroU8: u8, - core::num::NonZeroI8: i8, - core::num::NonZeroU16: u16, - core::num::NonZeroI16: i16, - core::num::NonZeroU32: u32, - core::num::NonZeroI32: i32, - core::num::NonZeroU64: u64, - core::num::NonZeroI64: i64, - core::num::NonZeroI128: i128, - core::num::NonZeroU128: u128, - core::num::NonZeroUsize: usize, - core::num::NonZeroIsize: isize, -} - -/// The things that can go wrong when casting between [`CheckedBitPattern`] data -/// forms. -#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] -pub enum CheckedCastError { - /// An error occurred during a true-[`Pod`] cast - /// - /// [`Pod`]: crate::Pod - PodCastError(crate::PodCastError), - /// When casting to a [`CheckedBitPattern`] type, it is possible that the - /// original data contains an invalid bit pattern. If so, the cast will - /// fail and this error will be returned. Will never happen on casts - /// between [`Pod`] types. - /// - /// [`Pod`]: crate::Pod - InvalidBitPattern, -} - -#[cfg(not(target_arch = "spirv"))] -impl core::fmt::Display for CheckedCastError { - fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { - write!(f, "{:?}", self) - } -} -#[cfg(feature = "extern_crate_std")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_std")))] -impl std::error::Error for CheckedCastError {} - -impl From<crate::PodCastError> for CheckedCastError { - fn from(err: crate::PodCastError) -> CheckedCastError { - CheckedCastError::PodCastError(err) - } -} - -/// Re-interprets `&[u8]` as `&T`. -/// -/// ## Failure -/// -/// * If the slice isn't aligned for the new type -/// * If the slice's length isn’t exactly the size of the new type -/// * If the slice contains an invalid bit pattern for `T` -#[inline] -pub fn try_from_bytes<T: CheckedBitPattern>( - s: &[u8], -) -> Result<&T, CheckedCastError> { - let pod = crate::try_from_bytes(s)?; - - if <T as CheckedBitPattern>::is_valid_bit_pattern(pod) { - Ok(unsafe { &*(pod as *const <T as CheckedBitPattern>::Bits as *const T) }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Re-interprets `&mut [u8]` as `&mut T`. -/// -/// ## Failure -/// -/// * If the slice isn't aligned for the new type -/// * If the slice's length isn’t exactly the size of the new type -/// * If the slice contains an invalid bit pattern for `T` -#[inline] -pub fn try_from_bytes_mut<T: CheckedBitPattern + NoUninit>( - s: &mut [u8], -) -> Result<&mut T, CheckedCastError> { - let pod = unsafe { internal::try_from_bytes_mut(s) }?; - - if <T as CheckedBitPattern>::is_valid_bit_pattern(pod) { - Ok(unsafe { &mut *(pod as *mut <T as CheckedBitPattern>::Bits as *mut T) }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Reads from the bytes as if they were a `T`. -/// -/// ## Failure -/// * If the `bytes` length is not equal to `size_of::<T>()`. -/// * If the slice contains an invalid bit pattern for `T` -#[inline] -pub fn try_pod_read_unaligned<T: CheckedBitPattern>( - bytes: &[u8], -) -> Result<T, CheckedCastError> { - let pod = crate::try_pod_read_unaligned(bytes)?; - - if <T as CheckedBitPattern>::is_valid_bit_pattern(&pod) { - Ok(unsafe { transmute!(pod) }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Try to cast `T` into `U`. -/// -/// Note that for this particular type of cast, alignment isn't a factor. The -/// input value is semantically copied into the function and then returned to a -/// new memory location which will have whatever the required alignment of the -/// output type is. -/// -/// ## Failure -/// -/// * If the types don't have the same size this fails. -/// * If `a` contains an invalid bit pattern for `B` this fails. -#[inline] -pub fn try_cast<A: NoUninit, B: CheckedBitPattern>( - a: A, -) -> Result<B, CheckedCastError> { - let pod = crate::try_cast(a)?; - - if <B as CheckedBitPattern>::is_valid_bit_pattern(&pod) { - Ok(unsafe { transmute!(pod) }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Try to convert a `&T` into `&U`. -/// -/// ## Failure -/// -/// * If the reference isn't aligned in the new type -/// * If the source type and target type aren't the same size. -/// * If `a` contains an invalid bit pattern for `B` this fails. -#[inline] -pub fn try_cast_ref<A: NoUninit, B: CheckedBitPattern>( - a: &A, -) -> Result<&B, CheckedCastError> { - let pod = crate::try_cast_ref(a)?; - - if <B as CheckedBitPattern>::is_valid_bit_pattern(pod) { - Ok(unsafe { &*(pod as *const <B as CheckedBitPattern>::Bits as *const B) }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Try to convert a `&mut T` into `&mut U`. -/// -/// As [`try_cast_ref`], but `mut`. -#[inline] -pub fn try_cast_mut< - A: NoUninit + AnyBitPattern, - B: CheckedBitPattern + NoUninit, ->( - a: &mut A, -) -> Result<&mut B, CheckedCastError> { - let pod = unsafe { internal::try_cast_mut(a) }?; - - if <B as CheckedBitPattern>::is_valid_bit_pattern(pod) { - Ok(unsafe { &mut *(pod as *mut <B as CheckedBitPattern>::Bits as *mut B) }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Try to convert `&[A]` into `&[B]` (possibly with a change in length). -/// -/// * `input.as_ptr() as usize == output.as_ptr() as usize` -/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()` -/// -/// ## Failure -/// -/// * If the target type has a greater alignment requirement and the input slice -/// isn't aligned. -/// * If the target element type is a different size from the current element -/// type, and the output slice wouldn't be a whole number of elements when -/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so -/// that's a failure). -/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts) -/// and a non-ZST. -/// * If any element of the converted slice would contain an invalid bit pattern -/// for `B` this fails. -#[inline] -pub fn try_cast_slice<A: NoUninit, B: CheckedBitPattern>( - a: &[A], -) -> Result<&[B], CheckedCastError> { - let pod = crate::try_cast_slice(a)?; - - if pod.iter().all(|pod| <B as CheckedBitPattern>::is_valid_bit_pattern(pod)) { - Ok(unsafe { - core::slice::from_raw_parts(pod.as_ptr() as *const B, pod.len()) - }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in -/// length). -/// -/// As [`try_cast_slice`], but `&mut`. -#[inline] -pub fn try_cast_slice_mut< - A: NoUninit + AnyBitPattern, - B: CheckedBitPattern + NoUninit, ->( - a: &mut [A], -) -> Result<&mut [B], CheckedCastError> { - let pod = unsafe { internal::try_cast_slice_mut(a) }?; - - if pod.iter().all(|pod| <B as CheckedBitPattern>::is_valid_bit_pattern(pod)) { - Ok(unsafe { - core::slice::from_raw_parts_mut(pod.as_mut_ptr() as *mut B, pod.len()) - }) - } else { - Err(CheckedCastError::InvalidBitPattern) - } -} - -/// Re-interprets `&[u8]` as `&T`. -/// -/// ## Panics -/// -/// This is [`try_from_bytes`] but will panic on error. -#[inline] -pub fn from_bytes<T: CheckedBitPattern>(s: &[u8]) -> &T { - match try_from_bytes(s) { - Ok(t) => t, - Err(e) => something_went_wrong("from_bytes", e), - } -} - -/// Re-interprets `&mut [u8]` as `&mut T`. -/// -/// ## Panics -/// -/// This is [`try_from_bytes_mut`] but will panic on error. -#[inline] -pub fn from_bytes_mut<T: NoUninit + CheckedBitPattern>(s: &mut [u8]) -> &mut T { - match try_from_bytes_mut(s) { - Ok(t) => t, - Err(e) => something_went_wrong("from_bytes_mut", e), - } -} - -/// Reads the slice into a `T` value. -/// -/// ## Panics -/// * This is like `try_pod_read_unaligned` but will panic on failure. -#[inline] -pub fn pod_read_unaligned<T: CheckedBitPattern>(bytes: &[u8]) -> T { - match try_pod_read_unaligned(bytes) { - Ok(t) => t, - Err(e) => something_went_wrong("pod_read_unaligned", e), - } -} - -/// Cast `T` into `U` -/// -/// ## Panics -/// -/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch. -#[inline] -pub fn cast<A: NoUninit, B: CheckedBitPattern>(a: A) -> B { - match try_cast(a) { - Ok(t) => t, - Err(e) => something_went_wrong("cast", e), - } -} - -/// Cast `&mut T` into `&mut U`. -/// -/// ## Panics -/// -/// This is [`try_cast_mut`] but will panic on error. -#[inline] -pub fn cast_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + CheckedBitPattern, ->( - a: &mut A, -) -> &mut B { - match try_cast_mut(a) { - Ok(t) => t, - Err(e) => something_went_wrong("cast_mut", e), - } -} - -/// Cast `&T` into `&U`. -/// -/// ## Panics -/// -/// This is [`try_cast_ref`] but will panic on error. -#[inline] -pub fn cast_ref<A: NoUninit, B: CheckedBitPattern>(a: &A) -> &B { - match try_cast_ref(a) { - Ok(t) => t, - Err(e) => something_went_wrong("cast_ref", e), - } -} - -/// Cast `&[A]` into `&[B]`. -/// -/// ## Panics -/// -/// This is [`try_cast_slice`] but will panic on error. -#[inline] -pub fn cast_slice<A: NoUninit, B: CheckedBitPattern>(a: &[A]) -> &[B] { - match try_cast_slice(a) { - Ok(t) => t, - Err(e) => something_went_wrong("cast_slice", e), - } -} - -/// Cast `&mut [T]` into `&mut [U]`. -/// -/// ## Panics -/// -/// This is [`try_cast_slice_mut`] but will panic on error. -#[inline] -pub fn cast_slice_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + CheckedBitPattern, ->( - a: &mut [A], -) -> &mut [B] { - match try_cast_slice_mut(a) { - Ok(t) => t, - Err(e) => something_went_wrong("cast_slice_mut", e), - } -} diff --git a/vendor/bytemuck/src/contiguous.rs b/vendor/bytemuck/src/contiguous.rs deleted file mode 100644 index 538514b..0000000 --- a/vendor/bytemuck/src/contiguous.rs +++ /dev/null @@ -1,202 +0,0 @@ -use super::*; - -/// A trait indicating that: -/// -/// 1. A type has an equivalent representation to some known integral type. -/// 2. All instances of this type fall in a fixed range of values. -/// 3. Within that range, there are no gaps. -/// -/// This is generally useful for fieldless enums (aka "c-style" enums), however -/// it's important that it only be used for those with an explicit `#[repr]`, as -/// `#[repr(Rust)]` fieldess enums have an unspecified layout. -/// -/// Additionally, you shouldn't assume that all implementations are enums. Any -/// type which meets the requirements above while following the rules under -/// "Safety" below is valid. -/// -/// # Example -/// -/// ``` -/// # use bytemuck::Contiguous; -/// #[repr(u8)] -/// #[derive(Debug, Copy, Clone, PartialEq)] -/// enum Foo { -/// A = 0, -/// B = 1, -/// C = 2, -/// D = 3, -/// E = 4, -/// } -/// unsafe impl Contiguous for Foo { -/// type Int = u8; -/// const MIN_VALUE: u8 = Foo::A as u8; -/// const MAX_VALUE: u8 = Foo::E as u8; -/// } -/// assert_eq!(Foo::from_integer(3).unwrap(), Foo::D); -/// assert_eq!(Foo::from_integer(8), None); -/// assert_eq!(Foo::C.into_integer(), 2); -/// ``` -/// # Safety -/// -/// This is an unsafe trait, and incorrectly implementing it is undefined -/// behavior. -/// -/// Informally, by implementing it, you're asserting that `C` is identical to -/// the integral type `C::Int`, and that every `C` falls between `C::MIN_VALUE` -/// and `C::MAX_VALUE` exactly once, without any gaps. -/// -/// Precisely, the guarantees you must uphold when implementing `Contiguous` for -/// some type `C` are: -/// -/// 1. The size of `C` and `C::Int` must be the same, and neither may be a ZST. -/// (Note: alignment is explicitly allowed to differ) -/// -/// 2. `C::Int` must be a primitive integer, and not a wrapper type. In the -/// future, this may be lifted to include cases where the behavior is -/// identical for a relevant set of traits (Ord, arithmetic, ...). -/// -/// 3. All `C::Int`s which are in the *inclusive* range between `C::MIN_VALUE` -/// and `C::MAX_VALUE` are bitwise identical to unique valid instances of -/// `C`. -/// -/// 4. There exist no instances of `C` such that their bitpatterns, when -/// interpreted as instances of `C::Int`, fall outside of the `MAX_VALUE` / -/// `MIN_VALUE` range -- It is legal for unsafe code to assume that if it -/// gets a `C` that implements `Contiguous`, it is in the appropriate range. -/// -/// 5. Finally, you promise not to provide overridden implementations of -/// `Contiguous::from_integer` and `Contiguous::into_integer`. -/// -/// For clarity, the following rules could be derived from the above, but are -/// listed explicitly: -/// -/// - `C::MAX_VALUE` must be greater or equal to `C::MIN_VALUE` (therefore, `C` -/// must be an inhabited type). -/// -/// - There exist no two values between `MIN_VALUE` and `MAX_VALUE` such that -/// when interpreted as a `C` they are considered identical (by, say, match). -pub unsafe trait Contiguous: Copy + 'static { - /// The primitive integer type with an identical representation to this - /// type. - /// - /// Contiguous is broadly intended for use with fieldless enums, and for - /// these the correct integer type is easy: The enum should have a - /// `#[repr(Int)]` or `#[repr(C)]` attribute, (if it does not, it is - /// *unsound* to implement `Contiguous`!). - /// - /// - For `#[repr(Int)]`, use the listed `Int`. e.g. `#[repr(u8)]` should use - /// `type Int = u8`. - /// - /// - For `#[repr(C)]`, use whichever type the C compiler will use to - /// represent the given enum. This is usually `c_int` (from `std::os::raw` - /// or `libc`), but it's up to you to make the determination as the - /// implementer of the unsafe trait. - /// - /// For precise rules, see the list under "Safety" above. - type Int: Copy + Ord; - - /// The upper *inclusive* bound for valid instances of this type. - const MAX_VALUE: Self::Int; - - /// The lower *inclusive* bound for valid instances of this type. - const MIN_VALUE: Self::Int; - - /// If `value` is within the range for valid instances of this type, - /// returns `Some(converted_value)`, otherwise, returns `None`. - /// - /// This is a trait method so that you can write `value.into_integer()` in - /// your code. It is a contract of this trait that if you implement - /// `Contiguous` on your type you **must not** override this method. - /// - /// # Panics - /// - /// We will not panic for any correct implementation of `Contiguous`, but - /// *may* panic if we detect an incorrect one. - /// - /// This is undefined behavior regardless, so it could have been the nasal - /// demons at that point anyway ;). - #[inline] - fn from_integer(value: Self::Int) -> Option<Self> { - // Guard against an illegal implementation of Contiguous. Annoyingly we - // can't rely on `transmute` to do this for us (see below), but - // whatever, this gets compiled into nothing in release. - assert!(size_of::<Self>() == size_of::<Self::Int>()); - if Self::MIN_VALUE <= value && value <= Self::MAX_VALUE { - // SAFETY: We've checked their bounds (and their size, even though - // they've sworn under the Oath Of Unsafe Rust that that already - // matched) so this is allowed by `Contiguous`'s unsafe contract. - // - // So, the `transmute!`. ideally we'd use transmute here, which - // is more obviously safe. Sadly, we can't, as these types still - // have unspecified sizes. - Some(unsafe { transmute!(value) }) - } else { - None - } - } - - /// Perform the conversion from `C` into the underlying integral type. This - /// mostly exists otherwise generic code would need unsafe for the `value as - /// integer` - /// - /// This is a trait method so that you can write `value.into_integer()` in - /// your code. It is a contract of this trait that if you implement - /// `Contiguous` on your type you **must not** override this method. - /// - /// # Panics - /// - /// We will not panic for any correct implementation of `Contiguous`, but - /// *may* panic if we detect an incorrect one. - /// - /// This is undefined behavior regardless, so it could have been the nasal - /// demons at that point anyway ;). - #[inline] - fn into_integer(self) -> Self::Int { - // Guard against an illegal implementation of Contiguous. Annoyingly we - // can't rely on `transmute` to do the size check for us (see - // `from_integer's comment`), but whatever, this gets compiled into - // nothing in release. Note that we don't check the result of cast - assert!(size_of::<Self>() == size_of::<Self::Int>()); - - // SAFETY: The unsafe contract requires that these have identical - // representations, and that the range be entirely valid. Using - // transmute! instead of transmute here is annoying, but is required - // as `Self` and `Self::Int` have unspecified sizes still. - unsafe { transmute!(self) } - } -} - -macro_rules! impl_contiguous { - ($($src:ty as $repr:ident in [$min:expr, $max:expr];)*) => {$( - unsafe impl Contiguous for $src { - type Int = $repr; - const MAX_VALUE: $repr = $max; - const MIN_VALUE: $repr = $min; - } - )*}; -} - -impl_contiguous! { - bool as u8 in [0, 1]; - - u8 as u8 in [0, u8::max_value()]; - u16 as u16 in [0, u16::max_value()]; - u32 as u32 in [0, u32::max_value()]; - u64 as u64 in [0, u64::max_value()]; - u128 as u128 in [0, u128::max_value()]; - usize as usize in [0, usize::max_value()]; - - i8 as i8 in [i8::min_value(), i8::max_value()]; - i16 as i16 in [i16::min_value(), i16::max_value()]; - i32 as i32 in [i32::min_value(), i32::max_value()]; - i64 as i64 in [i64::min_value(), i64::max_value()]; - i128 as i128 in [i128::min_value(), i128::max_value()]; - isize as isize in [isize::min_value(), isize::max_value()]; - - NonZeroU8 as u8 in [1, u8::max_value()]; - NonZeroU16 as u16 in [1, u16::max_value()]; - NonZeroU32 as u32 in [1, u32::max_value()]; - NonZeroU64 as u64 in [1, u64::max_value()]; - NonZeroU128 as u128 in [1, u128::max_value()]; - NonZeroUsize as usize in [1, usize::max_value()]; -} diff --git a/vendor/bytemuck/src/internal.rs b/vendor/bytemuck/src/internal.rs deleted file mode 100644 index 3ede50f..0000000 --- a/vendor/bytemuck/src/internal.rs +++ /dev/null @@ -1,402 +0,0 @@ -//! Internal implementation of casting functions not bound by marker traits -//! and therefore marked as unsafe. This is used so that we don't need to -//! duplicate the business logic contained in these functions between the -//! versions exported in the crate root, `checked`, and `relaxed` modules. -#![allow(unused_unsafe)] - -use crate::PodCastError; -use core::{marker::*, mem::*}; - -/* - -Note(Lokathor): We've switched all of the `unwrap` to `match` because there is -apparently a bug: https://github.com/rust-lang/rust/issues/68667 -and it doesn't seem to show up in simple godbolt examples but has been reported -as having an impact when there's a cast mixed in with other more complicated -code around it. Rustc/LLVM ends up missing that the `Err` can't ever happen for -particular type combinations, and then it doesn't fully eliminated the panic -possibility code branch. - -*/ - -/// Immediately panics. -#[cfg(not(target_arch = "spirv"))] -#[cold] -#[inline(never)] -pub(crate) fn something_went_wrong<D: core::fmt::Display>( - _src: &str, _err: D, -) -> ! { - // Note(Lokathor): Keeping the panic here makes the panic _formatting_ go - // here too, which helps assembly readability and also helps keep down - // the inline pressure. - panic!("{src}>{err}", src = _src, err = _err); -} - -/// Immediately panics. -#[cfg(target_arch = "spirv")] -#[cold] -#[inline(never)] -pub(crate) fn something_went_wrong<D>(_src: &str, _err: D) -> ! { - // Note: On the spirv targets from [rust-gpu](https://github.com/EmbarkStudios/rust-gpu) - // panic formatting cannot be used. We we just give a generic error message - // The chance that the panicking version of these functions will ever get - // called on spir-v targets with invalid inputs is small, but giving a - // simple error message is better than no error message at all. - panic!("Called a panicing helper from bytemuck which paniced"); -} - -/// Re-interprets `&T` as `&[u8]`. -/// -/// Any ZST becomes an empty slice, and in that case the pointer value of that -/// empty slice might not match the pointer value of the input reference. -#[inline(always)] -pub(crate) unsafe fn bytes_of<T: Copy>(t: &T) -> &[u8] { - if size_of::<T>() == 0 { - &[] - } else { - match try_cast_slice::<T, u8>(core::slice::from_ref(t)) { - Ok(s) => s, - Err(_) => unreachable!(), - } - } -} - -/// Re-interprets `&mut T` as `&mut [u8]`. -/// -/// Any ZST becomes an empty slice, and in that case the pointer value of that -/// empty slice might not match the pointer value of the input reference. -#[inline] -pub(crate) unsafe fn bytes_of_mut<T: Copy>(t: &mut T) -> &mut [u8] { - if size_of::<T>() == 0 { - &mut [] - } else { - match try_cast_slice_mut::<T, u8>(core::slice::from_mut(t)) { - Ok(s) => s, - Err(_) => unreachable!(), - } - } -} - -/// Re-interprets `&[u8]` as `&T`. -/// -/// ## Panics -/// -/// This is [`try_from_bytes`] but will panic on error. -#[inline] -pub(crate) unsafe fn from_bytes<T: Copy>(s: &[u8]) -> &T { - match try_from_bytes(s) { - Ok(t) => t, - Err(e) => something_went_wrong("from_bytes", e), - } -} - -/// Re-interprets `&mut [u8]` as `&mut T`. -/// -/// ## Panics -/// -/// This is [`try_from_bytes_mut`] but will panic on error. -#[inline] -pub(crate) unsafe fn from_bytes_mut<T: Copy>(s: &mut [u8]) -> &mut T { - match try_from_bytes_mut(s) { - Ok(t) => t, - Err(e) => something_went_wrong("from_bytes_mut", e), - } -} - -/// Reads from the bytes as if they were a `T`. -/// -/// ## Failure -/// * If the `bytes` length is not equal to `size_of::<T>()`. -#[inline] -pub(crate) unsafe fn try_pod_read_unaligned<T: Copy>( - bytes: &[u8], -) -> Result<T, PodCastError> { - if bytes.len() != size_of::<T>() { - Err(PodCastError::SizeMismatch) - } else { - Ok(unsafe { (bytes.as_ptr() as *const T).read_unaligned() }) - } -} - -/// Reads the slice into a `T` value. -/// -/// ## Panics -/// * This is like `try_pod_read_unaligned` but will panic on failure. -#[inline] -pub(crate) unsafe fn pod_read_unaligned<T: Copy>(bytes: &[u8]) -> T { - match try_pod_read_unaligned(bytes) { - Ok(t) => t, - Err(e) => something_went_wrong("pod_read_unaligned", e), - } -} - -/// Checks if `ptr` is aligned to an `align` memory boundary. -/// -/// ## Panics -/// * If `align` is not a power of two. This includes when `align` is zero. -#[inline] -pub(crate) fn is_aligned_to(ptr: *const (), align: usize) -> bool { - #[cfg(feature = "align_offset")] - { - // This is in a way better than `ptr as usize % align == 0`, - // because casting a pointer to an integer has the side effect that it - // exposes the pointer's provenance, which may theoretically inhibit - // some compiler optimizations. - ptr.align_offset(align) == 0 - } - #[cfg(not(feature = "align_offset"))] - { - ((ptr as usize) % align) == 0 - } -} - -/// Re-interprets `&[u8]` as `&T`. -/// -/// ## Failure -/// -/// * If the slice isn't aligned for the new type -/// * If the slice's length isn’t exactly the size of the new type -#[inline] -pub(crate) unsafe fn try_from_bytes<T: Copy>( - s: &[u8], -) -> Result<&T, PodCastError> { - if s.len() != size_of::<T>() { - Err(PodCastError::SizeMismatch) - } else if !is_aligned_to(s.as_ptr() as *const (), align_of::<T>()) { - Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) - } else { - Ok(unsafe { &*(s.as_ptr() as *const T) }) - } -} - -/// Re-interprets `&mut [u8]` as `&mut T`. -/// -/// ## Failure -/// -/// * If the slice isn't aligned for the new type -/// * If the slice's length isn’t exactly the size of the new type -#[inline] -pub(crate) unsafe fn try_from_bytes_mut<T: Copy>( - s: &mut [u8], -) -> Result<&mut T, PodCastError> { - if s.len() != size_of::<T>() { - Err(PodCastError::SizeMismatch) - } else if !is_aligned_to(s.as_ptr() as *const (), align_of::<T>()) { - Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) - } else { - Ok(unsafe { &mut *(s.as_mut_ptr() as *mut T) }) - } -} - -/// Cast `T` into `U` -/// -/// ## Panics -/// -/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch. -#[inline] -pub(crate) unsafe fn cast<A: Copy, B: Copy>(a: A) -> B { - if size_of::<A>() == size_of::<B>() { - unsafe { transmute!(a) } - } else { - something_went_wrong("cast", PodCastError::SizeMismatch) - } -} - -/// Cast `&mut T` into `&mut U`. -/// -/// ## Panics -/// -/// This is [`try_cast_mut`] but will panic on error. -#[inline] -pub(crate) unsafe fn cast_mut<A: Copy, B: Copy>(a: &mut A) -> &mut B { - if size_of::<A>() == size_of::<B>() && align_of::<A>() >= align_of::<B>() { - // Plz mr compiler, just notice that we can't ever hit Err in this case. - match try_cast_mut(a) { - Ok(b) => b, - Err(_) => unreachable!(), - } - } else { - match try_cast_mut(a) { - Ok(b) => b, - Err(e) => something_went_wrong("cast_mut", e), - } - } -} - -/// Cast `&T` into `&U`. -/// -/// ## Panics -/// -/// This is [`try_cast_ref`] but will panic on error. -#[inline] -pub(crate) unsafe fn cast_ref<A: Copy, B: Copy>(a: &A) -> &B { - if size_of::<A>() == size_of::<B>() && align_of::<A>() >= align_of::<B>() { - // Plz mr compiler, just notice that we can't ever hit Err in this case. - match try_cast_ref(a) { - Ok(b) => b, - Err(_) => unreachable!(), - } - } else { - match try_cast_ref(a) { - Ok(b) => b, - Err(e) => something_went_wrong("cast_ref", e), - } - } -} - -/// Cast `&[A]` into `&[B]`. -/// -/// ## Panics -/// -/// This is [`try_cast_slice`] but will panic on error. -#[inline] -pub(crate) unsafe fn cast_slice<A: Copy, B: Copy>(a: &[A]) -> &[B] { - match try_cast_slice(a) { - Ok(b) => b, - Err(e) => something_went_wrong("cast_slice", e), - } -} - -/// Cast `&mut [T]` into `&mut [U]`. -/// -/// ## Panics -/// -/// This is [`try_cast_slice_mut`] but will panic on error. -#[inline] -pub(crate) unsafe fn cast_slice_mut<A: Copy, B: Copy>(a: &mut [A]) -> &mut [B] { - match try_cast_slice_mut(a) { - Ok(b) => b, - Err(e) => something_went_wrong("cast_slice_mut", e), - } -} - -/// Try to cast `T` into `U`. -/// -/// Note that for this particular type of cast, alignment isn't a factor. The -/// input value is semantically copied into the function and then returned to a -/// new memory location which will have whatever the required alignment of the -/// output type is. -/// -/// ## Failure -/// -/// * If the types don't have the same size this fails. -#[inline] -pub(crate) unsafe fn try_cast<A: Copy, B: Copy>( - a: A, -) -> Result<B, PodCastError> { - if size_of::<A>() == size_of::<B>() { - Ok(unsafe { transmute!(a) }) - } else { - Err(PodCastError::SizeMismatch) - } -} - -/// Try to convert a `&T` into `&U`. -/// -/// ## Failure -/// -/// * If the reference isn't aligned in the new type -/// * If the source type and target type aren't the same size. -#[inline] -pub(crate) unsafe fn try_cast_ref<A: Copy, B: Copy>( - a: &A, -) -> Result<&B, PodCastError> { - // Note(Lokathor): everything with `align_of` and `size_of` will optimize away - // after monomorphization. - if align_of::<B>() > align_of::<A>() - && !is_aligned_to(a as *const A as *const (), align_of::<B>()) - { - Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) - } else if size_of::<B>() == size_of::<A>() { - Ok(unsafe { &*(a as *const A as *const B) }) - } else { - Err(PodCastError::SizeMismatch) - } -} - -/// Try to convert a `&mut T` into `&mut U`. -/// -/// As [`try_cast_ref`], but `mut`. -#[inline] -pub(crate) unsafe fn try_cast_mut<A: Copy, B: Copy>( - a: &mut A, -) -> Result<&mut B, PodCastError> { - // Note(Lokathor): everything with `align_of` and `size_of` will optimize away - // after monomorphization. - if align_of::<B>() > align_of::<A>() - && !is_aligned_to(a as *const A as *const (), align_of::<B>()) - { - Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) - } else if size_of::<B>() == size_of::<A>() { - Ok(unsafe { &mut *(a as *mut A as *mut B) }) - } else { - Err(PodCastError::SizeMismatch) - } -} - -/// Try to convert `&[A]` into `&[B]` (possibly with a change in length). -/// -/// * `input.as_ptr() as usize == output.as_ptr() as usize` -/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()` -/// -/// ## Failure -/// -/// * If the target type has a greater alignment requirement and the input slice -/// isn't aligned. -/// * If the target element type is a different size from the current element -/// type, and the output slice wouldn't be a whole number of elements when -/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so -/// that's a failure). -/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts) -/// and a non-ZST. -#[inline] -pub(crate) unsafe fn try_cast_slice<A: Copy, B: Copy>( - a: &[A], -) -> Result<&[B], PodCastError> { - // Note(Lokathor): everything with `align_of` and `size_of` will optimize away - // after monomorphization. - if align_of::<B>() > align_of::<A>() - && !is_aligned_to(a.as_ptr() as *const (), align_of::<B>()) - { - Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) - } else if size_of::<B>() == size_of::<A>() { - Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, a.len()) }) - } else if size_of::<A>() == 0 || size_of::<B>() == 0 { - Err(PodCastError::SizeMismatch) - } else if core::mem::size_of_val(a) % size_of::<B>() == 0 { - let new_len = core::mem::size_of_val(a) / size_of::<B>(); - Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, new_len) }) - } else { - Err(PodCastError::OutputSliceWouldHaveSlop) - } -} - -/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in -/// length). -/// -/// As [`try_cast_slice`], but `&mut`. -#[inline] -pub(crate) unsafe fn try_cast_slice_mut<A: Copy, B: Copy>( - a: &mut [A], -) -> Result<&mut [B], PodCastError> { - // Note(Lokathor): everything with `align_of` and `size_of` will optimize away - // after monomorphization. - if align_of::<B>() > align_of::<A>() - && !is_aligned_to(a.as_ptr() as *const (), align_of::<B>()) - { - Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) - } else if size_of::<B>() == size_of::<A>() { - Ok(unsafe { - core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, a.len()) - }) - } else if size_of::<A>() == 0 || size_of::<B>() == 0 { - Err(PodCastError::SizeMismatch) - } else if core::mem::size_of_val(a) % size_of::<B>() == 0 { - let new_len = core::mem::size_of_val(a) / size_of::<B>(); - Ok(unsafe { - core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, new_len) - }) - } else { - Err(PodCastError::OutputSliceWouldHaveSlop) - } -} diff --git a/vendor/bytemuck/src/lib.rs b/vendor/bytemuck/src/lib.rs deleted file mode 100644 index 000dacb..0000000 --- a/vendor/bytemuck/src/lib.rs +++ /dev/null @@ -1,457 +0,0 @@ -#![no_std] -#![warn(missing_docs)] -#![allow(clippy::match_like_matches_macro)] -#![allow(clippy::uninlined_format_args)] -#![cfg_attr(feature = "nightly_docs", feature(doc_cfg))] -#![cfg_attr(feature = "nightly_portable_simd", feature(portable_simd))] -#![cfg_attr(feature = "nightly_stdsimd", feature(stdsimd))] - -//! This crate gives small utilities for casting between plain data types. -//! -//! ## Basics -//! -//! Data comes in five basic forms in Rust, so we have five basic casting -//! functions: -//! -//! * `T` uses [`cast`] -//! * `&T` uses [`cast_ref`] -//! * `&mut T` uses [`cast_mut`] -//! * `&[T]` uses [`cast_slice`] -//! * `&mut [T]` uses [`cast_slice_mut`] -//! -//! Some casts will never fail (eg: `cast::<u32, f32>` always works), other -//! casts might fail (eg: `cast_ref::<[u8; 4], u32>` will fail if the reference -//! isn't already aligned to 4). Each casting function has a "try" version which -//! will return a `Result`, and the "normal" version which will simply panic on -//! invalid input. -//! -//! ## Using Your Own Types -//! -//! All the functions here are guarded by the [`Pod`] trait, which is a -//! sub-trait of the [`Zeroable`] trait. -//! -//! If you're very sure that your type is eligible, you can implement those -//! traits for your type and then they'll have full casting support. However, -//! these traits are `unsafe`, and you should carefully read the requirements -//! before adding the them to your own types. -//! -//! ## Features -//! -//! * This crate is core only by default, but if you're using Rust 1.36 or later -//! you can enable the `extern_crate_alloc` cargo feature for some additional -//! methods related to `Box` and `Vec`. Note that the `docs.rs` documentation -//! is always built with `extern_crate_alloc` cargo feature enabled. - -#[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))] -use core::arch::aarch64; -#[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))] -use core::arch::wasm32; -#[cfg(target_arch = "x86")] -use core::arch::x86; -#[cfg(target_arch = "x86_64")] -use core::arch::x86_64; -// -use core::{marker::*, mem::*, num::*, ptr::*}; - -// Used from macros to ensure we aren't using some locally defined name and -// actually are referencing libcore. This also would allow pre-2018 edition -// crates to use our macros, but I'm not sure how important that is. -#[doc(hidden)] -pub use ::core as __core; - -#[cfg(not(feature = "min_const_generics"))] -macro_rules! impl_unsafe_marker_for_array { - ( $marker:ident , $( $n:expr ),* ) => { - $(unsafe impl<T> $marker for [T; $n] where T: $marker {})* - } -} - -/// A macro to transmute between two types without requiring knowing size -/// statically. -macro_rules! transmute { - ($val:expr) => { - ::core::mem::transmute_copy(&::core::mem::ManuallyDrop::new($val)) - }; -} - -/// A macro to implement marker traits for various simd types. -/// #[allow(unused)] because the impls are only compiled on relevant platforms -/// with relevant cargo features enabled. -#[allow(unused)] -macro_rules! impl_unsafe_marker_for_simd { - ($(#[cfg($cfg_predicate:meta)])? unsafe impl $trait:ident for $platform:ident :: {}) => {}; - ($(#[cfg($cfg_predicate:meta)])? unsafe impl $trait:ident for $platform:ident :: { $first_type:ident $(, $types:ident)* $(,)? }) => { - $( #[cfg($cfg_predicate)] )? - $( #[cfg_attr(feature = "nightly_docs", doc(cfg($cfg_predicate)))] )? - unsafe impl $trait for $platform::$first_type {} - $( #[cfg($cfg_predicate)] )? // To prevent recursion errors if nothing is going to be expanded anyway. - impl_unsafe_marker_for_simd!($( #[cfg($cfg_predicate)] )? unsafe impl $trait for $platform::{ $( $types ),* }); - }; -} - -#[cfg(feature = "extern_crate_std")] -extern crate std; - -#[cfg(feature = "extern_crate_alloc")] -extern crate alloc; -#[cfg(feature = "extern_crate_alloc")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_alloc")))] -pub mod allocation; -#[cfg(feature = "extern_crate_alloc")] -pub use allocation::*; - -mod anybitpattern; -pub use anybitpattern::*; - -pub mod checked; -pub use checked::CheckedBitPattern; - -mod internal; - -mod zeroable; -pub use zeroable::*; -mod zeroable_in_option; -pub use zeroable_in_option::*; - -mod pod; -pub use pod::*; -mod pod_in_option; -pub use pod_in_option::*; - -#[cfg(feature = "must_cast")] -mod must; -#[cfg(feature = "must_cast")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "must_cast")))] -pub use must::*; - -mod no_uninit; -pub use no_uninit::*; - -mod contiguous; -pub use contiguous::*; - -mod offset_of; -pub use offset_of::*; - -mod transparent; -pub use transparent::*; - -#[cfg(feature = "derive")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "derive")))] -pub use bytemuck_derive::{ - AnyBitPattern, ByteEq, ByteHash, CheckedBitPattern, Contiguous, NoUninit, - Pod, TransparentWrapper, Zeroable, -}; - -/// The things that can go wrong when casting between [`Pod`] data forms. -#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] -pub enum PodCastError { - /// You tried to cast a slice to an element type with a higher alignment - /// requirement but the slice wasn't aligned. - TargetAlignmentGreaterAndInputNotAligned, - /// If the element size changes then the output slice changes length - /// accordingly. If the output slice wouldn't be a whole number of elements - /// then the conversion fails. - OutputSliceWouldHaveSlop, - /// When casting a slice you can't convert between ZST elements and non-ZST - /// elements. When casting an individual `T`, `&T`, or `&mut T` value the - /// source size and destination size must be an exact match. - SizeMismatch, - /// For this type of cast the alignments must be exactly the same and they - /// were not so now you're sad. - /// - /// This error is generated **only** by operations that cast allocated types - /// (such as `Box` and `Vec`), because in that case the alignment must stay - /// exact. - AlignmentMismatch, -} -#[cfg(not(target_arch = "spirv"))] -impl core::fmt::Display for PodCastError { - fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { - write!(f, "{:?}", self) - } -} -#[cfg(feature = "extern_crate_std")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_std")))] -impl std::error::Error for PodCastError {} - -/// Re-interprets `&T` as `&[u8]`. -/// -/// Any ZST becomes an empty slice, and in that case the pointer value of that -/// empty slice might not match the pointer value of the input reference. -#[inline] -pub fn bytes_of<T: NoUninit>(t: &T) -> &[u8] { - unsafe { internal::bytes_of(t) } -} - -/// Re-interprets `&mut T` as `&mut [u8]`. -/// -/// Any ZST becomes an empty slice, and in that case the pointer value of that -/// empty slice might not match the pointer value of the input reference. -#[inline] -pub fn bytes_of_mut<T: NoUninit + AnyBitPattern>(t: &mut T) -> &mut [u8] { - unsafe { internal::bytes_of_mut(t) } -} - -/// Re-interprets `&[u8]` as `&T`. -/// -/// ## Panics -/// -/// This is [`try_from_bytes`] but will panic on error. -#[inline] -pub fn from_bytes<T: AnyBitPattern>(s: &[u8]) -> &T { - unsafe { internal::from_bytes(s) } -} - -/// Re-interprets `&mut [u8]` as `&mut T`. -/// -/// ## Panics -/// -/// This is [`try_from_bytes_mut`] but will panic on error. -#[inline] -pub fn from_bytes_mut<T: NoUninit + AnyBitPattern>(s: &mut [u8]) -> &mut T { - unsafe { internal::from_bytes_mut(s) } -} - -/// Reads from the bytes as if they were a `T`. -/// -/// ## Failure -/// * If the `bytes` length is not equal to `size_of::<T>()`. -#[inline] -pub fn try_pod_read_unaligned<T: AnyBitPattern>( - bytes: &[u8], -) -> Result<T, PodCastError> { - unsafe { internal::try_pod_read_unaligned(bytes) } -} - -/// Reads the slice into a `T` value. -/// -/// ## Panics -/// * This is like `try_pod_read_unaligned` but will panic on failure. -#[inline] -pub fn pod_read_unaligned<T: AnyBitPattern>(bytes: &[u8]) -> T { - unsafe { internal::pod_read_unaligned(bytes) } -} - -/// Re-interprets `&[u8]` as `&T`. -/// -/// ## Failure -/// -/// * If the slice isn't aligned for the new type -/// * If the slice's length isn’t exactly the size of the new type -#[inline] -pub fn try_from_bytes<T: AnyBitPattern>(s: &[u8]) -> Result<&T, PodCastError> { - unsafe { internal::try_from_bytes(s) } -} - -/// Re-interprets `&mut [u8]` as `&mut T`. -/// -/// ## Failure -/// -/// * If the slice isn't aligned for the new type -/// * If the slice's length isn’t exactly the size of the new type -#[inline] -pub fn try_from_bytes_mut<T: NoUninit + AnyBitPattern>( - s: &mut [u8], -) -> Result<&mut T, PodCastError> { - unsafe { internal::try_from_bytes_mut(s) } -} - -/// Cast `T` into `U` -/// -/// ## Panics -/// -/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch. -#[inline] -pub fn cast<A: NoUninit, B: AnyBitPattern>(a: A) -> B { - unsafe { internal::cast(a) } -} - -/// Cast `&mut T` into `&mut U`. -/// -/// ## Panics -/// -/// This is [`try_cast_mut`] but will panic on error. -#[inline] -pub fn cast_mut<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>( - a: &mut A, -) -> &mut B { - unsafe { internal::cast_mut(a) } -} - -/// Cast `&T` into `&U`. -/// -/// ## Panics -/// -/// This is [`try_cast_ref`] but will panic on error. -#[inline] -pub fn cast_ref<A: NoUninit, B: AnyBitPattern>(a: &A) -> &B { - unsafe { internal::cast_ref(a) } -} - -/// Cast `&[A]` into `&[B]`. -/// -/// ## Panics -/// -/// This is [`try_cast_slice`] but will panic on error. -#[inline] -pub fn cast_slice<A: NoUninit, B: AnyBitPattern>(a: &[A]) -> &[B] { - unsafe { internal::cast_slice(a) } -} - -/// Cast `&mut [T]` into `&mut [U]`. -/// -/// ## Panics -/// -/// This is [`try_cast_slice_mut`] but will panic on error. -#[inline] -pub fn cast_slice_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - a: &mut [A], -) -> &mut [B] { - unsafe { internal::cast_slice_mut(a) } -} - -/// As `align_to`, but safe because of the [`Pod`] bound. -#[inline] -pub fn pod_align_to<T: NoUninit, U: AnyBitPattern>( - vals: &[T], -) -> (&[T], &[U], &[T]) { - unsafe { vals.align_to::<U>() } -} - -/// As `align_to_mut`, but safe because of the [`Pod`] bound. -#[inline] -pub fn pod_align_to_mut< - T: NoUninit + AnyBitPattern, - U: NoUninit + AnyBitPattern, ->( - vals: &mut [T], -) -> (&mut [T], &mut [U], &mut [T]) { - unsafe { vals.align_to_mut::<U>() } -} - -/// Try to cast `T` into `U`. -/// -/// Note that for this particular type of cast, alignment isn't a factor. The -/// input value is semantically copied into the function and then returned to a -/// new memory location which will have whatever the required alignment of the -/// output type is. -/// -/// ## Failure -/// -/// * If the types don't have the same size this fails. -#[inline] -pub fn try_cast<A: NoUninit, B: AnyBitPattern>( - a: A, -) -> Result<B, PodCastError> { - unsafe { internal::try_cast(a) } -} - -/// Try to convert a `&T` into `&U`. -/// -/// ## Failure -/// -/// * If the reference isn't aligned in the new type -/// * If the source type and target type aren't the same size. -#[inline] -pub fn try_cast_ref<A: NoUninit, B: AnyBitPattern>( - a: &A, -) -> Result<&B, PodCastError> { - unsafe { internal::try_cast_ref(a) } -} - -/// Try to convert a `&mut T` into `&mut U`. -/// -/// As [`try_cast_ref`], but `mut`. -#[inline] -pub fn try_cast_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - a: &mut A, -) -> Result<&mut B, PodCastError> { - unsafe { internal::try_cast_mut(a) } -} - -/// Try to convert `&[A]` into `&[B]` (possibly with a change in length). -/// -/// * `input.as_ptr() as usize == output.as_ptr() as usize` -/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()` -/// -/// ## Failure -/// -/// * If the target type has a greater alignment requirement and the input slice -/// isn't aligned. -/// * If the target element type is a different size from the current element -/// type, and the output slice wouldn't be a whole number of elements when -/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so -/// that's a failure). -/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts) -/// and a non-ZST. -#[inline] -pub fn try_cast_slice<A: NoUninit, B: AnyBitPattern>( - a: &[A], -) -> Result<&[B], PodCastError> { - unsafe { internal::try_cast_slice(a) } -} - -/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in -/// length). -/// -/// As [`try_cast_slice`], but `&mut`. -#[inline] -pub fn try_cast_slice_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - a: &mut [A], -) -> Result<&mut [B], PodCastError> { - unsafe { internal::try_cast_slice_mut(a) } -} - -/// Fill all bytes of `target` with zeroes (see [`Zeroable`]). -/// -/// This is similar to `*target = Zeroable::zeroed()`, but guarantees that any -/// padding bytes in `target` are zeroed as well. -/// -/// See also [`fill_zeroes`], if you have a slice rather than a single value. -#[inline] -pub fn write_zeroes<T: Zeroable>(target: &mut T) { - struct EnsureZeroWrite<T>(*mut T); - impl<T> Drop for EnsureZeroWrite<T> { - #[inline(always)] - fn drop(&mut self) { - unsafe { - core::ptr::write_bytes(self.0, 0u8, 1); - } - } - } - unsafe { - let guard = EnsureZeroWrite(target); - core::ptr::drop_in_place(guard.0); - drop(guard); - } -} - -/// Fill all bytes of `slice` with zeroes (see [`Zeroable`]). -/// -/// This is similar to `slice.fill(Zeroable::zeroed())`, but guarantees that any -/// padding bytes in `slice` are zeroed as well. -/// -/// See also [`write_zeroes`], which zeroes all bytes of a single value rather -/// than a slice. -#[inline] -pub fn fill_zeroes<T: Zeroable>(slice: &mut [T]) { - if core::mem::needs_drop::<T>() { - // If `T` needs to be dropped then we have to do this one item at a time, in - // case one of the intermediate drops does a panic. - slice.iter_mut().for_each(write_zeroes); - } else { - // Otherwise we can be really fast and just fill everthing with zeros. - let len = core::mem::size_of_val::<[T]>(slice); - unsafe { core::ptr::write_bytes(slice.as_mut_ptr() as *mut u8, 0u8, len) } - } -} diff --git a/vendor/bytemuck/src/must.rs b/vendor/bytemuck/src/must.rs deleted file mode 100644 index 8373e71..0000000 --- a/vendor/bytemuck/src/must.rs +++ /dev/null @@ -1,203 +0,0 @@ -#![allow(clippy::module_name_repetitions)] -#![allow(clippy::let_unit_value)] -#![allow(clippy::let_underscore_untyped)] -#![allow(clippy::ptr_as_ptr)] - -use crate::{AnyBitPattern, NoUninit}; -use core::mem::{align_of, size_of}; - -struct Cast<A, B>((A, B)); -impl<A, B> Cast<A, B> { - const ASSERT_ALIGN_GREATER_THAN_EQUAL: () = - assert!(align_of::<A>() >= align_of::<B>()); - const ASSERT_SIZE_EQUAL: () = assert!(size_of::<A>() == size_of::<B>()); - const ASSERT_SIZE_MULTIPLE_OF: () = assert!( - (size_of::<A>() == 0) == (size_of::<B>() == 0) - && (size_of::<A>() % size_of::<B>() == 0) - ); -} - -// Workaround for https://github.com/rust-lang/miri/issues/2423. -// Miri currently doesn't see post-monomorphization errors until runtime, -// so `compile_fail` tests relying on post-monomorphization errors don't -// actually fail. Instead use `should_panic` under miri as a workaround. -#[cfg(miri)] -macro_rules! post_mono_compile_fail_doctest { - () => { - "```should_panic" - }; -} -#[cfg(not(miri))] -macro_rules! post_mono_compile_fail_doctest { - () => { - "```compile_fail,E0080" - }; -} - -/// Cast `A` into `B` if infalliable, or fail to compile. -/// -/// Note that for this particular type of cast, alignment isn't a factor. The -/// input value is semantically copied into the function and then returned to a -/// new memory location which will have whatever the required alignment of the -/// output type is. -/// -/// ## Failure -/// -/// * If the types don't have the same size this fails to compile. -/// -/// ## Examples -/// ``` -/// // compiles: -/// let bytes: [u8; 2] = bytemuck::must_cast(12_u16); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// // fails to compile (size mismatch): -/// let bytes : [u8; 3] = bytemuck::must_cast(12_u16); -/// ``` -#[inline] -pub fn must_cast<A: NoUninit, B: AnyBitPattern>(a: A) -> B { - let _ = Cast::<A, B>::ASSERT_SIZE_EQUAL; - unsafe { transmute!(a) } -} - -/// Convert `&A` into `&B` if infalliable, or fail to compile. -/// -/// ## Failure -/// -/// * If the target type has a greater alignment requirement. -/// * If the source type and target type aren't the same size. -/// -/// ## Examples -/// ``` -/// // compiles: -/// let bytes: &[u8; 2] = bytemuck::must_cast_ref(&12_u16); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// // fails to compile (size mismatch): -/// let bytes : &[u8; 3] = bytemuck::must_cast_ref(&12_u16); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// // fails to compile (alignment requirements increased): -/// let bytes : &u16 = bytemuck::must_cast_ref(&[1u8, 2u8]); -/// ``` -#[inline] -pub fn must_cast_ref<A: NoUninit, B: AnyBitPattern>(a: &A) -> &B { - let _ = Cast::<A, B>::ASSERT_SIZE_EQUAL; - let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL; - unsafe { &*(a as *const A as *const B) } -} - -/// Convert a `&mut A` into `&mut B` if infalliable, or fail to compile. -/// -/// As [`must_cast_ref`], but `mut`. -/// -/// ## Examples -/// ``` -/// let mut i = 12_u16; -/// // compiles: -/// let bytes: &mut [u8; 2] = bytemuck::must_cast_mut(&mut i); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// # let mut bytes: &mut [u8; 2] = &mut [1, 2]; -/// // fails to compile (alignment requirements increased): -/// let i : &mut u16 = bytemuck::must_cast_mut(bytes); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// # let mut i = 12_u16; -/// // fails to compile (size mismatch): -/// let bytes : &mut [u8; 3] = bytemuck::must_cast_mut(&mut i); -/// ``` -#[inline] -pub fn must_cast_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - a: &mut A, -) -> &mut B { - let _ = Cast::<A, B>::ASSERT_SIZE_EQUAL; - let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL; - unsafe { &mut *(a as *mut A as *mut B) } -} - -/// Convert `&[A]` into `&[B]` (possibly with a change in length) if -/// infalliable, or fail to compile. -/// -/// * `input.as_ptr() as usize == output.as_ptr() as usize` -/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()` -/// -/// ## Failure -/// -/// * If the target type has a greater alignment requirement. -/// * If the target element type doesn't evenly fit into the the current element -/// type (eg: 3 `u16` values is 1.5 `u32` values, so that's a failure). -/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts) -/// and a non-ZST. -/// -/// ## Examples -/// ``` -/// let indicies: &[u16] = &[1, 2, 3]; -/// // compiles: -/// let bytes: &[u8] = bytemuck::must_cast_slice(indicies); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// # let bytes : &[u8] = &[1, 0, 2, 0, 3, 0]; -/// // fails to compile (bytes.len() might not be a multiple of 2): -/// let byte_pairs : &[[u8; 2]] = bytemuck::must_cast_slice(bytes); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// # let byte_pairs : &[[u8; 2]] = &[[1, 0], [2, 0], [3, 0]]; -/// // fails to compile (alignment requirements increased): -/// let indicies : &[u16] = bytemuck::must_cast_slice(byte_pairs); -/// ``` -#[inline] -pub fn must_cast_slice<A: NoUninit, B: AnyBitPattern>(a: &[A]) -> &[B] { - let _ = Cast::<A, B>::ASSERT_SIZE_MULTIPLE_OF; - let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL; - let new_len = if size_of::<A>() == size_of::<B>() { - a.len() - } else { - a.len() * (size_of::<A>() / size_of::<B>()) - }; - unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, new_len) } -} - -/// Convert `&mut [A]` into `&mut [B]` (possibly with a change in length) if -/// infalliable, or fail to compile. -/// -/// As [`must_cast_slice`], but `&mut`. -/// -/// ## Examples -/// ``` -/// let mut indicies = [1, 2, 3]; -/// let indicies: &mut [u16] = &mut indicies; -/// // compiles: -/// let bytes: &mut [u8] = bytemuck::must_cast_slice_mut(indicies); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// # let mut bytes = [1, 0, 2, 0, 3, 0]; -/// # let bytes : &mut [u8] = &mut bytes[..]; -/// // fails to compile (bytes.len() might not be a multiple of 2): -/// let byte_pairs : &mut [[u8; 2]] = bytemuck::must_cast_slice_mut(bytes); -/// ``` -#[doc = post_mono_compile_fail_doctest!()] -/// # let mut byte_pairs = [[1, 0], [2, 0], [3, 0]]; -/// # let byte_pairs : &mut [[u8; 2]] = &mut byte_pairs[..]; -/// // fails to compile (alignment requirements increased): -/// let indicies : &mut [u16] = bytemuck::must_cast_slice_mut(byte_pairs); -/// ``` -#[inline] -pub fn must_cast_slice_mut< - A: NoUninit + AnyBitPattern, - B: NoUninit + AnyBitPattern, ->( - a: &mut [A], -) -> &mut [B] { - let _ = Cast::<A, B>::ASSERT_SIZE_MULTIPLE_OF; - let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL; - let new_len = if size_of::<A>() == size_of::<B>() { - a.len() - } else { - a.len() * (size_of::<A>() / size_of::<B>()) - }; - unsafe { core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, new_len) } -} diff --git a/vendor/bytemuck/src/no_uninit.rs b/vendor/bytemuck/src/no_uninit.rs deleted file mode 100644 index 5fda0c9..0000000 --- a/vendor/bytemuck/src/no_uninit.rs +++ /dev/null @@ -1,80 +0,0 @@ -use crate::Pod; -use core::num::{ - NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, - NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, -}; - -/// Marker trait for "plain old data" types with no uninit (or padding) bytes. -/// -/// The requirements for this is very similar to [`Pod`], -/// except that it doesn't require that all bit patterns of the type are valid, -/// i.e. it does not require the type to be [`Zeroable`][crate::Zeroable]. -/// This limits what you can do with a type of this kind, but also broadens the -/// included types to things like C-style enums. Notably, you can only cast from -/// *immutable* references to a [`NoUninit`] type into *immutable* references of -/// any other type, no casting of mutable references or mutable references to -/// slices etc. -/// -/// [`Pod`] is a subset of [`NoUninit`], meaning that any `T: Pod` is also -/// [`NoUninit`] but any `T: NoUninit` is not necessarily [`Pod`]. If possible, -/// prefer implementing [`Pod`] directly. To get more [`Pod`]-like functionality -/// for a type that is only [`NoUninit`], consider also implementing -/// [`CheckedBitPattern`][crate::CheckedBitPattern]. -/// -/// # Derive -/// -/// A `#[derive(NoUninit)]` macro is provided under the `derive` feature flag -/// which will automatically validate the requirements of this trait and -/// implement the trait for you for both enums and structs. This is the -/// recommended method for implementing the trait, however it's also possible to -/// do manually. If you implement it manually, you *must* carefully follow the -/// below safety rules. -/// -/// # Safety -/// -/// The same as [`Pod`] except we disregard the rule about it must -/// allow any bit pattern (i.e. it does not need to be -/// [`Zeroable`][crate::Zeroable]). Still, this is a quite strong guarantee -/// about a type, so *be careful* whem implementing it manually. -/// -/// * The type must be inhabited (eg: no -/// [Infallible](core::convert::Infallible)). -/// * The type must not contain any uninit (or padding) bytes, either in the -/// middle or on the end (eg: no `#[repr(C)] struct Foo(u8, u16)`, which has -/// padding in the middle, and also no `#[repr(C)] struct Foo(u16, u8)`, which -/// has padding on the end). -/// * Structs need to have all fields also be `NoUninit`. -/// * Structs need to be `repr(C)` or `repr(transparent)`. In the case of -/// `repr(C)`, the `packed` and `align` repr modifiers can be used as long as -/// all other rules end up being followed. -/// * Enums need to have an explicit `#[repr(Int)]` -/// * Enums must have only fieldless variants -/// * It is disallowed for types to contain pointer types, `Cell`, `UnsafeCell`, -/// atomics, and any other forms of interior mutability. -/// * More precisely: A shared reference to the type must allow reads, and -/// *only* reads. RustBelt's separation logic is based on the notion that a -/// type is allowed to define a sharing predicate, its own invariant that must -/// hold for shared references, and this predicate is the reasoning that allow -/// it to deal with atomic and cells etc. We require the sharing predicate to -/// be trivial and permit only read-only access. -/// * There's probably more, don't mess it up (I mean it). -pub unsafe trait NoUninit: Sized + Copy + 'static {} - -unsafe impl<T: Pod> NoUninit for T {} - -unsafe impl NoUninit for char {} - -unsafe impl NoUninit for bool {} - -unsafe impl NoUninit for NonZeroU8 {} -unsafe impl NoUninit for NonZeroI8 {} -unsafe impl NoUninit for NonZeroU16 {} -unsafe impl NoUninit for NonZeroI16 {} -unsafe impl NoUninit for NonZeroU32 {} -unsafe impl NoUninit for NonZeroI32 {} -unsafe impl NoUninit for NonZeroU64 {} -unsafe impl NoUninit for NonZeroI64 {} -unsafe impl NoUninit for NonZeroU128 {} -unsafe impl NoUninit for NonZeroI128 {} -unsafe impl NoUninit for NonZeroUsize {} -unsafe impl NoUninit for NonZeroIsize {} diff --git a/vendor/bytemuck/src/offset_of.rs b/vendor/bytemuck/src/offset_of.rs deleted file mode 100644 index 7e8aedf..0000000 --- a/vendor/bytemuck/src/offset_of.rs +++ /dev/null @@ -1,135 +0,0 @@ -#![forbid(unsafe_code)] - -/// Find the offset in bytes of the given `$field` of `$Type`. Requires an -/// already initialized `$instance` value to work with. -/// -/// This is similar to the macro from [`memoffset`](https://docs.rs/memoffset), -/// however it uses no `unsafe` code. -/// -/// This macro has a 3-argument and 2-argument version. -/// * In the 3-arg version you specify an instance of the type, the type itself, -/// and the field name. -/// * In the 2-arg version the macro will call the [`default`](Default::default) -/// method to make a temporary instance of the type for you. -/// -/// The output of this macro is the byte offset of the field (as a `usize`). The -/// calculations of the macro are fixed across the entire program, but if the -/// type used is `repr(Rust)` then they're *not* fixed across compilations or -/// compilers. -/// -/// ## Examples -/// -/// ### 3-arg Usage -/// -/// ```rust -/// # use bytemuck::offset_of; -/// // enums can't derive default, and for this example we don't pick one -/// enum MyExampleEnum { -/// A, -/// B, -/// C, -/// } -/// -/// // so now our struct here doesn't have Default -/// #[repr(C)] -/// struct MyNotDefaultType { -/// pub counter: i32, -/// pub some_field: MyExampleEnum, -/// } -/// -/// // but we provide an instance of the type and it's all good. -/// let val = MyNotDefaultType { counter: 5, some_field: MyExampleEnum::A }; -/// assert_eq!(offset_of!(val, MyNotDefaultType, some_field), 4); -/// ``` -/// -/// ### 2-arg Usage -/// -/// ```rust -/// # use bytemuck::offset_of; -/// #[derive(Default)] -/// #[repr(C)] -/// struct Vertex { -/// pub loc: [f32; 3], -/// pub color: [f32; 3], -/// } -/// // if the type impls Default the macro can make its own default instance. -/// assert_eq!(offset_of!(Vertex, loc), 0); -/// assert_eq!(offset_of!(Vertex, color), 12); -/// ``` -/// -/// # Usage with `#[repr(packed)]` structs -/// -/// Attempting to compute the offset of a `#[repr(packed)]` struct with -/// `bytemuck::offset_of!` requires an `unsafe` block. We hope to relax this in -/// the future, but currently it is required to work around a soundness hole in -/// Rust (See [rust-lang/rust#27060]). -/// -/// [rust-lang/rust#27060]: https://github.com/rust-lang/rust/issues/27060 -/// -/// <p style="background:rgba(255,181,77,0.16);padding:0.75em;"> -/// <strong>Warning:</strong> This is only true for versions of bytemuck > -/// 1.4.0. Previous versions of -/// <code style="background:rgba(41,24,0,0.1);">bytemuck::offset_of!</code> -/// will only emit a warning when used on the field of a packed struct in safe -/// code, which can lead to unsoundness. -/// </p> -/// -/// For example, the following will fail to compile: -/// -/// ```compile_fail -/// #[repr(C, packed)] -/// #[derive(Default)] -/// struct Example { -/// field: u32, -/// } -/// // Doesn't compile: -/// let _offset = bytemuck::offset_of!(Example, field); -/// ``` -/// -/// While the error message this generates will mention the -/// `safe_packed_borrows` lint, the macro will still fail to compile even if -/// that lint is `#[allow]`ed: -/// -/// ```compile_fail -/// # #[repr(C, packed)] #[derive(Default)] struct Example { field: u32 } -/// // Still doesn't compile: -/// #[allow(safe_packed_borrows)] -/// { -/// let _offset = bytemuck::offset_of!(Example, field); -/// } -/// ``` -/// -/// This *can* be worked around by using `unsafe`, but it is only sound to do so -/// if you can guarantee that taking a reference to the field is sound. -/// -/// In practice, this means it only works for fields of align(1) types, or if -/// you know the field's offset in advance (defeating the point of `offset_of`) -/// and can prove that the struct's alignment and the field's offset are enough -/// to prove the field's alignment. -/// -/// Once the `raw_ref` macros are available, a future version of this crate will -/// use them to lift the limitations of packed structs. For the duration of the -/// `1.x` version of this crate that will be behind an on-by-default cargo -/// feature (to maintain minimum rust version support). -#[macro_export] -macro_rules! offset_of { - ($instance:expr, $Type:path, $field:tt) => {{ - #[forbid(safe_packed_borrows)] - { - // This helps us guard against field access going through a Deref impl. - #[allow(clippy::unneeded_field_pattern)] - let $Type { $field: _, .. }; - let reference: &$Type = &$instance; - let address = reference as *const _ as usize; - let field_pointer = &reference.$field as *const _ as usize; - // These asserts/unwraps are compiled away at release, and defend against - // the case where somehow a deref impl is still invoked. - let result = field_pointer.checked_sub(address).unwrap(); - assert!(result <= $crate::__core::mem::size_of::<$Type>()); - result - } - }}; - ($Type:path, $field:tt) => {{ - $crate::offset_of!(<$Type as Default>::default(), $Type, $field) - }}; -} diff --git a/vendor/bytemuck/src/pod.rs b/vendor/bytemuck/src/pod.rs deleted file mode 100644 index 2cec1c2..0000000 --- a/vendor/bytemuck/src/pod.rs +++ /dev/null @@ -1,165 +0,0 @@ -use super::*; - -/// Marker trait for "plain old data". -/// -/// The point of this trait is that once something is marked "plain old data" -/// you can really go to town with the bit fiddling and bit casting. Therefore, -/// it's a relatively strong claim to make about a type. Do not add this to your -/// type casually. -/// -/// **Reminder:** The results of casting around bytes between data types are -/// _endian dependant_. Little-endian machines are the most common, but -/// big-endian machines do exist (and big-endian is also used for "network -/// order" bytes). -/// -/// ## Safety -/// -/// * The type must be inhabited (eg: no -/// [Infallible](core::convert::Infallible)). -/// * The type must allow any bit pattern (eg: no `bool` or `char`, which have -/// illegal bit patterns). -/// * The type must not contain any uninit (or padding) bytes, either in the -/// middle or on the end (eg: no `#[repr(C)] struct Foo(u8, u16)`, which has -/// padding in the middle, and also no `#[repr(C)] struct Foo(u16, u8)`, which -/// has padding on the end). -/// * The type needs to have all fields also be `Pod`. -/// * The type needs to be `repr(C)` or `repr(transparent)`. In the case of -/// `repr(C)`, the `packed` and `align` repr modifiers can be used as long as -/// all other rules end up being followed. -/// * It is disallowed for types to contain pointer types, `Cell`, `UnsafeCell`, -/// atomics, and any other forms of interior mutability. -/// * More precisely: A shared reference to the type must allow reads, and -/// *only* reads. RustBelt's separation logic is based on the notion that a -/// type is allowed to define a sharing predicate, its own invariant that must -/// hold for shared references, and this predicate is the reasoning that allow -/// it to deal with atomic and cells etc. We require the sharing predicate to -/// be trivial and permit only read-only access. -pub unsafe trait Pod: Zeroable + Copy + 'static {} - -unsafe impl Pod for () {} -unsafe impl Pod for u8 {} -unsafe impl Pod for i8 {} -unsafe impl Pod for u16 {} -unsafe impl Pod for i16 {} -unsafe impl Pod for u32 {} -unsafe impl Pod for i32 {} -unsafe impl Pod for u64 {} -unsafe impl Pod for i64 {} -unsafe impl Pod for usize {} -unsafe impl Pod for isize {} -unsafe impl Pod for u128 {} -unsafe impl Pod for i128 {} -unsafe impl Pod for f32 {} -unsafe impl Pod for f64 {} -unsafe impl<T: Pod> Pod for Wrapping<T> {} - -#[cfg(feature = "unsound_ptr_pod_impl")] -#[cfg_attr( - feature = "nightly_docs", - doc(cfg(feature = "unsound_ptr_pod_impl")) -)] -unsafe impl<T: 'static> Pod for *mut T {} -#[cfg(feature = "unsound_ptr_pod_impl")] -#[cfg_attr( - feature = "nightly_docs", - doc(cfg(feature = "unsound_ptr_pod_impl")) -)] -unsafe impl<T: 'static> Pod for *const T {} -#[cfg(feature = "unsound_ptr_pod_impl")] -#[cfg_attr( - feature = "nightly_docs", - doc(cfg(feature = "unsound_ptr_pod_impl")) -)] -unsafe impl<T: 'static> PodInOption for NonNull<T> {} - -unsafe impl<T: ?Sized + 'static> Pod for PhantomData<T> {} -unsafe impl Pod for PhantomPinned {} -unsafe impl<T: Pod> Pod for ManuallyDrop<T> {} - -// Note(Lokathor): MaybeUninit can NEVER be Pod. - -#[cfg(feature = "min_const_generics")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "min_const_generics")))] -unsafe impl<T, const N: usize> Pod for [T; N] where T: Pod {} - -#[cfg(not(feature = "min_const_generics"))] -impl_unsafe_marker_for_array!( - Pod, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, - 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 48, 64, 96, 128, 256, - 512, 1024, 2048, 4096 -); - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))] - unsafe impl Pod for wasm32::{v128} -); - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))] - unsafe impl Pod for aarch64::{ - float32x2_t, float32x2x2_t, float32x2x3_t, float32x2x4_t, float32x4_t, - float32x4x2_t, float32x4x3_t, float32x4x4_t, float64x1_t, float64x1x2_t, - float64x1x3_t, float64x1x4_t, float64x2_t, float64x2x2_t, float64x2x3_t, - float64x2x4_t, int16x4_t, int16x4x2_t, int16x4x3_t, int16x4x4_t, int16x8_t, - int16x8x2_t, int16x8x3_t, int16x8x4_t, int32x2_t, int32x2x2_t, int32x2x3_t, - int32x2x4_t, int32x4_t, int32x4x2_t, int32x4x3_t, int32x4x4_t, int64x1_t, - int64x1x2_t, int64x1x3_t, int64x1x4_t, int64x2_t, int64x2x2_t, int64x2x3_t, - int64x2x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int8x8_t, - int8x8x2_t, int8x8x3_t, int8x8x4_t, poly16x4_t, poly16x4x2_t, poly16x4x3_t, - poly16x4x4_t, poly16x8_t, poly16x8x2_t, poly16x8x3_t, poly16x8x4_t, - poly64x1_t, poly64x1x2_t, poly64x1x3_t, poly64x1x4_t, poly64x2_t, - poly64x2x2_t, poly64x2x3_t, poly64x2x4_t, poly8x16_t, poly8x16x2_t, - poly8x16x3_t, poly8x16x4_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, poly8x8x4_t, - uint16x4_t, uint16x4x2_t, uint16x4x3_t, uint16x4x4_t, uint16x8_t, - uint16x8x2_t, uint16x8x3_t, uint16x8x4_t, uint32x2_t, uint32x2x2_t, - uint32x2x3_t, uint32x2x4_t, uint32x4_t, uint32x4x2_t, uint32x4x3_t, - uint32x4x4_t, uint64x1_t, uint64x1x2_t, uint64x1x3_t, uint64x1x4_t, - uint64x2_t, uint64x2x2_t, uint64x2x3_t, uint64x2x4_t, uint8x16_t, - uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint8x8_t, uint8x8x2_t, - uint8x8x3_t, uint8x8x4_t, - } -); - -impl_unsafe_marker_for_simd!( - #[cfg(target_arch = "x86")] - unsafe impl Pod for x86::{ - __m128i, __m128, __m128d, - __m256i, __m256, __m256d, - } -); - -impl_unsafe_marker_for_simd!( - #[cfg(target_arch = "x86_64")] - unsafe impl Pod for x86_64::{ - __m128i, __m128, __m128d, - __m256i, __m256, __m256d, - } -); - -#[cfg(feature = "nightly_portable_simd")] -#[cfg_attr( - feature = "nightly_docs", - doc(cfg(feature = "nightly_portable_simd")) -)] -unsafe impl<T, const N: usize> Pod for core::simd::Simd<T, N> -where - T: core::simd::SimdElement + Pod, - core::simd::LaneCount<N>: core::simd::SupportedLaneCount, -{ -} - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "x86", feature = "nightly_stdsimd"))] - unsafe impl Pod for x86::{ - __m128bh, __m256bh, __m512, - __m512bh, __m512d, __m512i, - } -); - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "x86_64", feature = "nightly_stdsimd"))] - unsafe impl Pod for x86_64::{ - __m128bh, __m256bh, __m512, - __m512bh, __m512d, __m512i, - } -); diff --git a/vendor/bytemuck/src/pod_in_option.rs b/vendor/bytemuck/src/pod_in_option.rs deleted file mode 100644 index 3327e99..0000000 --- a/vendor/bytemuck/src/pod_in_option.rs +++ /dev/null @@ -1,27 +0,0 @@ -use super::*; - -// Note(Lokathor): This is the neat part!! -unsafe impl<T: PodInOption> Pod for Option<T> {} - -/// Trait for types which are [Pod](Pod) when wrapped in -/// [Option](core::option::Option). -/// -/// ## Safety -/// -/// * `Option<T>` must uphold the same invariants as [Pod](Pod). -/// * **Reminder:** pointers are **not** pod! **Do not** mix this trait with a -/// newtype over [NonNull](core::ptr::NonNull). -pub unsafe trait PodInOption: ZeroableInOption + Copy + 'static {} - -unsafe impl PodInOption for NonZeroI8 {} -unsafe impl PodInOption for NonZeroI16 {} -unsafe impl PodInOption for NonZeroI32 {} -unsafe impl PodInOption for NonZeroI64 {} -unsafe impl PodInOption for NonZeroI128 {} -unsafe impl PodInOption for NonZeroIsize {} -unsafe impl PodInOption for NonZeroU8 {} -unsafe impl PodInOption for NonZeroU16 {} -unsafe impl PodInOption for NonZeroU32 {} -unsafe impl PodInOption for NonZeroU64 {} -unsafe impl PodInOption for NonZeroU128 {} -unsafe impl PodInOption for NonZeroUsize {} diff --git a/vendor/bytemuck/src/transparent.rs b/vendor/bytemuck/src/transparent.rs deleted file mode 100644 index 5b9fe0e..0000000 --- a/vendor/bytemuck/src/transparent.rs +++ /dev/null @@ -1,288 +0,0 @@ -use super::*; - -/// A trait which indicates that a type is a `#[repr(transparent)]` wrapper -/// around the `Inner` value. -/// -/// This allows safely copy transmuting between the `Inner` type and the -/// `TransparentWrapper` type. Functions like `wrap_{}` convert from the inner -/// type to the wrapper type and `peel_{}` functions do the inverse conversion -/// from the wrapper type to the inner type. We deliberately do not call the -/// wrapper-removing methods "unwrap" because at this point that word is too -/// strongly tied to the Option/ Result methods. -/// -/// # Safety -/// -/// The safety contract of `TransparentWrapper` is relatively simple: -/// -/// For a given `Wrapper` which implements `TransparentWrapper<Inner>`: -/// -/// 1. `Wrapper` must be a wrapper around `Inner` with an identical data -/// representations. This either means that it must be a -/// `#[repr(transparent)]` struct which contains a either a field of type -/// `Inner` (or a field of some other transparent wrapper for `Inner`) as -/// the only non-ZST field. -/// -/// 2. Any fields *other* than the `Inner` field must be trivially constructable -/// ZSTs, for example `PhantomData`, `PhantomPinned`, etc. (When deriving -/// `TransparentWrapper` on a type with ZST fields, the ZST fields must be -/// [`Zeroable`]). -/// -/// 3. The `Wrapper` may not impose additional alignment requirements over -/// `Inner`. -/// - Note: this is currently guaranteed by `repr(transparent)`, but there -/// have been discussions of lifting it, so it's stated here explicitly. -/// -/// 4. All functions on `TransparentWrapper` **may not** be overridden. -/// -/// ## Caveats -/// -/// If the wrapper imposes additional constraints upon the inner type which are -/// required for safety, it's responsible for ensuring those still hold -- this -/// generally requires preventing access to instances of the inner type, as -/// implementing `TransparentWrapper<U> for T` means anybody can call -/// `T::cast_ref(any_instance_of_u)`. -/// -/// For example, it would be invalid to implement TransparentWrapper for `str` -/// to implement `TransparentWrapper` around `[u8]` because of this. -/// -/// # Examples -/// -/// ## Basic -/// -/// ``` -/// use bytemuck::TransparentWrapper; -/// # #[derive(Default)] -/// # struct SomeStruct(u32); -/// -/// #[repr(transparent)] -/// struct MyWrapper(SomeStruct); -/// -/// unsafe impl TransparentWrapper<SomeStruct> for MyWrapper {} -/// -/// // interpret a reference to &SomeStruct as a &MyWrapper -/// let thing = SomeStruct::default(); -/// let inner_ref: &MyWrapper = MyWrapper::wrap_ref(&thing); -/// -/// // Works with &mut too. -/// let mut mut_thing = SomeStruct::default(); -/// let inner_mut: &mut MyWrapper = MyWrapper::wrap_mut(&mut mut_thing); -/// -/// # let _ = (inner_ref, inner_mut); // silence warnings -/// ``` -/// -/// ## Use with dynamically sized types -/// -/// ``` -/// use bytemuck::TransparentWrapper; -/// -/// #[repr(transparent)] -/// struct Slice<T>([T]); -/// -/// unsafe impl<T> TransparentWrapper<[T]> for Slice<T> {} -/// -/// let s = Slice::wrap_ref(&[1u32, 2, 3]); -/// assert_eq!(&s.0, &[1, 2, 3]); -/// -/// let mut buf = [1, 2, 3u8]; -/// let sm = Slice::wrap_mut(&mut buf); -/// ``` -/// -/// ## Deriving -/// -/// When deriving, the non-wrapped fields must uphold all the normal requirements, -/// and must also be `Zeroable`. -/// -#[cfg_attr(feature = "derive", doc = "```")] -#[cfg_attr( - not(feature = "derive"), - doc = "```ignore -// This example requires the `derive` feature." -)] -/// use bytemuck::TransparentWrapper; -/// use std::marker::PhantomData; -/// -/// #[derive(TransparentWrapper)] -/// #[repr(transparent)] -/// #[transparent(usize)] -/// struct Wrapper<T: ?Sized>(usize, PhantomData<T>); // PhantomData<T> implements Zeroable for all T -/// ``` -/// -/// Here, an error will occur, because `MyZst` does not implement `Zeroable`. -/// -#[cfg_attr(feature = "derive", doc = "```compile_fail")] -#[cfg_attr( - not(feature = "derive"), - doc = "```ignore -// This example requires the `derive` feature." -)] -/// use bytemuck::TransparentWrapper; -/// struct MyZst; -/// -/// #[derive(TransparentWrapper)] -/// #[repr(transparent)] -/// #[transparent(usize)] -/// struct Wrapper(usize, MyZst); // MyZst does not implement Zeroable -/// ``` -pub unsafe trait TransparentWrapper<Inner: ?Sized> { - /// Convert the inner type into the wrapper type. - #[inline] - fn wrap(s: Inner) -> Self - where - Self: Sized, - Inner: Sized, - { - // SAFETY: The unsafe contract requires that `Self` and `Inner` have - // identical representations. - unsafe { transmute!(s) } - } - - /// Convert a reference to the inner type into a reference to the wrapper - /// type. - #[inline] - fn wrap_ref(s: &Inner) -> &Self { - unsafe { - assert!(size_of::<*const Inner>() == size_of::<*const Self>()); - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the sizes are unspecified. - // - // SAFETY: The unsafe contract requires that these two have - // identical representations. - let inner_ptr = s as *const Inner; - let wrapper_ptr: *const Self = transmute!(inner_ptr); - &*wrapper_ptr - } - } - - /// Convert a mutable reference to the inner type into a mutable reference to - /// the wrapper type. - #[inline] - fn wrap_mut(s: &mut Inner) -> &mut Self { - unsafe { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the sizes are unspecified. - // - // SAFETY: The unsafe contract requires that these two have - // identical representations. - let inner_ptr = s as *mut Inner; - let wrapper_ptr: *mut Self = transmute!(inner_ptr); - &mut *wrapper_ptr - } - } - - /// Convert a slice to the inner type into a slice to the wrapper type. - #[inline] - fn wrap_slice(s: &[Inner]) -> &[Self] - where - Self: Sized, - Inner: Sized, - { - unsafe { - assert!(size_of::<*const Inner>() == size_of::<*const Self>()); - assert!(align_of::<*const Inner>() == align_of::<*const Self>()); - // SAFETY: The unsafe contract requires that these two have - // identical representations (size and alignment). - core::slice::from_raw_parts(s.as_ptr() as *const Self, s.len()) - } - } - - /// Convert a mutable slice to the inner type into a mutable slice to the - /// wrapper type. - #[inline] - fn wrap_slice_mut(s: &mut [Inner]) -> &mut [Self] - where - Self: Sized, - Inner: Sized, - { - unsafe { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - assert!(align_of::<*mut Inner>() == align_of::<*mut Self>()); - // SAFETY: The unsafe contract requires that these two have - // identical representations (size and alignment). - core::slice::from_raw_parts_mut(s.as_mut_ptr() as *mut Self, s.len()) - } - } - - /// Convert the wrapper type into the inner type. - #[inline] - fn peel(s: Self) -> Inner - where - Self: Sized, - Inner: Sized, - { - unsafe { transmute!(s) } - } - - /// Convert a reference to the wrapper type into a reference to the inner - /// type. - #[inline] - fn peel_ref(s: &Self) -> &Inner { - unsafe { - assert!(size_of::<*const Inner>() == size_of::<*const Self>()); - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the sizes are unspecified. - // - // SAFETY: The unsafe contract requires that these two have - // identical representations. - let wrapper_ptr = s as *const Self; - let inner_ptr: *const Inner = transmute!(wrapper_ptr); - &*inner_ptr - } - } - - /// Convert a mutable reference to the wrapper type into a mutable reference - /// to the inner type. - #[inline] - fn peel_mut(s: &mut Self) -> &mut Inner { - unsafe { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - // A pointer cast doesn't work here because rustc can't tell that - // the vtables match (because of the `?Sized` restriction relaxation). - // A `transmute` doesn't work because the sizes are unspecified. - // - // SAFETY: The unsafe contract requires that these two have - // identical representations. - let wrapper_ptr = s as *mut Self; - let inner_ptr: *mut Inner = transmute!(wrapper_ptr); - &mut *inner_ptr - } - } - - /// Convert a slice to the wrapped type into a slice to the inner type. - #[inline] - fn peel_slice(s: &[Self]) -> &[Inner] - where - Self: Sized, - Inner: Sized, - { - unsafe { - assert!(size_of::<*const Inner>() == size_of::<*const Self>()); - assert!(align_of::<*const Inner>() == align_of::<*const Self>()); - // SAFETY: The unsafe contract requires that these two have - // identical representations (size and alignment). - core::slice::from_raw_parts(s.as_ptr() as *const Inner, s.len()) - } - } - - /// Convert a mutable slice to the wrapped type into a mutable slice to the - /// inner type. - #[inline] - fn peel_slice_mut(s: &mut [Self]) -> &mut [Inner] - where - Self: Sized, - Inner: Sized, - { - unsafe { - assert!(size_of::<*mut Inner>() == size_of::<*mut Self>()); - assert!(align_of::<*mut Inner>() == align_of::<*mut Self>()); - // SAFETY: The unsafe contract requires that these two have - // identical representations (size and alignment). - core::slice::from_raw_parts_mut(s.as_mut_ptr() as *mut Inner, s.len()) - } - } -} - -unsafe impl<T> TransparentWrapper<T> for core::num::Wrapping<T> {} diff --git a/vendor/bytemuck/src/zeroable.rs b/vendor/bytemuck/src/zeroable.rs deleted file mode 100644 index b64a9bf..0000000 --- a/vendor/bytemuck/src/zeroable.rs +++ /dev/null @@ -1,245 +0,0 @@ -use super::*; - -/// Trait for types that can be safely created with -/// [`zeroed`](core::mem::zeroed). -/// -/// An all-zeroes value may or may not be the same value as the -/// [Default](core::default::Default) value of the type. -/// -/// ## Safety -/// -/// * Your type must be inhabited (eg: no -/// [Infallible](core::convert::Infallible)). -/// * Your type must be allowed to be an "all zeroes" bit pattern (eg: no -/// [`NonNull<T>`](core::ptr::NonNull)). -/// -/// ## Features -/// -/// Some `impl`s are feature gated due to the MSRV policy: -/// -/// * `MaybeUninit<T>` was not available in 1.34.0, but is available under the -/// `zeroable_maybe_uninit` feature flag. -/// * `Atomic*` types require Rust 1.60.0 or later to work on certain platforms, -/// but is available under the `zeroable_atomics` feature flag. -/// * `[T; N]` for arbitrary `N` requires the `min_const_generics` feature flag. -pub unsafe trait Zeroable: Sized { - /// Calls [`zeroed`](core::mem::zeroed). - /// - /// This is a trait method so that you can write `MyType::zeroed()` in your - /// code. It is a contract of this trait that if you implement it on your type - /// you **must not** override this method. - #[inline] - fn zeroed() -> Self { - unsafe { core::mem::zeroed() } - } -} -unsafe impl Zeroable for () {} -unsafe impl Zeroable for bool {} -unsafe impl Zeroable for char {} -unsafe impl Zeroable for u8 {} -unsafe impl Zeroable for i8 {} -unsafe impl Zeroable for u16 {} -unsafe impl Zeroable for i16 {} -unsafe impl Zeroable for u32 {} -unsafe impl Zeroable for i32 {} -unsafe impl Zeroable for u64 {} -unsafe impl Zeroable for i64 {} -unsafe impl Zeroable for usize {} -unsafe impl Zeroable for isize {} -unsafe impl Zeroable for u128 {} -unsafe impl Zeroable for i128 {} -unsafe impl Zeroable for f32 {} -unsafe impl Zeroable for f64 {} -unsafe impl<T: Zeroable> Zeroable for Wrapping<T> {} -unsafe impl<T: Zeroable> Zeroable for core::cmp::Reverse<T> {} - -// Note: we can't implement this for all `T: ?Sized` types because it would -// create NULL pointers for vtables. -// Maybe one day this could be changed to be implemented for -// `T: ?Sized where <T as core::ptr::Pointee>::Metadata: Zeroable`. -unsafe impl<T> Zeroable for *mut T {} -unsafe impl<T> Zeroable for *const T {} -unsafe impl<T> Zeroable for *mut [T] {} -unsafe impl<T> Zeroable for *const [T] {} -unsafe impl Zeroable for *mut str {} -unsafe impl Zeroable for *const str {} - -unsafe impl<T: ?Sized> Zeroable for PhantomData<T> {} -unsafe impl Zeroable for PhantomPinned {} -unsafe impl<T: Zeroable> Zeroable for ManuallyDrop<T> {} -unsafe impl<T: Zeroable> Zeroable for core::cell::UnsafeCell<T> {} -unsafe impl<T: Zeroable> Zeroable for core::cell::Cell<T> {} - -#[cfg(feature = "zeroable_atomics")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "zeroable_atomics")))] -mod atomic_impls { - use super::Zeroable; - - #[cfg(target_has_atomic = "8")] - unsafe impl Zeroable for core::sync::atomic::AtomicBool {} - #[cfg(target_has_atomic = "8")] - unsafe impl Zeroable for core::sync::atomic::AtomicU8 {} - #[cfg(target_has_atomic = "8")] - unsafe impl Zeroable for core::sync::atomic::AtomicI8 {} - - #[cfg(target_has_atomic = "16")] - unsafe impl Zeroable for core::sync::atomic::AtomicU16 {} - #[cfg(target_has_atomic = "16")] - unsafe impl Zeroable for core::sync::atomic::AtomicI16 {} - - #[cfg(target_has_atomic = "32")] - unsafe impl Zeroable for core::sync::atomic::AtomicU32 {} - #[cfg(target_has_atomic = "32")] - unsafe impl Zeroable for core::sync::atomic::AtomicI32 {} - - #[cfg(target_has_atomic = "64")] - unsafe impl Zeroable for core::sync::atomic::AtomicU64 {} - #[cfg(target_has_atomic = "64")] - unsafe impl Zeroable for core::sync::atomic::AtomicI64 {} - - #[cfg(target_has_atomic = "ptr")] - unsafe impl Zeroable for core::sync::atomic::AtomicUsize {} - #[cfg(target_has_atomic = "ptr")] - unsafe impl Zeroable for core::sync::atomic::AtomicIsize {} - - #[cfg(target_has_atomic = "ptr")] - unsafe impl<T> Zeroable for core::sync::atomic::AtomicPtr<T> {} -} - -#[cfg(feature = "zeroable_maybe_uninit")] -#[cfg_attr( - feature = "nightly_docs", - doc(cfg(feature = "zeroable_maybe_uninit")) -)] -unsafe impl<T> Zeroable for core::mem::MaybeUninit<T> {} - -unsafe impl<A: Zeroable> Zeroable for (A,) {} -unsafe impl<A: Zeroable, B: Zeroable> Zeroable for (A, B) {} -unsafe impl<A: Zeroable, B: Zeroable, C: Zeroable> Zeroable for (A, B, C) {} -unsafe impl<A: Zeroable, B: Zeroable, C: Zeroable, D: Zeroable> Zeroable - for (A, B, C, D) -{ -} -unsafe impl<A: Zeroable, B: Zeroable, C: Zeroable, D: Zeroable, E: Zeroable> - Zeroable for (A, B, C, D, E) -{ -} -unsafe impl< - A: Zeroable, - B: Zeroable, - C: Zeroable, - D: Zeroable, - E: Zeroable, - F: Zeroable, - > Zeroable for (A, B, C, D, E, F) -{ -} -unsafe impl< - A: Zeroable, - B: Zeroable, - C: Zeroable, - D: Zeroable, - E: Zeroable, - F: Zeroable, - G: Zeroable, - > Zeroable for (A, B, C, D, E, F, G) -{ -} -unsafe impl< - A: Zeroable, - B: Zeroable, - C: Zeroable, - D: Zeroable, - E: Zeroable, - F: Zeroable, - G: Zeroable, - H: Zeroable, - > Zeroable for (A, B, C, D, E, F, G, H) -{ -} - -#[cfg(feature = "min_const_generics")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "min_const_generics")))] -unsafe impl<T, const N: usize> Zeroable for [T; N] where T: Zeroable {} - -#[cfg(not(feature = "min_const_generics"))] -impl_unsafe_marker_for_array!( - Zeroable, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, - 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 48, 64, 96, 128, 256, - 512, 1024, 2048, 4096 -); - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))] - unsafe impl Zeroable for wasm32::{v128} -); - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))] - unsafe impl Zeroable for aarch64::{ - float32x2_t, float32x2x2_t, float32x2x3_t, float32x2x4_t, float32x4_t, - float32x4x2_t, float32x4x3_t, float32x4x4_t, float64x1_t, float64x1x2_t, - float64x1x3_t, float64x1x4_t, float64x2_t, float64x2x2_t, float64x2x3_t, - float64x2x4_t, int16x4_t, int16x4x2_t, int16x4x3_t, int16x4x4_t, int16x8_t, - int16x8x2_t, int16x8x3_t, int16x8x4_t, int32x2_t, int32x2x2_t, int32x2x3_t, - int32x2x4_t, int32x4_t, int32x4x2_t, int32x4x3_t, int32x4x4_t, int64x1_t, - int64x1x2_t, int64x1x3_t, int64x1x4_t, int64x2_t, int64x2x2_t, int64x2x3_t, - int64x2x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int8x8_t, - int8x8x2_t, int8x8x3_t, int8x8x4_t, poly16x4_t, poly16x4x2_t, poly16x4x3_t, - poly16x4x4_t, poly16x8_t, poly16x8x2_t, poly16x8x3_t, poly16x8x4_t, - poly64x1_t, poly64x1x2_t, poly64x1x3_t, poly64x1x4_t, poly64x2_t, - poly64x2x2_t, poly64x2x3_t, poly64x2x4_t, poly8x16_t, poly8x16x2_t, - poly8x16x3_t, poly8x16x4_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, poly8x8x4_t, - uint16x4_t, uint16x4x2_t, uint16x4x3_t, uint16x4x4_t, uint16x8_t, - uint16x8x2_t, uint16x8x3_t, uint16x8x4_t, uint32x2_t, uint32x2x2_t, - uint32x2x3_t, uint32x2x4_t, uint32x4_t, uint32x4x2_t, uint32x4x3_t, - uint32x4x4_t, uint64x1_t, uint64x1x2_t, uint64x1x3_t, uint64x1x4_t, - uint64x2_t, uint64x2x2_t, uint64x2x3_t, uint64x2x4_t, uint8x16_t, - uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint8x8_t, uint8x8x2_t, - uint8x8x3_t, uint8x8x4_t, - } -); - -impl_unsafe_marker_for_simd!( - #[cfg(target_arch = "x86")] - unsafe impl Zeroable for x86::{ - __m128i, __m128, __m128d, - __m256i, __m256, __m256d, - } -); - -impl_unsafe_marker_for_simd!( - #[cfg(target_arch = "x86_64")] - unsafe impl Zeroable for x86_64::{ - __m128i, __m128, __m128d, - __m256i, __m256, __m256d, - } -); - -#[cfg(feature = "nightly_portable_simd")] -#[cfg_attr( - feature = "nightly_docs", - doc(cfg(feature = "nightly_portable_simd")) -)] -unsafe impl<T, const N: usize> Zeroable for core::simd::Simd<T, N> -where - T: core::simd::SimdElement + Zeroable, - core::simd::LaneCount<N>: core::simd::SupportedLaneCount, -{ -} - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "x86", feature = "nightly_stdsimd"))] - unsafe impl Zeroable for x86::{ - __m128bh, __m256bh, __m512, - __m512bh, __m512d, __m512i, - } -); - -impl_unsafe_marker_for_simd!( - #[cfg(all(target_arch = "x86_64", feature = "nightly_stdsimd"))] - unsafe impl Zeroable for x86_64::{ - __m128bh, __m256bh, __m512, - __m512bh, __m512d, __m512i, - } -); diff --git a/vendor/bytemuck/src/zeroable_in_option.rs b/vendor/bytemuck/src/zeroable_in_option.rs deleted file mode 100644 index c4cf158..0000000 --- a/vendor/bytemuck/src/zeroable_in_option.rs +++ /dev/null @@ -1,35 +0,0 @@ -use super::*; - -// Note(Lokathor): This is the neat part!! -unsafe impl<T: ZeroableInOption> Zeroable for Option<T> {} - -/// Trait for types which are [Zeroable](Zeroable) when wrapped in -/// [Option](core::option::Option). -/// -/// ## Safety -/// -/// * `Option<YourType>` must uphold the same invariants as -/// [Zeroable](Zeroable). -pub unsafe trait ZeroableInOption: Sized {} - -unsafe impl ZeroableInOption for NonZeroI8 {} -unsafe impl ZeroableInOption for NonZeroI16 {} -unsafe impl ZeroableInOption for NonZeroI32 {} -unsafe impl ZeroableInOption for NonZeroI64 {} -unsafe impl ZeroableInOption for NonZeroI128 {} -unsafe impl ZeroableInOption for NonZeroIsize {} -unsafe impl ZeroableInOption for NonZeroU8 {} -unsafe impl ZeroableInOption for NonZeroU16 {} -unsafe impl ZeroableInOption for NonZeroU32 {} -unsafe impl ZeroableInOption for NonZeroU64 {} -unsafe impl ZeroableInOption for NonZeroU128 {} -unsafe impl ZeroableInOption for NonZeroUsize {} - -// Note: this does not create NULL vtable because we get `None` anyway. -unsafe impl<T: ?Sized> ZeroableInOption for NonNull<T> {} -unsafe impl<T: ?Sized> ZeroableInOption for &'_ T {} -unsafe impl<T: ?Sized> ZeroableInOption for &'_ mut T {} - -#[cfg(feature = "extern_crate_alloc")] -#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_alloc")))] -unsafe impl<T: ?Sized> ZeroableInOption for alloc::boxed::Box<T> {} |