diff options
Diffstat (limited to 'vendor/crossbeam-deque')
-rw-r--r-- | vendor/crossbeam-deque/.cargo-checksum.json | 1 | ||||
-rw-r--r-- | vendor/crossbeam-deque/CHANGELOG.md | 133 | ||||
-rw-r--r-- | vendor/crossbeam-deque/Cargo.toml | 55 | ||||
-rw-r--r-- | vendor/crossbeam-deque/LICENSE-APACHE | 201 | ||||
-rw-r--r-- | vendor/crossbeam-deque/LICENSE-MIT | 27 | ||||
-rw-r--r-- | vendor/crossbeam-deque/README.md | 46 | ||||
-rw-r--r-- | vendor/crossbeam-deque/src/deque.rs | 2195 | ||||
-rw-r--r-- | vendor/crossbeam-deque/src/lib.rs | 110 | ||||
-rw-r--r-- | vendor/crossbeam-deque/tests/fifo.rs | 357 | ||||
-rw-r--r-- | vendor/crossbeam-deque/tests/injector.rs | 375 | ||||
-rw-r--r-- | vendor/crossbeam-deque/tests/lifo.rs | 359 | ||||
-rw-r--r-- | vendor/crossbeam-deque/tests/steal.rs | 212 |
12 files changed, 4071 insertions, 0 deletions
diff --git a/vendor/crossbeam-deque/.cargo-checksum.json b/vendor/crossbeam-deque/.cargo-checksum.json new file mode 100644 index 0000000..9c26d82 --- /dev/null +++ b/vendor/crossbeam-deque/.cargo-checksum.json @@ -0,0 +1 @@ +{"files":{"CHANGELOG.md":"23c4df815148a8d0cd366661313c629c115a022b3609d899665a1a079939ca46","Cargo.toml":"6f08856d95a287f5852ea0b333c2b44c0bfdd20a1430cae8632aaf6164a661a5","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"5734ed989dfca1f625b40281ee9f4530f91b2411ec01cb748223e7eb87e201ab","README.md":"86445da156ad68ea1d1f2dc49a3cef942ccc377ff56316aefe89732ded763aba","src/deque.rs":"34c093fdd7df55d7838f023d00e4fff7d8cffb9c04b6bbe167c7bc7b8fee57a0","src/lib.rs":"9f0581481691bc698176f369410726adf597d470b9d14e226a65f490d6aff8c6","tests/fifo.rs":"3d98e0d4ca7cfddf10708b71642cf1ff05543d067ad837e48401d63cc31c0a18","tests/injector.rs":"fb054ef9fcac5f12e08b7b3451f370b96ab7589d32ef5c02e25958a473c45519","tests/lifo.rs":"57abdb3fc5920a422f785ba308b658bdc5400947532eeffb799f2395a2061549","tests/steal.rs":"cdf588cc13eeb275ef1231eb18e3245faca7a2d054fa6527bfdba2a34bc8f7bf"},"package":"fca89a0e215bab21874660c67903c5f143333cab1da83d041c7ded6053774751"}
\ No newline at end of file diff --git a/vendor/crossbeam-deque/CHANGELOG.md b/vendor/crossbeam-deque/CHANGELOG.md new file mode 100644 index 0000000..f763754 --- /dev/null +++ b/vendor/crossbeam-deque/CHANGELOG.md @@ -0,0 +1,133 @@ +# Version 0.8.4 + +- Bump the minimum supported Rust version to 1.61. (#1037) + +# Version 0.8.3 + +- Add `Stealer::{steal_batch_with_limit, steal_batch_with_limit_and_pop}` methods. (#903) +- Add `Injector::{steal_batch_with_limit, steal_batch_with_limit_and_pop}` methods. (#903) + +# Version 0.8.2 + +- Bump the minimum supported Rust version to 1.38. (#877) + +# Version 0.8.1 + +- Fix deque steal race condition. (#726) +- Add `Stealer::len` method. (#708) + +# Version 0.8.0 + +**Note:** This release has been yanked. See [GHSA-pqqp-xmhj-wgcw](https://github.com/crossbeam-rs/crossbeam/security/advisories/GHSA-pqqp-xmhj-wgcw) for details. + +- Bump the minimum supported Rust version to 1.36. +- Add `Worker::len()` and `Injector::len()` methods. +- Add `std` (enabled by default) feature for forward compatibility. + +# Version 0.7.4 + +- Fix deque steal race condition. + +# Version 0.7.3 + +**Note:** This release has been yanked. See [GHSA-pqqp-xmhj-wgcw](https://github.com/crossbeam-rs/crossbeam/security/advisories/GHSA-pqqp-xmhj-wgcw) for details. + +- Stop stealing from the same deque. (#448) +- Fix unsoundness issues by adopting `MaybeUninit`. (#458) + +# Version 0.7.2 + +**Note:** This release has been yanked. See [GHSA-pqqp-xmhj-wgcw](https://github.com/crossbeam-rs/crossbeam/security/advisories/GHSA-pqqp-xmhj-wgcw) for details. + +- Bump `crossbeam-epoch` to `0.8`. +- Bump `crossbeam-utils` to `0.7`. + +# Version 0.7.1 + +**Note:** This release has been yanked. See [GHSA-pqqp-xmhj-wgcw](https://github.com/crossbeam-rs/crossbeam/security/advisories/GHSA-pqqp-xmhj-wgcw) for details. + +- Bump the minimum required version of `crossbeam-utils`. + +# Version 0.7.0 + +**Note:** This release has been yanked. See [GHSA-pqqp-xmhj-wgcw](https://github.com/crossbeam-rs/crossbeam/security/advisories/GHSA-pqqp-xmhj-wgcw) for details. + +- Make `Worker::pop()` faster in the FIFO case. +- Replace `fifo()` nad `lifo()` with `Worker::new_fifo()` and `Worker::new_lifo()`. +- Add more batched steal methods. +- Introduce `Injector<T>`, a MPMC queue. +- Rename `Steal::Data` to `Steal::Success`. +- Add `Steal::or_else()` and implement `FromIterator` for `Steal`. +- Add `#[must_use]` to `Steal`. + +# Version 0.6.3 + +- Bump `crossbeam-epoch` to `0.7`. + +# Version 0.6.2 + +- Update `crosbeam-utils` to `0.6`. + +# Version 0.6.1 + +- Change a few `Relaxed` orderings to `Release` in order to fix false positives by tsan. + +# Version 0.6.0 + +- Add `Stealer::steal_many` for batched stealing. +- Change the return type of `pop` to `Pop<T>` so that spinning can be handled manually. + +# Version 0.5.2 + +- Update `crossbeam-utils` to `0.5.0`. + +# Version 0.5.1 + +- Minor optimizations. + +# Version 0.5.0 + +- Add two deque constructors : `fifo()` and `lifo()`. +- Update `rand` to `0.5.3`. +- Rename `Deque` to `Worker`. +- Return `Option<T>` from `Stealer::steal`. +- Remove methods `Deque::len` and `Stealer::len`. +- Remove method `Deque::stealer`. +- Remove method `Deque::steal`. + +# Version 0.4.1 + +- Update `crossbeam-epoch` to `0.5.0`. + +# Version 0.4.0 + +- Update `crossbeam-epoch` to `0.4.2`. +- Update `crossbeam-utils` to `0.4.0`. +- Require minimum Rust version 1.25. + +# Version 0.3.1 + +- Add `Deque::capacity`. +- Add `Deque::min_capacity`. +- Add `Deque::shrink_to_fit`. +- Update `crossbeam-epoch` to `0.3.0`. +- Support Rust 1.20. +- Shrink the buffer in `Deque::push` if necessary. + +# Version 0.3.0 + +- Update `crossbeam-epoch` to `0.4.0`. +- Drop support for Rust 1.13. + +# Version 0.2.0 + +- Update `crossbeam-epoch` to `0.3.0`. +- Support Rust 1.13. + +# Version 0.1.1 + +- Update `crossbeam-epoch` to `0.2.0`. + +# Version 0.1.0 + +- First implementation of the Chase-Lev deque. diff --git a/vendor/crossbeam-deque/Cargo.toml b/vendor/crossbeam-deque/Cargo.toml new file mode 100644 index 0000000..e04086e --- /dev/null +++ b/vendor/crossbeam-deque/Cargo.toml @@ -0,0 +1,55 @@ +# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO +# +# When uploading crates to the registry Cargo will automatically +# "normalize" Cargo.toml files for maximal compatibility +# with all versions of Cargo and also rewrite `path` dependencies +# to registry (e.g., crates.io) dependencies. +# +# If you are reading this file be aware that the original Cargo.toml +# will likely look very different (and much more reasonable). +# See Cargo.toml.orig for the original contents. + +[package] +edition = "2018" +rust-version = "1.61" +name = "crossbeam-deque" +version = "0.8.4" +description = "Concurrent work-stealing deque" +homepage = "https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-deque" +readme = "README.md" +keywords = [ + "chase-lev", + "lock-free", + "scheduler", + "scheduling", +] +categories = [ + "algorithms", + "concurrency", + "data-structures", +] +license = "MIT OR Apache-2.0" +repository = "https://github.com/crossbeam-rs/crossbeam" + +[dependencies.cfg-if] +version = "1" + +[dependencies.crossbeam-epoch] +version = "0.9.16" +optional = true +default-features = false + +[dependencies.crossbeam-utils] +version = "0.8.17" +optional = true +default-features = false + +[dev-dependencies.rand] +version = "0.8" + +[features] +default = ["std"] +std = [ + "crossbeam-epoch/std", + "crossbeam-utils/std", +] diff --git a/vendor/crossbeam-deque/LICENSE-APACHE b/vendor/crossbeam-deque/LICENSE-APACHE new file mode 100644 index 0000000..16fe87b --- /dev/null +++ b/vendor/crossbeam-deque/LICENSE-APACHE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + +1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + +APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + +Copyright [yyyy] [name of copyright owner] + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. diff --git a/vendor/crossbeam-deque/LICENSE-MIT b/vendor/crossbeam-deque/LICENSE-MIT new file mode 100644 index 0000000..068d491 --- /dev/null +++ b/vendor/crossbeam-deque/LICENSE-MIT @@ -0,0 +1,27 @@ +The MIT License (MIT) + +Copyright (c) 2019 The Crossbeam Project Developers + +Permission is hereby granted, free of charge, to any +person obtaining a copy of this software and associated +documentation files (the "Software"), to deal in the +Software without restriction, including without +limitation the rights to use, copy, modify, merge, +publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software +is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice +shall be included in all copies or substantial portions +of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. diff --git a/vendor/crossbeam-deque/README.md b/vendor/crossbeam-deque/README.md new file mode 100644 index 0000000..4eae144 --- /dev/null +++ b/vendor/crossbeam-deque/README.md @@ -0,0 +1,46 @@ +# Crossbeam Deque + +[![Build Status](https://github.com/crossbeam-rs/crossbeam/workflows/CI/badge.svg)]( +https://github.com/crossbeam-rs/crossbeam/actions) +[![License](https://img.shields.io/badge/license-MIT_OR_Apache--2.0-blue.svg)]( +https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-deque#license) +[![Cargo](https://img.shields.io/crates/v/crossbeam-deque.svg)]( +https://crates.io/crates/crossbeam-deque) +[![Documentation](https://docs.rs/crossbeam-deque/badge.svg)]( +https://docs.rs/crossbeam-deque) +[![Rust 1.61+](https://img.shields.io/badge/rust-1.61+-lightgray.svg)]( +https://www.rust-lang.org) +[![chat](https://img.shields.io/discord/569610676205781012.svg?logo=discord)](https://discord.com/invite/JXYwgWZ) + +This crate provides work-stealing deques, which are primarily intended for +building task schedulers. + +## Usage + +Add this to your `Cargo.toml`: + +```toml +[dependencies] +crossbeam-deque = "0.8" +``` + +## Compatibility + +Crossbeam Deque supports stable Rust releases going back at least six months, +and every time the minimum supported Rust version is increased, a new minor +version is released. Currently, the minimum supported Rust version is 1.61. + +## License + +Licensed under either of + + * Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) + * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) + +at your option. + +#### Contribution + +Unless you explicitly state otherwise, any contribution intentionally submitted +for inclusion in the work by you, as defined in the Apache-2.0 license, shall be +dual licensed as above, without any additional terms or conditions. diff --git a/vendor/crossbeam-deque/src/deque.rs b/vendor/crossbeam-deque/src/deque.rs new file mode 100644 index 0000000..c37de2d --- /dev/null +++ b/vendor/crossbeam-deque/src/deque.rs @@ -0,0 +1,2195 @@ +use std::cell::{Cell, UnsafeCell}; +use std::cmp; +use std::fmt; +use std::iter::FromIterator; +use std::marker::PhantomData; +use std::mem::{self, ManuallyDrop, MaybeUninit}; +use std::ptr; +use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering}; +use std::sync::Arc; + +use crate::epoch::{self, Atomic, Owned}; +use crate::utils::{Backoff, CachePadded}; + +// Minimum buffer capacity. +const MIN_CAP: usize = 64; +// Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`. +const MAX_BATCH: usize = 32; +// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets +// deallocated as soon as possible. +const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; + +/// A buffer that holds tasks in a worker queue. +/// +/// This is just a pointer to the buffer and its length - dropping an instance of this struct will +/// *not* deallocate the buffer. +struct Buffer<T> { + /// Pointer to the allocated memory. + ptr: *mut T, + + /// Capacity of the buffer. Always a power of two. + cap: usize, +} + +unsafe impl<T> Send for Buffer<T> {} + +impl<T> Buffer<T> { + /// Allocates a new buffer with the specified capacity. + fn alloc(cap: usize) -> Buffer<T> { + debug_assert_eq!(cap, cap.next_power_of_two()); + + let mut v = ManuallyDrop::new(Vec::with_capacity(cap)); + let ptr = v.as_mut_ptr(); + + Buffer { ptr, cap } + } + + /// Deallocates the buffer. + unsafe fn dealloc(self) { + drop(Vec::from_raw_parts(self.ptr, 0, self.cap)); + } + + /// Returns a pointer to the task at the specified `index`. + unsafe fn at(&self, index: isize) -> *mut T { + // `self.cap` is always a power of two. + // We do all the loads at `MaybeUninit` because we might realize, after loading, that we + // don't actually have the right to access this memory. + self.ptr.offset(index & (self.cap - 1) as isize) + } + + /// Writes `task` into the specified `index`. + /// + /// This method might be concurrently called with another `read` at the same index, which is + /// technically speaking a data race and therefore UB. We should use an atomic store here, but + /// that would be more expensive and difficult to implement generically for all types `T`. + /// Hence, as a hack, we use a volatile write instead. + unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { + ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) + } + + /// Reads a task from the specified `index`. + /// + /// This method might be concurrently called with another `write` at the same index, which is + /// technically speaking a data race and therefore UB. We should use an atomic load here, but + /// that would be more expensive and difficult to implement generically for all types `T`. + /// Hence, as a hack, we use a volatile load instead. + unsafe fn read(&self, index: isize) -> MaybeUninit<T> { + ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) + } +} + +impl<T> Clone for Buffer<T> { + fn clone(&self) -> Buffer<T> { + *self + } +} + +impl<T> Copy for Buffer<T> {} + +/// Internal queue data shared between the worker and stealers. +/// +/// The implementation is based on the following work: +/// +/// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] +/// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. +/// PPoPP 2013.][weak-mem] +/// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ +/// atomics. OOPSLA 2013.][checker] +/// +/// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 +/// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 +/// [checker]: https://dl.acm.org/citation.cfm?id=2509514 +struct Inner<T> { + /// The front index. + front: AtomicIsize, + + /// The back index. + back: AtomicIsize, + + /// The underlying buffer. + buffer: CachePadded<Atomic<Buffer<T>>>, +} + +impl<T> Drop for Inner<T> { + fn drop(&mut self) { + // Load the back index, front index, and buffer. + let b = *self.back.get_mut(); + let f = *self.front.get_mut(); + + unsafe { + let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected()); + + // Go through the buffer from front to back and drop all tasks in the queue. + let mut i = f; + while i != b { + buffer.deref().at(i).drop_in_place(); + i = i.wrapping_add(1); + } + + // Free the memory allocated by the buffer. + buffer.into_owned().into_box().dealloc(); + } + } +} + +/// Worker queue flavor: FIFO or LIFO. +#[derive(Clone, Copy, Debug, Eq, PartialEq)] +enum Flavor { + /// The first-in first-out flavor. + Fifo, + + /// The last-in first-out flavor. + Lifo, +} + +/// A worker queue. +/// +/// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal +/// tasks from it. Task schedulers typically create a single worker queue per thread. +/// +/// # Examples +/// +/// A FIFO worker: +/// +/// ``` +/// use crossbeam_deque::{Steal, Worker}; +/// +/// let w = Worker::new_fifo(); +/// let s = w.stealer(); +/// +/// w.push(1); +/// w.push(2); +/// w.push(3); +/// +/// assert_eq!(s.steal(), Steal::Success(1)); +/// assert_eq!(w.pop(), Some(2)); +/// assert_eq!(w.pop(), Some(3)); +/// ``` +/// +/// A LIFO worker: +/// +/// ``` +/// use crossbeam_deque::{Steal, Worker}; +/// +/// let w = Worker::new_lifo(); +/// let s = w.stealer(); +/// +/// w.push(1); +/// w.push(2); +/// w.push(3); +/// +/// assert_eq!(s.steal(), Steal::Success(1)); +/// assert_eq!(w.pop(), Some(3)); +/// assert_eq!(w.pop(), Some(2)); +/// ``` +pub struct Worker<T> { + /// A reference to the inner representation of the queue. + inner: Arc<CachePadded<Inner<T>>>, + + /// A copy of `inner.buffer` for quick access. + buffer: Cell<Buffer<T>>, + + /// The flavor of the queue. + flavor: Flavor, + + /// Indicates that the worker cannot be shared among threads. + _marker: PhantomData<*mut ()>, // !Send + !Sync +} + +unsafe impl<T: Send> Send for Worker<T> {} + +impl<T> Worker<T> { + /// Creates a FIFO worker queue. + /// + /// Tasks are pushed and popped from opposite ends. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::<i32>::new_fifo(); + /// ``` + pub fn new_fifo() -> Worker<T> { + let buffer = Buffer::alloc(MIN_CAP); + + let inner = Arc::new(CachePadded::new(Inner { + front: AtomicIsize::new(0), + back: AtomicIsize::new(0), + buffer: CachePadded::new(Atomic::new(buffer)), + })); + + Worker { + inner, + buffer: Cell::new(buffer), + flavor: Flavor::Fifo, + _marker: PhantomData, + } + } + + /// Creates a LIFO worker queue. + /// + /// Tasks are pushed and popped from the same end. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::<i32>::new_lifo(); + /// ``` + pub fn new_lifo() -> Worker<T> { + let buffer = Buffer::alloc(MIN_CAP); + + let inner = Arc::new(CachePadded::new(Inner { + front: AtomicIsize::new(0), + back: AtomicIsize::new(0), + buffer: CachePadded::new(Atomic::new(buffer)), + })); + + Worker { + inner, + buffer: Cell::new(buffer), + flavor: Flavor::Lifo, + _marker: PhantomData, + } + } + + /// Creates a stealer for this queue. + /// + /// The returned stealer can be shared among threads and cloned. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::<i32>::new_lifo(); + /// let s = w.stealer(); + /// ``` + pub fn stealer(&self) -> Stealer<T> { + Stealer { + inner: self.inner.clone(), + flavor: self.flavor, + } + } + + /// Resizes the internal buffer to the new capacity of `new_cap`. + #[cold] + unsafe fn resize(&self, new_cap: usize) { + // Load the back index, front index, and buffer. + let b = self.inner.back.load(Ordering::Relaxed); + let f = self.inner.front.load(Ordering::Relaxed); + let buffer = self.buffer.get(); + + // Allocate a new buffer and copy data from the old buffer to the new one. + let new = Buffer::alloc(new_cap); + let mut i = f; + while i != b { + ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); + i = i.wrapping_add(1); + } + + let guard = &epoch::pin(); + + // Replace the old buffer with the new one. + self.buffer.replace(new); + let old = + self.inner + .buffer + .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); + + // Destroy the old buffer later. + guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); + + // If the buffer is very large, then flush the thread-local garbage in order to deallocate + // it as soon as possible. + if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { + guard.flush(); + } + } + + /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the + /// buffer. + fn reserve(&self, reserve_cap: usize) { + if reserve_cap > 0 { + // Compute the current length. + let b = self.inner.back.load(Ordering::Relaxed); + let f = self.inner.front.load(Ordering::SeqCst); + let len = b.wrapping_sub(f) as usize; + + // The current capacity. + let cap = self.buffer.get().cap; + + // Is there enough capacity to push `reserve_cap` tasks? + if cap - len < reserve_cap { + // Keep doubling the capacity as much as is needed. + let mut new_cap = cap * 2; + while new_cap - len < reserve_cap { + new_cap *= 2; + } + + // Resize the buffer. + unsafe { + self.resize(new_cap); + } + } + } + } + + /// Returns `true` if the queue is empty. + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::new_lifo(); + /// + /// assert!(w.is_empty()); + /// w.push(1); + /// assert!(!w.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + let b = self.inner.back.load(Ordering::Relaxed); + let f = self.inner.front.load(Ordering::SeqCst); + b.wrapping_sub(f) <= 0 + } + + /// Returns the number of tasks in the deque. + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::new_lifo(); + /// + /// assert_eq!(w.len(), 0); + /// w.push(1); + /// assert_eq!(w.len(), 1); + /// w.push(1); + /// assert_eq!(w.len(), 2); + /// ``` + pub fn len(&self) -> usize { + let b = self.inner.back.load(Ordering::Relaxed); + let f = self.inner.front.load(Ordering::SeqCst); + b.wrapping_sub(f).max(0) as usize + } + + /// Pushes a task into the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::new_lifo(); + /// w.push(1); + /// w.push(2); + /// ``` + pub fn push(&self, task: T) { + // Load the back index, front index, and buffer. + let b = self.inner.back.load(Ordering::Relaxed); + let f = self.inner.front.load(Ordering::Acquire); + let mut buffer = self.buffer.get(); + + // Calculate the length of the queue. + let len = b.wrapping_sub(f); + + // Is the queue full? + if len >= buffer.cap as isize { + // Yes. Grow the underlying buffer. + unsafe { + self.resize(2 * buffer.cap); + } + buffer = self.buffer.get(); + } + + // Write `task` into the slot. + unsafe { + buffer.write(b, MaybeUninit::new(task)); + } + + atomic::fence(Ordering::Release); + + // Increment the back index. + // + // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data + // races because it doesn't understand fences. + self.inner.back.store(b.wrapping_add(1), Ordering::Release); + } + + /// Pops a task from the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::new_fifo(); + /// w.push(1); + /// w.push(2); + /// + /// assert_eq!(w.pop(), Some(1)); + /// assert_eq!(w.pop(), Some(2)); + /// assert_eq!(w.pop(), None); + /// ``` + pub fn pop(&self) -> Option<T> { + // Load the back and front index. + let b = self.inner.back.load(Ordering::Relaxed); + let f = self.inner.front.load(Ordering::Relaxed); + + // Calculate the length of the queue. + let len = b.wrapping_sub(f); + + // Is the queue empty? + if len <= 0 { + return None; + } + + match self.flavor { + // Pop from the front of the queue. + Flavor::Fifo => { + // Try incrementing the front index to pop the task. + let f = self.inner.front.fetch_add(1, Ordering::SeqCst); + let new_f = f.wrapping_add(1); + + if b.wrapping_sub(new_f) < 0 { + self.inner.front.store(f, Ordering::Relaxed); + return None; + } + + unsafe { + // Read the popped task. + let buffer = self.buffer.get(); + let task = buffer.read(f).assume_init(); + + // Shrink the buffer if `len - 1` is less than one fourth of the capacity. + if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { + self.resize(buffer.cap / 2); + } + + Some(task) + } + } + + // Pop from the back of the queue. + Flavor::Lifo => { + // Decrement the back index. + let b = b.wrapping_sub(1); + self.inner.back.store(b, Ordering::Relaxed); + + atomic::fence(Ordering::SeqCst); + + // Load the front index. + let f = self.inner.front.load(Ordering::Relaxed); + + // Compute the length after the back index was decremented. + let len = b.wrapping_sub(f); + + if len < 0 { + // The queue is empty. Restore the back index to the original task. + self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); + None + } else { + // Read the task to be popped. + let buffer = self.buffer.get(); + let mut task = unsafe { Some(buffer.read(b)) }; + + // Are we popping the last task from the queue? + if len == 0 { + // Try incrementing the front index. + if self + .inner + .front + .compare_exchange( + f, + f.wrapping_add(1), + Ordering::SeqCst, + Ordering::Relaxed, + ) + .is_err() + { + // Failed. We didn't pop anything. Reset to `None`. + task.take(); + } + + // Restore the back index to the original task. + self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); + } else { + // Shrink the buffer if `len` is less than one fourth of the capacity. + if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { + unsafe { + self.resize(buffer.cap / 2); + } + } + } + + task.map(|t| unsafe { t.assume_init() }) + } + } + } + } +} + +impl<T> fmt::Debug for Worker<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.pad("Worker { .. }") + } +} + +/// A stealer handle of a worker queue. +/// +/// Stealers can be shared among threads. +/// +/// Task schedulers typically have a single worker queue per worker thread. +/// +/// # Examples +/// +/// ``` +/// use crossbeam_deque::{Steal, Worker}; +/// +/// let w = Worker::new_lifo(); +/// w.push(1); +/// w.push(2); +/// +/// let s = w.stealer(); +/// assert_eq!(s.steal(), Steal::Success(1)); +/// assert_eq!(s.steal(), Steal::Success(2)); +/// assert_eq!(s.steal(), Steal::Empty); +/// ``` +pub struct Stealer<T> { + /// A reference to the inner representation of the queue. + inner: Arc<CachePadded<Inner<T>>>, + + /// The flavor of the queue. + flavor: Flavor, +} + +unsafe impl<T: Send> Send for Stealer<T> {} +unsafe impl<T: Send> Sync for Stealer<T> {} + +impl<T> Stealer<T> { + /// Returns `true` if the queue is empty. + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::new_lifo(); + /// let s = w.stealer(); + /// + /// assert!(s.is_empty()); + /// w.push(1); + /// assert!(!s.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + let f = self.inner.front.load(Ordering::Acquire); + atomic::fence(Ordering::SeqCst); + let b = self.inner.back.load(Ordering::Acquire); + b.wrapping_sub(f) <= 0 + } + + /// Returns the number of tasks in the deque. + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w = Worker::new_lifo(); + /// let s = w.stealer(); + /// + /// assert_eq!(s.len(), 0); + /// w.push(1); + /// assert_eq!(s.len(), 1); + /// w.push(2); + /// assert_eq!(s.len(), 2); + /// ``` + pub fn len(&self) -> usize { + let f = self.inner.front.load(Ordering::Acquire); + atomic::fence(Ordering::SeqCst); + let b = self.inner.back.load(Ordering::Acquire); + b.wrapping_sub(f).max(0) as usize + } + + /// Steals a task from the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Steal, Worker}; + /// + /// let w = Worker::new_lifo(); + /// w.push(1); + /// w.push(2); + /// + /// let s = w.stealer(); + /// assert_eq!(s.steal(), Steal::Success(1)); + /// assert_eq!(s.steal(), Steal::Success(2)); + /// ``` + pub fn steal(&self) -> Steal<T> { + // Load the front index. + let f = self.inner.front.load(Ordering::Acquire); + + // A SeqCst fence is needed here. + // + // If the current thread is already pinned (reentrantly), we must manually issue the + // fence. Otherwise, the following pinning will issue the fence anyway, so we don't + // have to. + if epoch::is_pinned() { + atomic::fence(Ordering::SeqCst); + } + + let guard = &epoch::pin(); + + // Load the back index. + let b = self.inner.back.load(Ordering::Acquire); + + // Is the queue empty? + if b.wrapping_sub(f) <= 0 { + return Steal::Empty; + } + + // Load the buffer and read the task at the front. + let buffer = self.inner.buffer.load(Ordering::Acquire, guard); + let task = unsafe { buffer.deref().read(f) }; + + // Try incrementing the front index to steal the task. + // If the buffer has been swapped or the increment fails, we retry. + if self.inner.buffer.load(Ordering::Acquire, guard) != buffer + || self + .inner + .front + .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) + .is_err() + { + // We didn't steal this task, forget it. + return Steal::Retry; + } + + // Return the stolen task. + Steal::Success(unsafe { task.assume_init() }) + } + + /// Steals a batch of tasks and pushes them into another worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than some constant limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w1 = Worker::new_fifo(); + /// w1.push(1); + /// w1.push(2); + /// w1.push(3); + /// w1.push(4); + /// + /// let s = w1.stealer(); + /// let w2 = Worker::new_fifo(); + /// + /// let _ = s.steal_batch(&w2); + /// assert_eq!(w2.pop(), Some(1)); + /// assert_eq!(w2.pop(), Some(2)); + /// ``` + pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { + self.steal_batch_with_limit(dest, MAX_BATCH) + } + + /// Steals no more than `limit` of tasks and pushes them into another worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than the given limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Worker; + /// + /// let w1 = Worker::new_fifo(); + /// w1.push(1); + /// w1.push(2); + /// w1.push(3); + /// w1.push(4); + /// w1.push(5); + /// w1.push(6); + /// + /// let s = w1.stealer(); + /// let w2 = Worker::new_fifo(); + /// + /// let _ = s.steal_batch_with_limit(&w2, 2); + /// assert_eq!(w2.pop(), Some(1)); + /// assert_eq!(w2.pop(), Some(2)); + /// assert_eq!(w2.pop(), None); + /// + /// w1.push(7); + /// w1.push(8); + /// // Setting a large limit does not guarantee that all elements will be popped. In this case, + /// // half of the elements are currently popped, but the number of popped elements is considered + /// // an implementation detail that may be changed in the future. + /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX); + /// assert_eq!(w2.len(), 3); + /// ``` + pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { + assert!(limit > 0); + if Arc::ptr_eq(&self.inner, &dest.inner) { + if dest.is_empty() { + return Steal::Empty; + } else { + return Steal::Success(()); + } + } + + // Load the front index. + let mut f = self.inner.front.load(Ordering::Acquire); + + // A SeqCst fence is needed here. + // + // If the current thread is already pinned (reentrantly), we must manually issue the + // fence. Otherwise, the following pinning will issue the fence anyway, so we don't + // have to. + if epoch::is_pinned() { + atomic::fence(Ordering::SeqCst); + } + + let guard = &epoch::pin(); + + // Load the back index. + let b = self.inner.back.load(Ordering::Acquire); + + // Is the queue empty? + let len = b.wrapping_sub(f); + if len <= 0 { + return Steal::Empty; + } + + // Reserve capacity for the stolen batch. + let batch_size = cmp::min((len as usize + 1) / 2, limit); + dest.reserve(batch_size); + let mut batch_size = batch_size as isize; + + // Get the destination buffer and back index. + let dest_buffer = dest.buffer.get(); + let mut dest_b = dest.inner.back.load(Ordering::Relaxed); + + // Load the buffer. + let buffer = self.inner.buffer.load(Ordering::Acquire, guard); + + match self.flavor { + // Steal a batch of tasks from the front at once. + Flavor::Fifo => { + // Copy the batch from the source to the destination buffer. + match dest.flavor { + Flavor::Fifo => { + for i in 0..batch_size { + unsafe { + let task = buffer.deref().read(f.wrapping_add(i)); + dest_buffer.write(dest_b.wrapping_add(i), task); + } + } + } + Flavor::Lifo => { + for i in 0..batch_size { + unsafe { + let task = buffer.deref().read(f.wrapping_add(i)); + dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); + } + } + } + } + + // Try incrementing the front index to steal the batch. + // If the buffer has been swapped or the increment fails, we retry. + if self.inner.buffer.load(Ordering::Acquire, guard) != buffer + || self + .inner + .front + .compare_exchange( + f, + f.wrapping_add(batch_size), + Ordering::SeqCst, + Ordering::Relaxed, + ) + .is_err() + { + return Steal::Retry; + } + + dest_b = dest_b.wrapping_add(batch_size); + } + + // Steal a batch of tasks from the front one by one. + Flavor::Lifo => { + // This loop may modify the batch_size, which triggers a clippy lint warning. + // Use a new variable to avoid the warning, and to make it clear we aren't + // modifying the loop exit condition during iteration. + let original_batch_size = batch_size; + + for i in 0..original_batch_size { + // If this is not the first steal, check whether the queue is empty. + if i > 0 { + // We've already got the current front index. Now execute the fence to + // synchronize with other threads. + atomic::fence(Ordering::SeqCst); + + // Load the back index. + let b = self.inner.back.load(Ordering::Acquire); + + // Is the queue empty? + if b.wrapping_sub(f) <= 0 { + batch_size = i; + break; + } + } + + // Read the task at the front. + let task = unsafe { buffer.deref().read(f) }; + + // Try incrementing the front index to steal the task. + // If the buffer has been swapped or the increment fails, we retry. + if self.inner.buffer.load(Ordering::Acquire, guard) != buffer + || self + .inner + .front + .compare_exchange( + f, + f.wrapping_add(1), + Ordering::SeqCst, + Ordering::Relaxed, + ) + .is_err() + { + // We didn't steal this task, forget it and break from the loop. + batch_size = i; + break; + } + + // Write the stolen task into the destination buffer. + unsafe { + dest_buffer.write(dest_b, task); + } + + // Move the source front index and the destination back index one step forward. + f = f.wrapping_add(1); + dest_b = dest_b.wrapping_add(1); + } + + // If we didn't steal anything, the operation needs to be retried. + if batch_size == 0 { + return Steal::Retry; + } + + // If stealing into a FIFO queue, stolen tasks need to be reversed. + if dest.flavor == Flavor::Fifo { + for i in 0..batch_size / 2 { + unsafe { + let i1 = dest_b.wrapping_sub(batch_size - i); + let i2 = dest_b.wrapping_sub(i + 1); + let t1 = dest_buffer.read(i1); + let t2 = dest_buffer.read(i2); + dest_buffer.write(i1, t2); + dest_buffer.write(i2, t1); + } + } + } + } + } + + atomic::fence(Ordering::Release); + + // Update the back index in the destination queue. + // + // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data + // races because it doesn't understand fences. + dest.inner.back.store(dest_b, Ordering::Release); + + // Return with success. + Steal::Success(()) + } + + /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than some constant limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Steal, Worker}; + /// + /// let w1 = Worker::new_fifo(); + /// w1.push(1); + /// w1.push(2); + /// w1.push(3); + /// w1.push(4); + /// + /// let s = w1.stealer(); + /// let w2 = Worker::new_fifo(); + /// + /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1)); + /// assert_eq!(w2.pop(), Some(2)); + /// ``` + pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { + self.steal_batch_with_limit_and_pop(dest, MAX_BATCH) + } + + /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from + /// that worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than the given limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Steal, Worker}; + /// + /// let w1 = Worker::new_fifo(); + /// w1.push(1); + /// w1.push(2); + /// w1.push(3); + /// w1.push(4); + /// w1.push(5); + /// w1.push(6); + /// + /// let s = w1.stealer(); + /// let w2 = Worker::new_fifo(); + /// + /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1)); + /// assert_eq!(w2.pop(), Some(2)); + /// assert_eq!(w2.pop(), None); + /// + /// w1.push(7); + /// w1.push(8); + /// // Setting a large limit does not guarantee that all elements will be popped. In this case, + /// // half of the elements are currently popped, but the number of popped elements is considered + /// // an implementation detail that may be changed in the future. + /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3)); + /// assert_eq!(w2.pop(), Some(4)); + /// assert_eq!(w2.pop(), Some(5)); + /// assert_eq!(w2.pop(), None); + /// ``` + pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { + assert!(limit > 0); + if Arc::ptr_eq(&self.inner, &dest.inner) { + match dest.pop() { + None => return Steal::Empty, + Some(task) => return Steal::Success(task), + } + } + + // Load the front index. + let mut f = self.inner.front.load(Ordering::Acquire); + + // A SeqCst fence is needed here. + // + // If the current thread is already pinned (reentrantly), we must manually issue the + // fence. Otherwise, the following pinning will issue the fence anyway, so we don't + // have to. + if epoch::is_pinned() { + atomic::fence(Ordering::SeqCst); + } + + let guard = &epoch::pin(); + + // Load the back index. + let b = self.inner.back.load(Ordering::Acquire); + + // Is the queue empty? + let len = b.wrapping_sub(f); + if len <= 0 { + return Steal::Empty; + } + + // Reserve capacity for the stolen batch. + let batch_size = cmp::min((len as usize - 1) / 2, limit - 1); + dest.reserve(batch_size); + let mut batch_size = batch_size as isize; + + // Get the destination buffer and back index. + let dest_buffer = dest.buffer.get(); + let mut dest_b = dest.inner.back.load(Ordering::Relaxed); + + // Load the buffer + let buffer = self.inner.buffer.load(Ordering::Acquire, guard); + + // Read the task at the front. + let mut task = unsafe { buffer.deref().read(f) }; + + match self.flavor { + // Steal a batch of tasks from the front at once. + Flavor::Fifo => { + // Copy the batch from the source to the destination buffer. + match dest.flavor { + Flavor::Fifo => { + for i in 0..batch_size { + unsafe { + let task = buffer.deref().read(f.wrapping_add(i + 1)); + dest_buffer.write(dest_b.wrapping_add(i), task); + } + } + } + Flavor::Lifo => { + for i in 0..batch_size { + unsafe { + let task = buffer.deref().read(f.wrapping_add(i + 1)); + dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); + } + } + } + } + + // Try incrementing the front index to steal the task. + // If the buffer has been swapped or the increment fails, we retry. + if self.inner.buffer.load(Ordering::Acquire, guard) != buffer + || self + .inner + .front + .compare_exchange( + f, + f.wrapping_add(batch_size + 1), + Ordering::SeqCst, + Ordering::Relaxed, + ) + .is_err() + { + // We didn't steal this task, forget it. + return Steal::Retry; + } + + dest_b = dest_b.wrapping_add(batch_size); + } + + // Steal a batch of tasks from the front one by one. + Flavor::Lifo => { + // Try incrementing the front index to steal the task. + if self + .inner + .front + .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) + .is_err() + { + // We didn't steal this task, forget it. + return Steal::Retry; + } + + // Move the front index one step forward. + f = f.wrapping_add(1); + + // Repeat the same procedure for the batch steals. + // + // This loop may modify the batch_size, which triggers a clippy lint warning. + // Use a new variable to avoid the warning, and to make it clear we aren't + // modifying the loop exit condition during iteration. + let original_batch_size = batch_size; + for i in 0..original_batch_size { + // We've already got the current front index. Now execute the fence to + // synchronize with other threads. + atomic::fence(Ordering::SeqCst); + + // Load the back index. + let b = self.inner.back.load(Ordering::Acquire); + + // Is the queue empty? + if b.wrapping_sub(f) <= 0 { + batch_size = i; + break; + } + + // Read the task at the front. + let tmp = unsafe { buffer.deref().read(f) }; + + // Try incrementing the front index to steal the task. + // If the buffer has been swapped or the increment fails, we retry. + if self.inner.buffer.load(Ordering::Acquire, guard) != buffer + || self + .inner + .front + .compare_exchange( + f, + f.wrapping_add(1), + Ordering::SeqCst, + Ordering::Relaxed, + ) + .is_err() + { + // We didn't steal this task, forget it and break from the loop. + batch_size = i; + break; + } + + // Write the previously stolen task into the destination buffer. + unsafe { + dest_buffer.write(dest_b, mem::replace(&mut task, tmp)); + } + + // Move the source front index and the destination back index one step forward. + f = f.wrapping_add(1); + dest_b = dest_b.wrapping_add(1); + } + + // If stealing into a FIFO queue, stolen tasks need to be reversed. + if dest.flavor == Flavor::Fifo { + for i in 0..batch_size / 2 { + unsafe { + let i1 = dest_b.wrapping_sub(batch_size - i); + let i2 = dest_b.wrapping_sub(i + 1); + let t1 = dest_buffer.read(i1); + let t2 = dest_buffer.read(i2); + dest_buffer.write(i1, t2); + dest_buffer.write(i2, t1); + } + } + } + } + } + + atomic::fence(Ordering::Release); + + // Update the back index in the destination queue. + // + // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data + // races because it doesn't understand fences. + dest.inner.back.store(dest_b, Ordering::Release); + + // Return with success. + Steal::Success(unsafe { task.assume_init() }) + } +} + +impl<T> Clone for Stealer<T> { + fn clone(&self) -> Stealer<T> { + Stealer { + inner: self.inner.clone(), + flavor: self.flavor, + } + } +} + +impl<T> fmt::Debug for Stealer<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.pad("Stealer { .. }") + } +} + +// Bits indicating the state of a slot: +// * If a task has been written into the slot, `WRITE` is set. +// * If a task has been read from the slot, `READ` is set. +// * If the block is being destroyed, `DESTROY` is set. +const WRITE: usize = 1; +const READ: usize = 2; +const DESTROY: usize = 4; + +// Each block covers one "lap" of indices. +const LAP: usize = 64; +// The maximum number of values a block can hold. +const BLOCK_CAP: usize = LAP - 1; +// How many lower bits are reserved for metadata. +const SHIFT: usize = 1; +// Indicates that the block is not the last one. +const HAS_NEXT: usize = 1; + +/// A slot in a block. +struct Slot<T> { + /// The task. + task: UnsafeCell<MaybeUninit<T>>, + + /// The state of the slot. + state: AtomicUsize, +} + +impl<T> Slot<T> { + const UNINIT: Self = Self { + task: UnsafeCell::new(MaybeUninit::uninit()), + state: AtomicUsize::new(0), + }; + + /// Waits until a task is written into the slot. + fn wait_write(&self) { + let backoff = Backoff::new(); + while self.state.load(Ordering::Acquire) & WRITE == 0 { + backoff.snooze(); + } + } +} + +/// A block in a linked list. +/// +/// Each block in the list can hold up to `BLOCK_CAP` values. +struct Block<T> { + /// The next block in the linked list. + next: AtomicPtr<Block<T>>, + + /// Slots for values. + slots: [Slot<T>; BLOCK_CAP], +} + +impl<T> Block<T> { + /// Creates an empty block that starts at `start_index`. + fn new() -> Block<T> { + Self { + next: AtomicPtr::new(ptr::null_mut()), + slots: [Slot::UNINIT; BLOCK_CAP], + } + } + + /// Waits until the next pointer is set. + fn wait_next(&self) -> *mut Block<T> { + let backoff = Backoff::new(); + loop { + let next = self.next.load(Ordering::Acquire); + if !next.is_null() { + return next; + } + backoff.snooze(); + } + } + + /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. + unsafe fn destroy(this: *mut Block<T>, count: usize) { + // It is not necessary to set the `DESTROY` bit in the last slot because that slot has + // begun destruction of the block. + for i in (0..count).rev() { + let slot = (*this).slots.get_unchecked(i); + + // Mark the `DESTROY` bit if a thread is still using the slot. + if slot.state.load(Ordering::Acquire) & READ == 0 + && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 + { + // If a thread is still using the slot, it will continue destruction of the block. + return; + } + } + + // No thread is using the block, now it is safe to destroy it. + drop(Box::from_raw(this)); + } +} + +/// A position in a queue. +struct Position<T> { + /// The index in the queue. + index: AtomicUsize, + + /// The block in the linked list. + block: AtomicPtr<Block<T>>, +} + +/// An injector queue. +/// +/// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have +/// a single injector queue, which is the entry point for new tasks. +/// +/// # Examples +/// +/// ``` +/// use crossbeam_deque::{Injector, Steal}; +/// +/// let q = Injector::new(); +/// q.push(1); +/// q.push(2); +/// +/// assert_eq!(q.steal(), Steal::Success(1)); +/// assert_eq!(q.steal(), Steal::Success(2)); +/// assert_eq!(q.steal(), Steal::Empty); +/// ``` +pub struct Injector<T> { + /// The head of the queue. + head: CachePadded<Position<T>>, + + /// The tail of the queue. + tail: CachePadded<Position<T>>, + + /// Indicates that dropping a `Injector<T>` may drop values of type `T`. + _marker: PhantomData<T>, +} + +unsafe impl<T: Send> Send for Injector<T> {} +unsafe impl<T: Send> Sync for Injector<T> {} + +impl<T> Default for Injector<T> { + fn default() -> Self { + let block = Box::into_raw(Box::new(Block::<T>::new())); + Self { + head: CachePadded::new(Position { + block: AtomicPtr::new(block), + index: AtomicUsize::new(0), + }), + tail: CachePadded::new(Position { + block: AtomicPtr::new(block), + index: AtomicUsize::new(0), + }), + _marker: PhantomData, + } + } +} + +impl<T> Injector<T> { + /// Creates a new injector queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Injector; + /// + /// let q = Injector::<i32>::new(); + /// ``` + pub fn new() -> Injector<T> { + Self::default() + } + + /// Pushes a task into the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Injector; + /// + /// let w = Injector::new(); + /// w.push(1); + /// w.push(2); + /// ``` + pub fn push(&self, task: T) { + let backoff = Backoff::new(); + let mut tail = self.tail.index.load(Ordering::Acquire); + let mut block = self.tail.block.load(Ordering::Acquire); + let mut next_block = None; + + loop { + // Calculate the offset of the index into the block. + let offset = (tail >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + tail = self.tail.index.load(Ordering::Acquire); + block = self.tail.block.load(Ordering::Acquire); + continue; + } + + // If we're going to have to install the next block, allocate it in advance in order to + // make the wait for other threads as short as possible. + if offset + 1 == BLOCK_CAP && next_block.is_none() { + next_block = Some(Box::new(Block::<T>::new())); + } + + let new_tail = tail + (1 << SHIFT); + + // Try advancing the tail forward. + match self.tail.index.compare_exchange_weak( + tail, + new_tail, + Ordering::SeqCst, + Ordering::Acquire, + ) { + Ok(_) => unsafe { + // If we've reached the end of the block, install the next one. + if offset + 1 == BLOCK_CAP { + let next_block = Box::into_raw(next_block.unwrap()); + let next_index = new_tail.wrapping_add(1 << SHIFT); + + self.tail.block.store(next_block, Ordering::Release); + self.tail.index.store(next_index, Ordering::Release); + (*block).next.store(next_block, Ordering::Release); + } + + // Write the task into the slot. + let slot = (*block).slots.get_unchecked(offset); + slot.task.get().write(MaybeUninit::new(task)); + slot.state.fetch_or(WRITE, Ordering::Release); + + return; + }, + Err(t) => { + tail = t; + block = self.tail.block.load(Ordering::Acquire); + backoff.spin(); + } + } + } + } + + /// Steals a task from the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Injector, Steal}; + /// + /// let q = Injector::new(); + /// q.push(1); + /// q.push(2); + /// + /// assert_eq!(q.steal(), Steal::Success(1)); + /// assert_eq!(q.steal(), Steal::Success(2)); + /// assert_eq!(q.steal(), Steal::Empty); + /// ``` + pub fn steal(&self) -> Steal<T> { + let mut head; + let mut block; + let mut offset; + + let backoff = Backoff::new(); + loop { + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + + // Calculate the offset of the index into the block. + offset = (head >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + } else { + break; + } + } + + let mut new_head = head + (1 << SHIFT); + + if new_head & HAS_NEXT == 0 { + atomic::fence(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::Relaxed); + + // If the tail equals the head, that means the queue is empty. + if head >> SHIFT == tail >> SHIFT { + return Steal::Empty; + } + + // If head and tail are not in the same block, set `HAS_NEXT` in head. + if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { + new_head |= HAS_NEXT; + } + } + + // Try moving the head index forward. + if self + .head + .index + .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) + .is_err() + { + return Steal::Retry; + } + + unsafe { + // If we've reached the end of the block, move to the next one. + if offset + 1 == BLOCK_CAP { + let next = (*block).wait_next(); + let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); + if !(*next).next.load(Ordering::Relaxed).is_null() { + next_index |= HAS_NEXT; + } + + self.head.block.store(next, Ordering::Release); + self.head.index.store(next_index, Ordering::Release); + } + + // Read the task. + let slot = (*block).slots.get_unchecked(offset); + slot.wait_write(); + let task = slot.task.get().read().assume_init(); + + // Destroy the block if we've reached the end, or if another thread wanted to destroy + // but couldn't because we were busy reading from the slot. + if (offset + 1 == BLOCK_CAP) + || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0) + { + Block::destroy(block, offset); + } + + Steal::Success(task) + } + } + + /// Steals a batch of tasks and pushes them into a worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than some constant limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Injector, Worker}; + /// + /// let q = Injector::new(); + /// q.push(1); + /// q.push(2); + /// q.push(3); + /// q.push(4); + /// + /// let w = Worker::new_fifo(); + /// let _ = q.steal_batch(&w); + /// assert_eq!(w.pop(), Some(1)); + /// assert_eq!(w.pop(), Some(2)); + /// ``` + pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { + self.steal_batch_with_limit(dest, MAX_BATCH) + } + + /// Steals no more than of tasks and pushes them into a worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than some constant limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Injector, Worker}; + /// + /// let q = Injector::new(); + /// q.push(1); + /// q.push(2); + /// q.push(3); + /// q.push(4); + /// q.push(5); + /// q.push(6); + /// + /// let w = Worker::new_fifo(); + /// let _ = q.steal_batch_with_limit(&w, 2); + /// assert_eq!(w.pop(), Some(1)); + /// assert_eq!(w.pop(), Some(2)); + /// assert_eq!(w.pop(), None); + /// + /// q.push(7); + /// q.push(8); + /// // Setting a large limit does not guarantee that all elements will be popped. In this case, + /// // half of the elements are currently popped, but the number of popped elements is considered + /// // an implementation detail that may be changed in the future. + /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX); + /// assert_eq!(w.len(), 3); + /// ``` + pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { + assert!(limit > 0); + let mut head; + let mut block; + let mut offset; + + let backoff = Backoff::new(); + loop { + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + + // Calculate the offset of the index into the block. + offset = (head >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + } else { + break; + } + } + + let mut new_head = head; + let advance; + + if new_head & HAS_NEXT == 0 { + atomic::fence(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::Relaxed); + + // If the tail equals the head, that means the queue is empty. + if head >> SHIFT == tail >> SHIFT { + return Steal::Empty; + } + + // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate + // the right batch size to steal. + if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { + new_head |= HAS_NEXT; + // We can steal all tasks till the end of the block. + advance = (BLOCK_CAP - offset).min(limit); + } else { + let len = (tail - head) >> SHIFT; + // Steal half of the available tasks. + advance = ((len + 1) / 2).min(limit); + } + } else { + // We can steal all tasks till the end of the block. + advance = (BLOCK_CAP - offset).min(limit); + } + + new_head += advance << SHIFT; + let new_offset = offset + advance; + + // Try moving the head index forward. + if self + .head + .index + .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) + .is_err() + { + return Steal::Retry; + } + + // Reserve capacity for the stolen batch. + let batch_size = new_offset - offset; + dest.reserve(batch_size); + + // Get the destination buffer and back index. + let dest_buffer = dest.buffer.get(); + let dest_b = dest.inner.back.load(Ordering::Relaxed); + + unsafe { + // If we've reached the end of the block, move to the next one. + if new_offset == BLOCK_CAP { + let next = (*block).wait_next(); + let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); + if !(*next).next.load(Ordering::Relaxed).is_null() { + next_index |= HAS_NEXT; + } + + self.head.block.store(next, Ordering::Release); + self.head.index.store(next_index, Ordering::Release); + } + + // Copy values from the injector into the destination queue. + match dest.flavor { + Flavor::Fifo => { + for i in 0..batch_size { + // Read the task. + let slot = (*block).slots.get_unchecked(offset + i); + slot.wait_write(); + let task = slot.task.get().read(); + + // Write it into the destination queue. + dest_buffer.write(dest_b.wrapping_add(i as isize), task); + } + } + + Flavor::Lifo => { + for i in 0..batch_size { + // Read the task. + let slot = (*block).slots.get_unchecked(offset + i); + slot.wait_write(); + let task = slot.task.get().read(); + + // Write it into the destination queue. + dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); + } + } + } + + atomic::fence(Ordering::Release); + + // Update the back index in the destination queue. + // + // This ordering could be `Relaxed`, but then thread sanitizer would falsely report + // data races because it doesn't understand fences. + dest.inner + .back + .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); + + // Destroy the block if we've reached the end, or if another thread wanted to destroy + // but couldn't because we were busy reading from the slot. + if new_offset == BLOCK_CAP { + Block::destroy(block, offset); + } else { + for i in offset..new_offset { + let slot = (*block).slots.get_unchecked(i); + + if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { + Block::destroy(block, offset); + break; + } + } + } + + Steal::Success(()) + } + } + + /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than some constant limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Injector, Steal, Worker}; + /// + /// let q = Injector::new(); + /// q.push(1); + /// q.push(2); + /// q.push(3); + /// q.push(4); + /// + /// let w = Worker::new_fifo(); + /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1)); + /// assert_eq!(w.pop(), Some(2)); + /// ``` + pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { + // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly + // better, but we may change it in the future to be compatible with the same method in Stealer. + self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1) + } + + /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker. + /// + /// How many tasks exactly will be stolen is not specified. That said, this method will try to + /// steal around half of the tasks in the queue, but also not more than the given limit. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::{Injector, Steal, Worker}; + /// + /// let q = Injector::new(); + /// q.push(1); + /// q.push(2); + /// q.push(3); + /// q.push(4); + /// q.push(5); + /// q.push(6); + /// + /// let w = Worker::new_fifo(); + /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1)); + /// assert_eq!(w.pop(), Some(2)); + /// assert_eq!(w.pop(), None); + /// + /// q.push(7); + /// // Setting a large limit does not guarantee that all elements will be popped. In this case, + /// // half of the elements are currently popped, but the number of popped elements is considered + /// // an implementation detail that may be changed in the future. + /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3)); + /// assert_eq!(w.pop(), Some(4)); + /// assert_eq!(w.pop(), Some(5)); + /// assert_eq!(w.pop(), None); + /// ``` + pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { + assert!(limit > 0); + let mut head; + let mut block; + let mut offset; + + let backoff = Backoff::new(); + loop { + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + + // Calculate the offset of the index into the block. + offset = (head >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + } else { + break; + } + } + + let mut new_head = head; + let advance; + + if new_head & HAS_NEXT == 0 { + atomic::fence(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::Relaxed); + + // If the tail equals the head, that means the queue is empty. + if head >> SHIFT == tail >> SHIFT { + return Steal::Empty; + } + + // If head and tail are not in the same block, set `HAS_NEXT` in head. + if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { + new_head |= HAS_NEXT; + // We can steal all tasks till the end of the block. + advance = (BLOCK_CAP - offset).min(limit); + } else { + let len = (tail - head) >> SHIFT; + // Steal half of the available tasks. + advance = ((len + 1) / 2).min(limit); + } + } else { + // We can steal all tasks till the end of the block. + advance = (BLOCK_CAP - offset).min(limit); + } + + new_head += advance << SHIFT; + let new_offset = offset + advance; + + // Try moving the head index forward. + if self + .head + .index + .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) + .is_err() + { + return Steal::Retry; + } + + // Reserve capacity for the stolen batch. + let batch_size = new_offset - offset - 1; + dest.reserve(batch_size); + + // Get the destination buffer and back index. + let dest_buffer = dest.buffer.get(); + let dest_b = dest.inner.back.load(Ordering::Relaxed); + + unsafe { + // If we've reached the end of the block, move to the next one. + if new_offset == BLOCK_CAP { + let next = (*block).wait_next(); + let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); + if !(*next).next.load(Ordering::Relaxed).is_null() { + next_index |= HAS_NEXT; + } + + self.head.block.store(next, Ordering::Release); + self.head.index.store(next_index, Ordering::Release); + } + + // Read the task. + let slot = (*block).slots.get_unchecked(offset); + slot.wait_write(); + let task = slot.task.get().read(); + + match dest.flavor { + Flavor::Fifo => { + // Copy values from the injector into the destination queue. + for i in 0..batch_size { + // Read the task. + let slot = (*block).slots.get_unchecked(offset + i + 1); + slot.wait_write(); + let task = slot.task.get().read(); + + // Write it into the destination queue. + dest_buffer.write(dest_b.wrapping_add(i as isize), task); + } + } + + Flavor::Lifo => { + // Copy values from the injector into the destination queue. + for i in 0..batch_size { + // Read the task. + let slot = (*block).slots.get_unchecked(offset + i + 1); + slot.wait_write(); + let task = slot.task.get().read(); + + // Write it into the destination queue. + dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); + } + } + } + + atomic::fence(Ordering::Release); + + // Update the back index in the destination queue. + // + // This ordering could be `Relaxed`, but then thread sanitizer would falsely report + // data races because it doesn't understand fences. + dest.inner + .back + .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); + + // Destroy the block if we've reached the end, or if another thread wanted to destroy + // but couldn't because we were busy reading from the slot. + if new_offset == BLOCK_CAP { + Block::destroy(block, offset); + } else { + for i in offset..new_offset { + let slot = (*block).slots.get_unchecked(i); + + if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { + Block::destroy(block, offset); + break; + } + } + } + + Steal::Success(task.assume_init()) + } + } + + /// Returns `true` if the queue is empty. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Injector; + /// + /// let q = Injector::new(); + /// + /// assert!(q.is_empty()); + /// q.push(1); + /// assert!(!q.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + let head = self.head.index.load(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::SeqCst); + head >> SHIFT == tail >> SHIFT + } + + /// Returns the number of tasks in the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Injector; + /// + /// let q = Injector::new(); + /// + /// assert_eq!(q.len(), 0); + /// q.push(1); + /// assert_eq!(q.len(), 1); + /// q.push(1); + /// assert_eq!(q.len(), 2); + /// ``` + pub fn len(&self) -> usize { + loop { + // Load the tail index, then load the head index. + let mut tail = self.tail.index.load(Ordering::SeqCst); + let mut head = self.head.index.load(Ordering::SeqCst); + + // If the tail index didn't change, we've got consistent indices to work with. + if self.tail.index.load(Ordering::SeqCst) == tail { + // Erase the lower bits. + tail &= !((1 << SHIFT) - 1); + head &= !((1 << SHIFT) - 1); + + // Fix up indices if they fall onto block ends. + if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { + tail = tail.wrapping_add(1 << SHIFT); + } + if (head >> SHIFT) & (LAP - 1) == LAP - 1 { + head = head.wrapping_add(1 << SHIFT); + } + + // Rotate indices so that head falls into the first block. + let lap = (head >> SHIFT) / LAP; + tail = tail.wrapping_sub((lap * LAP) << SHIFT); + head = head.wrapping_sub((lap * LAP) << SHIFT); + + // Remove the lower bits. + tail >>= SHIFT; + head >>= SHIFT; + + // Return the difference minus the number of blocks between tail and head. + return tail - head - tail / LAP; + } + } + } +} + +impl<T> Drop for Injector<T> { + fn drop(&mut self) { + let mut head = *self.head.index.get_mut(); + let mut tail = *self.tail.index.get_mut(); + let mut block = *self.head.block.get_mut(); + + // Erase the lower bits. + head &= !((1 << SHIFT) - 1); + tail &= !((1 << SHIFT) - 1); + + unsafe { + // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. + while head != tail { + let offset = (head >> SHIFT) % LAP; + + if offset < BLOCK_CAP { + // Drop the task in the slot. + let slot = (*block).slots.get_unchecked(offset); + let p = &mut *slot.task.get(); + p.as_mut_ptr().drop_in_place(); + } else { + // Deallocate the block and move to the next one. + let next = *(*block).next.get_mut(); + drop(Box::from_raw(block)); + block = next; + } + + head = head.wrapping_add(1 << SHIFT); + } + + // Deallocate the last remaining block. + drop(Box::from_raw(block)); + } + } +} + +impl<T> fmt::Debug for Injector<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.pad("Worker { .. }") + } +} + +/// Possible outcomes of a steal operation. +/// +/// # Examples +/// +/// There are lots of ways to chain results of steal operations together: +/// +/// ``` +/// use crossbeam_deque::Steal::{self, Empty, Retry, Success}; +/// +/// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>(); +/// +/// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty); +/// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry); +/// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1)); +/// +/// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry); +/// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1)); +/// ``` +#[must_use] +#[derive(PartialEq, Eq, Copy, Clone)] +pub enum Steal<T> { + /// The queue was empty at the time of stealing. + Empty, + + /// At least one task was successfully stolen. + Success(T), + + /// The steal operation needs to be retried. + Retry, +} + +impl<T> Steal<T> { + /// Returns `true` if the queue was empty at the time of stealing. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Steal::{Empty, Retry, Success}; + /// + /// assert!(!Success(7).is_empty()); + /// assert!(!Retry::<i32>.is_empty()); + /// + /// assert!(Empty::<i32>.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + match self { + Steal::Empty => true, + _ => false, + } + } + + /// Returns `true` if at least one task was stolen. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Steal::{Empty, Retry, Success}; + /// + /// assert!(!Empty::<i32>.is_success()); + /// assert!(!Retry::<i32>.is_success()); + /// + /// assert!(Success(7).is_success()); + /// ``` + pub fn is_success(&self) -> bool { + match self { + Steal::Success(_) => true, + _ => false, + } + } + + /// Returns `true` if the steal operation needs to be retried. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Steal::{Empty, Retry, Success}; + /// + /// assert!(!Empty::<i32>.is_retry()); + /// assert!(!Success(7).is_retry()); + /// + /// assert!(Retry::<i32>.is_retry()); + /// ``` + pub fn is_retry(&self) -> bool { + match self { + Steal::Retry => true, + _ => false, + } + } + + /// Returns the result of the operation, if successful. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Steal::{Empty, Retry, Success}; + /// + /// assert_eq!(Empty::<i32>.success(), None); + /// assert_eq!(Retry::<i32>.success(), None); + /// + /// assert_eq!(Success(7).success(), Some(7)); + /// ``` + pub fn success(self) -> Option<T> { + match self { + Steal::Success(res) => Some(res), + _ => None, + } + } + + /// If no task was stolen, attempts another steal operation. + /// + /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then: + /// + /// * If the second steal resulted in `Success`, it is returned. + /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned. + /// * If both resulted in `None`, then `None` is returned. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_deque::Steal::{Empty, Retry, Success}; + /// + /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1)); + /// assert_eq!(Retry.or_else(|| Success(2)), Success(2)); + /// + /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>); + /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>); + /// + /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>); + /// ``` + pub fn or_else<F>(self, f: F) -> Steal<T> + where + F: FnOnce() -> Steal<T>, + { + match self { + Steal::Empty => f(), + Steal::Success(_) => self, + Steal::Retry => { + if let Steal::Success(res) = f() { + Steal::Success(res) + } else { + Steal::Retry + } + } + } + } +} + +impl<T> fmt::Debug for Steal<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self { + Steal::Empty => f.pad("Empty"), + Steal::Success(_) => f.pad("Success(..)"), + Steal::Retry => f.pad("Retry"), + } + } +} + +impl<T> FromIterator<Steal<T>> for Steal<T> { + /// Consumes items until a `Success` is found and returns it. + /// + /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`. + /// Otherwise, `Empty` is returned. + fn from_iter<I>(iter: I) -> Steal<T> + where + I: IntoIterator<Item = Steal<T>>, + { + let mut retry = false; + for s in iter { + match &s { + Steal::Empty => {} + Steal::Success(_) => return s, + Steal::Retry => retry = true, + } + } + + if retry { + Steal::Retry + } else { + Steal::Empty + } + } +} diff --git a/vendor/crossbeam-deque/src/lib.rs b/vendor/crossbeam-deque/src/lib.rs new file mode 100644 index 0000000..16bc728 --- /dev/null +++ b/vendor/crossbeam-deque/src/lib.rs @@ -0,0 +1,110 @@ +//! Concurrent work-stealing deques. +//! +//! These data structures are most commonly used in work-stealing schedulers. The typical setup +//! involves a number of threads, each having its own FIFO or LIFO queue (*worker*). There is also +//! one global FIFO queue (*injector*) and a list of references to *worker* queues that are able to +//! steal tasks (*stealers*). +//! +//! We spawn a new task onto the scheduler by pushing it into the *injector* queue. Each worker +//! thread waits in a loop until it finds the next task to run and then runs it. To find a task, it +//! first looks into its local *worker* queue, and then into the *injector* and *stealers*. +//! +//! # Queues +//! +//! [`Injector`] is a FIFO queue, where tasks are pushed and stolen from opposite ends. It is +//! shared among threads and is usually the entry point for new tasks. +//! +//! [`Worker`] has two constructors: +//! +//! * [`new_fifo()`] - Creates a FIFO queue, in which tasks are pushed and popped from opposite +//! ends. +//! * [`new_lifo()`] - Creates a LIFO queue, in which tasks are pushed and popped from the same +//! end. +//! +//! Each [`Worker`] is owned by a single thread and supports only push and pop operations. +//! +//! Method [`stealer()`] creates a [`Stealer`] that may be shared among threads and can only steal +//! tasks from its [`Worker`]. Tasks are stolen from the end opposite to where they get pushed. +//! +//! # Stealing +//! +//! Steal operations come in three flavors: +//! +//! 1. [`steal()`] - Steals one task. +//! 2. [`steal_batch()`] - Steals a batch of tasks and moves them into another worker. +//! 3. [`steal_batch_and_pop()`] - Steals a batch of tasks, moves them into another queue, and pops +//! one task from that worker. +//! +//! In contrast to push and pop operations, stealing can spuriously fail with [`Steal::Retry`], in +//! which case the steal operation needs to be retried. +//! +//! # Examples +//! +//! Suppose a thread in a work-stealing scheduler is idle and looking for the next task to run. To +//! find an available task, it might do the following: +//! +//! 1. Try popping one task from the local worker queue. +//! 2. Try stealing a batch of tasks from the global injector queue. +//! 3. Try stealing one task from another thread using the stealer list. +//! +//! An implementation of this work-stealing strategy: +//! +//! ``` +//! use crossbeam_deque::{Injector, Stealer, Worker}; +//! use std::iter; +//! +//! fn find_task<T>( +//! local: &Worker<T>, +//! global: &Injector<T>, +//! stealers: &[Stealer<T>], +//! ) -> Option<T> { +//! // Pop a task from the local queue, if not empty. +//! local.pop().or_else(|| { +//! // Otherwise, we need to look for a task elsewhere. +//! iter::repeat_with(|| { +//! // Try stealing a batch of tasks from the global queue. +//! global.steal_batch_and_pop(local) +//! // Or try stealing a task from one of the other threads. +//! .or_else(|| stealers.iter().map(|s| s.steal()).collect()) +//! }) +//! // Loop while no task was stolen and any steal operation needs to be retried. +//! .find(|s| !s.is_retry()) +//! // Extract the stolen task, if there is one. +//! .and_then(|s| s.success()) +//! }) +//! } +//! ``` +//! +//! [`new_fifo()`]: Worker::new_fifo +//! [`new_lifo()`]: Worker::new_lifo +//! [`stealer()`]: Worker::stealer +//! [`steal()`]: Stealer::steal +//! [`steal_batch()`]: Stealer::steal_batch +//! [`steal_batch_and_pop()`]: Stealer::steal_batch_and_pop + +#![doc(test( + no_crate_inject, + attr( + deny(warnings, rust_2018_idioms), + allow(dead_code, unused_assignments, unused_variables) + ) +))] +#![warn( + missing_docs, + missing_debug_implementations, + rust_2018_idioms, + unreachable_pub +)] +#![cfg_attr(not(feature = "std"), no_std)] + +use cfg_if::cfg_if; + +cfg_if! { + if #[cfg(feature = "std")] { + use crossbeam_epoch as epoch; + use crossbeam_utils as utils; + + mod deque; + pub use crate::deque::{Injector, Steal, Stealer, Worker}; + } +} diff --git a/vendor/crossbeam-deque/tests/fifo.rs b/vendor/crossbeam-deque/tests/fifo.rs new file mode 100644 index 0000000..f98737b --- /dev/null +++ b/vendor/crossbeam-deque/tests/fifo.rs @@ -0,0 +1,357 @@ +use std::sync::atomic::Ordering::SeqCst; +use std::sync::atomic::{AtomicBool, AtomicUsize}; +use std::sync::{Arc, Mutex}; + +use crossbeam_deque::Steal::{Empty, Success}; +use crossbeam_deque::Worker; +use crossbeam_utils::thread::scope; +use rand::Rng; + +#[test] +fn smoke() { + let w = Worker::new_fifo(); + let s = w.stealer(); + assert_eq!(w.pop(), None); + assert_eq!(s.steal(), Empty); + + w.push(1); + assert_eq!(w.pop(), Some(1)); + assert_eq!(w.pop(), None); + assert_eq!(s.steal(), Empty); + + w.push(2); + assert_eq!(s.steal(), Success(2)); + assert_eq!(s.steal(), Empty); + assert_eq!(w.pop(), None); + + w.push(3); + w.push(4); + w.push(5); + assert_eq!(s.steal(), Success(3)); + assert_eq!(s.steal(), Success(4)); + assert_eq!(s.steal(), Success(5)); + assert_eq!(s.steal(), Empty); + + w.push(6); + w.push(7); + w.push(8); + w.push(9); + assert_eq!(w.pop(), Some(6)); + assert_eq!(s.steal(), Success(7)); + assert_eq!(w.pop(), Some(8)); + assert_eq!(w.pop(), Some(9)); + assert_eq!(w.pop(), None); +} + +#[test] +fn is_empty() { + let w = Worker::new_fifo(); + let s = w.stealer(); + + assert!(w.is_empty()); + w.push(1); + assert!(!w.is_empty()); + w.push(2); + assert!(!w.is_empty()); + let _ = w.pop(); + assert!(!w.is_empty()); + let _ = w.pop(); + assert!(w.is_empty()); + + assert!(s.is_empty()); + w.push(1); + assert!(!s.is_empty()); + w.push(2); + assert!(!s.is_empty()); + let _ = s.steal(); + assert!(!s.is_empty()); + let _ = s.steal(); + assert!(s.is_empty()); +} + +#[test] +fn spsc() { + #[cfg(miri)] + const STEPS: usize = 500; + #[cfg(not(miri))] + const STEPS: usize = 50_000; + + let w = Worker::new_fifo(); + let s = w.stealer(); + + scope(|scope| { + scope.spawn(|_| { + for i in 0..STEPS { + loop { + if let Success(v) = s.steal() { + assert_eq!(i, v); + break; + } + } + } + + assert_eq!(s.steal(), Empty); + }); + + for i in 0..STEPS { + w.push(i); + } + }) + .unwrap(); +} + +#[test] +fn stampede() { + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + + let w = Worker::new_fifo(); + + for i in 0..COUNT { + w.push(Box::new(i + 1)); + } + let remaining = Arc::new(AtomicUsize::new(COUNT)); + + scope(|scope| { + for _ in 0..THREADS { + let s = w.stealer(); + let remaining = remaining.clone(); + + scope.spawn(move |_| { + let mut last = 0; + while remaining.load(SeqCst) > 0 { + if let Success(x) = s.steal() { + assert!(last < *x); + last = *x; + remaining.fetch_sub(1, SeqCst); + } + } + }); + } + + let mut last = 0; + while remaining.load(SeqCst) > 0 { + if let Some(x) = w.pop() { + assert!(last < *x); + last = *x; + remaining.fetch_sub(1, SeqCst); + } + } + }) + .unwrap(); +} + +#[test] +fn stress() { + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + + let w = Worker::new_fifo(); + let done = Arc::new(AtomicBool::new(false)); + let hits = Arc::new(AtomicUsize::new(0)); + + scope(|scope| { + for _ in 0..THREADS { + let s = w.stealer(); + let done = done.clone(); + let hits = hits.clone(); + + scope.spawn(move |_| { + let w2 = Worker::new_fifo(); + + while !done.load(SeqCst) { + if let Success(_) = s.steal() { + hits.fetch_add(1, SeqCst); + } + + let _ = s.steal_batch(&w2); + + if let Success(_) = s.steal_batch_and_pop(&w2) { + hits.fetch_add(1, SeqCst); + } + + while w2.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + }); + } + + let mut rng = rand::thread_rng(); + let mut expected = 0; + while expected < COUNT { + if rng.gen_range(0..3) == 0 { + while w.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } else { + w.push(expected); + expected += 1; + } + } + + while hits.load(SeqCst) < COUNT { + while w.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + done.store(true, SeqCst); + }) + .unwrap(); +} + +#[cfg_attr(miri, ignore)] // Miri is too slow +#[test] +fn no_starvation() { + const THREADS: usize = 8; + const COUNT: usize = 50_000; + + let w = Worker::new_fifo(); + let done = Arc::new(AtomicBool::new(false)); + let mut all_hits = Vec::new(); + + scope(|scope| { + for _ in 0..THREADS { + let s = w.stealer(); + let done = done.clone(); + let hits = Arc::new(AtomicUsize::new(0)); + all_hits.push(hits.clone()); + + scope.spawn(move |_| { + let w2 = Worker::new_fifo(); + + while !done.load(SeqCst) { + if let Success(_) = s.steal() { + hits.fetch_add(1, SeqCst); + } + + let _ = s.steal_batch(&w2); + + if let Success(_) = s.steal_batch_and_pop(&w2) { + hits.fetch_add(1, SeqCst); + } + + while w2.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + }); + } + + let mut rng = rand::thread_rng(); + let mut my_hits = 0; + loop { + for i in 0..rng.gen_range(0..COUNT) { + if rng.gen_range(0..3) == 0 && my_hits == 0 { + while w.pop().is_some() { + my_hits += 1; + } + } else { + w.push(i); + } + } + + if my_hits > 0 && all_hits.iter().all(|h| h.load(SeqCst) > 0) { + break; + } + } + done.store(true, SeqCst); + }) + .unwrap(); +} + +#[test] +fn destructors() { + #[cfg(miri)] + const THREADS: usize = 2; + #[cfg(not(miri))] + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + #[cfg(miri)] + const STEPS: usize = 100; + #[cfg(not(miri))] + const STEPS: usize = 1000; + + struct Elem(usize, Arc<Mutex<Vec<usize>>>); + + impl Drop for Elem { + fn drop(&mut self) { + self.1.lock().unwrap().push(self.0); + } + } + + let w = Worker::new_fifo(); + let dropped = Arc::new(Mutex::new(Vec::new())); + let remaining = Arc::new(AtomicUsize::new(COUNT)); + + for i in 0..COUNT { + w.push(Elem(i, dropped.clone())); + } + + scope(|scope| { + for _ in 0..THREADS { + let remaining = remaining.clone(); + let s = w.stealer(); + + scope.spawn(move |_| { + let w2 = Worker::new_fifo(); + let mut cnt = 0; + + while cnt < STEPS { + if let Success(_) = s.steal() { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + + let _ = s.steal_batch(&w2); + + if let Success(_) = s.steal_batch_and_pop(&w2) { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + + while w2.pop().is_some() { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + } + }); + } + + for _ in 0..STEPS { + if w.pop().is_some() { + remaining.fetch_sub(1, SeqCst); + } + } + }) + .unwrap(); + + let rem = remaining.load(SeqCst); + assert!(rem > 0); + + { + let mut v = dropped.lock().unwrap(); + assert_eq!(v.len(), COUNT - rem); + v.clear(); + } + + drop(w); + + { + let mut v = dropped.lock().unwrap(); + assert_eq!(v.len(), rem); + v.sort_unstable(); + for pair in v.windows(2) { + assert_eq!(pair[0] + 1, pair[1]); + } + } +} diff --git a/vendor/crossbeam-deque/tests/injector.rs b/vendor/crossbeam-deque/tests/injector.rs new file mode 100644 index 0000000..f706a8d --- /dev/null +++ b/vendor/crossbeam-deque/tests/injector.rs @@ -0,0 +1,375 @@ +use std::sync::atomic::Ordering::SeqCst; +use std::sync::atomic::{AtomicBool, AtomicUsize}; +use std::sync::{Arc, Mutex}; + +use crossbeam_deque::Steal::{Empty, Success}; +use crossbeam_deque::{Injector, Worker}; +use crossbeam_utils::thread::scope; +use rand::Rng; + +#[test] +fn smoke() { + let q = Injector::new(); + assert_eq!(q.steal(), Empty); + + q.push(1); + q.push(2); + assert_eq!(q.steal(), Success(1)); + assert_eq!(q.steal(), Success(2)); + assert_eq!(q.steal(), Empty); + + q.push(3); + assert_eq!(q.steal(), Success(3)); + assert_eq!(q.steal(), Empty); +} + +#[test] +fn is_empty() { + let q = Injector::new(); + assert!(q.is_empty()); + + q.push(1); + assert!(!q.is_empty()); + q.push(2); + assert!(!q.is_empty()); + + let _ = q.steal(); + assert!(!q.is_empty()); + let _ = q.steal(); + assert!(q.is_empty()); + + q.push(3); + assert!(!q.is_empty()); + let _ = q.steal(); + assert!(q.is_empty()); +} + +#[test] +fn spsc() { + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 100_000; + + let q = Injector::new(); + + scope(|scope| { + scope.spawn(|_| { + for i in 0..COUNT { + loop { + if let Success(v) = q.steal() { + assert_eq!(i, v); + break; + } + #[cfg(miri)] + std::hint::spin_loop(); + } + } + + assert_eq!(q.steal(), Empty); + }); + + for i in 0..COUNT { + q.push(i); + } + }) + .unwrap(); +} + +#[test] +fn mpmc() { + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 25_000; + const THREADS: usize = 4; + + let q = Injector::new(); + let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>(); + + scope(|scope| { + for _ in 0..THREADS { + scope.spawn(|_| { + for i in 0..COUNT { + q.push(i); + } + }); + } + + for _ in 0..THREADS { + scope.spawn(|_| { + for _ in 0..COUNT { + loop { + if let Success(n) = q.steal() { + v[n].fetch_add(1, SeqCst); + break; + } + #[cfg(miri)] + std::hint::spin_loop(); + } + } + }); + } + }) + .unwrap(); + + for c in v { + assert_eq!(c.load(SeqCst), THREADS); + } +} + +#[test] +fn stampede() { + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + + let q = Injector::new(); + + for i in 0..COUNT { + q.push(Box::new(i + 1)); + } + let remaining = Arc::new(AtomicUsize::new(COUNT)); + + scope(|scope| { + for _ in 0..THREADS { + let remaining = remaining.clone(); + let q = &q; + + scope.spawn(move |_| { + let mut last = 0; + while remaining.load(SeqCst) > 0 { + if let Success(x) = q.steal() { + assert!(last < *x); + last = *x; + remaining.fetch_sub(1, SeqCst); + } + } + }); + } + + let mut last = 0; + while remaining.load(SeqCst) > 0 { + if let Success(x) = q.steal() { + assert!(last < *x); + last = *x; + remaining.fetch_sub(1, SeqCst); + } + } + }) + .unwrap(); +} + +#[test] +fn stress() { + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + + let q = Injector::new(); + let done = Arc::new(AtomicBool::new(false)); + let hits = Arc::new(AtomicUsize::new(0)); + + scope(|scope| { + for _ in 0..THREADS { + let done = done.clone(); + let hits = hits.clone(); + let q = &q; + + scope.spawn(move |_| { + let w2 = Worker::new_fifo(); + + while !done.load(SeqCst) { + if let Success(_) = q.steal() { + hits.fetch_add(1, SeqCst); + } + + let _ = q.steal_batch(&w2); + + if let Success(_) = q.steal_batch_and_pop(&w2) { + hits.fetch_add(1, SeqCst); + } + + while w2.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + }); + } + + let mut rng = rand::thread_rng(); + let mut expected = 0; + while expected < COUNT { + if rng.gen_range(0..3) == 0 { + while let Success(_) = q.steal() { + hits.fetch_add(1, SeqCst); + } + } else { + q.push(expected); + expected += 1; + } + } + + while hits.load(SeqCst) < COUNT { + while let Success(_) = q.steal() { + hits.fetch_add(1, SeqCst); + } + } + done.store(true, SeqCst); + }) + .unwrap(); +} + +#[cfg_attr(miri, ignore)] // Miri is too slow +#[test] +fn no_starvation() { + const THREADS: usize = 8; + const COUNT: usize = 50_000; + + let q = Injector::new(); + let done = Arc::new(AtomicBool::new(false)); + let mut all_hits = Vec::new(); + + scope(|scope| { + for _ in 0..THREADS { + let done = done.clone(); + let hits = Arc::new(AtomicUsize::new(0)); + all_hits.push(hits.clone()); + let q = &q; + + scope.spawn(move |_| { + let w2 = Worker::new_fifo(); + + while !done.load(SeqCst) { + if let Success(_) = q.steal() { + hits.fetch_add(1, SeqCst); + } + + let _ = q.steal_batch(&w2); + + if let Success(_) = q.steal_batch_and_pop(&w2) { + hits.fetch_add(1, SeqCst); + } + + while w2.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + }); + } + + let mut rng = rand::thread_rng(); + let mut my_hits = 0; + loop { + for i in 0..rng.gen_range(0..COUNT) { + if rng.gen_range(0..3) == 0 && my_hits == 0 { + while let Success(_) = q.steal() { + my_hits += 1; + } + } else { + q.push(i); + } + } + + if my_hits > 0 && all_hits.iter().all(|h| h.load(SeqCst) > 0) { + break; + } + } + done.store(true, SeqCst); + }) + .unwrap(); +} + +#[test] +fn destructors() { + #[cfg(miri)] + const THREADS: usize = 2; + #[cfg(not(miri))] + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + #[cfg(miri)] + const STEPS: usize = 100; + #[cfg(not(miri))] + const STEPS: usize = 1000; + + struct Elem(usize, Arc<Mutex<Vec<usize>>>); + + impl Drop for Elem { + fn drop(&mut self) { + self.1.lock().unwrap().push(self.0); + } + } + + let q = Injector::new(); + let dropped = Arc::new(Mutex::new(Vec::new())); + let remaining = Arc::new(AtomicUsize::new(COUNT)); + + for i in 0..COUNT { + q.push(Elem(i, dropped.clone())); + } + + scope(|scope| { + for _ in 0..THREADS { + let remaining = remaining.clone(); + let q = &q; + + scope.spawn(move |_| { + let w2 = Worker::new_fifo(); + let mut cnt = 0; + + while cnt < STEPS { + if let Success(_) = q.steal() { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + + let _ = q.steal_batch(&w2); + + if let Success(_) = q.steal_batch_and_pop(&w2) { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + + while w2.pop().is_some() { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + } + }); + } + + for _ in 0..STEPS { + if let Success(_) = q.steal() { + remaining.fetch_sub(1, SeqCst); + } + } + }) + .unwrap(); + + let rem = remaining.load(SeqCst); + assert!(rem > 0); + + { + let mut v = dropped.lock().unwrap(); + assert_eq!(v.len(), COUNT - rem); + v.clear(); + } + + drop(q); + + { + let mut v = dropped.lock().unwrap(); + assert_eq!(v.len(), rem); + v.sort_unstable(); + for pair in v.windows(2) { + assert_eq!(pair[0] + 1, pair[1]); + } + } +} diff --git a/vendor/crossbeam-deque/tests/lifo.rs b/vendor/crossbeam-deque/tests/lifo.rs new file mode 100644 index 0000000..c1a65cd --- /dev/null +++ b/vendor/crossbeam-deque/tests/lifo.rs @@ -0,0 +1,359 @@ +use std::sync::atomic::Ordering::SeqCst; +use std::sync::atomic::{AtomicBool, AtomicUsize}; +use std::sync::{Arc, Mutex}; + +use crossbeam_deque::Steal::{Empty, Success}; +use crossbeam_deque::Worker; +use crossbeam_utils::thread::scope; +use rand::Rng; + +#[test] +fn smoke() { + let w = Worker::new_lifo(); + let s = w.stealer(); + assert_eq!(w.pop(), None); + assert_eq!(s.steal(), Empty); + + w.push(1); + assert_eq!(w.pop(), Some(1)); + assert_eq!(w.pop(), None); + assert_eq!(s.steal(), Empty); + + w.push(2); + assert_eq!(s.steal(), Success(2)); + assert_eq!(s.steal(), Empty); + assert_eq!(w.pop(), None); + + w.push(3); + w.push(4); + w.push(5); + assert_eq!(s.steal(), Success(3)); + assert_eq!(s.steal(), Success(4)); + assert_eq!(s.steal(), Success(5)); + assert_eq!(s.steal(), Empty); + + w.push(6); + w.push(7); + w.push(8); + w.push(9); + assert_eq!(w.pop(), Some(9)); + assert_eq!(s.steal(), Success(6)); + assert_eq!(w.pop(), Some(8)); + assert_eq!(w.pop(), Some(7)); + assert_eq!(w.pop(), None); +} + +#[test] +fn is_empty() { + let w = Worker::new_lifo(); + let s = w.stealer(); + + assert!(w.is_empty()); + w.push(1); + assert!(!w.is_empty()); + w.push(2); + assert!(!w.is_empty()); + let _ = w.pop(); + assert!(!w.is_empty()); + let _ = w.pop(); + assert!(w.is_empty()); + + assert!(s.is_empty()); + w.push(1); + assert!(!s.is_empty()); + w.push(2); + assert!(!s.is_empty()); + let _ = s.steal(); + assert!(!s.is_empty()); + let _ = s.steal(); + assert!(s.is_empty()); +} + +#[test] +fn spsc() { + #[cfg(miri)] + const STEPS: usize = 500; + #[cfg(not(miri))] + const STEPS: usize = 50_000; + + let w = Worker::new_lifo(); + let s = w.stealer(); + + scope(|scope| { + scope.spawn(|_| { + for i in 0..STEPS { + loop { + if let Success(v) = s.steal() { + assert_eq!(i, v); + break; + } + #[cfg(miri)] + std::hint::spin_loop(); + } + } + + assert_eq!(s.steal(), Empty); + }); + + for i in 0..STEPS { + w.push(i); + } + }) + .unwrap(); +} + +#[test] +fn stampede() { + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + + let w = Worker::new_lifo(); + + for i in 0..COUNT { + w.push(Box::new(i + 1)); + } + let remaining = Arc::new(AtomicUsize::new(COUNT)); + + scope(|scope| { + for _ in 0..THREADS { + let s = w.stealer(); + let remaining = remaining.clone(); + + scope.spawn(move |_| { + let mut last = 0; + while remaining.load(SeqCst) > 0 { + if let Success(x) = s.steal() { + assert!(last < *x); + last = *x; + remaining.fetch_sub(1, SeqCst); + } + } + }); + } + + let mut last = COUNT + 1; + while remaining.load(SeqCst) > 0 { + if let Some(x) = w.pop() { + assert!(last > *x); + last = *x; + remaining.fetch_sub(1, SeqCst); + } + } + }) + .unwrap(); +} + +#[test] +fn stress() { + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + + let w = Worker::new_lifo(); + let done = Arc::new(AtomicBool::new(false)); + let hits = Arc::new(AtomicUsize::new(0)); + + scope(|scope| { + for _ in 0..THREADS { + let s = w.stealer(); + let done = done.clone(); + let hits = hits.clone(); + + scope.spawn(move |_| { + let w2 = Worker::new_lifo(); + + while !done.load(SeqCst) { + if let Success(_) = s.steal() { + hits.fetch_add(1, SeqCst); + } + + let _ = s.steal_batch(&w2); + + if let Success(_) = s.steal_batch_and_pop(&w2) { + hits.fetch_add(1, SeqCst); + } + + while w2.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + }); + } + + let mut rng = rand::thread_rng(); + let mut expected = 0; + while expected < COUNT { + if rng.gen_range(0..3) == 0 { + while w.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } else { + w.push(expected); + expected += 1; + } + } + + while hits.load(SeqCst) < COUNT { + while w.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + done.store(true, SeqCst); + }) + .unwrap(); +} + +#[cfg_attr(miri, ignore)] // Miri is too slow +#[test] +fn no_starvation() { + const THREADS: usize = 8; + const COUNT: usize = 50_000; + + let w = Worker::new_lifo(); + let done = Arc::new(AtomicBool::new(false)); + let mut all_hits = Vec::new(); + + scope(|scope| { + for _ in 0..THREADS { + let s = w.stealer(); + let done = done.clone(); + let hits = Arc::new(AtomicUsize::new(0)); + all_hits.push(hits.clone()); + + scope.spawn(move |_| { + let w2 = Worker::new_lifo(); + + while !done.load(SeqCst) { + if let Success(_) = s.steal() { + hits.fetch_add(1, SeqCst); + } + + let _ = s.steal_batch(&w2); + + if let Success(_) = s.steal_batch_and_pop(&w2) { + hits.fetch_add(1, SeqCst); + } + + while w2.pop().is_some() { + hits.fetch_add(1, SeqCst); + } + } + }); + } + + let mut rng = rand::thread_rng(); + let mut my_hits = 0; + loop { + for i in 0..rng.gen_range(0..COUNT) { + if rng.gen_range(0..3) == 0 && my_hits == 0 { + while w.pop().is_some() { + my_hits += 1; + } + } else { + w.push(i); + } + } + + if my_hits > 0 && all_hits.iter().all(|h| h.load(SeqCst) > 0) { + break; + } + } + done.store(true, SeqCst); + }) + .unwrap(); +} + +#[test] +fn destructors() { + #[cfg(miri)] + const THREADS: usize = 2; + #[cfg(not(miri))] + const THREADS: usize = 8; + #[cfg(miri)] + const COUNT: usize = 500; + #[cfg(not(miri))] + const COUNT: usize = 50_000; + #[cfg(miri)] + const STEPS: usize = 100; + #[cfg(not(miri))] + const STEPS: usize = 1000; + + struct Elem(usize, Arc<Mutex<Vec<usize>>>); + + impl Drop for Elem { + fn drop(&mut self) { + self.1.lock().unwrap().push(self.0); + } + } + + let w = Worker::new_lifo(); + let dropped = Arc::new(Mutex::new(Vec::new())); + let remaining = Arc::new(AtomicUsize::new(COUNT)); + + for i in 0..COUNT { + w.push(Elem(i, dropped.clone())); + } + + scope(|scope| { + for _ in 0..THREADS { + let remaining = remaining.clone(); + let s = w.stealer(); + + scope.spawn(move |_| { + let w2 = Worker::new_lifo(); + let mut cnt = 0; + + while cnt < STEPS { + if let Success(_) = s.steal() { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + + let _ = s.steal_batch(&w2); + + if let Success(_) = s.steal_batch_and_pop(&w2) { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + + while w2.pop().is_some() { + cnt += 1; + remaining.fetch_sub(1, SeqCst); + } + } + }); + } + + for _ in 0..STEPS { + if w.pop().is_some() { + remaining.fetch_sub(1, SeqCst); + } + } + }) + .unwrap(); + + let rem = remaining.load(SeqCst); + assert!(rem > 0); + + { + let mut v = dropped.lock().unwrap(); + assert_eq!(v.len(), COUNT - rem); + v.clear(); + } + + drop(w); + + { + let mut v = dropped.lock().unwrap(); + assert_eq!(v.len(), rem); + v.sort_unstable(); + for pair in v.windows(2) { + assert_eq!(pair[0] + 1, pair[1]); + } + } +} diff --git a/vendor/crossbeam-deque/tests/steal.rs b/vendor/crossbeam-deque/tests/steal.rs new file mode 100644 index 0000000..af24998 --- /dev/null +++ b/vendor/crossbeam-deque/tests/steal.rs @@ -0,0 +1,212 @@ +use crossbeam_deque::Steal::Success; +use crossbeam_deque::{Injector, Worker}; + +#[test] +fn steal_fifo() { + let w = Worker::new_fifo(); + for i in 1..=3 { + w.push(i); + } + + let s = w.stealer(); + assert_eq!(s.steal(), Success(1)); + assert_eq!(s.steal(), Success(2)); + assert_eq!(s.steal(), Success(3)); +} + +#[test] +fn steal_lifo() { + let w = Worker::new_lifo(); + for i in 1..=3 { + w.push(i); + } + + let s = w.stealer(); + assert_eq!(s.steal(), Success(1)); + assert_eq!(s.steal(), Success(2)); + assert_eq!(s.steal(), Success(3)); +} + +#[test] +fn steal_injector() { + let q = Injector::new(); + for i in 1..=3 { + q.push(i); + } + + assert_eq!(q.steal(), Success(1)); + assert_eq!(q.steal(), Success(2)); + assert_eq!(q.steal(), Success(3)); +} + +#[test] +fn steal_batch_fifo_fifo() { + let w = Worker::new_fifo(); + for i in 1..=4 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_fifo(); + + assert_eq!(s.steal_batch(&w2), Success(())); + assert_eq!(w2.pop(), Some(1)); + assert_eq!(w2.pop(), Some(2)); +} + +#[test] +fn steal_batch_lifo_lifo() { + let w = Worker::new_lifo(); + for i in 1..=4 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_lifo(); + + assert_eq!(s.steal_batch(&w2), Success(())); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(1)); +} + +#[test] +fn steal_batch_fifo_lifo() { + let w = Worker::new_fifo(); + for i in 1..=4 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_lifo(); + + assert_eq!(s.steal_batch(&w2), Success(())); + assert_eq!(w2.pop(), Some(1)); + assert_eq!(w2.pop(), Some(2)); +} + +#[test] +fn steal_batch_lifo_fifo() { + let w = Worker::new_lifo(); + for i in 1..=4 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_fifo(); + + assert_eq!(s.steal_batch(&w2), Success(())); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(1)); +} + +#[test] +fn steal_batch_injector_fifo() { + let q = Injector::new(); + for i in 1..=4 { + q.push(i); + } + + let w2 = Worker::new_fifo(); + assert_eq!(q.steal_batch(&w2), Success(())); + assert_eq!(w2.pop(), Some(1)); + assert_eq!(w2.pop(), Some(2)); +} + +#[test] +fn steal_batch_injector_lifo() { + let q = Injector::new(); + for i in 1..=4 { + q.push(i); + } + + let w2 = Worker::new_lifo(); + assert_eq!(q.steal_batch(&w2), Success(())); + assert_eq!(w2.pop(), Some(1)); + assert_eq!(w2.pop(), Some(2)); +} + +#[test] +fn steal_batch_and_pop_fifo_fifo() { + let w = Worker::new_fifo(); + for i in 1..=6 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_fifo(); + + assert_eq!(s.steal_batch_and_pop(&w2), Success(1)); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(3)); +} + +#[test] +fn steal_batch_and_pop_lifo_lifo() { + let w = Worker::new_lifo(); + for i in 1..=6 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_lifo(); + + assert_eq!(s.steal_batch_and_pop(&w2), Success(3)); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(1)); +} + +#[test] +fn steal_batch_and_pop_fifo_lifo() { + let w = Worker::new_fifo(); + for i in 1..=6 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_lifo(); + + assert_eq!(s.steal_batch_and_pop(&w2), Success(1)); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(3)); +} + +#[test] +fn steal_batch_and_pop_lifo_fifo() { + let w = Worker::new_lifo(); + for i in 1..=6 { + w.push(i); + } + + let s = w.stealer(); + let w2 = Worker::new_fifo(); + + assert_eq!(s.steal_batch_and_pop(&w2), Success(3)); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(1)); +} + +#[test] +fn steal_batch_and_pop_injector_fifo() { + let q = Injector::new(); + for i in 1..=6 { + q.push(i); + } + + let w2 = Worker::new_fifo(); + assert_eq!(q.steal_batch_and_pop(&w2), Success(1)); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(3)); +} + +#[test] +fn steal_batch_and_pop_injector_lifo() { + let q = Injector::new(); + for i in 1..=6 { + q.push(i); + } + + let w2 = Worker::new_lifo(); + assert_eq!(q.steal_batch_and_pop(&w2), Success(1)); + assert_eq!(w2.pop(), Some(2)); + assert_eq!(w2.pop(), Some(3)); +} |