aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/compression/piz/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/compression/piz/mod.rs')
-rw-r--r--vendor/exr/src/compression/piz/mod.rs437
1 files changed, 437 insertions, 0 deletions
diff --git a/vendor/exr/src/compression/piz/mod.rs b/vendor/exr/src/compression/piz/mod.rs
new file mode 100644
index 0000000..1d77663
--- /dev/null
+++ b/vendor/exr/src/compression/piz/mod.rs
@@ -0,0 +1,437 @@
+
+
+//! The PIZ compression method is a wavelet compression,
+//! based on the PIZ image format, customized for OpenEXR.
+// inspired by https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPizCompressor.cpp
+
+mod huffman;
+mod wavelet;
+
+use crate::prelude::*;
+use crate::io::Data;
+use crate::meta::attribute::*;
+use crate::compression::{ByteVec, Bytes, mod_p};
+use crate::error::{usize_to_i32, usize_to_u16};
+use std::convert::TryFrom;
+
+
+const U16_RANGE: usize = (1_i32 << 16_i32) as usize;
+const BITMAP_SIZE: usize = (U16_RANGE as i32 >> 3_i32) as usize;
+
+#[derive(Debug)]
+struct ChannelData {
+ tmp_start_index: usize,
+ tmp_end_index: usize,
+
+ resolution: Vec2<usize>,
+ y_sampling: usize,
+ samples_per_pixel: usize,
+}
+
+
+pub fn decompress(
+ channels: &ChannelList,
+ compressed: ByteVec,
+ rectangle: IntegerBounds,
+ expected_byte_size: usize, // TODO remove expected byte size as it can be computed with `rectangle.size.area() * channels.bytes_per_pixel`
+ pedantic: bool
+) -> Result<ByteVec>
+{
+ let expected_u16_count = expected_byte_size / 2;
+ debug_assert_eq!(expected_byte_size, rectangle.size.area() * channels.bytes_per_pixel);
+ debug_assert!(!channels.list.is_empty());
+
+ if compressed.is_empty() {
+ return Ok(Vec::new());
+ }
+
+ debug_assert_ne!(expected_u16_count, 0);
+
+ let mut bitmap = vec![0_u8; BITMAP_SIZE]; // FIXME use bit_vec!
+
+ let mut remaining_input = compressed.as_slice();
+ let min_non_zero = u16::read(&mut remaining_input)? as usize;
+ let max_non_zero = u16::read(&mut remaining_input)? as usize;
+
+ if max_non_zero >= BITMAP_SIZE || min_non_zero >= BITMAP_SIZE {
+ return Err(Error::invalid("compression data"));
+ }
+
+ if min_non_zero <= max_non_zero {
+ u8::read_slice(&mut remaining_input, &mut bitmap[min_non_zero ..= max_non_zero])?;
+ }
+
+ let (lookup_table, max_value) = reverse_lookup_table_from_bitmap(&bitmap);
+
+ {
+ let length = i32::read(&mut remaining_input)?;
+ if pedantic && length as i64 != remaining_input.len() as i64 {
+ // TODO length might be smaller than remaining??
+ return Err(Error::invalid("compression data"));
+ }
+ }
+
+ let mut tmp_u16_buffer = huffman::decompress(remaining_input, expected_u16_count)?;
+
+ let mut channel_data: SmallVec<[ChannelData; 6]> = {
+ let mut tmp_read_index = 0;
+
+ let channel_data = channels.list.iter().map(|channel| {
+ let channel_data = ChannelData {
+ tmp_start_index: tmp_read_index,
+ tmp_end_index: tmp_read_index,
+ y_sampling: channel.sampling.y(),
+ resolution: channel.subsampled_resolution(rectangle.size),
+ samples_per_pixel: channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample()
+ };
+
+ tmp_read_index += channel_data.resolution.area() * channel_data.samples_per_pixel;
+ channel_data
+ }).collect();
+
+ debug_assert_eq!(tmp_read_index, expected_u16_count);
+ channel_data
+ };
+
+ for channel in &channel_data {
+ let u16_count = channel.resolution.area() * channel.samples_per_pixel;
+ let u16s = &mut tmp_u16_buffer[channel.tmp_start_index .. channel.tmp_start_index + u16_count];
+
+ for offset in 0..channel.samples_per_pixel { // if channel is 32 bit, compress interleaved as two 16 bit values
+ wavelet::decode(
+ &mut u16s[offset..],
+ channel.resolution,
+ Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel),
+ max_value
+ )?;
+ }
+ }
+
+ // Expand the pixel data to their original range
+ apply_lookup_table(&mut tmp_u16_buffer, &lookup_table);
+
+ // let out_buffer_size = (max_scan_line_size * scan_line_count) + 65536 + 8192; // TODO not use expected byte size?
+ let mut out = Vec::with_capacity(expected_byte_size);
+
+ for y in rectangle.position.y() .. rectangle.end().y() {
+ for channel in &mut channel_data {
+ if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
+ continue;
+ }
+
+ let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel;
+ let next_tmp_end_index = channel.tmp_end_index + u16s_per_line;
+ let values = &tmp_u16_buffer[channel.tmp_end_index .. next_tmp_end_index];
+ channel.tmp_end_index = next_tmp_end_index;
+
+ // TODO do not convert endianness for f16-only images
+ // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
+ // We can support uncompressed data in the machine's native format
+ // if all image channels are of type HALF, and if the Xdr and the
+ // native representations of a half have the same size.
+ u16::write_slice(&mut out, values).expect("write to in-memory failed");
+ }
+ }
+
+ for (previous, current) in channel_data.iter().zip(channel_data.iter().skip(1)) {
+ debug_assert_eq!(previous.tmp_end_index, current.tmp_start_index);
+ }
+
+ debug_assert_eq!(channel_data.last().unwrap().tmp_end_index, tmp_u16_buffer.len());
+ debug_assert_eq!(out.len(), expected_byte_size);
+
+ // TODO optimize for when all channels are f16!
+ // we should be able to omit endianness conversions in that case
+ // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
+ Ok(super::convert_little_endian_to_current(out, channels, rectangle))
+}
+
+
+
+pub fn compress(
+ channels: &ChannelList,
+ uncompressed: ByteVec,
+ rectangle: IntegerBounds
+) -> Result<ByteVec>
+{
+ if uncompressed.is_empty() {
+ return Ok(Vec::new());
+ }
+
+ // TODO do not convert endianness for f16-only images
+ // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
+ let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle);
+ let uncompressed = uncompressed.as_slice();// TODO no alloc
+
+ let mut tmp = vec![0_u16; uncompressed.len() / 2 ];
+ let mut channel_data: SmallVec<[ChannelData; 6]> = {
+ let mut tmp_end_index = 0;
+
+ let vec = channels.list.iter().map(|channel| {
+ let number_samples = channel.subsampled_resolution(rectangle.size);
+ let byte_size = channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample();
+ let byte_count = byte_size * number_samples.area();
+
+ let channel = ChannelData {
+ tmp_end_index,
+ tmp_start_index: tmp_end_index,
+ y_sampling: channel.sampling.y(),
+ resolution: number_samples,
+ samples_per_pixel: byte_size,
+ };
+
+ tmp_end_index += byte_count;
+ channel
+ }).collect();
+
+ debug_assert_eq!(tmp_end_index, tmp.len());
+ vec
+ };
+
+ let mut remaining_uncompressed_bytes = uncompressed;
+ for y in rectangle.position.y() .. rectangle.end().y() {
+ for channel in &mut channel_data {
+ if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; }
+ let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel;
+ let next_tmp_end_index = channel.tmp_end_index + u16s_per_line;
+ let target = &mut tmp[channel.tmp_end_index .. next_tmp_end_index];
+ channel.tmp_end_index = next_tmp_end_index;
+
+ // TODO do not convert endianness for f16-only images
+ // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
+ // We can support uncompressed data in the machine's native format
+ // if all image channels are of type HALF, and if the Xdr and the
+ // native representations of a half have the same size.
+ u16::read_slice(&mut remaining_uncompressed_bytes, target).expect("in-memory read failed");
+ }
+ }
+
+
+ let (min_non_zero, max_non_zero, bitmap) = bitmap_from_data(&tmp);
+ let (max_value, table) = forward_lookup_table_from_bitmap(&bitmap);
+ apply_lookup_table(&mut tmp, &table);
+
+ let mut piz_compressed = Vec::with_capacity(uncompressed.len() / 2);
+ u16::try_from(min_non_zero)?.write(&mut piz_compressed)?;
+ u16::try_from(max_non_zero)?.write(&mut piz_compressed)?;
+
+ if min_non_zero <= max_non_zero {
+ piz_compressed.extend_from_slice(&bitmap[min_non_zero ..= max_non_zero]);
+ }
+
+ for channel in channel_data {
+ for offset in 0 .. channel.samples_per_pixel {
+ wavelet::encode(
+ &mut tmp[channel.tmp_start_index + offset .. channel.tmp_end_index],
+ channel.resolution,
+ Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel),
+ max_value
+ )?;
+ }
+ }
+
+ let huffman_compressed: Vec<u8> = huffman::compress(&tmp)?;
+ u8::write_i32_sized_slice(&mut piz_compressed, &huffman_compressed).expect("in-memory write failed");
+
+ Ok(piz_compressed)
+}
+
+
+pub fn bitmap_from_data(data: &[u16]) -> (usize, usize, Vec<u8>) {
+ let mut bitmap = vec![0_u8; BITMAP_SIZE];
+
+ for value in data {
+ bitmap[*value as usize >> 3] |= 1 << (*value as u8 & 7);
+ }
+
+ bitmap[0] = bitmap[0] & !1; // zero is not explicitly stored in the bitmap; we assume that the data always contain zeroes
+
+ let min_index = bitmap.iter().position(|&value| value != 0);
+ let max_index = min_index.map(|min| // only if min was found
+ min + bitmap[min..].iter().rposition(|&value| value != 0).expect("[min] not found")
+ );
+
+ (min_index.unwrap_or(0), max_index.unwrap_or(0), bitmap)
+}
+
+pub fn forward_lookup_table_from_bitmap(bitmap: &[u8]) -> (u16, Vec<u16>) {
+ debug_assert_eq!(bitmap.len(), BITMAP_SIZE);
+
+ let mut table = vec![0_u16; U16_RANGE];
+ let mut count = 0_usize;
+
+ for (index, entry) in table.iter_mut().enumerate() {
+ if index == 0 || bitmap[index >> 3] as usize & (1 << (index & 7)) != 0 {
+ *entry = usize_to_u16(count).unwrap();
+ count += 1;
+ }
+ }
+
+ (usize_to_u16(count - 1).unwrap(), table)
+}
+
+fn reverse_lookup_table_from_bitmap(bitmap: Bytes<'_>) -> (Vec<u16>, u16) {
+ let mut table = Vec::with_capacity(U16_RANGE);
+
+ for index in 0 .. U16_RANGE { // cannot use iter because filter removes capacity sizehint
+ if index == 0 || ((bitmap[index >> 3] as usize & (1 << (index & 7))) != 0) {
+ table.push(usize_to_u16(index).unwrap());
+ }
+ }
+
+ debug_assert!(!table.is_empty());
+ let max_value = usize_to_u16(table.len() - 1).unwrap();
+
+ // fill remaining up to u16 range
+ assert!(table.len() <= U16_RANGE);
+ table.resize(U16_RANGE, 0);
+
+ (table, max_value)
+}
+
+fn apply_lookup_table(data: &mut [u16], table: &[u16]) {
+ for data in data {
+ *data = table[*data as usize];
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use crate::prelude::*;
+ use crate::compression::ByteVec;
+ use crate::compression::piz;
+ use crate::meta::attribute::*;
+
+ fn test_roundtrip_noise_with(channels: ChannelList, rectangle: IntegerBounds){
+ let pixel_bytes: ByteVec = (0 .. 37).map(|_| rand::random()).collect::<Vec<u8>>().into_iter()
+ .cycle().take(channels.bytes_per_pixel * rectangle.size.area())
+ .collect();
+
+ let compressed = piz::compress(&channels, pixel_bytes.clone(), rectangle).unwrap();
+ let decompressed = piz::decompress(&channels, compressed, rectangle, pixel_bytes.len(), true).unwrap();
+
+ assert_eq!(pixel_bytes, decompressed);
+ }
+
+
+ #[test]
+ fn roundtrip_any_sample_type(){
+ for &sample_type in &[SampleType::F16, SampleType::F32, SampleType::U32] {
+ let channel = ChannelDescription {
+ sample_type,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ };
+
+ let channels = ChannelList::new(smallvec![ channel.clone(), channel ]);
+
+ let rectangle = IntegerBounds {
+ position: Vec2(-30, 100),
+ size: Vec2(1080, 720),
+ };
+
+ test_roundtrip_noise_with(channels, rectangle);
+ }
+ }
+
+ #[test]
+ fn roundtrip_two_channels(){
+ let channel = ChannelDescription {
+ sample_type: SampleType::F16,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ };
+
+ let channel2 = ChannelDescription {
+ sample_type: SampleType::F32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ };
+
+ let channels = ChannelList::new(smallvec![ channel, channel2 ]);
+
+ let rectangle = IntegerBounds {
+ position: Vec2(-3, 1),
+ size: Vec2(223, 3132),
+ };
+
+ test_roundtrip_noise_with(channels, rectangle);
+ }
+
+
+
+ #[test]
+ fn roundtrip_seven_channels(){
+ let channels = ChannelList::new(smallvec![
+ ChannelDescription {
+ sample_type: SampleType::F32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+
+ ChannelDescription {
+ sample_type: SampleType::F32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+
+ ChannelDescription {
+ sample_type: SampleType::F32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+
+ ChannelDescription {
+ sample_type: SampleType::F16,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+
+ ChannelDescription {
+ sample_type: SampleType::F32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+
+ ChannelDescription {
+ sample_type: SampleType::F32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+
+ ChannelDescription {
+ sample_type: SampleType::U32,
+
+ name: Default::default(),
+ quantize_linearly: false,
+ sampling: Vec2(1,1)
+ },
+ ]);
+
+ let rectangle = IntegerBounds {
+ position: Vec2(-3, 1),
+ size: Vec2(1323, 132),
+ };
+
+ test_roundtrip_noise_with(channels, rectangle);
+ }
+
+} \ No newline at end of file