summaryrefslogtreecommitdiff
path: root/vendor/exr/src/compression/pxr24.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/compression/pxr24.rs')
-rw-r--r--vendor/exr/src/compression/pxr24.rs261
1 files changed, 261 insertions, 0 deletions
diff --git a/vendor/exr/src/compression/pxr24.rs b/vendor/exr/src/compression/pxr24.rs
new file mode 100644
index 0000000..9461c6a
--- /dev/null
+++ b/vendor/exr/src/compression/pxr24.rs
@@ -0,0 +1,261 @@
+
+//! Lossy compression for F32 data, but lossless compression for U32 and F16 data.
+// see https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPxr24Compressor.cpp
+
+// This compressor is based on source code that was contributed to
+// OpenEXR by Pixar Animation Studios. The compression method was
+// developed by Loren Carpenter.
+
+
+// The compressor preprocesses the pixel data to reduce entropy, and then calls zlib.
+// Compression of HALF and UINT channels is lossless, but compressing
+// FLOAT channels is lossy: 32-bit floating-point numbers are converted
+// to 24 bits by rounding the significand to 15 bits.
+//
+// When the compressor is invoked, the caller has already arranged
+// the pixel data so that the values for each channel appear in a
+// contiguous block of memory. The compressor converts the pixel
+// values to unsigned integers: For UINT, this is a no-op. HALF
+// values are simply re-interpreted as 16-bit integers. FLOAT
+// values are converted to 24 bits, and the resulting bit patterns
+// are interpreted as integers. The compressor then replaces each
+// value with the difference between the value and its left neighbor.
+// This turns flat fields in the image into zeroes, and ramps into
+// strings of similar values. Next, each difference is split into
+// 2, 3 or 4 bytes, and the bytes are transposed so that all the
+// most significant bytes end up in a contiguous block, followed
+// by the second most significant bytes, and so on. The resulting
+// string of bytes is compressed with zlib.
+
+use super::*;
+
+use crate::error::Result;
+use lebe::io::ReadPrimitive;
+
+
+// scanline decompression routine, see https://github.com/openexr/openexr/blob/master/OpenEXR/IlmImf/ImfScanLineInputFile.cpp
+// 1. Uncompress the data, if necessary (If the line is uncompressed, it's in XDR format, regardless of the compressor's output format.)
+// 3. Convert one scan line's worth of pixel data back from the machine-independent representation
+// 4. Fill the frame buffer with pixel data, respective to sampling and whatnot
+
+
+#[cfg_attr(target_endian = "big", allow(unused, unreachable_code))]
+pub fn compress(channels: &ChannelList, remaining_bytes: ByteVec, area: IntegerBounds) -> Result<ByteVec> {
+ #[cfg(target_endian = "big")] {
+ return Err(Error::unsupported(
+ "PXR24 compression method not supported yet on big endian processor architecture"
+ ))
+ }
+
+ if remaining_bytes.is_empty() { return Ok(Vec::new()); }
+
+ // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
+ let remaining_bytes = super::convert_current_to_little_endian(remaining_bytes, channels, area);
+ let mut remaining_bytes = remaining_bytes.as_slice(); // TODO less allocation
+
+ let bytes_per_pixel: usize = channels.list.iter()
+ .map(|channel| match channel.sample_type {
+ SampleType::F16 => 2, SampleType::F32 => 3, SampleType::U32 => 4,
+ })
+ .sum();
+
+ let mut raw = vec![0_u8; bytes_per_pixel * area.size.area()];
+
+ {
+ let mut write = raw.as_mut_slice();
+
+ // TODO this loop should be an iterator in the `IntegerBounds` class, as it is used in all compressio methods
+ for y in area.position.1..area.end().1 {
+ for channel in &channels.list {
+ if mod_p(y, usize_to_i32(channel.sampling.1)) != 0 { continue; }
+
+ // this apparently can't be a closure in Rust 1.43 due to borrowing ambiguity
+ let sample_count_x = channel.subsampled_resolution(area.size).0;
+ macro_rules! split_off_write_slice { () => {{
+ let (slice, rest) = write.split_at_mut(sample_count_x);
+ write = rest;
+ slice
+ }}; }
+
+ let mut previous_pixel: u32 = 0;
+
+ match channel.sample_type {
+ SampleType::F16 => {
+ let out_byte_tuples = split_off_write_slice!().iter_mut()
+ .zip(split_off_write_slice!());
+
+ for (out_byte_0, out_byte_1) in out_byte_tuples {
+ let pixel = u16::read_from_native_endian(&mut remaining_bytes).unwrap() as u32;
+ let [byte_1, byte_0] = (pixel.wrapping_sub(previous_pixel) as u16).to_ne_bytes();
+
+ *out_byte_0 = byte_0;
+ *out_byte_1 = byte_1;
+ previous_pixel = pixel;
+ }
+ },
+
+ SampleType::U32 => {
+ let out_byte_quadruplets = split_off_write_slice!().iter_mut()
+ .zip(split_off_write_slice!())
+ .zip(split_off_write_slice!())
+ .zip(split_off_write_slice!());
+
+ for (((out_byte_0, out_byte_1), out_byte_2), out_byte_3) in out_byte_quadruplets {
+ let pixel = u32::read_from_native_endian(&mut remaining_bytes).unwrap();
+ let [byte_3, byte_2, byte_1, byte_0] = pixel.wrapping_sub(previous_pixel).to_ne_bytes();
+
+ *out_byte_0 = byte_0;
+ *out_byte_1 = byte_1;
+ *out_byte_2 = byte_2;
+ *out_byte_3 = byte_3;
+ previous_pixel = pixel;
+ }
+ },
+
+ SampleType::F32 => {
+ let out_byte_triplets = split_off_write_slice!().iter_mut()
+ .zip(split_off_write_slice!())
+ .zip(split_off_write_slice!());
+
+ for ((out_byte_0, out_byte_1), out_byte_2) in out_byte_triplets {
+ let pixel = f32_to_f24(f32::read_from_native_endian(&mut remaining_bytes).unwrap());
+ let [byte_2, byte_1, byte_0, _] = pixel.wrapping_sub(previous_pixel).to_ne_bytes();
+ previous_pixel = pixel;
+
+ *out_byte_0 = byte_0;
+ *out_byte_1 = byte_1;
+ *out_byte_2 = byte_2;
+ }
+ },
+ }
+ }
+ }
+
+ debug_assert_eq!(write.len(), 0, "bytes left after compression");
+ }
+
+ Ok(miniz_oxide::deflate::compress_to_vec_zlib(raw.as_slice(), 4))
+}
+
+#[cfg_attr(target_endian = "big", allow(unused, unreachable_code))]
+pub fn decompress(channels: &ChannelList, bytes: ByteVec, area: IntegerBounds, expected_byte_size: usize, pedantic: bool) -> Result<ByteVec> {
+ #[cfg(target_endian = "big")] {
+ return Err(Error::unsupported(
+ "PXR24 decompression method not supported yet on big endian processor architecture"
+ ))
+ }
+
+ let options = zune_inflate::DeflateOptions::default().set_limit(expected_byte_size).set_size_hint(expected_byte_size);
+ let mut decoder = zune_inflate::DeflateDecoder::new_with_options(&bytes, options);
+ let raw = decoder.decode_zlib()
+ .map_err(|_| Error::invalid("zlib-compressed data malformed"))?; // TODO share code with zip?
+
+ let mut read = raw.as_slice();
+ let mut out = Vec::with_capacity(expected_byte_size.min(2048*4));
+
+ for y in area.position.1 .. area.end().1 {
+ for channel in &channels.list {
+ if mod_p(y, usize_to_i32(channel.sampling.1)) != 0 { continue; }
+
+ let sample_count_x = channel.subsampled_resolution(area.size).0;
+ let mut read_sample_line = ||{
+ if sample_count_x > read.len() { return Err(Error::invalid("not enough data")) }
+ let (samples, rest) = read.split_at(sample_count_x);
+ read = rest;
+ Ok(samples)
+ };
+
+ let mut pixel_accumulation: u32 = 0;
+
+ match channel.sample_type {
+ SampleType::F16 => {
+ let sample_byte_pairs = read_sample_line()?.iter()
+ .zip(read_sample_line()?);
+
+ for (&in_byte_0, &in_byte_1) in sample_byte_pairs {
+ let difference = u16::from_ne_bytes([in_byte_1, in_byte_0]) as u32;
+ pixel_accumulation = pixel_accumulation.overflowing_add(difference).0;
+ out.extend_from_slice(&(pixel_accumulation as u16).to_ne_bytes());
+ }
+ },
+
+ SampleType::U32 => {
+ let sample_byte_quads = read_sample_line()?.iter()
+ .zip(read_sample_line()?)
+ .zip(read_sample_line()?)
+ .zip(read_sample_line()?);
+
+ for (((&in_byte_0, &in_byte_1), &in_byte_2), &in_byte_3) in sample_byte_quads {
+ let difference = u32::from_ne_bytes([in_byte_3, in_byte_2, in_byte_1, in_byte_0]);
+ pixel_accumulation = pixel_accumulation.overflowing_add(difference).0;
+ out.extend_from_slice(&pixel_accumulation.to_ne_bytes());
+ }
+ },
+
+ SampleType::F32 => {
+ let sample_byte_triplets = read_sample_line()?.iter()
+ .zip(read_sample_line()?).zip(read_sample_line()?);
+
+ for ((&in_byte_0, &in_byte_1), &in_byte_2) in sample_byte_triplets {
+ let difference = u32::from_ne_bytes([0, in_byte_2, in_byte_1, in_byte_0]);
+ pixel_accumulation = pixel_accumulation.overflowing_add(difference).0;
+ out.extend_from_slice(&pixel_accumulation.to_ne_bytes());
+ }
+ }
+ }
+ }
+ }
+
+ if pedantic && !read.is_empty() {
+ return Err(Error::invalid("too much data"));
+ }
+
+ Ok(super::convert_little_endian_to_current(out, channels, area))
+}
+
+
+
+
+/// Conversion from 32-bit to 24-bit floating-point numbers.
+/// Reverse conversion is just a simple 8-bit left shift.
+pub fn f32_to_f24(float: f32) -> u32 {
+ let bits = float.to_bits();
+
+ let sign = bits & 0x80000000;
+ let exponent = bits & 0x7f800000;
+ let mantissa = bits & 0x007fffff;
+
+ let result = if exponent == 0x7f800000 {
+ if mantissa != 0 {
+ // F is a NAN; we preserve the sign bit and
+ // the 15 leftmost bits of the significand,
+ // with one exception: If the 15 leftmost
+ // bits are all zero, the NAN would turn
+ // into an infinity, so we have to set at
+ // least one bit in the significand.
+
+ let mantissa = mantissa >> 8;
+ (exponent >> 8) | mantissa | if mantissa == 0 { 1 } else { 0 }
+ }
+ else { // F is an infinity.
+ exponent >> 8
+ }
+ }
+ else { // F is finite, round the significand to 15 bits.
+ let result = ((exponent | mantissa) + (mantissa & 0x00000080)) >> 8;
+
+ if result >= 0x7f8000 {
+ // F was close to FLT_MAX, and the significand was
+ // rounded up, resulting in an exponent overflow.
+ // Avoid the overflow by truncating the significand
+ // instead of rounding it.
+
+ (exponent | mantissa) >> 8
+ }
+ else {
+ result
+ }
+ };
+
+ return (sign >> 8) | result;
+} \ No newline at end of file