aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/image/crop.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/image/crop.rs')
-rw-r--r--vendor/exr/src/image/crop.rs801
1 files changed, 0 insertions, 801 deletions
diff --git a/vendor/exr/src/image/crop.rs b/vendor/exr/src/image/crop.rs
deleted file mode 100644
index 63aadbf..0000000
--- a/vendor/exr/src/image/crop.rs
+++ /dev/null
@@ -1,801 +0,0 @@
-//! Crop away unwanted pixels. Includes automatic detection of bounding rectangle.
-//! Currently does not support deep data and resolution levels.
-
-use crate::meta::attribute::{IntegerBounds, LevelMode, ChannelList};
-use crate::math::{Vec2, RoundingMode};
-use crate::image::{Layer, FlatSamples, SpecificChannels, AnyChannels, FlatSamplesPixel, AnyChannel};
-use crate::image::write::channels::{GetPixel, WritableChannels, ChannelsWriter};
-use crate::meta::header::{LayerAttributes, Header};
-use crate::block::BlockIndex;
-
-/// Something that has a two-dimensional rectangular shape
-pub trait GetBounds {
-
- /// The bounding rectangle of this pixel grid.
- fn bounds(&self) -> IntegerBounds;
-}
-
-/// Inspect the pixels in this image to determine where to crop some away
-pub trait InspectSample: GetBounds {
-
- /// The type of pixel in this pixel grid.
- type Sample;
-
- /// Index is not in world coordinates, but within the data window.
- /// Position `(0,0)` always represents the top left pixel.
- fn inspect_sample(&self, local_index: Vec2<usize>) -> Self::Sample;
-}
-
-/// Crop some pixels ways when specifying a smaller rectangle
-pub trait Crop: Sized {
-
- /// The type of this image after cropping (probably the same as before)
- type Cropped;
-
- /// Crop the image to exclude unwanted pixels.
- /// Panics for invalid (larger than previously) bounds.
- /// The bounds are specified in absolute coordinates.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn crop(self, bounds: IntegerBounds) -> Self::Cropped;
-
- /// Reduce your image to a smaller part, usually to save memory.
- /// Crop if bounds are specified, return the original if no bounds are specified.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn try_crop(self, bounds: Option<IntegerBounds>) -> CropResult<Self::Cropped, Self> {
- match bounds {
- Some(bounds) => CropResult::Cropped(self.crop(bounds)),
- None => CropResult::Empty { original: self },
- }
- }
-}
-
-/// Cropping an image fails if the image is fully transparent.
-/// Use [`or_crop_to_1x1_if_empty`] or [`or_none_if_empty`] to obtain a normal image again.
-#[must_use]
-#[derive(Debug, Clone, Copy, Eq, PartialEq)]
-pub enum CropResult<Cropped, Old> {
-
- /// The image contained some pixels and has been cropped or left untouched
- Cropped (Cropped),
-
- /// All pixels in the image would be discarded, removing the whole image
- Empty {
-
- /// The fully discarded image which caused the cropping to fail
- original: Old
- }
-}
-
-/// Crop away unwanted pixels from the border if they match the specified rule.
-pub trait CropWhere<Sample>: Sized {
-
- /// The type of the cropped image (probably the same as the original image).
- type Cropped;
-
- /// Crop away unwanted pixels from the border if they match the specified rule.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn crop_where(self, discard_if: impl Fn(Sample) -> bool) -> CropResult<Self::Cropped, Self>;
-
- /// Crop away unwanted pixels from the border if they match the specified color.
- /// If you want discard based on a rule, use `crop_where` with a closure instead.
- /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
- /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
- fn crop_where_eq(self, discard_color: impl Into<Sample>) -> CropResult<Self::Cropped, Self> where Sample: PartialEq;
-
- /// Convert this data to cropped data without discarding any pixels.
- fn crop_nowhere(self) -> Self::Cropped;
-}
-
-impl<Channels> Crop for Layer<Channels> {
- type Cropped = Layer<CroppedChannels<Channels>>;
-
- fn crop(self, bounds: IntegerBounds) -> Self::Cropped {
- CroppedChannels::crop_layer(bounds, self)
- }
-}
-
-impl<T> CropWhere<T::Sample> for T where T: Crop + InspectSample {
- type Cropped = <Self as Crop>::Cropped;
-
- fn crop_where(self, discard_if: impl Fn(T::Sample) -> bool) -> CropResult<Self::Cropped, Self> {
- let smaller_bounds = {
- let keep_if = |position| !discard_if(self.inspect_sample(position));
- try_find_smaller_bounds(self.bounds(), keep_if)
- };
-
- self.try_crop(smaller_bounds)
- }
-
- fn crop_where_eq(self, discard_color: impl Into<T::Sample>) -> CropResult<Self::Cropped, Self> where T::Sample: PartialEq {
- let discard_color: T::Sample = discard_color.into();
- self.crop_where(|sample| sample == discard_color)
- }
-
- fn crop_nowhere(self) -> Self::Cropped {
- let current_bounds = self.bounds();
- self.crop(current_bounds)
- }
-}
-
-/// A smaller window into an existing pixel storage
-#[derive(Debug, Clone, Eq, PartialEq)]
-pub struct CroppedChannels<Channels> {
-
- /// The uncropped pixel storage
- pub full_channels: Channels,
-
- /// The uncropped pixel storage bounds
- pub full_bounds: IntegerBounds,
-
- /// The cropped pixel storage bounds
- pub cropped_bounds: IntegerBounds,
-}
-
-impl<Channels> CroppedChannels<Channels> {
-
- /// Wrap a layer in a cropped view with adjusted bounds, but without reallocating your pixels
- pub fn crop_layer(new_bounds: IntegerBounds, layer: Layer<Channels>) -> Layer<CroppedChannels<Channels>> {
- Layer {
- channel_data: CroppedChannels {
- cropped_bounds: new_bounds,
- full_bounds: layer.absolute_bounds(),
- full_channels: layer.channel_data,
- },
-
- size: new_bounds.size,
-
- attributes: LayerAttributes {
- layer_position: new_bounds.position,
- .. layer.attributes
- },
-
- encoding: layer.encoding
- }
- }
-}
-
-// TODO make cropped view readable if you only need a specific section of the image?
-
-// make cropped view writable:
-
-impl<'slf, Channels:'slf> WritableChannels<'slf> for CroppedChannels<Channels> where Channels: WritableChannels<'slf> {
- fn infer_channel_list(&self) -> ChannelList {
- self.full_channels.infer_channel_list() // no need for adjustments, as the layer content already reflects the changes
- }
-
- fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
- self.full_channels.infer_level_modes()
- }
-
- type Writer = CroppedWriter<Channels::Writer>;
-
- fn create_writer(&'slf self, header: &Header) -> Self::Writer {
- let offset = (self.cropped_bounds.position - self.full_bounds.position)
- .to_usize("invalid cropping bounds for cropped view").unwrap();
-
- CroppedWriter { channels: self.full_channels.create_writer(header), offset }
- }
-}
-
-/// A writer for the cropped view layer
-#[derive(Debug, Clone, PartialEq)]
-pub struct CroppedWriter<ChannelsWriter> {
- channels: ChannelsWriter,
- offset: Vec2<usize>
-}
-
-impl<'c, Channels> ChannelsWriter for CroppedWriter<Channels> where Channels: ChannelsWriter {
- fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8> {
- let block = BlockIndex {
- pixel_position: block.pixel_position + self.offset,
- .. block
- };
-
- self.channels.extract_uncompressed_block(header, block)
- }
-}
-
-impl<Samples, Channels> InspectSample for Layer<SpecificChannels<Samples, Channels>> where Samples: GetPixel {
- type Sample = Samples::Pixel;
- fn inspect_sample(&self, local_index: Vec2<usize>) -> Samples::Pixel {
- self.channel_data.pixels.get_pixel(local_index)
- }
-}
-
-impl InspectSample for Layer<AnyChannels<FlatSamples>> {
- type Sample = FlatSamplesPixel;
-
- fn inspect_sample(&self, local_index: Vec2<usize>) -> FlatSamplesPixel {
- self.sample_vec_at(local_index)
- }
-}
-
-// ALGORITHM IDEA: for arbitrary channels, find the most desired channel,
-// and process that first, keeping the processed bounds as starting point for the other layers
-
-/// Realize a cropped view of the original data,
-/// by actually removing the unwanted original pixels,
-/// reducing the memory consumption.
-/// Currently not supported for `SpecificChannels`.
-pub trait ApplyCroppedView {
-
- /// The simpler type after cropping is realized
- type Reallocated;
-
- /// Make the cropping real by reallocating the underlying storage,
- /// with the goal of reducing total memory usage.
- /// Currently not supported for `SpecificChannels`.
- fn reallocate_cropped(self) -> Self::Reallocated;
-}
-
-impl ApplyCroppedView for Layer<CroppedChannels<AnyChannels<FlatSamples>>> {
- type Reallocated = Layer<AnyChannels<FlatSamples>>;
-
- fn reallocate_cropped(self) -> Self::Reallocated {
- let cropped_absolute_bounds = self.channel_data.cropped_bounds;
- let cropped_relative_bounds = cropped_absolute_bounds.with_origin(-self.channel_data.full_bounds.position);
-
- assert!(self.absolute_bounds().contains(cropped_absolute_bounds), "bounds not valid for layer dimensions");
- assert!(cropped_relative_bounds.size.area() > 0, "the cropped image would be empty");
-
- Layer {
- channel_data: if cropped_relative_bounds.size == self.channel_data.full_bounds.size {
- assert_eq!(cropped_absolute_bounds.position, self.channel_data.full_bounds.position, "crop bounds size equals, but position does not");
-
- // the cropping would not remove any pixels
- self.channel_data.full_channels
- }
- else {
- let start_x = cropped_relative_bounds.position.x() as usize; // safe, because just checked above
- let start_y = cropped_relative_bounds.position.y() as usize; // safe, because just checked above
- let x_range = start_x .. start_x + cropped_relative_bounds.size.width();
- let old_width = self.channel_data.full_bounds.size.width();
- let new_height = cropped_relative_bounds.size.height();
-
- let channels = self.channel_data.full_channels.list.into_iter().map(|channel: AnyChannel<FlatSamples>| {
- fn crop_samples<T:Copy>(samples: Vec<T>, old_width: usize, new_height: usize, x_range: std::ops::Range<usize>, y_start: usize) -> Vec<T> {
- let filtered_lines = samples.chunks_exact(old_width).skip(y_start).take(new_height);
- let trimmed_lines = filtered_lines.map(|line| &line[x_range.clone()]);
- trimmed_lines.flatten().map(|x|*x).collect() // TODO does this use memcpy?
- }
-
- let samples = match channel.sample_data {
- FlatSamples::F16(samples) => FlatSamples::F16(crop_samples(
- samples, old_width, new_height, x_range.clone(), start_y
- )),
-
- FlatSamples::F32(samples) => FlatSamples::F32(crop_samples(
- samples, old_width, new_height, x_range.clone(), start_y
- )),
-
- FlatSamples::U32(samples) => FlatSamples::U32(crop_samples(
- samples, old_width, new_height, x_range.clone(), start_y
- )),
- };
-
- AnyChannel { sample_data: samples, ..channel }
- }).collect();
-
- AnyChannels { list: channels }
- },
-
- attributes: self.attributes,
- encoding: self.encoding,
- size: self.size,
- }
- }
-}
-
-
-
-/// Return the smallest bounding rectangle including all pixels that satisfy the predicate.
-/// Worst case: Fully transparent image, visits each pixel once.
-/// Best case: Fully opaque image, visits two pixels.
-/// Returns `None` if the image is fully transparent.
-/// Returns `[(0,0), size]` if the image is fully opaque.
-/// Designed to be cache-friendly linear search. Optimized for row-major image vectors.
-pub fn try_find_smaller_bounds(current_bounds: IntegerBounds, pixel_at: impl Fn(Vec2<usize>) -> bool) -> Option<IntegerBounds> {
- assert_ne!(current_bounds.size.area(), 0, "cannot find smaller bounds of an image with zero width or height");
- let Vec2(width, height) = current_bounds.size;
-
- // scans top to bottom (left to right)
- let first_top_left_pixel = (0 .. height)
- .flat_map(|y| (0 .. width).map(move |x| Vec2(x,y)))
- .find(|&position| pixel_at(position))?; // return none if no pixel should be kept
-
- // scans bottom to top (right to left)
- let first_bottom_right_pixel = (first_top_left_pixel.y() + 1 .. height) // excluding the top line
- .flat_map(|y| (0 .. width).map(move |x| Vec2(x, y))) // x search cannot start at first_top.x, because this must catch all bottom pixels
- .rev().find(|&position| pixel_at(position))
- .unwrap_or(first_top_left_pixel); // did not find any at bottom, but we know top has some pixel
-
- // now we know exactly how much we can throw away top and bottom,
- // but we don't know exactly about left or right
- let top = first_top_left_pixel.y();
- let bottom = first_bottom_right_pixel.y();
-
- // we only now some arbitrary left and right bounds which we need to refine.
- // because the actual image contents might be wider than the corner points.
- // we know that we do not need to look in the center between min x and max x,
- // as these must be included in any case.
- let mut min_left_x = first_top_left_pixel.x().min(first_bottom_right_pixel.x());
- let mut max_right_x = first_bottom_right_pixel.x().max(first_top_left_pixel.x());
-
- // requires for loop, because bounds change while searching
- for y in top ..= bottom {
-
- // escape the loop if there is nothing left to crop
- if min_left_x == 0 && max_right_x == width - 1 { break; }
-
- // search from right image edge towards image center, until known max x, for existing pixels,
- // possibly including some pixels that would have been cropped otherwise
- if max_right_x != width - 1 {
- max_right_x = (max_right_x + 1 .. width).rev() // excluding current max
- .find(|&x| pixel_at(Vec2(x, y)))
- .unwrap_or(max_right_x);
- }
-
- // search from left image edge towards image center, until known min x, for existing pixels,
- // possibly including some pixels that would have been cropped otherwise
- if min_left_x != 0 {
- min_left_x = (0 .. min_left_x) // excluding current min
- .find(|&x| pixel_at(Vec2(x, y)))
- .unwrap_or(min_left_x);
- }
- }
-
- // TODO add 1px margin to avoid interpolation issues?
- let local_start = Vec2(min_left_x, top);
- let local_end = Vec2(max_right_x + 1, bottom + 1);
- Some(IntegerBounds::new(
- current_bounds.position + local_start.to_i32(),
- local_end - local_start
- ))
-}
-
-impl<S> GetBounds for Layer<S> {
- fn bounds(&self) -> IntegerBounds {
- self.absolute_bounds()
- }
-}
-
-impl<Cropped, Original> CropResult<Cropped, Original> {
-
- /// If the image was fully empty, return `None`, otherwise return `Some(cropped_image)`.
- pub fn or_none_if_empty(self) -> Option<Cropped> {
- match self {
- CropResult::Cropped (cropped) => Some(cropped),
- CropResult::Empty { .. } => None,
- }
- }
-
- /// If the image was fully empty, crop to one single pixel of all the transparent pixels instead,
- /// leaving the layer intact while reducing memory usage.
- pub fn or_crop_to_1x1_if_empty(self) -> Cropped where Original: Crop<Cropped=Cropped> + GetBounds {
- match self {
- CropResult::Cropped (cropped) => cropped,
- CropResult::Empty { original } => {
- let bounds = original.bounds();
- if bounds.size == Vec2(0,0) { panic!("layer has width and height of zero") }
- original.crop(IntegerBounds::new(bounds.position, Vec2(1,1)))
- },
- }
- }
-}
-
-
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn find_bounds() {
- fn find_bounds(offset: Vec2<i32>, lines: &Vec<Vec<i32>>) -> IntegerBounds {
- if let Some(first_line) = lines.first() {
- assert!(lines.iter().all(|line| line.len() == first_line.len()), "invalid test input");
- IntegerBounds::new(offset, (first_line.len(), lines.len()))
- }
- else {
- IntegerBounds::new(offset, (0,0))
- }
- }
-
- fn assert_found_smaller_bounds(offset: Vec2<i32>, uncropped_lines: Vec<Vec<i32>>, expected_cropped_lines: Vec<Vec<i32>>) {
- let old_bounds = find_bounds(offset, &uncropped_lines);
-
- let found_bounds = try_find_smaller_bounds(
- old_bounds,
- |position| uncropped_lines[position.y()][position.x()] != 0
- ).unwrap();
-
- let found_bounds = found_bounds.with_origin(-offset); // make indices local
-
- let cropped_lines: Vec<Vec<i32>> =
- uncropped_lines[found_bounds.position.y() as usize .. found_bounds.end().y() as usize]
- .iter().map(|uncropped_line|{
- uncropped_line[found_bounds.position.x() as usize .. found_bounds.end().x() as usize].to_vec()
- }).collect();
-
- assert_eq!(cropped_lines, expected_cropped_lines);
- }
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 2, 3, 4 ],
- vec![ 2, 3, 4 ],
- ],
-
- vec![
- vec![ 2, 3, 4 ],
- vec![ 2, 3, 4 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 2 ],
- ],
-
- vec![
- vec![ 2 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 0 ],
- vec![ 2 ],
- vec![ 0 ],
- vec![ 0 ],
- ],
-
- vec![
- vec![ 2 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-3,-3),
-
- vec![
- vec![ 0, 0, 0, 3, 0 ],
- ],
-
- vec![
- vec![ 3 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 1, 1, 2, 1, 0 ],
- vec![ 0, 1, 3, 1, 1, 0 ],
- vec![ 0, 1, 1, 1, 1, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 2, 1 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 1, 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 0, 0, 0 ],
- vec![ 1, 1, 2, 1 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 1, 1, 1, 1 ],
- vec![ 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 2, 1 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 1, 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 1, 1, 2, 1, 0 ],
- vec![ 0, 0, 3, 1, 0, 0 ],
- vec![ 0, 1, 1, 1, 1, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 2, 1 ],
- vec![ 0, 3, 1, 0 ],
- vec![ 1, 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(3,3),
-
- vec![
- vec![ 0, 0, 1, 2, 0, 0 ],
- vec![ 0, 1, 3, 1, 1, 0 ],
- vec![ 0, 0, 1, 1, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 1, 2, 0 ],
- vec![ 1, 3, 1, 1 ],
- vec![ 0, 1, 1, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(1,3),
-
- vec![
- vec![ 1, 0, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(1,3),
-
- vec![
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 1, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 0, 0, 1, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 1, 1 ],
- vec![ 1, 1, 1 ],
- vec![ 1, 1, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(1000,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 1, 1, 1, 1, 1, 0 ],
- vec![ 0, 0, 1, 1, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 1, 1, 1, 0 ],
- vec![ 1, 1, 1, 1, 1 ],
- vec![ 0, 1, 1, 1, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 0, 1 ],
- vec![ 0, 0, 0 ],
- vec![ 1, 0, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 0, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 1, 0, 0, 0 ],
- vec![ 0, 0, 0, 2, 0, 0, 0 ],
- vec![ 0, 0, 3, 3, 3, 0, 0 ],
- vec![ 0, 0, 0, 4, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 1, 0 ],
- vec![ 0, 2, 0 ],
- vec![ 3, 3, 3 ],
- vec![ 0, 4, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 1, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 0, 0, 1 ],
- vec![ 0, 0, 0 ],
- vec![ 0, 0, 0 ],
- vec![ 1, 0, 0 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 1, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1, 0, 0, 0 ],
- vec![ 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 1 ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-10,-300),
-
- vec![
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- vec![ 0, 0, 1, 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0, 0, 0, 0 ],
- ],
-
- vec![
- vec![ 1 ],
- vec![ 0 ],
- vec![ 0 ],
- vec![ 1 ],
- ]
- );
-
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 0, 0, 1, 0, ],
- vec![ 0, 0, 0, 1, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1, 0, ],
- vec![ 0, 1, ],
- ]
- );
-
- assert_found_smaller_bounds(
- Vec2(-1,-3),
-
- vec![
- vec![ 1, 0, 0, 0, ],
- vec![ 0, 1, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- vec![ 0, 0, 0, 0, ],
- ],
-
- vec![
- vec![ 1, 0, ],
- vec![ 0, 1, ],
- ]
- );
- }
-
-
- #[test]
- fn find_no_bounds() {
- let pixels = vec![
- vec![ 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0 ],
- vec![ 0, 0, 0, 0 ],
- ];
-
- let bounds = try_find_smaller_bounds(
- IntegerBounds::new((0,0), (4,3)),
- |position| pixels[position.y()][position.x()] != 0
- );
-
- assert_eq!(bounds, None)
- }
-
-}
-
-
-
-