diff options
Diffstat (limited to 'vendor/exr/src/meta/attribute.rs')
-rw-r--r-- | vendor/exr/src/meta/attribute.rs | 2226 |
1 files changed, 2226 insertions, 0 deletions
diff --git a/vendor/exr/src/meta/attribute.rs b/vendor/exr/src/meta/attribute.rs new file mode 100644 index 0000000..5b71e82 --- /dev/null +++ b/vendor/exr/src/meta/attribute.rs @@ -0,0 +1,2226 @@ + +//! Contains all meta data attributes. +//! Each layer can have any number of [`Attribute`]s, including custom attributes. + +use smallvec::SmallVec; + + +/// Contains one of all possible attributes. +/// Includes a variant for custom attributes. +#[derive(Debug, Clone, PartialEq)] +pub enum AttributeValue { + + /// Channel meta data. + ChannelList(ChannelList), + + /// Color space definition. + Chromaticities(Chromaticities), + + /// Compression method of this layer. + Compression(Compression), + + /// This image is an environment map. + EnvironmentMap(EnvironmentMap), + + /// Film roll information. + KeyCode(KeyCode), + + /// Order of the bocks in the file. + LineOrder(LineOrder), + + /// A 3x3 matrix of floats. + Matrix3x3(Matrix3x3), + + /// A 4x4 matrix of floats. + Matrix4x4(Matrix4x4), + + /// 8-bit rgba Preview of the image. + Preview(Preview), + + /// An integer dividend and divisor. + Rational(Rational), + + /// Deep or flat and tiled or scan line. + BlockType(BlockType), + + /// List of texts. + TextVector(Vec<Text>), + + /// How to tile up the image. + TileDescription(TileDescription), + + /// Timepoint and more. + TimeCode(TimeCode), + + /// A string of byte-chars. + Text(Text), + + /// 64-bit float + F64(f64), + + /// 32-bit float + F32(f32), + + /// 32-bit signed integer + I32(i32), + + /// 2D integer rectangle. + IntegerBounds(IntegerBounds), + + /// 2D float rectangle. + FloatRect(FloatRect), + + /// 2D integer vector. + IntVec2(Vec2<i32>), + + /// 2D float vector. + FloatVec2(Vec2<f32>), + + /// 3D integer vector. + IntVec3((i32, i32, i32)), + + /// 3D float vector. + FloatVec3((f32, f32, f32)), + + /// A custom attribute. + /// Contains the type name of this value. + Custom { + + /// The name of the type this attribute is an instance of. + kind: Text, + + /// The value, stored in little-endian byte order, of the value. + /// Use the `exr::io::Data` trait to extract binary values from this vector. + bytes: Vec<u8> + }, +} + +/// A byte array with each byte being a char. +/// This is not UTF an must be constructed from a standard string. +// TODO is this ascii? use a rust ascii crate? +#[derive(Clone, PartialEq, Ord, PartialOrd, Default)] // hash implemented manually +pub struct Text { + bytes: TextBytes, +} + +/// Contains time information for this frame within a sequence. +/// Also defined methods to compile this information into a +/// `TV60`, `TV50` or `Film24` bit sequence, packed into `u32`. +/// +/// Satisfies the [SMPTE standard 12M-1999](https://en.wikipedia.org/wiki/SMPTE_timecode). +/// For more in-depth information, see [philrees.co.uk/timecode](http://www.philrees.co.uk/articles/timecode.htm). +#[derive(Copy, Debug, Clone, Eq, PartialEq, Hash, Default)] +pub struct TimeCode { + + /// Hours 0 - 23 are valid. + pub hours: u8, + + /// Minutes 0 - 59 are valid. + pub minutes: u8, + + /// Seconds 0 - 59 are valid. + pub seconds: u8, + + /// Frame Indices 0 - 29 are valid. + pub frame: u8, + + /// Whether this is a drop frame. + pub drop_frame: bool, + + /// Whether this is a color frame. + pub color_frame: bool, + + /// Field Phase. + pub field_phase: bool, + + /// Flags for `TimeCode.binary_groups`. + pub binary_group_flags: [bool; 3], + + /// The user-defined control codes. + /// Every entry in this array can use at most 3 bits. + /// This results in a maximum value of 15, including 0, for each `u8`. + pub binary_groups: [u8; 8] +} + +/// layer type, specifies block type and deepness. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum BlockType { + + /// Corresponds to the string value `scanlineimage`. + ScanLine, + + /// Corresponds to the string value `tiledimage`. + Tile, + + /// Corresponds to the string value `deepscanline`. + DeepScanLine, + + /// Corresponds to the string value `deeptile`. + DeepTile, +} + +/// The string literals used to represent a `BlockType` in a file. +pub mod block_type_strings { + + /// Type attribute text value of flat scan lines + pub const SCAN_LINE: &'static [u8] = b"scanlineimage"; + + /// Type attribute text value of flat tiles + pub const TILE: &'static [u8] = b"tiledimage"; + + /// Type attribute text value of deep scan lines + pub const DEEP_SCAN_LINE: &'static [u8] = b"deepscanline"; + + /// Type attribute text value of deep tiles + pub const DEEP_TILE: &'static [u8] = b"deeptile"; +} + + +pub use crate::compression::Compression; + +/// The integer rectangle describing where an layer is placed on the infinite 2D global space. +pub type DataWindow = IntegerBounds; + +/// The integer rectangle limiting which part of the infinite 2D global space should be displayed. +pub type DisplayWindow = IntegerBounds; + +/// An integer dividend and divisor, together forming a ratio. +pub type Rational = (i32, u32); + +/// A float matrix with four rows and four columns. +pub type Matrix4x4 = [f32; 4*4]; + +/// A float matrix with three rows and three columns. +pub type Matrix3x3 = [f32; 3*3]; + +/// A rectangular section anywhere in 2D integer space. +/// Valid from minimum coordinate (including) `-1,073,741,822` +/// to maximum coordinate (including) `1,073,741,822`, the value of (`i32::MAX/2 -1`). +#[derive(Clone, Copy, Debug, Eq, PartialEq, Default, Hash)] +pub struct IntegerBounds { + + /// The top left corner of this rectangle. + /// The `Box2I32` includes this pixel if the size is not zero. + pub position: Vec2<i32>, + + /// How many pixels to include in this `Box2I32`. + /// Extends to the right and downwards. + /// Does not include the actual boundary, just like `Vec::len()`. + pub size: Vec2<usize>, +} + +/// A rectangular section anywhere in 2D float space. +#[derive(Clone, Copy, Debug, PartialEq)] +pub struct FloatRect { + + /// The top left corner location of the rectangle (inclusive) + pub min: Vec2<f32>, + + /// The bottom right corner location of the rectangle (inclusive) + pub max: Vec2<f32> +} + +/// A List of channels. Channels must be sorted alphabetically. +#[derive(Clone, Debug, Eq, PartialEq, Hash)] +pub struct ChannelList { + + /// The channels in this list. + pub list: SmallVec<[ChannelDescription; 5]>, + + /// The number of bytes that one pixel in this image needs. + // FIXME this needs to account for subsampling anywhere? + pub bytes_per_pixel: usize, // FIXME only makes sense for flat images! + + /// The sample type of all channels, if all channels have the same type. + pub uniform_sample_type: Option<SampleType>, +} + +/// A single channel in an layer. +/// Does not contain the actual pixel data, +/// but instead merely describes it. +#[derive(Clone, Debug, Eq, PartialEq, Hash)] +pub struct ChannelDescription { + + /// One of "R", "G", or "B" most of the time. + pub name: Text, + + /// U32, F16 or F32. + pub sample_type: SampleType, + + /// This attribute only tells lossy compression methods + /// whether this value should be quantized exponentially or linearly. + /// + /// Should be `false` for red, green, or blue channels. + /// Should be `true` for hue, chroma, saturation, or alpha channels. + pub quantize_linearly: bool, + + /// How many of the samples are skipped compared to the other channels in this layer. + /// + /// Can be used for chroma subsampling for manual lossy data compression. + /// Values other than 1 are allowed only in flat, scan-line based images. + /// If an image is deep or tiled, x and y sampling rates for all of its channels must be 1. + pub sampling: Vec2<usize>, +} + +/// The type of samples in this channel. +#[derive(Clone, Debug, Eq, PartialEq, Copy, Hash)] +pub enum SampleType { + + /// This channel contains 32-bit unsigned int values. + U32, + + /// This channel contains 16-bit float values. + F16, + + /// This channel contains 32-bit float values. + F32, +} + +/// The color space of the pixels. +/// +/// If a file doesn't have a chromaticities attribute, display software +/// should assume that the file's primaries and the white point match `Rec. ITU-R BT.709-3`. +#[derive(Debug, Clone, Copy, PartialEq)] +pub struct Chromaticities { + + /// "Red" location on the CIE XY chromaticity diagram. + pub red: Vec2<f32>, + + /// "Green" location on the CIE XY chromaticity diagram. + pub green: Vec2<f32>, + + /// "Blue" location on the CIE XY chromaticity diagram. + pub blue: Vec2<f32>, + + /// "White" location on the CIE XY chromaticity diagram. + pub white: Vec2<f32> +} + +/// If this attribute is present, it describes +/// how this texture should be projected onto an environment. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum EnvironmentMap { + + /// This image is an environment map projected like a world map. + LatitudeLongitude, + + /// This image contains the six sides of a cube. + Cube, +} + +/// Uniquely identifies a motion picture film frame. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub struct KeyCode { + + /// Identifies a film manufacturer. + pub film_manufacturer_code: i32, + + /// Identifies a film type. + pub film_type: i32, + + /// Specifies the film roll prefix. + pub film_roll_prefix: i32, + + /// Specifies the film count. + pub count: i32, + + /// Specifies the perforation offset. + pub perforation_offset: i32, + + /// Specifies the perforation count of each single frame. + pub perforations_per_frame: i32, + + /// Specifies the perforation count of each single film. + pub perforations_per_count: i32, +} + +/// In what order the `Block`s of pixel data appear in a file. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum LineOrder { + + /// The blocks in the file are ordered in descending rows from left to right. + /// When compressing in parallel, this option requires potentially large amounts of memory. + /// In that case, use `LineOrder::Unspecified` for best performance. + Increasing, + + /// The blocks in the file are ordered in ascending rows from right to left. + /// When compressing in parallel, this option requires potentially large amounts of memory. + /// In that case, use `LineOrder::Unspecified` for best performance. + Decreasing, + + /// The blocks are not ordered in a specific way inside the file. + /// In multi-core file writing, this option offers the best performance. + Unspecified, +} + +/// A small `rgba` image of `i8` values that approximates the real exr image. +// TODO is this linear? +#[derive(Clone, Eq, PartialEq)] +pub struct Preview { + + /// The dimensions of the preview image. + pub size: Vec2<usize>, + + /// An array with a length of 4 × width × height. + /// The pixels are stored in `LineOrder::Increasing`. + /// Each pixel consists of the four `u8` values red, green, blue, alpha. + pub pixel_data: Vec<i8>, +} + +/// Describes how the layer is divided into tiles. +/// Specifies the size of each tile in the image +/// and whether this image contains multiple resolution levels. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub struct TileDescription { + + /// The size of each tile. + /// Stays the same number of pixels across all levels. + pub tile_size: Vec2<usize>, + + /// Whether to also store smaller versions of the image. + pub level_mode: LevelMode, + + /// Whether to round up or down when calculating Mip/Rip levels. + pub rounding_mode: RoundingMode, +} + +/// Whether to also store increasingly smaller versions of the original image. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum LevelMode { + + /// Only a single level. + Singular, + + /// Levels with a similar aspect ratio. + MipMap, + + /// Levels with all possible aspect ratios. + RipMap, +} + + +/// The raw bytes that make up a string in an exr file. +/// Each `u8` is a single char. +// will mostly be "R", "G", "B" or "deepscanlineimage" +pub type TextBytes = SmallVec<[u8; 24]>; + +/// A byte slice, interpreted as text +pub type TextSlice = [u8]; + + +use crate::io::*; +use crate::meta::{sequence_end}; +use crate::error::*; +use crate::math::{RoundingMode, Vec2}; +use half::f16; +use std::convert::{TryFrom}; +use std::borrow::Borrow; +use std::hash::{Hash, Hasher}; +use bit_field::BitField; + + +fn invalid_type() -> Error { + Error::invalid("attribute type mismatch") +} + + +impl Text { + + /// Create a `Text` from an `str` reference. + /// Returns `None` if this string contains unsupported chars. + pub fn new_or_none(string: impl AsRef<str>) -> Option<Self> { + let vec : Option<TextBytes> = string.as_ref().chars() + .map(|character| u8::try_from(character as u64).ok()) + .collect(); + + vec.map(Self::from_bytes_unchecked) + } + + /// Create a `Text` from an `str` reference. + /// Panics if this string contains unsupported chars. + pub fn new_or_panic(string: impl AsRef<str>) -> Self { + Self::new_or_none(string).expect("exr::Text contains unsupported characters") + } + + /// Create a `Text` from a slice of bytes, + /// without checking any of the bytes. + pub fn from_slice_unchecked(text: &TextSlice) -> Self { + Self::from_bytes_unchecked(SmallVec::from_slice(text)) + } + + /// Create a `Text` from the specified bytes object, + /// without checking any of the bytes. + pub fn from_bytes_unchecked(bytes: TextBytes) -> Self { + Text { bytes } + } + + /// The internal ASCII bytes this text is made of. + pub fn as_slice(&self) -> &TextSlice { + self.bytes.as_slice() + } + + /// Check whether this string is valid, adjusting `long_names` if required. + /// If `long_names` is not provided, text length will be entirely unchecked. + pub fn validate(&self, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult { + Self::validate_bytes(self.as_slice(), null_terminated, long_names) + } + + /// Check whether some bytes are valid, adjusting `long_names` if required. + /// If `long_names` is not provided, text length will be entirely unchecked. + pub fn validate_bytes(text: &TextSlice, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult { + if null_terminated && text.is_empty() { + return Err(Error::invalid("text must not be empty")); + } + + if let Some(long) = long_names { + if text.len() >= 256 { return Err(Error::invalid("text must not be longer than 255")); } + if text.len() >= 32 { *long = true; } + } + + Ok(()) + } + + /// The byte count this string would occupy if it were encoded as a null-terminated string. + pub fn null_terminated_byte_size(&self) -> usize { + self.bytes.len() + sequence_end::byte_size() + } + + /// The byte count this string would occupy if it were encoded as a size-prefixed string. + pub fn i32_sized_byte_size(&self) -> usize { + self.bytes.len() + i32::BYTE_SIZE + } + + /// Write the length of a string and then the contents with that length. + pub fn write_i32_sized<W: Write>(&self, write: &mut W) -> UnitResult { + debug_assert!(self.validate( false, None).is_ok(), "text size bug"); + i32::write(usize_to_i32(self.bytes.len()), write)?; + Self::write_unsized_bytes(self.bytes.as_slice(), write) + } + + /// Without validation, write this instance to the byte stream. + fn write_unsized_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult { + u8::write_slice(write, bytes)?; + Ok(()) + } + + /// Read the length of a string and then the contents with that length. + pub fn read_i32_sized<R: Read>(read: &mut R, max_size: usize) -> Result<Self> { + let size = i32_to_usize(i32::read(read)?, "vector size")?; + Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, Some(max_size), "text attribute length")?))) + } + + /// Read the contents with that length. + pub fn read_sized<R: Read>(read: &mut R, size: usize) -> Result<Self> { + const SMALL_SIZE: usize = 24; + + // for small strings, read into small vec without heap allocation + if size <= SMALL_SIZE { + let mut buffer = [0_u8; SMALL_SIZE]; + let data = &mut buffer[..size]; + + read.read_exact(data)?; + Ok(Text::from_bytes_unchecked(SmallVec::from_slice(data))) + } + + // for large strings, read a dynamic vec of arbitrary size + else { + Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, None, "text attribute length")?))) + } + } + + /// Write the string contents and a null-terminator. + pub fn write_null_terminated<W: Write>(&self, write: &mut W) -> UnitResult { + Self::write_null_terminated_bytes(self.as_slice(), write) + } + + /// Write the string contents and a null-terminator. + fn write_null_terminated_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult { + debug_assert!(!bytes.is_empty(), "text is empty bug"); // required to avoid mixup with "sequece_end" + + Text::write_unsized_bytes(bytes, write)?; + sequence_end::write(write)?; + Ok(()) + } + + /// Read a string until the null-terminator is found. Then skips the null-terminator. + pub fn read_null_terminated<R: Read>(read: &mut R, max_len: usize) -> Result<Self> { + let mut bytes = smallvec![ u8::read(read)? ]; // null-terminated strings are always at least 1 byte + + loop { + match u8::read(read)? { + 0 => break, + non_terminator => bytes.push(non_terminator), + } + + if bytes.len() > max_len { + return Err(Error::invalid("text too long")) + } + } + + Ok(Text { bytes }) + } + + /// Allows any text length since it is only used for attribute values, + /// but not attribute names, attribute type names, or channel names. + fn read_vec_of_i32_sized( + read: &mut PeekRead<impl Read>, + total_byte_size: usize + ) -> Result<Vec<Text>> + { + let mut result = Vec::with_capacity(2); + + // length of the text-vector can be inferred from attribute size + let mut processed_bytes = 0; + + while processed_bytes < total_byte_size { + let text = Text::read_i32_sized(read, total_byte_size)?; + processed_bytes += ::std::mem::size_of::<i32>(); // size i32 of the text + processed_bytes += text.bytes.len(); + result.push(text); + } + + // the expected byte size did not match the actual text byte size + if processed_bytes != total_byte_size { + return Err(Error::invalid("text array byte size")) + } + + Ok(result) + } + + /// Allows any text length since it is only used for attribute values, + /// but not attribute names, attribute type names, or channel names. + fn write_vec_of_i32_sized_texts<W: Write>(write: &mut W, texts: &[Text]) -> UnitResult { + // length of the text-vector can be inferred from attribute size + for text in texts { + text.write_i32_sized(write)?; + } + + Ok(()) + } + + /// The underlying bytes that represent this text. + pub fn bytes(&self) -> &[u8] { + self.bytes.as_slice() + } + + /// Iterate over the individual chars in this text, similar to `String::chars()`. + /// Does not do any heap-allocation but borrows from this instance instead. + pub fn chars(&self) -> impl '_ + Iterator<Item = char> { + self.bytes.iter().map(|&byte| byte as char) + } + + /// Compare this `exr::Text` with a plain `&str`. + pub fn eq(&self, string: &str) -> bool { + string.chars().eq(self.chars()) + } + + /// Compare this `exr::Text` with a plain `&str` ignoring capitalization. + pub fn eq_case_insensitive(&self, string: &str) -> bool { + // this is technically not working for a "turkish i", but those cannot be encoded in exr files anyways + let self_chars = self.chars().map(|char| char.to_ascii_lowercase()); + let string_chars = string.chars().flat_map(|ch| ch.to_lowercase()); + + string_chars.eq(self_chars) + } +} + +impl PartialEq<str> for Text { + fn eq(&self, other: &str) -> bool { + self.eq(other) + } +} + +impl PartialEq<Text> for str { + fn eq(&self, other: &Text) -> bool { + other.eq(self) + } +} + +impl Eq for Text {} + +impl Borrow<TextSlice> for Text { + fn borrow(&self) -> &TextSlice { + self.as_slice() + } +} + +// forwarding implementation. guarantees `text.borrow().hash() == text.hash()` (required for Borrow) +impl Hash for Text { + fn hash<H: Hasher>(&self, state: &mut H) { + self.bytes.hash(state) + } +} + +impl Into<String> for Text { + fn into(self) -> String { + self.to_string() + } +} + +impl<'s> From<&'s str> for Text { + + /// Panics if the string contains an unsupported character + fn from(str: &'s str) -> Self { + Self::new_or_panic(str) + } +} + + +/* TODO (currently conflicts with From<&str>) +impl<'s> TryFrom<&'s str> for Text { + type Error = String; + + fn try_from(value: &'s str) -> std::result::Result<Self, Self::Error> { + Text::new_or_none(value) + .ok_or_else(|| format!( + "exr::Text does not support all characters in the string `{}`", + value + )) + } +}*/ + + +impl ::std::fmt::Debug for Text { + fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + write!(f, "exr::Text(\"{}\")", self) + } +} + +// automatically implements to_string for us +impl ::std::fmt::Display for Text { + fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + use std::fmt::Write; + + for &byte in self.bytes.iter() { + f.write_char(byte as char)?; + } + + Ok(()) + } +} + + +impl ChannelList { + + /// Does not validate channel order. + pub fn new(channels: SmallVec<[ChannelDescription; 5]>) -> Self { + let uniform_sample_type = { + if let Some(first) = channels.first() { + let has_uniform_types = channels.iter().skip(1) + .all(|chan| chan.sample_type == first.sample_type); + + if has_uniform_types { Some(first.sample_type) } else { None } + } + else { None } + }; + + ChannelList { + bytes_per_pixel: channels.iter().map(|channel| channel.sample_type.bytes_per_sample()).sum(), + list: channels, uniform_sample_type, + } + } + + /// Iterate over the channels, and adds to each channel the byte offset of the channels sample type. + /// Assumes the internal channel list is properly sorted. + pub fn channels_with_byte_offset(&self) -> impl Iterator<Item=(usize, &ChannelDescription)> { + self.list.iter().scan(0, |byte_position, channel|{ + let previous_position = *byte_position; + *byte_position += channel.sample_type.bytes_per_sample(); + Some((previous_position, channel)) + }) + } + + /// Return the index of the channel with the exact name, case sensitive, or none. + /// Potentially uses less than linear time. + pub fn find_index_of_channel(&self, exact_name: &Text) -> Option<usize> { + self.list.binary_search_by_key(&exact_name.bytes(), |chan| chan.name.bytes()).ok() + } + + // TODO use this in compression methods + /*pub fn pixel_section_indices(&self, bounds: IntegerBounds) -> impl '_ + Iterator<Item=(&Channel, usize, usize)> { + (bounds.position.y() .. bounds.end().y()).flat_map(|y| { + self.list + .filter(|channel| mod_p(y, usize_to_i32(channel.sampling.1)) == 0) + .flat_map(|channel|{ + (bounds.position.x() .. bounds.end().x()) + .filter(|x| mod_p(*x, usize_to_i32(channel.sampling.0)) == 0) + .map(|x| (channel, x, y)) + }) + }) + }*/ +} + +impl BlockType { + + /// The corresponding attribute type name literal + const TYPE_NAME: &'static [u8] = type_names::TEXT; + + /// Return a `BlockType` object from the specified attribute text value. + pub fn parse(text: Text) -> Result<Self> { + match text.as_slice() { + block_type_strings::SCAN_LINE => Ok(BlockType::ScanLine), + block_type_strings::TILE => Ok(BlockType::Tile), + + block_type_strings::DEEP_SCAN_LINE => Ok(BlockType::DeepScanLine), + block_type_strings::DEEP_TILE => Ok(BlockType::DeepTile), + + _ => Err(Error::invalid("block type attribute value")), + } + } + + /// Without validation, write this instance to the byte stream. + pub fn write(&self, write: &mut impl Write) -> UnitResult { + u8::write_slice(write, self.to_text_bytes())?; + Ok(()) + } + + /// Returns the raw attribute text value this type is represented by in a file. + pub fn to_text_bytes(&self) -> &[u8] { + match self { + BlockType::ScanLine => block_type_strings::SCAN_LINE, + BlockType::Tile => block_type_strings::TILE, + BlockType::DeepScanLine => block_type_strings::DEEP_SCAN_LINE, + BlockType::DeepTile => block_type_strings::DEEP_TILE, + } + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + self.to_text_bytes().len() + } +} + + +impl IntegerBounds { + + /// Create a box with no size located at (0,0). + pub fn zero() -> Self { + Self::from_dimensions(Vec2(0, 0)) + } + + /// Create a box with a size starting at zero. + pub fn from_dimensions(size: impl Into<Vec2<usize>>) -> Self { + Self::new(Vec2(0,0), size) + } + + /// Create a box with a size and an origin point. + pub fn new(start: impl Into<Vec2<i32>>, size: impl Into<Vec2<usize>>) -> Self { + Self { position: start.into(), size: size.into() } + } + + /// Returns the top-right coordinate of the rectangle. + /// The row and column described by this vector are not included in the rectangle, + /// just like `Vec::len()`. + pub fn end(self) -> Vec2<i32> { + self.position + self.size.to_i32() // larger than max int32 is panic + } + + /// Returns the maximum coordinate that a value in this rectangle may have. + pub fn max(self) -> Vec2<i32> { + self.end() - Vec2(1,1) + } + + /// Validate this instance. + pub fn validate(&self, max_size: Option<Vec2<usize>>) -> UnitResult { + if let Some(max_size) = max_size { + if self.size.width() > max_size.width() || self.size.height() > max_size.height() { + return Err(Error::invalid("window attribute dimension value")); + } + } + + let min_i64 = Vec2(self.position.x() as i64, self.position.y() as i64); + + let max_i64 = Vec2( + self.position.x() as i64 + self.size.width() as i64, + self.position.y() as i64 + self.size.height() as i64, + ); + + Self::validate_min_max_u64(min_i64, max_i64) + } + + fn validate_min_max_u64(min: Vec2<i64>, max: Vec2<i64>) -> UnitResult { + let max_box_size_as_i64 = (i32::MAX / 2) as i64; // as defined in the original c++ library + + if max.x() >= max_box_size_as_i64 + || max.y() >= max_box_size_as_i64 + || min.x() <= -max_box_size_as_i64 + || min.y() <= -max_box_size_as_i64 + { + return Err(Error::invalid("window size exceeding integer maximum")); + } + + Ok(()) + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 4 * i32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + let Vec2(x_min, y_min) = self.position; + let Vec2(x_max, y_max) = self.max(); + + x_min.write(write)?; + y_min.write(write)?; + x_max.write(write)?; + y_max.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let x_min = i32::read(read)?; + let y_min = i32::read(read)?; + let x_max = i32::read(read)?; + let y_max = i32::read(read)?; + + let min = Vec2(x_min.min(x_max), y_min.min(y_max)); + let max = Vec2(x_min.max(x_max), y_min.max(y_max)); + + // prevent addition overflow + Self::validate_min_max_u64( + Vec2(min.x() as i64, min.y() as i64), + Vec2(max.x() as i64, max.y() as i64), + )?; + + // add one to max because the max inclusive, but the size is not + let size = Vec2(max.x() + 1 - min.x(), max.y() + 1 - min.y()); + let size = size.to_usize("box coordinates")?; + + Ok(IntegerBounds { position: min, size }) + } + + /// Create a new rectangle which is offset by the specified origin. + pub fn with_origin(self, origin: Vec2<i32>) -> Self { // TODO rename to "move" or "translate"? + IntegerBounds { position: self.position + origin, .. self } + } + + /// Returns whether the specified rectangle is equal to or inside this rectangle. + pub fn contains(self, subset: Self) -> bool { + subset.position.x() >= self.position.x() + && subset.position.y() >= self.position.y() + && subset.end().x() <= self.end().x() + && subset.end().y() <= self.end().y() + } +} + + +impl FloatRect { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 4 * f32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.min.x().write(write)?; + self.min.y().write(write)?; + self.max.x().write(write)?; + self.max.y().write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let x_min = f32::read(read)?; + let y_min = f32::read(read)?; + let x_max = f32::read(read)?; + let y_max = f32::read(read)?; + + Ok(FloatRect { + min: Vec2(x_min, y_min), + max: Vec2(x_max, y_max) + }) + } +} + +impl SampleType { + + /// How many bytes a single sample takes up. + pub fn bytes_per_sample(&self) -> usize { + match self { + SampleType::F16 => f16::BYTE_SIZE, + SampleType::F32 => f32::BYTE_SIZE, + SampleType::U32 => u32::BYTE_SIZE, + } + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + i32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + match *self { + SampleType::U32 => 0_i32, + SampleType::F16 => 1_i32, + SampleType::F32 => 2_i32, + }.write(write)?; + + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + // there's definitely going to be more than 255 different pixel types in the future + Ok(match i32::read(read)? { + 0 => SampleType::U32, + 1 => SampleType::F16, + 2 => SampleType::F32, + _ => return Err(Error::invalid("pixel type attribute value")), + }) + } +} + +impl ChannelDescription { + /// Choose whether to compress samples linearly or not, based on the channel name. + /// Luminance-based channels will be compressed differently than linear data such as alpha. + pub fn guess_quantization_linearity(name: &Text) -> bool { + !( + name.eq_case_insensitive("R") || name.eq_case_insensitive("G") || + name.eq_case_insensitive("B") || name.eq_case_insensitive("L") || + name.eq_case_insensitive("Y") || name.eq_case_insensitive("X") || + name.eq_case_insensitive("Z") + ) + } + + /// Create a new channel with the specified properties and a sampling rate of (1,1). + /// Automatically chooses the linearity for compression based on the channel name. + pub fn named(name: impl Into<Text>, sample_type: SampleType) -> Self { + let name = name.into(); + let linearity = Self::guess_quantization_linearity(&name); + Self::new(name, sample_type, linearity) + } + + /*pub fn from_name<T: Into<Sample> + Default>(name: impl Into<Text>) -> Self { + Self::named(name, T::default().into().sample_type()) + }*/ + + /// Create a new channel with the specified properties and a sampling rate of (1,1). + pub fn new(name: impl Into<Text>, sample_type: SampleType, quantize_linearly: bool) -> Self { + Self { name: name.into(), sample_type, quantize_linearly, sampling: Vec2(1, 1) } + } + + /// The count of pixels this channel contains, respecting subsampling. + // FIXME this must be used everywhere + pub fn subsampled_pixels(&self, dimensions: Vec2<usize>) -> usize { + self.subsampled_resolution(dimensions).area() + } + + /// The resolution pf this channel, respecting subsampling. + pub fn subsampled_resolution(&self, dimensions: Vec2<usize>) -> Vec2<usize> { + dimensions / self.sampling + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + self.name.null_terminated_byte_size() + + SampleType::byte_size() + + 1 // is_linear + + 3 // reserved bytes + + 2 * u32::BYTE_SIZE // sampling x, y + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + Text::write_null_terminated(&self.name, write)?; + self.sample_type.write(write)?; + + match self.quantize_linearly { + false => 0_u8, + true => 1_u8, + }.write(write)?; + + i8::write_slice(write, &[0_i8, 0_i8, 0_i8])?; + i32::write(usize_to_i32(self.sampling.x()), write)?; + i32::write(usize_to_i32(self.sampling.y()), write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let name = Text::read_null_terminated(read, 256)?; + let sample_type = SampleType::read(read)?; + + let is_linear = match u8::read(read)? { + 1 => true, + 0 => false, + _ => return Err(Error::invalid("channel linearity attribute value")), + }; + + let mut reserved = [0_i8; 3]; + i8::read_slice(read, &mut reserved)?; + + let x_sampling = i32_to_usize(i32::read(read)?, "x channel sampling")?; + let y_sampling = i32_to_usize(i32::read(read)?, "y channel sampling")?; + + Ok(ChannelDescription { + name, sample_type, + quantize_linearly: is_linear, + sampling: Vec2(x_sampling, y_sampling), + }) + } + + /// Validate this instance. + pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + self.name.validate(true, None)?; // TODO spec says this does not affect `requirements.long_names` but is that true? + + if self.sampling.x() == 0 || self.sampling.y() == 0 { + return Err(Error::invalid("zero sampling factor")); + } + + if strict && !allow_sampling && self.sampling != Vec2(1,1) { + return Err(Error::invalid("subsampling is only allowed in flat scan line images")); + } + + if data_window.position.x() % self.sampling.x() as i32 != 0 || data_window.position.y() % self.sampling.y() as i32 != 0 { + return Err(Error::invalid("channel sampling factor not dividing data window position")); + } + + if data_window.size.x() % self.sampling.x() != 0 || data_window.size.y() % self.sampling.y() != 0 { + return Err(Error::invalid("channel sampling factor not dividing data window size")); + } + + if self.sampling != Vec2(1,1) { + // TODO this must only be implemented in the crate::image module and child modules, + // should not be too difficult + + return Err(Error::unsupported("channel subsampling not supported yet")); + } + + Ok(()) + } +} + +impl ChannelList { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + self.list.iter().map(ChannelDescription::byte_size).sum::<usize>() + sequence_end::byte_size() + } + + /// Without validation, write this instance to the byte stream. + /// Assumes channels are sorted alphabetically and all values are validated. + pub fn write(&self, write: &mut impl Write) -> UnitResult { + for channel in &self.list { + channel.write(write)?; + } + + sequence_end::write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read(read: &mut PeekRead<impl Read>) -> Result<Self> { + let mut channels = SmallVec::new(); + while !sequence_end::has_come(read)? { + channels.push(ChannelDescription::read(read)?); + } + + Ok(ChannelList::new(channels)) + } + + /// Check if channels are valid and sorted. + pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + let mut iter = self.list.iter().map(|chan| chan.validate(allow_sampling, data_window, strict).map(|_| &chan.name)); + let mut previous = iter.next().ok_or(Error::invalid("at least one channel is required"))??; + + for result in iter { + let value = result?; + if strict && previous == value { return Err(Error::invalid("channel names are not unique")); } + else if previous > value { return Err(Error::invalid("channel names are not sorted alphabetically")); } + else { previous = value; } + } + + Ok(()) + } +} + +fn u8_to_decimal32(binary: u8) -> u32 { + let units = binary as u32 % 10; + let tens = (binary as u32 / 10) % 10; + units | (tens << 4) +} + +// assumes value fits into u8 +fn u8_from_decimal32(coded: u32) -> u8 { + ((coded & 0x0f) + 10 * ((coded >> 4) & 0x0f)) as u8 +} + +// https://github.com/AcademySoftwareFoundation/openexr/blob/master/src/lib/OpenEXR/ImfTimeCode.cpp +impl TimeCode { + + /// Number of bytes this would consume in an exr file. + pub const BYTE_SIZE: usize = 2 * u32::BYTE_SIZE; + + /// Returns an error if this time code is considered invalid. + pub fn validate(&self, strict: bool) -> UnitResult { + if strict { + if self.frame > 29 { Err(Error::invalid("time code frame larger than 29")) } + else if self.seconds > 59 { Err(Error::invalid("time code seconds larger than 59")) } + else if self.minutes > 59 { Err(Error::invalid("time code minutes larger than 59")) } + else if self.hours > 23 { Err(Error::invalid("time code hours larger than 23")) } + else if self.binary_groups.iter().any(|&group| group > 15) { + Err(Error::invalid("time code binary group value too large for 3 bits")) + } + else { Ok(()) } + } + else { Ok(()) } + } + + + /// Pack the SMPTE time code into a u32 value, according to TV60 packing. + /// This is the encoding which is used within a binary exr file. + pub fn pack_time_as_tv60_u32(&self) -> Result<u32> { + // validate strictly to prevent set_bit panic! below + self.validate(true)?; + + Ok(*0_u32 + .set_bits(0..6, u8_to_decimal32(self.frame)) + .set_bit(6, self.drop_frame) + .set_bit(7, self.color_frame) + .set_bits(8..15, u8_to_decimal32(self.seconds)) + .set_bit(15, self.field_phase) + .set_bits(16..23, u8_to_decimal32(self.minutes)) + .set_bit(23, self.binary_group_flags[0]) + .set_bits(24..30, u8_to_decimal32(self.hours)) + .set_bit(30, self.binary_group_flags[1]) + .set_bit(31, self.binary_group_flags[2]) + ) + } + + /// Unpack a time code from one TV60 encoded u32 value and the encoded user data. + /// This is the encoding which is used within a binary exr file. + pub fn from_tv60_time(tv60_time: u32, user_data: u32) -> Self { + Self { + frame: u8_from_decimal32(tv60_time.get_bits(0..6)), // cast cannot fail, as these are less than 8 bits + drop_frame: tv60_time.get_bit(6), + color_frame: tv60_time.get_bit(7), + seconds: u8_from_decimal32(tv60_time.get_bits(8..15)), // cast cannot fail, as these are less than 8 bits + field_phase: tv60_time.get_bit(15), + minutes: u8_from_decimal32(tv60_time.get_bits(16..23)), // cast cannot fail, as these are less than 8 bits + hours: u8_from_decimal32(tv60_time.get_bits(24..30)), // cast cannot fail, as these are less than 8 bits + binary_group_flags: [ + tv60_time.get_bit(23), + tv60_time.get_bit(30), + tv60_time.get_bit(31), + ], + + binary_groups: Self::unpack_user_data_from_u32(user_data) + } + } + + /// Pack the SMPTE time code into a u32 value, according to TV50 packing. + /// This encoding does not support the `drop_frame` flag, it will be lost. + pub fn pack_time_as_tv50_u32(&self) -> Result<u32> { + Ok(*self.pack_time_as_tv60_u32()? + + // swap some fields by replacing some bits in the packed u32 + .set_bit(6, false) + .set_bit(15, self.binary_group_flags[0]) + .set_bit(30, self.binary_group_flags[1]) + .set_bit(23, self.binary_group_flags[2]) + .set_bit(31, self.field_phase) + ) + } + + /// Unpack a time code from one TV50 encoded u32 value and the encoded user data. + /// This encoding does not support the `drop_frame` flag, it will always be false. + pub fn from_tv50_time(tv50_time: u32, user_data: u32) -> Self { + Self { + drop_frame: false, // do not use bit [6] + + // swap some fields: + field_phase: tv50_time.get_bit(31), + binary_group_flags: [ + tv50_time.get_bit(15), + tv50_time.get_bit(30), + tv50_time.get_bit(23), + ], + + .. Self::from_tv60_time(tv50_time, user_data) + } + } + + + /// Pack the SMPTE time code into a u32 value, according to FILM24 packing. + /// This encoding does not support the `drop_frame` and `color_frame` flags, they will be lost. + pub fn pack_time_as_film24_u32(&self) -> Result<u32> { + Ok(*self.pack_time_as_tv60_u32()? + .set_bit(6, false) + .set_bit(7, false) + ) + } + + /// Unpack a time code from one TV60 encoded u32 value and the encoded user data. + /// This encoding does not support the `drop_frame` and `color_frame` flags, they will always be `false`. + pub fn from_film24_time(film24_time: u32, user_data: u32) -> Self { + Self { + drop_frame: false, // bit [6] + color_frame: false, // bit [7] + .. Self::from_tv60_time(film24_time, user_data) + } + } + + + // in rust, group index starts at zero, not at one. + fn user_data_bit_indices(group_index: usize) -> std::ops::Range<usize> { + let min_bit = 4 * group_index; + min_bit .. min_bit + 4 // +4, not +3, as `Range` is exclusive + } + + /// Pack the user data `u8` array into one u32. + /// User data values are clamped to the valid range (maximum value is 4). + pub fn pack_user_data_as_u32(&self) -> u32 { + let packed = self.binary_groups.iter().enumerate().fold(0_u32, |mut packed, (group_index, group_value)| + *packed.set_bits(Self::user_data_bit_indices(group_index), *group_value.min(&15) as u32) + ); + + debug_assert_eq!(Self::unpack_user_data_from_u32(packed), self.binary_groups, "round trip user data encoding"); + packed + } + + // Unpack the encoded u32 user data to an array of bytes, each byte having a value from 0 to 4. + fn unpack_user_data_from_u32(user_data: u32) -> [u8; 8] { + (0..8).map(|group_index| user_data.get_bits(Self::user_data_bit_indices(group_index)) as u8) + .collect::<SmallVec<[u8;8]>>().into_inner().expect("array index bug") + } + + + /// Write this time code to the byte stream, encoded as TV60 integers. + /// Returns an `Error::Invalid` if the fields are out of the allowed range. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.pack_time_as_tv60_u32()?.write(write)?; // will validate + self.pack_user_data_as_u32().write(write)?; + Ok(()) + } + + /// Read the time code, without validating, extracting from TV60 integers. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let time_and_flags = u32::read(read)?; + let user_data = u32::read(read)?; + Ok(Self::from_tv60_time(time_and_flags, user_data)) + } +} + +impl Chromaticities { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 8 * f32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.red.x().write(write)?; + self.red.y().write(write)?; + + self.green.x().write(write)?; + self.green.y().write(write)?; + + self.blue.x().write(write)?; + self.blue.y().write(write)?; + + self.white.x().write(write)?; + self.white.y().write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + Ok(Chromaticities { + red: Vec2(f32::read(read)?, f32::read(read)?), + green: Vec2(f32::read(read)?, f32::read(read)?), + blue: Vec2(f32::read(read)?, f32::read(read)?), + white: Vec2(f32::read(read)?, f32::read(read)?), + }) + } +} + +impl Compression { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { u8::BYTE_SIZE } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use self::Compression::*; + match self { + Uncompressed => 0_u8, + RLE => 1_u8, + ZIP1 => 2_u8, + ZIP16 => 3_u8, + PIZ => 4_u8, + PXR24 => 5_u8, + B44 => 6_u8, + B44A => 7_u8, + DWAA(_) => 8_u8, + DWAB(_) => 9_u8, + }.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use self::Compression::*; + Ok(match u8::read(read)? { + 0 => Uncompressed, + 1 => RLE, + 2 => ZIP1, + 3 => ZIP16, + 4 => PIZ, + 5 => PXR24, + 6 => B44, + 7 => B44A, + 8 => DWAA(None), + 9 => DWAB(None), + _ => return Err(Error::unsupported("unknown compression method")), + }) + } +} + +impl EnvironmentMap { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + u8::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use self::EnvironmentMap::*; + match self { + LatitudeLongitude => 0_u8, + Cube => 1_u8 + }.write(write)?; + + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use self::EnvironmentMap::*; + Ok(match u8::read(read)? { + 0 => LatitudeLongitude, + 1 => Cube, + _ => return Err(Error::invalid("environment map attribute value")), + }) + } +} + +impl KeyCode { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 6 * i32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.film_manufacturer_code.write(write)?; + self.film_type.write(write)?; + self.film_roll_prefix.write(write)?; + self.count.write(write)?; + self.perforation_offset.write(write)?; + self.perforations_per_count.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + Ok(KeyCode { + film_manufacturer_code: i32::read(read)?, + film_type: i32::read(read)?, + film_roll_prefix: i32::read(read)?, + count: i32::read(read)?, + perforation_offset: i32::read(read)?, + perforations_per_frame: i32::read(read)?, + perforations_per_count: i32::read(read)?, + }) + } +} + +impl LineOrder { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + u8::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use self::LineOrder::*; + match self { + Increasing => 0_u8, + Decreasing => 1_u8, + Unspecified => 2_u8, + }.write(write)?; + + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use self::LineOrder::*; + Ok(match u8::read(read)? { + 0 => Increasing, + 1 => Decreasing, + 2 => Unspecified, + _ => return Err(Error::invalid("line order attribute value")), + }) + } +} + + + + +impl Preview { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + 2 * u32::BYTE_SIZE + self.pixel_data.len() + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + u32::write(self.size.width() as u32, write)?; + u32::write(self.size.height() as u32, write)?; + + i8::write_slice(write, &self.pixel_data)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let width = u32::read(read)? as usize; + let height = u32::read(read)? as usize; + + if let Some(pixel_count) = width.checked_mul(height) { + // Multiply by the number of bytes per pixel. + if let Some(byte_count) = pixel_count.checked_mul(4) { + let pixel_data = i8::read_vec( + read, + byte_count, + 1024 * 1024 * 4, + None, + "preview attribute pixel count", + )?; + + let preview = Preview { + size: Vec2(width, height), + pixel_data, + }; + + return Ok(preview); + } + } + + return Err(Error::invalid( + format!("Overflow while calculating preview image Attribute size \ + (width: {}, height: {}).", + width, + height))); + } + + /// Validate this instance. + pub fn validate(&self, strict: bool) -> UnitResult { + if strict && (self.size.area() * 4 != self.pixel_data.len()) { + return Err(Error::invalid("preview dimensions do not match content length")) + } + + Ok(()) + } +} + +impl ::std::fmt::Debug for Preview { + fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + write!(f, "Preview ({}x{} px)", self.size.width(), self.size.height()) + } +} + +impl TileDescription { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 2 * u32::BYTE_SIZE + 1 // size x,y + (level mode + rounding mode) + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + u32::write(self.tile_size.width() as u32, write)?; + u32::write(self.tile_size.height() as u32, write)?; + + let level_mode = match self.level_mode { + LevelMode::Singular => 0_u8, + LevelMode::MipMap => 1_u8, + LevelMode::RipMap => 2_u8, + }; + + let rounding_mode = match self.rounding_mode { + RoundingMode::Down => 0_u8, + RoundingMode::Up => 1_u8, + }; + + let mode: u8 = level_mode + (rounding_mode * 16); + mode.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let x_size = u32::read(read)? as usize; + let y_size = u32::read(read)? as usize; + + let mode = u8::read(read)?; + + // wow you really saved that one byte here + // mode = level_mode + (rounding_mode * 16) + let level_mode = mode & 0b00001111; // wow that works + let rounding_mode = mode >> 4; // wow that works + + let level_mode = match level_mode { + 0 => LevelMode::Singular, + 1 => LevelMode::MipMap, + 2 => LevelMode::RipMap, + _ => return Err(Error::invalid("tile description level mode")), + }; + + let rounding_mode = match rounding_mode { + 0 => RoundingMode::Down, + 1 => RoundingMode::Up, + _ => return Err(Error::invalid("tile description rounding mode")), + }; + + Ok(TileDescription { tile_size: Vec2(x_size, y_size), level_mode, rounding_mode, }) + } + + /// Validate this instance. + pub fn validate(&self) -> UnitResult { + let max = i32::MAX as i64 / 2; + + if self.tile_size.width() == 0 || self.tile_size.height() == 0 + || self.tile_size.width() as i64 >= max || self.tile_size.height() as i64 >= max + { + return Err(Error::invalid("tile size")) + } + + Ok(()) + } +} + + +/// Number of bytes this attribute would consume in an exr file. +// TODO instead of pre calculating byte size, write to a tmp buffer whose length is inspected before actually writing? +pub fn byte_size(name: &Text, value: &AttributeValue) -> usize { + name.null_terminated_byte_size() + + value.kind_name().len() + sequence_end::byte_size() + + i32::BYTE_SIZE // serialized byte size + + value.byte_size() +} + +/// Without validation, write this attribute to the byte stream. +pub fn write<W: Write>(name: &[u8], value: &AttributeValue, write: &mut W) -> UnitResult { + Text::write_null_terminated_bytes(name, write)?; + Text::write_null_terminated_bytes(value.kind_name(), write)?; + i32::write(value.byte_size() as i32, write)?; + value.write(write) +} + +/// Read the attribute without validating. The result may be `Ok` even if this single attribute is invalid. +pub fn read(read: &mut PeekRead<impl Read>, max_size: usize) -> Result<(Text, Result<AttributeValue>)> { + let name = Text::read_null_terminated(read, max_size)?; + let kind = Text::read_null_terminated(read, max_size)?; + let size = i32_to_usize(i32::read(read)?, "attribute size")?; + let value = AttributeValue::read(read, kind, size)?; + Ok((name, value)) +} + +/// Validate this attribute. +pub fn validate(name: &Text, value: &AttributeValue, long_names: &mut bool, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + name.validate(true, Some(long_names))?; // only name text has length restriction + value.validate(allow_sampling, data_window, strict) // attribute value text length is never restricted +} + + +impl AttributeValue { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + use self::AttributeValue::*; + + match *self { + IntegerBounds(_) => self::IntegerBounds::byte_size(), + FloatRect(_) => self::FloatRect::byte_size(), + + I32(_) => i32::BYTE_SIZE, + F32(_) => f32::BYTE_SIZE, + F64(_) => f64::BYTE_SIZE, + + Rational(_) => { i32::BYTE_SIZE + u32::BYTE_SIZE }, + TimeCode(_) => self::TimeCode::BYTE_SIZE, + + IntVec2(_) => { 2 * i32::BYTE_SIZE }, + FloatVec2(_) => { 2 * f32::BYTE_SIZE }, + IntVec3(_) => { 3 * i32::BYTE_SIZE }, + FloatVec3(_) => { 3 * f32::BYTE_SIZE }, + + ChannelList(ref channels) => channels.byte_size(), + Chromaticities(_) => self::Chromaticities::byte_size(), + Compression(_) => self::Compression::byte_size(), + EnvironmentMap(_) => self::EnvironmentMap::byte_size(), + + KeyCode(_) => self::KeyCode::byte_size(), + LineOrder(_) => self::LineOrder::byte_size(), + + Matrix3x3(ref value) => value.len() * f32::BYTE_SIZE, + Matrix4x4(ref value) => value.len() * f32::BYTE_SIZE, + + Preview(ref value) => value.byte_size(), + + // attribute value texts never have limited size. + // also, don't serialize size, as it can be inferred from attribute size + Text(ref value) => value.bytes.len(), + + TextVector(ref value) => value.iter().map(self::Text::i32_sized_byte_size).sum(), + TileDescription(_) => self::TileDescription::byte_size(), + Custom { ref bytes, .. } => bytes.len(), + BlockType(ref kind) => kind.byte_size() + } + } + + /// The exr name string of the type that an attribute can have. + pub fn kind_name(&self) -> &[u8] { + use self::AttributeValue::*; + use self::type_names as ty; + + match *self { + IntegerBounds(_) => ty::I32BOX2, + FloatRect(_) => ty::F32BOX2, + I32(_) => ty::I32, + F32(_) => ty::F32, + F64(_) => ty::F64, + Rational(_) => ty::RATIONAL, + TimeCode(_) => ty::TIME_CODE, + IntVec2(_) => ty::I32VEC2, + FloatVec2(_) => ty::F32VEC2, + IntVec3(_) => ty::I32VEC3, + FloatVec3(_) => ty::F32VEC3, + ChannelList(_) => ty::CHANNEL_LIST, + Chromaticities(_) => ty::CHROMATICITIES, + Compression(_) => ty::COMPRESSION, + EnvironmentMap(_) => ty::ENVIRONMENT_MAP, + KeyCode(_) => ty::KEY_CODE, + LineOrder(_) => ty::LINE_ORDER, + Matrix3x3(_) => ty::F32MATRIX3X3, + Matrix4x4(_) => ty::F32MATRIX4X4, + Preview(_) => ty::PREVIEW, + Text(_) => ty::TEXT, + TextVector(_) => ty::TEXT_VECTOR, + TileDescription(_) => ty::TILES, + Custom { ref kind, .. } => &kind.bytes, + BlockType(_) => super::BlockType::TYPE_NAME, + } + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + use self::AttributeValue::*; + match *self { + IntegerBounds(value) => value.write(write)?, + FloatRect(value) => value.write(write)?, + + I32(value) => value.write(write)?, + F32(value) => value.write(write)?, + F64(value) => value.write(write)?, + + Rational((a, b)) => { a.write(write)?; b.write(write)?; }, + TimeCode(codes) => { codes.write(write)?; }, + + IntVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; }, + FloatVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; }, + IntVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; }, + FloatVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; }, + + ChannelList(ref channels) => channels.write(write)?, + Chromaticities(ref value) => value.write(write)?, + Compression(value) => value.write(write)?, + EnvironmentMap(value) => value.write(write)?, + + KeyCode(value) => value.write(write)?, + LineOrder(value) => value.write(write)?, + + Matrix3x3(mut value) => f32::write_slice(write, &mut value)?, + Matrix4x4(mut value) => f32::write_slice(write, &mut value)?, + + Preview(ref value) => { value.write(write)?; }, + + // attribute value texts never have limited size. + // also, don't serialize size, as it can be inferred from attribute size + Text(ref value) => u8::write_slice(write, value.bytes.as_slice())?, + + TextVector(ref value) => self::Text::write_vec_of_i32_sized_texts(write, value)?, + TileDescription(ref value) => value.write(write)?, + Custom { ref bytes, .. } => u8::write_slice(write, &bytes)?, // write.write(&bytes).map(|_| ()), + BlockType(kind) => kind.write(write)? + }; + + Ok(()) + } + + /// Read the value without validating. + /// Returns `Ok(Ok(attribute))` for valid attributes. + /// Returns `Ok(Err(Error))` for invalid attributes from a valid byte source. + /// Returns `Err(Error)` for invalid byte sources, for example for invalid files. + pub fn read(read: &mut PeekRead<impl Read>, kind: Text, byte_size: usize) -> Result<Result<Self>> { + use self::AttributeValue::*; + use self::type_names as ty; + + // always read bytes + let attribute_bytes = u8::read_vec(read, byte_size, 128, None, "attribute value size")?; + // TODO no allocation for small attributes // : SmallVec<[u8; 64]> = smallvec![0; byte_size]; + + let parse_attribute = move || { + let reader = &mut attribute_bytes.as_slice(); + + Ok(match kind.bytes.as_slice() { + ty::I32BOX2 => IntegerBounds(self::IntegerBounds::read(reader)?), + ty::F32BOX2 => FloatRect(self::FloatRect::read(reader)?), + + ty::I32 => I32(i32::read(reader)?), + ty::F32 => F32(f32::read(reader)?), + ty::F64 => F64(f64::read(reader)?), + + ty::RATIONAL => Rational({ + let a = i32::read(reader)?; + let b = u32::read(reader)?; + (a, b) + }), + + ty::TIME_CODE => TimeCode(self::TimeCode::read(reader)?), + + ty::I32VEC2 => IntVec2({ + let a = i32::read(reader)?; + let b = i32::read(reader)?; + Vec2(a, b) + }), + + ty::F32VEC2 => FloatVec2({ + let a = f32::read(reader)?; + let b = f32::read(reader)?; + Vec2(a, b) + }), + + ty::I32VEC3 => IntVec3({ + let a = i32::read(reader)?; + let b = i32::read(reader)?; + let c = i32::read(reader)?; + (a, b, c) + }), + + ty::F32VEC3 => FloatVec3({ + let a = f32::read(reader)?; + let b = f32::read(reader)?; + let c = f32::read(reader)?; + (a, b, c) + }), + + ty::CHANNEL_LIST => ChannelList(self::ChannelList::read(&mut PeekRead::new(attribute_bytes.as_slice()))?), + ty::CHROMATICITIES => Chromaticities(self::Chromaticities::read(reader)?), + ty::COMPRESSION => Compression(self::Compression::read(reader)?), + ty::ENVIRONMENT_MAP => EnvironmentMap(self::EnvironmentMap::read(reader)?), + + ty::KEY_CODE => KeyCode(self::KeyCode::read(reader)?), + ty::LINE_ORDER => LineOrder(self::LineOrder::read(reader)?), + + ty::F32MATRIX3X3 => Matrix3x3({ + let mut result = [0.0_f32; 9]; + f32::read_slice(reader, &mut result)?; + result + }), + + ty::F32MATRIX4X4 => Matrix4x4({ + let mut result = [0.0_f32; 16]; + f32::read_slice(reader, &mut result)?; + result + }), + + ty::PREVIEW => Preview(self::Preview::read(reader)?), + ty::TEXT => Text(self::Text::read_sized(reader, byte_size)?), + + // the number of strings can be inferred from the total attribute size + ty::TEXT_VECTOR => TextVector(self::Text::read_vec_of_i32_sized( + &mut PeekRead::new(attribute_bytes.as_slice()), + byte_size + )?), + + ty::TILES => TileDescription(self::TileDescription::read(reader)?), + + _ => Custom { kind: kind.clone(), bytes: attribute_bytes.clone() } // TODO no clone + }) + }; + + Ok(parse_attribute()) + } + + /// Validate this instance. + pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + use self::AttributeValue::*; + + match *self { + ChannelList(ref channels) => channels.validate(allow_sampling, data_window, strict)?, + TileDescription(ref value) => value.validate()?, + Preview(ref value) => value.validate(strict)?, + TimeCode(ref time_code) => time_code.validate(strict)?, + + TextVector(ref vec) => if strict && vec.is_empty() { + return Err(Error::invalid("text vector may not be empty")) + }, + + _ => {} + }; + + Ok(()) + } + + + /// Return `Ok(i32)` if this attribute is an i32. + pub fn to_i32(&self) -> Result<i32> { + match *self { + AttributeValue::I32(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(f32)` if this attribute is an f32. + pub fn to_f32(&self) -> Result<f32> { + match *self { + AttributeValue::F32(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(Text)` if this attribute is a text. + pub fn into_text(self) -> Result<Text> { + match self { + AttributeValue::Text(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(Text)` if this attribute is a text. + pub fn to_text(&self) -> Result<&Text> { + match self { + AttributeValue::Text(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(Chromaticities)` if this attribute is a chromaticities attribute. + pub fn to_chromaticities(&self) -> Result<Chromaticities> { + match *self { + AttributeValue::Chromaticities(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(TimeCode)` if this attribute is a time code. + pub fn to_time_code(&self) -> Result<TimeCode> { + match *self { + AttributeValue::TimeCode(value) => Ok(value), + _ => Err(invalid_type()) + } + } +} + + + +/// Contains string literals identifying the type of an attribute. +pub mod type_names { + macro_rules! define_attribute_type_names { + ( $($name: ident : $value: expr),* ) => { + $( + /// The byte-string name of this attribute type as it appears in an exr file. + pub const $name: &'static [u8] = $value; + )* + }; + } + + define_attribute_type_names! { + I32BOX2: b"box2i", + F32BOX2: b"box2f", + I32: b"int", + F32: b"float", + F64: b"double", + RATIONAL: b"rational", + TIME_CODE: b"timecode", + I32VEC2: b"v2i", + F32VEC2: b"v2f", + I32VEC3: b"v3i", + F32VEC3: b"v3f", + CHANNEL_LIST: b"chlist", + CHROMATICITIES: b"chromaticities", + COMPRESSION: b"compression", + ENVIRONMENT_MAP:b"envmap", + KEY_CODE: b"keycode", + LINE_ORDER: b"lineOrder", + F32MATRIX3X3: b"m33f", + F32MATRIX4X4: b"m44f", + PREVIEW: b"preview", + TEXT: b"string", + TEXT_VECTOR: b"stringvector", + TILES: b"tiledesc" + } +} + + +#[cfg(test)] +mod test { + use super::*; + use ::std::io::Cursor; + use rand::{random, thread_rng, Rng}; + + #[test] + fn text_ord() { + for _ in 0..1024 { + let text1 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect()); + let text2 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect()); + + assert_eq!(text1.to_string().cmp(&text2.to_string()), text1.cmp(&text2), "in text {:?} vs {:?}", text1, text2); + } + } + + #[test] + fn rounding_up(){ + let round_up = RoundingMode::Up; + assert_eq!(round_up.divide(10, 10), 1, "divide equal"); + assert_eq!(round_up.divide(10, 2), 5, "divide even"); + assert_eq!(round_up.divide(10, 5), 2, "divide even"); + + assert_eq!(round_up.divide(8, 5), 2, "round up"); + assert_eq!(round_up.divide(10, 3), 4, "round up"); + assert_eq!(round_up.divide(100, 50), 2, "divide even"); + assert_eq!(round_up.divide(100, 49), 3, "round up"); + } + + #[test] + fn rounding_down(){ + let round_down = RoundingMode::Down; + assert_eq!(round_down.divide(8, 5), 1, "round down"); + assert_eq!(round_down.divide(10, 3), 3, "round down"); + assert_eq!(round_down.divide(100, 50), 2, "divide even"); + assert_eq!(round_down.divide(100, 49), 2, "round down"); + assert_eq!(round_down.divide(100, 51), 1, "round down"); + } + + #[test] + fn tile_description_write_read_roundtrip(){ + let tiles = [ + TileDescription { + tile_size: Vec2(31, 7), + level_mode: LevelMode::MipMap, + rounding_mode: RoundingMode::Down, + }, + + TileDescription { + tile_size: Vec2(0, 0), + level_mode: LevelMode::Singular, + rounding_mode: RoundingMode::Up, + }, + + TileDescription { + tile_size: Vec2(4294967294, 4294967295), + level_mode: LevelMode::RipMap, + rounding_mode: RoundingMode::Down, + }, + ]; + + for tile in &tiles { + let mut bytes = Vec::new(); + tile.write(&mut bytes).unwrap(); + + let new_tile = TileDescription::read(&mut Cursor::new(bytes)).unwrap(); + assert_eq!(*tile, new_tile, "tile round trip"); + } + } + + #[test] + fn attribute_write_read_roundtrip_and_byte_size(){ + let attributes = [ + ( + Text::from("greeting"), + AttributeValue::Text(Text::from("hello")), + ), + ( + Text::from("age"), + AttributeValue::I32(923), + ), + ( + Text::from("leg count"), + AttributeValue::F64(9.114939599234), + ), + ( + Text::from("rabbit area"), + AttributeValue::FloatRect(FloatRect { + min: Vec2(23.4234, 345.23), + max: Vec2(68623.0, 3.12425926538), + }), + ), + ( + Text::from("rabbit area int"), + AttributeValue::IntegerBounds(IntegerBounds { + position: Vec2(23, 345), + size: Vec2(68623, 3), + }), + ), + ( + Text::from("rabbit area int"), + AttributeValue::IntegerBounds(IntegerBounds { + position: Vec2(-(i32::MAX / 2 - 1), -(i32::MAX / 2 - 1)), + size: Vec2(i32::MAX as usize - 2, i32::MAX as usize - 2), + }), + ), + ( + Text::from("rabbit area int 2"), + AttributeValue::IntegerBounds(IntegerBounds { + position: Vec2(0, 0), + size: Vec2(i32::MAX as usize / 2 - 1, i32::MAX as usize / 2 - 1), + }), + ), + ( + Text::from("tests are difficult"), + AttributeValue::TextVector(vec![ + Text::from("sdoifjpsdv"), + Text::from("sdoifjpsdvxxxx"), + Text::from("sdoifjasd"), + Text::from("sdoifj"), + Text::from("sdoifjddddddddasdasd"), + ]), + ), + ( + Text::from("what should we eat tonight"), + AttributeValue::Preview(Preview { + size: Vec2(10, 30), + pixel_data: vec![31; 10 * 30 * 4], + }), + ), + ( + Text::from("leg count, again"), + AttributeValue::ChannelList(ChannelList::new(smallvec![ + ChannelDescription { + name: Text::from("Green"), + sample_type: SampleType::F16, + quantize_linearly: false, + sampling: Vec2(1,2) + }, + ChannelDescription { + name: Text::from("Red"), + sample_type: SampleType::F32, + quantize_linearly: true, + sampling: Vec2(1,2) + }, + ChannelDescription { + name: Text::from("Purple"), + sample_type: SampleType::U32, + quantize_linearly: false, + sampling: Vec2(0,0) + } + ], + )), + ), + ]; + + for (name, value) in &attributes { + let mut bytes = Vec::new(); + super::write(name.as_slice(), value, &mut bytes).unwrap(); + assert_eq!(super::byte_size(name, value), bytes.len(), "attribute.byte_size() for {:?}", (name, value)); + + let new_attribute = super::read(&mut PeekRead::new(Cursor::new(bytes)), 300).unwrap(); + assert_eq!((name.clone(), value.clone()), (new_attribute.0, new_attribute.1.unwrap()), "attribute round trip"); + } + + + { + let (name, value) = ( + Text::from("asdkaspfokpaosdkfpaokswdpoakpsfokaposdkf"), + AttributeValue::I32(0), + ); + + let mut long_names = false; + super::validate(&name, &value, &mut long_names, false, IntegerBounds::zero(), false).unwrap(); + assert!(long_names); + } + + { + let (name, value) = ( + Text::from("sdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfpo"), + AttributeValue::I32(0), + ); + + super::validate(&name, &value, &mut false, false, IntegerBounds::zero(), false).expect_err("name length check failed"); + } + } + + #[test] + fn time_code_pack(){ + let mut rng = thread_rng(); + + let codes = std::iter::repeat_with(|| TimeCode { + hours: rng.gen_range(0 .. 24), + minutes: rng.gen_range(0 .. 60), + seconds: rng.gen_range(0 .. 60), + frame: rng.gen_range(0 .. 29), + drop_frame: random(), + color_frame: random(), + field_phase: random(), + binary_group_flags: [random(),random(),random()], + binary_groups: std::iter::repeat_with(|| rng.gen_range(0 .. 16)).take(8) + .collect::<SmallVec<[u8;8]>>().into_inner().unwrap() + }); + + for code in codes.take(500) { + code.validate(true).expect("invalid timecode test input"); + + { // through tv60 packing, roundtrip + let packed_tv60 = code.pack_time_as_tv60_u32().expect("invalid timecode test input"); + let packed_user = code.pack_user_data_as_u32(); + assert_eq!(TimeCode::from_tv60_time(packed_tv60, packed_user), code); + } + + { // through bytes, roundtrip + let mut bytes = Vec::<u8>::new(); + code.write(&mut bytes).unwrap(); + let decoded = TimeCode::read(&mut bytes.as_slice()).unwrap(); + assert_eq!(code, decoded); + } + + { + let tv50_code = TimeCode { + drop_frame: false, // apparently, tv50 does not support drop frame, so do not use this value + .. code + }; + + let packed_tv50 = code.pack_time_as_tv50_u32().expect("invalid timecode test input"); + let packed_user = code.pack_user_data_as_u32(); + assert_eq!(TimeCode::from_tv50_time(packed_tv50, packed_user), tv50_code); + } + + { + let film24_code = TimeCode { + // apparently, film24 does not support some flags, so do not use those values + color_frame: false, + drop_frame: false, + .. code + }; + + let packed_film24 = code.pack_time_as_film24_u32().expect("invalid timecode test input"); + let packed_user = code.pack_user_data_as_u32(); + assert_eq!(TimeCode::from_film24_time(packed_film24, packed_user), film24_code); + } + } + } + +} |