summaryrefslogtreecommitdiff
path: root/vendor/exr/src/meta/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/meta/mod.rs')
-rw-r--r--vendor/exr/src/meta/mod.rs821
1 files changed, 821 insertions, 0 deletions
diff --git a/vendor/exr/src/meta/mod.rs b/vendor/exr/src/meta/mod.rs
new file mode 100644
index 0000000..0c36af8
--- /dev/null
+++ b/vendor/exr/src/meta/mod.rs
@@ -0,0 +1,821 @@
+
+//! Describes all meta data possible in an exr file.
+//! Contains functionality to read and write meta data from bytes.
+//! Browse the `exr::image` module to get started with the high-level interface.
+
+pub mod attribute;
+pub mod header;
+
+
+use crate::io::*;
+use ::smallvec::SmallVec;
+use self::attribute::*;
+use crate::block::chunk::{TileCoordinates, CompressedBlock};
+use crate::error::*;
+use std::fs::File;
+use std::io::{BufReader};
+use crate::math::*;
+use std::collections::{HashSet};
+use std::convert::TryFrom;
+use crate::meta::header::{Header};
+use crate::block::{BlockIndex, UncompressedBlock};
+
+
+// TODO rename MetaData to ImageInfo?
+
+/// Contains the complete meta data of an exr image.
+/// Defines how the image is split up in the file,
+/// the number and type of images and channels,
+/// and various other attributes.
+/// The usage of custom attributes is encouraged.
+#[derive(Debug, Clone, PartialEq)]
+pub struct MetaData {
+
+ /// Some flags summarizing the features that must be supported to decode the file.
+ pub requirements: Requirements,
+
+ /// One header to describe each layer in this file.
+ // TODO rename to layer descriptions?
+ pub headers: Headers,
+}
+
+
+/// List of `Header`s.
+pub type Headers = SmallVec<[Header; 3]>;
+
+/// List of `OffsetTable`s.
+pub type OffsetTables = SmallVec<[OffsetTable; 3]>;
+
+
+/// The offset table is an ordered list of indices referencing pixel data in the exr file.
+/// For each pixel tile in the image, an index exists, which points to the byte-location
+/// of the corresponding pixel data in the file. That index can be used to load specific
+/// portions of an image without processing all bytes in a file. For each header,
+/// an offset table exists with its indices ordered by `LineOrder::Increasing`.
+// If the multipart bit is unset and the chunkCount attribute is not present,
+// the number of entries in the chunk table is computed using the
+// dataWindow, tileDesc, and compression attribute.
+//
+// If the multipart bit is set, the header must contain a
+// chunkCount attribute, that contains the length of the offset table.
+pub type OffsetTable = Vec<u64>;
+
+
+/// A summary of requirements that must be met to read this exr file.
+/// Used to determine whether this file can be read by a given reader.
+/// It includes the OpenEXR version number. This library aims to support version `2.0`.
+#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)]
+pub struct Requirements {
+
+ /// This library supports reading version 1 and 2, and writing version 2.
+ // TODO write version 1 for simple images
+ pub file_format_version: u8,
+
+ /// If true, this image has tiled blocks and contains only a single layer.
+ /// If false and not deep and not multilayer, this image is a single layer image with scan line blocks.
+ pub is_single_layer_and_tiled: bool,
+
+ // in c or bad c++ this might have been relevant (omg is he allowed to say that)
+ /// Whether this file has strings with a length greater than 31.
+ /// Strings can never be longer than 255.
+ pub has_long_names: bool,
+
+ /// This image contains at least one layer with deep data.
+ pub has_deep_data: bool,
+
+ /// Whether this file contains multiple layers.
+ pub has_multiple_layers: bool,
+}
+
+
+/// Locates a rectangular section of pixels in an image.
+#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
+pub struct TileIndices {
+
+ /// Index of the tile.
+ pub location: TileCoordinates,
+
+ /// Pixel size of the tile.
+ pub size: Vec2<usize>,
+}
+
+/// How the image pixels are split up into separate blocks.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
+pub enum BlockDescription {
+
+ /// The image is divided into scan line blocks.
+ /// The number of scan lines in a block depends on the compression method.
+ ScanLines,
+
+ /// The image is divided into tile blocks.
+ /// Also specifies the size of each tile in the image
+ /// and whether this image contains multiple resolution levels.
+ Tiles(TileDescription)
+}
+
+
+/*impl TileIndices {
+ pub fn cmp(&self, other: &Self) -> Ordering {
+ match self.location.level_index.1.cmp(&other.location.level_index.1) {
+ Ordering::Equal => {
+ match self.location.level_index.0.cmp(&other.location.level_index.0) {
+ Ordering::Equal => {
+ match self.location.tile_index.1.cmp(&other.location.tile_index.1) {
+ Ordering::Equal => {
+ self.location.tile_index.0.cmp(&other.location.tile_index.0)
+ },
+
+ other => other,
+ }
+ },
+
+ other => other
+ }
+ },
+
+ other => other
+ }
+ }
+}*/
+
+impl BlockDescription {
+
+ /// Whether this image is tiled. If false, this image is divided into scan line blocks.
+ pub fn has_tiles(&self) -> bool {
+ match self {
+ BlockDescription::Tiles { .. } => true,
+ _ => false
+ }
+ }
+}
+
+
+
+
+
+/// The first four bytes of each exr file.
+/// Used to abort reading non-exr files.
+pub mod magic_number {
+ use super::*;
+
+ /// The first four bytes of each exr file.
+ pub const BYTES: [u8; 4] = [0x76, 0x2f, 0x31, 0x01];
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write(write: &mut impl Write) -> Result<()> {
+ u8::write_slice(write, &self::BYTES)
+ }
+
+ /// Consumes four bytes from the reader and returns whether the file may be an exr file.
+ // TODO check if exr before allocating BufRead
+ pub fn is_exr(read: &mut impl Read) -> Result<bool> {
+ let mut magic_num = [0; 4];
+ u8::read_slice(read, &mut magic_num)?;
+ Ok(magic_num == self::BYTES)
+ }
+
+ /// Validate this image. If it is an exr file, return `Ok(())`.
+ pub fn validate_exr(read: &mut impl Read) -> UnitResult {
+ if self::is_exr(read)? {
+ Ok(())
+
+ } else {
+ Err(Error::invalid("file identifier missing"))
+ }
+ }
+}
+
+/// A `0_u8` at the end of a sequence.
+pub mod sequence_end {
+ use super::*;
+
+ /// Number of bytes this would consume in an exr file.
+ pub fn byte_size() -> usize {
+ 1
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(write: &mut W) -> UnitResult {
+ 0_u8.write(write)
+ }
+
+ /// Peeks the next byte. If it is zero, consumes the byte and returns true.
+ pub fn has_come(read: &mut PeekRead<impl Read>) -> Result<bool> {
+ Ok(read.skip_if_eq(0)?)
+ }
+}
+
+fn missing_attribute(name: &str) -> Error {
+ Error::invalid(format!("missing or invalid {} attribute", name))
+}
+
+
+/// Compute the number of tiles required to contain all values.
+pub fn compute_block_count(full_res: usize, tile_size: usize) -> usize {
+ // round up, because if the image is not evenly divisible by the tiles,
+ // we add another tile at the end (which is only partially used)
+ RoundingMode::Up.divide(full_res, tile_size)
+}
+
+/// Compute the start position and size of a block inside a dimension.
+#[inline]
+pub fn calculate_block_position_and_size(total_size: usize, block_size: usize, block_index: usize) -> Result<(usize, usize)> {
+ let block_position = block_size * block_index;
+
+ Ok((
+ block_position,
+ calculate_block_size(total_size, block_size, block_position)?
+ ))
+}
+
+/// Calculate the size of a single block. If this is the last block,
+/// this only returns the required size, which is always smaller than the default block size.
+// TODO use this method everywhere instead of convoluted formulas
+#[inline]
+pub fn calculate_block_size(total_size: usize, block_size: usize, block_position: usize) -> Result<usize> {
+ if block_position >= total_size {
+ return Err(Error::invalid("block index"))
+ }
+
+ if block_position + block_size <= total_size {
+ Ok(block_size)
+ }
+ else {
+ Ok(total_size - block_position)
+ }
+}
+
+
+/// Calculate number of mip levels in a given resolution.
+// TODO this should be cached? log2 may be very expensive
+pub fn compute_level_count(round: RoundingMode, full_res: usize) -> usize {
+ usize::try_from(round.log2(u32::try_from(full_res).unwrap())).unwrap() + 1
+}
+
+/// Calculate the size of a single mip level by index.
+// TODO this should be cached? log2 may be very expensive
+pub fn compute_level_size(round: RoundingMode, full_res: usize, level_index: usize) -> usize {
+ assert!(level_index < std::mem::size_of::<usize>() * 8, "largest level size exceeds maximum integer value");
+ round.divide(full_res, 1 << level_index).max(1)
+}
+
+/// Iterates over all rip map level resolutions of a given size, including the indices of each level.
+/// The order of iteration conforms to `LineOrder::Increasing`.
+// TODO cache these?
+// TODO compute these directly instead of summing up an iterator?
+pub fn rip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(Vec2<usize>, Vec2<usize>)> {
+ rip_map_indices(round, max_resolution).map(move |level_indices|{
+ // TODO progressively divide instead??
+ let width = compute_level_size(round, max_resolution.width(), level_indices.x());
+ let height = compute_level_size(round, max_resolution.height(), level_indices.y());
+ (level_indices, Vec2(width, height))
+ })
+}
+
+/// Iterates over all mip map level resolutions of a given size, including the indices of each level.
+/// The order of iteration conforms to `LineOrder::Increasing`.
+// TODO cache all these level values when computing table offset size??
+// TODO compute these directly instead of summing up an iterator?
+pub fn mip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(usize, Vec2<usize>)> {
+ mip_map_indices(round, max_resolution)
+ .map(move |level_index|{
+ // TODO progressively divide instead??
+ let width = compute_level_size(round, max_resolution.width(), level_index);
+ let height = compute_level_size(round, max_resolution.height(), level_index);
+ (level_index, Vec2(width, height))
+ })
+}
+
+/// Iterates over all rip map level indices of a given size.
+/// The order of iteration conforms to `LineOrder::Increasing`.
+pub fn rip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=Vec2<usize>> {
+ let (width, height) = (
+ compute_level_count(round, max_resolution.width()),
+ compute_level_count(round, max_resolution.height())
+ );
+
+ (0..height).flat_map(move |y_level|{
+ (0..width).map(move |x_level|{
+ Vec2(x_level, y_level)
+ })
+ })
+}
+
+/// Iterates over all mip map level indices of a given size.
+/// The order of iteration conforms to `LineOrder::Increasing`.
+pub fn mip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=usize> {
+ 0..compute_level_count(round, max_resolution.width().max(max_resolution.height()))
+}
+
+/// Compute the number of chunks that an image is divided into. May be an expensive operation.
+// If not multilayer and chunkCount not present,
+// the number of entries in the chunk table is computed
+// using the dataWindow and tileDesc attributes and the compression format
+pub fn compute_chunk_count(compression: Compression, data_size: Vec2<usize>, blocks: BlockDescription) -> usize {
+
+ if let BlockDescription::Tiles(tiles) = blocks {
+ let round = tiles.rounding_mode;
+ let Vec2(tile_width, tile_height) = tiles.tile_size;
+
+ // TODO cache all these level values??
+ use crate::meta::attribute::LevelMode::*;
+ match tiles.level_mode {
+ Singular => {
+ let tiles_x = compute_block_count(data_size.width(), tile_width);
+ let tiles_y = compute_block_count(data_size.height(), tile_height);
+ tiles_x * tiles_y
+ }
+
+ MipMap => {
+ mip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| {
+ compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height)
+ }).sum()
+ },
+
+ RipMap => {
+ rip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| {
+ compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height)
+ }).sum()
+ }
+ }
+ }
+
+ // scan line blocks never have mip maps
+ else {
+ compute_block_count(data_size.height(), compression.scan_lines_per_block())
+ }
+}
+
+
+
+impl MetaData {
+
+ /// Read the exr meta data from a file.
+ /// Use `read_from_unbuffered` instead if you do not have a file.
+ /// Does not validate the meta data.
+ #[must_use]
+ pub fn read_from_file(path: impl AsRef<::std::path::Path>, pedantic: bool) -> Result<Self> {
+ Self::read_from_unbuffered(File::open(path)?, pedantic)
+ }
+
+ /// Buffer the reader and then read the exr meta data from it.
+ /// Use `read_from_buffered` if your reader is an in-memory reader.
+ /// Use `read_from_file` if you have a file path.
+ /// Does not validate the meta data.
+ #[must_use]
+ pub fn read_from_unbuffered(unbuffered: impl Read, pedantic: bool) -> Result<Self> {
+ Self::read_from_buffered(BufReader::new(unbuffered), pedantic)
+ }
+
+ /// Read the exr meta data from a reader.
+ /// Use `read_from_file` if you have a file path.
+ /// Use `read_from_unbuffered` if this is not an in-memory reader.
+ /// Does not validate the meta data.
+ #[must_use]
+ pub fn read_from_buffered(buffered: impl Read, pedantic: bool) -> Result<Self> {
+ let mut read = PeekRead::new(buffered);
+ MetaData::read_unvalidated_from_buffered_peekable(&mut read, pedantic)
+ }
+
+ /// Does __not validate__ the meta data completely.
+ #[must_use]
+ pub(crate) fn read_unvalidated_from_buffered_peekable(read: &mut PeekRead<impl Read>, pedantic: bool) -> Result<Self> {
+ magic_number::validate_exr(read)?;
+
+ let requirements = Requirements::read(read)?;
+
+ // do this check now in order to fast-fail for newer versions and features than version 2
+ requirements.validate()?;
+
+ let headers = Header::read_all(read, &requirements, pedantic)?;
+
+ // TODO check if supporting requirements 2 always implies supporting requirements 1
+ Ok(MetaData { requirements, headers })
+ }
+
+ /// Validates the meta data.
+ #[must_use]
+ pub(crate) fn read_validated_from_buffered_peekable(
+ read: &mut PeekRead<impl Read>, pedantic: bool
+ ) -> Result<Self> {
+ let meta_data = Self::read_unvalidated_from_buffered_peekable(read, !pedantic)?;
+ MetaData::validate(meta_data.headers.as_slice(), pedantic)?;
+ Ok(meta_data)
+ }
+
+ /// Validates the meta data and writes it to the stream.
+ /// If pedantic, throws errors for files that may produce errors in other exr readers.
+ /// Returns the automatically detected minimum requirement flags.
+ pub(crate) fn write_validating_to_buffered(write: &mut impl Write, headers: &[Header], pedantic: bool) -> Result<Requirements> {
+ // pedantic validation to not allow slightly invalid files
+ // that still could be read correctly in theory
+ let minimal_requirements = Self::validate(headers, pedantic)?;
+
+ magic_number::write(write)?;
+ minimal_requirements.write(write)?;
+ Header::write_all(headers, write, minimal_requirements.has_multiple_layers)?;
+ Ok(minimal_requirements)
+ }
+
+ /// Read one offset table from the reader for each header.
+ pub fn read_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<OffsetTables> {
+ headers.iter()
+ .map(|header| u64::read_vec(read, header.chunk_count, u16::MAX as usize, None, "offset table size"))
+ .collect()
+ }
+
+ /// Skip the offset tables by advancing the reader by the required byte count.
+ // TODO use seek for large (probably all) tables!
+ pub fn skip_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<usize> {
+ let chunk_count: usize = headers.iter().map(|header| header.chunk_count).sum();
+ crate::io::skip_bytes(read, chunk_count * u64::BYTE_SIZE)?; // TODO this should seek for large tables
+ Ok(chunk_count)
+ }
+
+ /// This iterator tells you the block indices of all blocks that must be in the image.
+ /// The order of the blocks depends on the `LineOrder` attribute
+ /// (unspecified line order is treated the same as increasing line order).
+ /// The blocks written to the file must be exactly in this order,
+ /// except for when the `LineOrder` is unspecified.
+ /// The index represents the block index, in increasing line order, within the header.
+ pub fn enumerate_ordered_header_block_indices(&self) -> impl '_ + Iterator<Item=(usize, BlockIndex)> {
+ crate::block::enumerate_ordered_header_block_indices(&self.headers)
+ }
+
+ /// Go through all the block indices in the correct order and call the specified closure for each of these blocks.
+ /// That way, the blocks indices are filled with real block data and returned as an iterator.
+ /// The closure returns the an `UncompressedBlock` for each block index.
+ pub fn collect_ordered_blocks<'s>(&'s self, mut get_block: impl 's + FnMut(BlockIndex) -> UncompressedBlock)
+ -> impl 's + Iterator<Item=(usize, UncompressedBlock)>
+ {
+ self.enumerate_ordered_header_block_indices().map(move |(index_in_header, block_index)|{
+ (index_in_header, get_block(block_index))
+ })
+ }
+
+ /// Go through all the block indices in the correct order and call the specified closure for each of these blocks.
+ /// That way, the blocks indices are filled with real block data and returned as an iterator.
+ /// The closure returns the byte data for each block index.
+ pub fn collect_ordered_block_data<'s>(&'s self, mut get_block_data: impl 's + FnMut(BlockIndex) -> Vec<u8>)
+ -> impl 's + Iterator<Item=(usize, UncompressedBlock)>
+ {
+ self.collect_ordered_blocks(move |block_index|
+ UncompressedBlock { index: block_index, data: get_block_data(block_index) }
+ )
+ }
+
+ /// Validates this meta data. Returns the minimal possible requirements.
+ pub fn validate(headers: &[Header], pedantic: bool) -> Result<Requirements> {
+ if headers.len() == 0 {
+ return Err(Error::invalid("at least one layer is required"));
+ }
+
+ let deep = false; // TODO deep data
+ let is_multilayer = headers.len() > 1;
+ let first_header_has_tiles = headers.iter().next()
+ .map_or(false, |header| header.blocks.has_tiles());
+
+ let mut minimal_requirements = Requirements {
+ // according to the spec, version 2 should only be necessary if `is_multilayer || deep`.
+ // but the current open exr library does not support images with version 1, so always use version 2.
+ file_format_version: 2,
+
+ // start as low as possible, later increasing if required
+ has_long_names: false,
+
+ is_single_layer_and_tiled: !is_multilayer && first_header_has_tiles,
+ has_multiple_layers: is_multilayer,
+ has_deep_data: deep,
+ };
+
+ for header in headers {
+ if header.deep { // TODO deep data (and then remove this check)
+ return Err(Error::unsupported("deep data not supported yet"));
+ }
+
+ header.validate(is_multilayer, &mut minimal_requirements.has_long_names, pedantic)?;
+ }
+
+ // TODO validation fn!
+ /*if let Some(max) = max_pixel_bytes {
+ let byte_size: usize = headers.iter()
+ .map(|header| header.total_pixel_bytes())
+ .sum();
+
+ if byte_size > max {
+ return Err(Error::invalid("image larger than specified maximum"));
+ }
+ }*/
+
+ if pedantic { // check for duplicate header names
+ let mut header_names = HashSet::with_capacity(headers.len());
+ for header in headers {
+ if !header_names.insert(&header.own_attributes.layer_name) {
+ return Err(Error::invalid(format!(
+ "duplicate layer name: `{}`",
+ header.own_attributes.layer_name.as_ref().expect("header validation bug")
+ )));
+ }
+ }
+ }
+
+ if pedantic {
+ let must_share = headers.iter().flat_map(|header| header.own_attributes.other.iter())
+ .any(|(_, value)| value.to_chromaticities().is_ok() || value.to_time_code().is_ok());
+
+ if must_share {
+ return Err(Error::invalid("chromaticities and time code attributes must must not exist in own attributes but shared instead"));
+ }
+ }
+
+ if pedantic && headers.len() > 1 { // check for attributes that should not differ in between headers
+ let first_header = headers.first().expect("header count validation bug");
+ let first_header_attributes = &first_header.shared_attributes;
+
+ for header in &headers[1..] {
+ if &header.shared_attributes != first_header_attributes {
+ return Err(Error::invalid("display window, pixel aspect, chromaticities, and time code attributes must be equal for all headers"))
+ }
+ }
+ }
+
+ debug_assert!(minimal_requirements.validate().is_ok(), "inferred requirements are invalid");
+ Ok(minimal_requirements)
+ }
+}
+
+
+
+
+impl Requirements {
+
+ // this is actually used for control flow, as the number of headers may be 1 in a multilayer file
+ /// Is this file declared to contain multiple layers?
+ pub fn is_multilayer(&self) -> bool {
+ self.has_multiple_layers
+ }
+
+ /// Read the value without validating.
+ pub fn read<R: Read>(read: &mut R) -> Result<Self> {
+ use ::bit_field::BitField;
+
+ let version_and_flags = u32::read(read)?;
+
+ // take the 8 least significant bits, they contain the file format version number
+ let version = (version_and_flags & 0x000F) as u8;
+
+ // the 24 most significant bits are treated as a set of boolean flags
+ let is_single_tile = version_and_flags.get_bit(9);
+ let has_long_names = version_and_flags.get_bit(10);
+ let has_deep_data = version_and_flags.get_bit(11);
+ let has_multiple_layers = version_and_flags.get_bit(12);
+
+ // all remaining bits except 9, 10, 11 and 12 are reserved and should be 0
+ // if a file has any of these bits set to 1, it means this file contains
+ // a feature that we don't support
+ let unknown_flags = version_and_flags >> 13; // all flags excluding the 12 bits we already parsed
+
+ if unknown_flags != 0 { // TODO test if this correctly detects unsupported files
+ return Err(Error::unsupported("too new file feature flags"));
+ }
+
+ let version = Requirements {
+ file_format_version: version,
+ is_single_layer_and_tiled: is_single_tile, has_long_names,
+ has_deep_data, has_multiple_layers,
+ };
+
+ Ok(version)
+ }
+
+ /// Without validation, write this instance to the byte stream.
+ pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
+ use ::bit_field::BitField;
+
+ // the 8 least significant bits contain the file format version number
+ // and the flags are set to 0
+ let mut version_and_flags = self.file_format_version as u32;
+
+ // the 24 most significant bits are treated as a set of boolean flags
+ version_and_flags.set_bit(9, self.is_single_layer_and_tiled);
+ version_and_flags.set_bit(10, self.has_long_names);
+ version_and_flags.set_bit(11, self.has_deep_data);
+ version_and_flags.set_bit(12, self.has_multiple_layers);
+ // all remaining bits except 9, 10, 11 and 12 are reserved and should be 0
+
+ version_and_flags.write(write)?;
+ Ok(())
+ }
+
+ /// Validate this instance.
+ pub fn validate(&self) -> UnitResult {
+ if self.file_format_version == 2 {
+
+ match (
+ self.is_single_layer_and_tiled, self.has_deep_data, self.has_multiple_layers,
+ self.file_format_version
+ ) {
+ // Single-part scan line. One normal scan line image.
+ (false, false, false, 1..=2) => Ok(()),
+
+ // Single-part tile. One normal tiled image.
+ (true, false, false, 1..=2) => Ok(()),
+
+ // Multi-part (new in 2.0).
+ // Multiple normal images (scan line and/or tiled).
+ (false, false, true, 2) => Ok(()),
+
+ // Single-part deep data (new in 2.0).
+ // One deep tile or deep scan line part
+ (false, true, false, 2) => Ok(()),
+
+ // Multi-part deep data (new in 2.0).
+ // Multiple parts (any combination of:
+ // tiles, scan lines, deep tiles and/or deep scan lines).
+ (false, true, true, 2) => Ok(()),
+
+ _ => Err(Error::invalid("file feature flags"))
+ }
+ }
+ else {
+ Err(Error::unsupported("file versions other than 2.0 are not supported"))
+ }
+ }
+}
+
+
+#[cfg(test)]
+mod test {
+ use super::*;
+ use crate::meta::header::{ImageAttributes, LayerAttributes};
+
+ #[test]
+ fn round_trip_requirements() {
+ let requirements = Requirements {
+ file_format_version: 2,
+ is_single_layer_and_tiled: true,
+ has_long_names: false,
+ has_deep_data: true,
+ has_multiple_layers: false
+ };
+
+ let mut data: Vec<u8> = Vec::new();
+ requirements.write(&mut data).unwrap();
+ let read = Requirements::read(&mut data.as_slice()).unwrap();
+ assert_eq!(requirements, read);
+ }
+
+ #[test]
+ fn round_trip(){
+ let header = Header {
+ channels: ChannelList::new(smallvec![
+ ChannelDescription {
+ name: Text::from("main"),
+ sample_type: SampleType::U32,
+ quantize_linearly: false,
+ sampling: Vec2(1, 1)
+ }
+ ],
+ ),
+ compression: Compression::Uncompressed,
+ line_order: LineOrder::Increasing,
+ deep_data_version: Some(1),
+ chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
+ max_samples_per_pixel: Some(4),
+ shared_attributes: ImageAttributes {
+ pixel_aspect: 3.0,
+ .. ImageAttributes::new(IntegerBounds {
+ position: Vec2(2,1),
+ size: Vec2(11, 9)
+ })
+ },
+
+ blocks: BlockDescription::ScanLines,
+ deep: false,
+ layer_size: Vec2(2000, 333),
+ own_attributes: LayerAttributes {
+ layer_name: Some(Text::from("test name lol")),
+ layer_position: Vec2(3, -5),
+ screen_window_center: Vec2(0.3, 99.0),
+ screen_window_width: 0.19,
+ .. Default::default()
+ }
+ };
+
+ let meta = MetaData {
+ requirements: Requirements {
+ file_format_version: 2,
+ is_single_layer_and_tiled: false,
+ has_long_names: false,
+ has_deep_data: false,
+ has_multiple_layers: false
+ },
+ headers: smallvec![ header ],
+ };
+
+
+ let mut data: Vec<u8> = Vec::new();
+ MetaData::write_validating_to_buffered(&mut data, meta.headers.as_slice(), true).unwrap();
+ let meta2 = MetaData::read_from_buffered(data.as_slice(), false).unwrap();
+ MetaData::validate(meta2.headers.as_slice(), true).unwrap();
+ assert_eq!(meta, meta2);
+ }
+
+ #[test]
+ fn infer_low_requirements() {
+ let header_version_1_short_names = Header {
+ channels: ChannelList::new(smallvec![
+ ChannelDescription {
+ name: Text::from("main"),
+ sample_type: SampleType::U32,
+ quantize_linearly: false,
+ sampling: Vec2(1, 1)
+ }
+ ],
+ ),
+ compression: Compression::Uncompressed,
+ line_order: LineOrder::Increasing,
+ deep_data_version: Some(1),
+ chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
+ max_samples_per_pixel: Some(4),
+ shared_attributes: ImageAttributes {
+ pixel_aspect: 3.0,
+ .. ImageAttributes::new(IntegerBounds {
+ position: Vec2(2,1),
+ size: Vec2(11, 9)
+ })
+ },
+ blocks: BlockDescription::ScanLines,
+ deep: false,
+ layer_size: Vec2(2000, 333),
+ own_attributes: LayerAttributes {
+ other: vec![
+ (Text::try_from("x").unwrap(), AttributeValue::F32(3.0)),
+ (Text::try_from("y").unwrap(), AttributeValue::F32(-1.0)),
+ ].into_iter().collect(),
+ .. Default::default()
+ }
+ };
+
+ let low_requirements = MetaData::validate(
+ &[header_version_1_short_names], true
+ ).unwrap();
+
+ assert_eq!(low_requirements.has_long_names, false);
+ assert_eq!(low_requirements.file_format_version, 2); // always have version 2
+ assert_eq!(low_requirements.has_deep_data, false);
+ assert_eq!(low_requirements.has_multiple_layers, false);
+ }
+
+ #[test]
+ fn infer_high_requirements() {
+ let header_version_2_long_names = Header {
+ channels: ChannelList::new(
+ smallvec![
+ ChannelDescription {
+ name: Text::new_or_panic("main"),
+ sample_type: SampleType::U32,
+ quantize_linearly: false,
+ sampling: Vec2(1, 1)
+ }
+ ],
+ ),
+ compression: Compression::Uncompressed,
+ line_order: LineOrder::Increasing,
+ deep_data_version: Some(1),
+ chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
+ max_samples_per_pixel: Some(4),
+ shared_attributes: ImageAttributes {
+ pixel_aspect: 3.0,
+ .. ImageAttributes::new(IntegerBounds {
+ position: Vec2(2,1),
+ size: Vec2(11, 9)
+ })
+ },
+ blocks: BlockDescription::ScanLines,
+ deep: false,
+ layer_size: Vec2(2000, 333),
+ own_attributes: LayerAttributes {
+ layer_name: Some(Text::new_or_panic("oasdasoidfj")),
+ other: vec![
+ (Text::new_or_panic("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"), AttributeValue::F32(3.0)),
+ (Text::new_or_panic("y"), AttributeValue::F32(-1.0)),
+ ].into_iter().collect(),
+ .. Default::default()
+ }
+ };
+
+ let mut layer_2 = header_version_2_long_names.clone();
+ layer_2.own_attributes.layer_name = Some(Text::new_or_panic("anythingelse"));
+
+ let low_requirements = MetaData::validate(
+ &[header_version_2_long_names, layer_2], true
+ ).unwrap();
+
+ assert_eq!(low_requirements.has_long_names, true);
+ assert_eq!(low_requirements.file_format_version, 2);
+ assert_eq!(low_requirements.has_deep_data, false);
+ assert_eq!(low_requirements.has_multiple_layers, true);
+ }
+}
+