diff options
Diffstat (limited to 'vendor/exr/src/meta')
-rw-r--r-- | vendor/exr/src/meta/attribute.rs | 2226 | ||||
-rw-r--r-- | vendor/exr/src/meta/header.rs | 1197 | ||||
-rw-r--r-- | vendor/exr/src/meta/mod.rs | 821 |
3 files changed, 4244 insertions, 0 deletions
diff --git a/vendor/exr/src/meta/attribute.rs b/vendor/exr/src/meta/attribute.rs new file mode 100644 index 0000000..5b71e82 --- /dev/null +++ b/vendor/exr/src/meta/attribute.rs @@ -0,0 +1,2226 @@ + +//! Contains all meta data attributes. +//! Each layer can have any number of [`Attribute`]s, including custom attributes. + +use smallvec::SmallVec; + + +/// Contains one of all possible attributes. +/// Includes a variant for custom attributes. +#[derive(Debug, Clone, PartialEq)] +pub enum AttributeValue { + + /// Channel meta data. + ChannelList(ChannelList), + + /// Color space definition. + Chromaticities(Chromaticities), + + /// Compression method of this layer. + Compression(Compression), + + /// This image is an environment map. + EnvironmentMap(EnvironmentMap), + + /// Film roll information. + KeyCode(KeyCode), + + /// Order of the bocks in the file. + LineOrder(LineOrder), + + /// A 3x3 matrix of floats. + Matrix3x3(Matrix3x3), + + /// A 4x4 matrix of floats. + Matrix4x4(Matrix4x4), + + /// 8-bit rgba Preview of the image. + Preview(Preview), + + /// An integer dividend and divisor. + Rational(Rational), + + /// Deep or flat and tiled or scan line. + BlockType(BlockType), + + /// List of texts. + TextVector(Vec<Text>), + + /// How to tile up the image. + TileDescription(TileDescription), + + /// Timepoint and more. + TimeCode(TimeCode), + + /// A string of byte-chars. + Text(Text), + + /// 64-bit float + F64(f64), + + /// 32-bit float + F32(f32), + + /// 32-bit signed integer + I32(i32), + + /// 2D integer rectangle. + IntegerBounds(IntegerBounds), + + /// 2D float rectangle. + FloatRect(FloatRect), + + /// 2D integer vector. + IntVec2(Vec2<i32>), + + /// 2D float vector. + FloatVec2(Vec2<f32>), + + /// 3D integer vector. + IntVec3((i32, i32, i32)), + + /// 3D float vector. + FloatVec3((f32, f32, f32)), + + /// A custom attribute. + /// Contains the type name of this value. + Custom { + + /// The name of the type this attribute is an instance of. + kind: Text, + + /// The value, stored in little-endian byte order, of the value. + /// Use the `exr::io::Data` trait to extract binary values from this vector. + bytes: Vec<u8> + }, +} + +/// A byte array with each byte being a char. +/// This is not UTF an must be constructed from a standard string. +// TODO is this ascii? use a rust ascii crate? +#[derive(Clone, PartialEq, Ord, PartialOrd, Default)] // hash implemented manually +pub struct Text { + bytes: TextBytes, +} + +/// Contains time information for this frame within a sequence. +/// Also defined methods to compile this information into a +/// `TV60`, `TV50` or `Film24` bit sequence, packed into `u32`. +/// +/// Satisfies the [SMPTE standard 12M-1999](https://en.wikipedia.org/wiki/SMPTE_timecode). +/// For more in-depth information, see [philrees.co.uk/timecode](http://www.philrees.co.uk/articles/timecode.htm). +#[derive(Copy, Debug, Clone, Eq, PartialEq, Hash, Default)] +pub struct TimeCode { + + /// Hours 0 - 23 are valid. + pub hours: u8, + + /// Minutes 0 - 59 are valid. + pub minutes: u8, + + /// Seconds 0 - 59 are valid. + pub seconds: u8, + + /// Frame Indices 0 - 29 are valid. + pub frame: u8, + + /// Whether this is a drop frame. + pub drop_frame: bool, + + /// Whether this is a color frame. + pub color_frame: bool, + + /// Field Phase. + pub field_phase: bool, + + /// Flags for `TimeCode.binary_groups`. + pub binary_group_flags: [bool; 3], + + /// The user-defined control codes. + /// Every entry in this array can use at most 3 bits. + /// This results in a maximum value of 15, including 0, for each `u8`. + pub binary_groups: [u8; 8] +} + +/// layer type, specifies block type and deepness. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum BlockType { + + /// Corresponds to the string value `scanlineimage`. + ScanLine, + + /// Corresponds to the string value `tiledimage`. + Tile, + + /// Corresponds to the string value `deepscanline`. + DeepScanLine, + + /// Corresponds to the string value `deeptile`. + DeepTile, +} + +/// The string literals used to represent a `BlockType` in a file. +pub mod block_type_strings { + + /// Type attribute text value of flat scan lines + pub const SCAN_LINE: &'static [u8] = b"scanlineimage"; + + /// Type attribute text value of flat tiles + pub const TILE: &'static [u8] = b"tiledimage"; + + /// Type attribute text value of deep scan lines + pub const DEEP_SCAN_LINE: &'static [u8] = b"deepscanline"; + + /// Type attribute text value of deep tiles + pub const DEEP_TILE: &'static [u8] = b"deeptile"; +} + + +pub use crate::compression::Compression; + +/// The integer rectangle describing where an layer is placed on the infinite 2D global space. +pub type DataWindow = IntegerBounds; + +/// The integer rectangle limiting which part of the infinite 2D global space should be displayed. +pub type DisplayWindow = IntegerBounds; + +/// An integer dividend and divisor, together forming a ratio. +pub type Rational = (i32, u32); + +/// A float matrix with four rows and four columns. +pub type Matrix4x4 = [f32; 4*4]; + +/// A float matrix with three rows and three columns. +pub type Matrix3x3 = [f32; 3*3]; + +/// A rectangular section anywhere in 2D integer space. +/// Valid from minimum coordinate (including) `-1,073,741,822` +/// to maximum coordinate (including) `1,073,741,822`, the value of (`i32::MAX/2 -1`). +#[derive(Clone, Copy, Debug, Eq, PartialEq, Default, Hash)] +pub struct IntegerBounds { + + /// The top left corner of this rectangle. + /// The `Box2I32` includes this pixel if the size is not zero. + pub position: Vec2<i32>, + + /// How many pixels to include in this `Box2I32`. + /// Extends to the right and downwards. + /// Does not include the actual boundary, just like `Vec::len()`. + pub size: Vec2<usize>, +} + +/// A rectangular section anywhere in 2D float space. +#[derive(Clone, Copy, Debug, PartialEq)] +pub struct FloatRect { + + /// The top left corner location of the rectangle (inclusive) + pub min: Vec2<f32>, + + /// The bottom right corner location of the rectangle (inclusive) + pub max: Vec2<f32> +} + +/// A List of channels. Channels must be sorted alphabetically. +#[derive(Clone, Debug, Eq, PartialEq, Hash)] +pub struct ChannelList { + + /// The channels in this list. + pub list: SmallVec<[ChannelDescription; 5]>, + + /// The number of bytes that one pixel in this image needs. + // FIXME this needs to account for subsampling anywhere? + pub bytes_per_pixel: usize, // FIXME only makes sense for flat images! + + /// The sample type of all channels, if all channels have the same type. + pub uniform_sample_type: Option<SampleType>, +} + +/// A single channel in an layer. +/// Does not contain the actual pixel data, +/// but instead merely describes it. +#[derive(Clone, Debug, Eq, PartialEq, Hash)] +pub struct ChannelDescription { + + /// One of "R", "G", or "B" most of the time. + pub name: Text, + + /// U32, F16 or F32. + pub sample_type: SampleType, + + /// This attribute only tells lossy compression methods + /// whether this value should be quantized exponentially or linearly. + /// + /// Should be `false` for red, green, or blue channels. + /// Should be `true` for hue, chroma, saturation, or alpha channels. + pub quantize_linearly: bool, + + /// How many of the samples are skipped compared to the other channels in this layer. + /// + /// Can be used for chroma subsampling for manual lossy data compression. + /// Values other than 1 are allowed only in flat, scan-line based images. + /// If an image is deep or tiled, x and y sampling rates for all of its channels must be 1. + pub sampling: Vec2<usize>, +} + +/// The type of samples in this channel. +#[derive(Clone, Debug, Eq, PartialEq, Copy, Hash)] +pub enum SampleType { + + /// This channel contains 32-bit unsigned int values. + U32, + + /// This channel contains 16-bit float values. + F16, + + /// This channel contains 32-bit float values. + F32, +} + +/// The color space of the pixels. +/// +/// If a file doesn't have a chromaticities attribute, display software +/// should assume that the file's primaries and the white point match `Rec. ITU-R BT.709-3`. +#[derive(Debug, Clone, Copy, PartialEq)] +pub struct Chromaticities { + + /// "Red" location on the CIE XY chromaticity diagram. + pub red: Vec2<f32>, + + /// "Green" location on the CIE XY chromaticity diagram. + pub green: Vec2<f32>, + + /// "Blue" location on the CIE XY chromaticity diagram. + pub blue: Vec2<f32>, + + /// "White" location on the CIE XY chromaticity diagram. + pub white: Vec2<f32> +} + +/// If this attribute is present, it describes +/// how this texture should be projected onto an environment. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum EnvironmentMap { + + /// This image is an environment map projected like a world map. + LatitudeLongitude, + + /// This image contains the six sides of a cube. + Cube, +} + +/// Uniquely identifies a motion picture film frame. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub struct KeyCode { + + /// Identifies a film manufacturer. + pub film_manufacturer_code: i32, + + /// Identifies a film type. + pub film_type: i32, + + /// Specifies the film roll prefix. + pub film_roll_prefix: i32, + + /// Specifies the film count. + pub count: i32, + + /// Specifies the perforation offset. + pub perforation_offset: i32, + + /// Specifies the perforation count of each single frame. + pub perforations_per_frame: i32, + + /// Specifies the perforation count of each single film. + pub perforations_per_count: i32, +} + +/// In what order the `Block`s of pixel data appear in a file. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum LineOrder { + + /// The blocks in the file are ordered in descending rows from left to right. + /// When compressing in parallel, this option requires potentially large amounts of memory. + /// In that case, use `LineOrder::Unspecified` for best performance. + Increasing, + + /// The blocks in the file are ordered in ascending rows from right to left. + /// When compressing in parallel, this option requires potentially large amounts of memory. + /// In that case, use `LineOrder::Unspecified` for best performance. + Decreasing, + + /// The blocks are not ordered in a specific way inside the file. + /// In multi-core file writing, this option offers the best performance. + Unspecified, +} + +/// A small `rgba` image of `i8` values that approximates the real exr image. +// TODO is this linear? +#[derive(Clone, Eq, PartialEq)] +pub struct Preview { + + /// The dimensions of the preview image. + pub size: Vec2<usize>, + + /// An array with a length of 4 × width × height. + /// The pixels are stored in `LineOrder::Increasing`. + /// Each pixel consists of the four `u8` values red, green, blue, alpha. + pub pixel_data: Vec<i8>, +} + +/// Describes how the layer is divided into tiles. +/// Specifies the size of each tile in the image +/// and whether this image contains multiple resolution levels. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub struct TileDescription { + + /// The size of each tile. + /// Stays the same number of pixels across all levels. + pub tile_size: Vec2<usize>, + + /// Whether to also store smaller versions of the image. + pub level_mode: LevelMode, + + /// Whether to round up or down when calculating Mip/Rip levels. + pub rounding_mode: RoundingMode, +} + +/// Whether to also store increasingly smaller versions of the original image. +#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] +pub enum LevelMode { + + /// Only a single level. + Singular, + + /// Levels with a similar aspect ratio. + MipMap, + + /// Levels with all possible aspect ratios. + RipMap, +} + + +/// The raw bytes that make up a string in an exr file. +/// Each `u8` is a single char. +// will mostly be "R", "G", "B" or "deepscanlineimage" +pub type TextBytes = SmallVec<[u8; 24]>; + +/// A byte slice, interpreted as text +pub type TextSlice = [u8]; + + +use crate::io::*; +use crate::meta::{sequence_end}; +use crate::error::*; +use crate::math::{RoundingMode, Vec2}; +use half::f16; +use std::convert::{TryFrom}; +use std::borrow::Borrow; +use std::hash::{Hash, Hasher}; +use bit_field::BitField; + + +fn invalid_type() -> Error { + Error::invalid("attribute type mismatch") +} + + +impl Text { + + /// Create a `Text` from an `str` reference. + /// Returns `None` if this string contains unsupported chars. + pub fn new_or_none(string: impl AsRef<str>) -> Option<Self> { + let vec : Option<TextBytes> = string.as_ref().chars() + .map(|character| u8::try_from(character as u64).ok()) + .collect(); + + vec.map(Self::from_bytes_unchecked) + } + + /// Create a `Text` from an `str` reference. + /// Panics if this string contains unsupported chars. + pub fn new_or_panic(string: impl AsRef<str>) -> Self { + Self::new_or_none(string).expect("exr::Text contains unsupported characters") + } + + /// Create a `Text` from a slice of bytes, + /// without checking any of the bytes. + pub fn from_slice_unchecked(text: &TextSlice) -> Self { + Self::from_bytes_unchecked(SmallVec::from_slice(text)) + } + + /// Create a `Text` from the specified bytes object, + /// without checking any of the bytes. + pub fn from_bytes_unchecked(bytes: TextBytes) -> Self { + Text { bytes } + } + + /// The internal ASCII bytes this text is made of. + pub fn as_slice(&self) -> &TextSlice { + self.bytes.as_slice() + } + + /// Check whether this string is valid, adjusting `long_names` if required. + /// If `long_names` is not provided, text length will be entirely unchecked. + pub fn validate(&self, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult { + Self::validate_bytes(self.as_slice(), null_terminated, long_names) + } + + /// Check whether some bytes are valid, adjusting `long_names` if required. + /// If `long_names` is not provided, text length will be entirely unchecked. + pub fn validate_bytes(text: &TextSlice, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult { + if null_terminated && text.is_empty() { + return Err(Error::invalid("text must not be empty")); + } + + if let Some(long) = long_names { + if text.len() >= 256 { return Err(Error::invalid("text must not be longer than 255")); } + if text.len() >= 32 { *long = true; } + } + + Ok(()) + } + + /// The byte count this string would occupy if it were encoded as a null-terminated string. + pub fn null_terminated_byte_size(&self) -> usize { + self.bytes.len() + sequence_end::byte_size() + } + + /// The byte count this string would occupy if it were encoded as a size-prefixed string. + pub fn i32_sized_byte_size(&self) -> usize { + self.bytes.len() + i32::BYTE_SIZE + } + + /// Write the length of a string and then the contents with that length. + pub fn write_i32_sized<W: Write>(&self, write: &mut W) -> UnitResult { + debug_assert!(self.validate( false, None).is_ok(), "text size bug"); + i32::write(usize_to_i32(self.bytes.len()), write)?; + Self::write_unsized_bytes(self.bytes.as_slice(), write) + } + + /// Without validation, write this instance to the byte stream. + fn write_unsized_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult { + u8::write_slice(write, bytes)?; + Ok(()) + } + + /// Read the length of a string and then the contents with that length. + pub fn read_i32_sized<R: Read>(read: &mut R, max_size: usize) -> Result<Self> { + let size = i32_to_usize(i32::read(read)?, "vector size")?; + Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, Some(max_size), "text attribute length")?))) + } + + /// Read the contents with that length. + pub fn read_sized<R: Read>(read: &mut R, size: usize) -> Result<Self> { + const SMALL_SIZE: usize = 24; + + // for small strings, read into small vec without heap allocation + if size <= SMALL_SIZE { + let mut buffer = [0_u8; SMALL_SIZE]; + let data = &mut buffer[..size]; + + read.read_exact(data)?; + Ok(Text::from_bytes_unchecked(SmallVec::from_slice(data))) + } + + // for large strings, read a dynamic vec of arbitrary size + else { + Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, None, "text attribute length")?))) + } + } + + /// Write the string contents and a null-terminator. + pub fn write_null_terminated<W: Write>(&self, write: &mut W) -> UnitResult { + Self::write_null_terminated_bytes(self.as_slice(), write) + } + + /// Write the string contents and a null-terminator. + fn write_null_terminated_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult { + debug_assert!(!bytes.is_empty(), "text is empty bug"); // required to avoid mixup with "sequece_end" + + Text::write_unsized_bytes(bytes, write)?; + sequence_end::write(write)?; + Ok(()) + } + + /// Read a string until the null-terminator is found. Then skips the null-terminator. + pub fn read_null_terminated<R: Read>(read: &mut R, max_len: usize) -> Result<Self> { + let mut bytes = smallvec![ u8::read(read)? ]; // null-terminated strings are always at least 1 byte + + loop { + match u8::read(read)? { + 0 => break, + non_terminator => bytes.push(non_terminator), + } + + if bytes.len() > max_len { + return Err(Error::invalid("text too long")) + } + } + + Ok(Text { bytes }) + } + + /// Allows any text length since it is only used for attribute values, + /// but not attribute names, attribute type names, or channel names. + fn read_vec_of_i32_sized( + read: &mut PeekRead<impl Read>, + total_byte_size: usize + ) -> Result<Vec<Text>> + { + let mut result = Vec::with_capacity(2); + + // length of the text-vector can be inferred from attribute size + let mut processed_bytes = 0; + + while processed_bytes < total_byte_size { + let text = Text::read_i32_sized(read, total_byte_size)?; + processed_bytes += ::std::mem::size_of::<i32>(); // size i32 of the text + processed_bytes += text.bytes.len(); + result.push(text); + } + + // the expected byte size did not match the actual text byte size + if processed_bytes != total_byte_size { + return Err(Error::invalid("text array byte size")) + } + + Ok(result) + } + + /// Allows any text length since it is only used for attribute values, + /// but not attribute names, attribute type names, or channel names. + fn write_vec_of_i32_sized_texts<W: Write>(write: &mut W, texts: &[Text]) -> UnitResult { + // length of the text-vector can be inferred from attribute size + for text in texts { + text.write_i32_sized(write)?; + } + + Ok(()) + } + + /// The underlying bytes that represent this text. + pub fn bytes(&self) -> &[u8] { + self.bytes.as_slice() + } + + /// Iterate over the individual chars in this text, similar to `String::chars()`. + /// Does not do any heap-allocation but borrows from this instance instead. + pub fn chars(&self) -> impl '_ + Iterator<Item = char> { + self.bytes.iter().map(|&byte| byte as char) + } + + /// Compare this `exr::Text` with a plain `&str`. + pub fn eq(&self, string: &str) -> bool { + string.chars().eq(self.chars()) + } + + /// Compare this `exr::Text` with a plain `&str` ignoring capitalization. + pub fn eq_case_insensitive(&self, string: &str) -> bool { + // this is technically not working for a "turkish i", but those cannot be encoded in exr files anyways + let self_chars = self.chars().map(|char| char.to_ascii_lowercase()); + let string_chars = string.chars().flat_map(|ch| ch.to_lowercase()); + + string_chars.eq(self_chars) + } +} + +impl PartialEq<str> for Text { + fn eq(&self, other: &str) -> bool { + self.eq(other) + } +} + +impl PartialEq<Text> for str { + fn eq(&self, other: &Text) -> bool { + other.eq(self) + } +} + +impl Eq for Text {} + +impl Borrow<TextSlice> for Text { + fn borrow(&self) -> &TextSlice { + self.as_slice() + } +} + +// forwarding implementation. guarantees `text.borrow().hash() == text.hash()` (required for Borrow) +impl Hash for Text { + fn hash<H: Hasher>(&self, state: &mut H) { + self.bytes.hash(state) + } +} + +impl Into<String> for Text { + fn into(self) -> String { + self.to_string() + } +} + +impl<'s> From<&'s str> for Text { + + /// Panics if the string contains an unsupported character + fn from(str: &'s str) -> Self { + Self::new_or_panic(str) + } +} + + +/* TODO (currently conflicts with From<&str>) +impl<'s> TryFrom<&'s str> for Text { + type Error = String; + + fn try_from(value: &'s str) -> std::result::Result<Self, Self::Error> { + Text::new_or_none(value) + .ok_or_else(|| format!( + "exr::Text does not support all characters in the string `{}`", + value + )) + } +}*/ + + +impl ::std::fmt::Debug for Text { + fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + write!(f, "exr::Text(\"{}\")", self) + } +} + +// automatically implements to_string for us +impl ::std::fmt::Display for Text { + fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + use std::fmt::Write; + + for &byte in self.bytes.iter() { + f.write_char(byte as char)?; + } + + Ok(()) + } +} + + +impl ChannelList { + + /// Does not validate channel order. + pub fn new(channels: SmallVec<[ChannelDescription; 5]>) -> Self { + let uniform_sample_type = { + if let Some(first) = channels.first() { + let has_uniform_types = channels.iter().skip(1) + .all(|chan| chan.sample_type == first.sample_type); + + if has_uniform_types { Some(first.sample_type) } else { None } + } + else { None } + }; + + ChannelList { + bytes_per_pixel: channels.iter().map(|channel| channel.sample_type.bytes_per_sample()).sum(), + list: channels, uniform_sample_type, + } + } + + /// Iterate over the channels, and adds to each channel the byte offset of the channels sample type. + /// Assumes the internal channel list is properly sorted. + pub fn channels_with_byte_offset(&self) -> impl Iterator<Item=(usize, &ChannelDescription)> { + self.list.iter().scan(0, |byte_position, channel|{ + let previous_position = *byte_position; + *byte_position += channel.sample_type.bytes_per_sample(); + Some((previous_position, channel)) + }) + } + + /// Return the index of the channel with the exact name, case sensitive, or none. + /// Potentially uses less than linear time. + pub fn find_index_of_channel(&self, exact_name: &Text) -> Option<usize> { + self.list.binary_search_by_key(&exact_name.bytes(), |chan| chan.name.bytes()).ok() + } + + // TODO use this in compression methods + /*pub fn pixel_section_indices(&self, bounds: IntegerBounds) -> impl '_ + Iterator<Item=(&Channel, usize, usize)> { + (bounds.position.y() .. bounds.end().y()).flat_map(|y| { + self.list + .filter(|channel| mod_p(y, usize_to_i32(channel.sampling.1)) == 0) + .flat_map(|channel|{ + (bounds.position.x() .. bounds.end().x()) + .filter(|x| mod_p(*x, usize_to_i32(channel.sampling.0)) == 0) + .map(|x| (channel, x, y)) + }) + }) + }*/ +} + +impl BlockType { + + /// The corresponding attribute type name literal + const TYPE_NAME: &'static [u8] = type_names::TEXT; + + /// Return a `BlockType` object from the specified attribute text value. + pub fn parse(text: Text) -> Result<Self> { + match text.as_slice() { + block_type_strings::SCAN_LINE => Ok(BlockType::ScanLine), + block_type_strings::TILE => Ok(BlockType::Tile), + + block_type_strings::DEEP_SCAN_LINE => Ok(BlockType::DeepScanLine), + block_type_strings::DEEP_TILE => Ok(BlockType::DeepTile), + + _ => Err(Error::invalid("block type attribute value")), + } + } + + /// Without validation, write this instance to the byte stream. + pub fn write(&self, write: &mut impl Write) -> UnitResult { + u8::write_slice(write, self.to_text_bytes())?; + Ok(()) + } + + /// Returns the raw attribute text value this type is represented by in a file. + pub fn to_text_bytes(&self) -> &[u8] { + match self { + BlockType::ScanLine => block_type_strings::SCAN_LINE, + BlockType::Tile => block_type_strings::TILE, + BlockType::DeepScanLine => block_type_strings::DEEP_SCAN_LINE, + BlockType::DeepTile => block_type_strings::DEEP_TILE, + } + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + self.to_text_bytes().len() + } +} + + +impl IntegerBounds { + + /// Create a box with no size located at (0,0). + pub fn zero() -> Self { + Self::from_dimensions(Vec2(0, 0)) + } + + /// Create a box with a size starting at zero. + pub fn from_dimensions(size: impl Into<Vec2<usize>>) -> Self { + Self::new(Vec2(0,0), size) + } + + /// Create a box with a size and an origin point. + pub fn new(start: impl Into<Vec2<i32>>, size: impl Into<Vec2<usize>>) -> Self { + Self { position: start.into(), size: size.into() } + } + + /// Returns the top-right coordinate of the rectangle. + /// The row and column described by this vector are not included in the rectangle, + /// just like `Vec::len()`. + pub fn end(self) -> Vec2<i32> { + self.position + self.size.to_i32() // larger than max int32 is panic + } + + /// Returns the maximum coordinate that a value in this rectangle may have. + pub fn max(self) -> Vec2<i32> { + self.end() - Vec2(1,1) + } + + /// Validate this instance. + pub fn validate(&self, max_size: Option<Vec2<usize>>) -> UnitResult { + if let Some(max_size) = max_size { + if self.size.width() > max_size.width() || self.size.height() > max_size.height() { + return Err(Error::invalid("window attribute dimension value")); + } + } + + let min_i64 = Vec2(self.position.x() as i64, self.position.y() as i64); + + let max_i64 = Vec2( + self.position.x() as i64 + self.size.width() as i64, + self.position.y() as i64 + self.size.height() as i64, + ); + + Self::validate_min_max_u64(min_i64, max_i64) + } + + fn validate_min_max_u64(min: Vec2<i64>, max: Vec2<i64>) -> UnitResult { + let max_box_size_as_i64 = (i32::MAX / 2) as i64; // as defined in the original c++ library + + if max.x() >= max_box_size_as_i64 + || max.y() >= max_box_size_as_i64 + || min.x() <= -max_box_size_as_i64 + || min.y() <= -max_box_size_as_i64 + { + return Err(Error::invalid("window size exceeding integer maximum")); + } + + Ok(()) + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 4 * i32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + let Vec2(x_min, y_min) = self.position; + let Vec2(x_max, y_max) = self.max(); + + x_min.write(write)?; + y_min.write(write)?; + x_max.write(write)?; + y_max.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let x_min = i32::read(read)?; + let y_min = i32::read(read)?; + let x_max = i32::read(read)?; + let y_max = i32::read(read)?; + + let min = Vec2(x_min.min(x_max), y_min.min(y_max)); + let max = Vec2(x_min.max(x_max), y_min.max(y_max)); + + // prevent addition overflow + Self::validate_min_max_u64( + Vec2(min.x() as i64, min.y() as i64), + Vec2(max.x() as i64, max.y() as i64), + )?; + + // add one to max because the max inclusive, but the size is not + let size = Vec2(max.x() + 1 - min.x(), max.y() + 1 - min.y()); + let size = size.to_usize("box coordinates")?; + + Ok(IntegerBounds { position: min, size }) + } + + /// Create a new rectangle which is offset by the specified origin. + pub fn with_origin(self, origin: Vec2<i32>) -> Self { // TODO rename to "move" or "translate"? + IntegerBounds { position: self.position + origin, .. self } + } + + /// Returns whether the specified rectangle is equal to or inside this rectangle. + pub fn contains(self, subset: Self) -> bool { + subset.position.x() >= self.position.x() + && subset.position.y() >= self.position.y() + && subset.end().x() <= self.end().x() + && subset.end().y() <= self.end().y() + } +} + + +impl FloatRect { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 4 * f32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.min.x().write(write)?; + self.min.y().write(write)?; + self.max.x().write(write)?; + self.max.y().write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let x_min = f32::read(read)?; + let y_min = f32::read(read)?; + let x_max = f32::read(read)?; + let y_max = f32::read(read)?; + + Ok(FloatRect { + min: Vec2(x_min, y_min), + max: Vec2(x_max, y_max) + }) + } +} + +impl SampleType { + + /// How many bytes a single sample takes up. + pub fn bytes_per_sample(&self) -> usize { + match self { + SampleType::F16 => f16::BYTE_SIZE, + SampleType::F32 => f32::BYTE_SIZE, + SampleType::U32 => u32::BYTE_SIZE, + } + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + i32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + match *self { + SampleType::U32 => 0_i32, + SampleType::F16 => 1_i32, + SampleType::F32 => 2_i32, + }.write(write)?; + + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + // there's definitely going to be more than 255 different pixel types in the future + Ok(match i32::read(read)? { + 0 => SampleType::U32, + 1 => SampleType::F16, + 2 => SampleType::F32, + _ => return Err(Error::invalid("pixel type attribute value")), + }) + } +} + +impl ChannelDescription { + /// Choose whether to compress samples linearly or not, based on the channel name. + /// Luminance-based channels will be compressed differently than linear data such as alpha. + pub fn guess_quantization_linearity(name: &Text) -> bool { + !( + name.eq_case_insensitive("R") || name.eq_case_insensitive("G") || + name.eq_case_insensitive("B") || name.eq_case_insensitive("L") || + name.eq_case_insensitive("Y") || name.eq_case_insensitive("X") || + name.eq_case_insensitive("Z") + ) + } + + /// Create a new channel with the specified properties and a sampling rate of (1,1). + /// Automatically chooses the linearity for compression based on the channel name. + pub fn named(name: impl Into<Text>, sample_type: SampleType) -> Self { + let name = name.into(); + let linearity = Self::guess_quantization_linearity(&name); + Self::new(name, sample_type, linearity) + } + + /*pub fn from_name<T: Into<Sample> + Default>(name: impl Into<Text>) -> Self { + Self::named(name, T::default().into().sample_type()) + }*/ + + /// Create a new channel with the specified properties and a sampling rate of (1,1). + pub fn new(name: impl Into<Text>, sample_type: SampleType, quantize_linearly: bool) -> Self { + Self { name: name.into(), sample_type, quantize_linearly, sampling: Vec2(1, 1) } + } + + /// The count of pixels this channel contains, respecting subsampling. + // FIXME this must be used everywhere + pub fn subsampled_pixels(&self, dimensions: Vec2<usize>) -> usize { + self.subsampled_resolution(dimensions).area() + } + + /// The resolution pf this channel, respecting subsampling. + pub fn subsampled_resolution(&self, dimensions: Vec2<usize>) -> Vec2<usize> { + dimensions / self.sampling + } + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + self.name.null_terminated_byte_size() + + SampleType::byte_size() + + 1 // is_linear + + 3 // reserved bytes + + 2 * u32::BYTE_SIZE // sampling x, y + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + Text::write_null_terminated(&self.name, write)?; + self.sample_type.write(write)?; + + match self.quantize_linearly { + false => 0_u8, + true => 1_u8, + }.write(write)?; + + i8::write_slice(write, &[0_i8, 0_i8, 0_i8])?; + i32::write(usize_to_i32(self.sampling.x()), write)?; + i32::write(usize_to_i32(self.sampling.y()), write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let name = Text::read_null_terminated(read, 256)?; + let sample_type = SampleType::read(read)?; + + let is_linear = match u8::read(read)? { + 1 => true, + 0 => false, + _ => return Err(Error::invalid("channel linearity attribute value")), + }; + + let mut reserved = [0_i8; 3]; + i8::read_slice(read, &mut reserved)?; + + let x_sampling = i32_to_usize(i32::read(read)?, "x channel sampling")?; + let y_sampling = i32_to_usize(i32::read(read)?, "y channel sampling")?; + + Ok(ChannelDescription { + name, sample_type, + quantize_linearly: is_linear, + sampling: Vec2(x_sampling, y_sampling), + }) + } + + /// Validate this instance. + pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + self.name.validate(true, None)?; // TODO spec says this does not affect `requirements.long_names` but is that true? + + if self.sampling.x() == 0 || self.sampling.y() == 0 { + return Err(Error::invalid("zero sampling factor")); + } + + if strict && !allow_sampling && self.sampling != Vec2(1,1) { + return Err(Error::invalid("subsampling is only allowed in flat scan line images")); + } + + if data_window.position.x() % self.sampling.x() as i32 != 0 || data_window.position.y() % self.sampling.y() as i32 != 0 { + return Err(Error::invalid("channel sampling factor not dividing data window position")); + } + + if data_window.size.x() % self.sampling.x() != 0 || data_window.size.y() % self.sampling.y() != 0 { + return Err(Error::invalid("channel sampling factor not dividing data window size")); + } + + if self.sampling != Vec2(1,1) { + // TODO this must only be implemented in the crate::image module and child modules, + // should not be too difficult + + return Err(Error::unsupported("channel subsampling not supported yet")); + } + + Ok(()) + } +} + +impl ChannelList { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + self.list.iter().map(ChannelDescription::byte_size).sum::<usize>() + sequence_end::byte_size() + } + + /// Without validation, write this instance to the byte stream. + /// Assumes channels are sorted alphabetically and all values are validated. + pub fn write(&self, write: &mut impl Write) -> UnitResult { + for channel in &self.list { + channel.write(write)?; + } + + sequence_end::write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read(read: &mut PeekRead<impl Read>) -> Result<Self> { + let mut channels = SmallVec::new(); + while !sequence_end::has_come(read)? { + channels.push(ChannelDescription::read(read)?); + } + + Ok(ChannelList::new(channels)) + } + + /// Check if channels are valid and sorted. + pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + let mut iter = self.list.iter().map(|chan| chan.validate(allow_sampling, data_window, strict).map(|_| &chan.name)); + let mut previous = iter.next().ok_or(Error::invalid("at least one channel is required"))??; + + for result in iter { + let value = result?; + if strict && previous == value { return Err(Error::invalid("channel names are not unique")); } + else if previous > value { return Err(Error::invalid("channel names are not sorted alphabetically")); } + else { previous = value; } + } + + Ok(()) + } +} + +fn u8_to_decimal32(binary: u8) -> u32 { + let units = binary as u32 % 10; + let tens = (binary as u32 / 10) % 10; + units | (tens << 4) +} + +// assumes value fits into u8 +fn u8_from_decimal32(coded: u32) -> u8 { + ((coded & 0x0f) + 10 * ((coded >> 4) & 0x0f)) as u8 +} + +// https://github.com/AcademySoftwareFoundation/openexr/blob/master/src/lib/OpenEXR/ImfTimeCode.cpp +impl TimeCode { + + /// Number of bytes this would consume in an exr file. + pub const BYTE_SIZE: usize = 2 * u32::BYTE_SIZE; + + /// Returns an error if this time code is considered invalid. + pub fn validate(&self, strict: bool) -> UnitResult { + if strict { + if self.frame > 29 { Err(Error::invalid("time code frame larger than 29")) } + else if self.seconds > 59 { Err(Error::invalid("time code seconds larger than 59")) } + else if self.minutes > 59 { Err(Error::invalid("time code minutes larger than 59")) } + else if self.hours > 23 { Err(Error::invalid("time code hours larger than 23")) } + else if self.binary_groups.iter().any(|&group| group > 15) { + Err(Error::invalid("time code binary group value too large for 3 bits")) + } + else { Ok(()) } + } + else { Ok(()) } + } + + + /// Pack the SMPTE time code into a u32 value, according to TV60 packing. + /// This is the encoding which is used within a binary exr file. + pub fn pack_time_as_tv60_u32(&self) -> Result<u32> { + // validate strictly to prevent set_bit panic! below + self.validate(true)?; + + Ok(*0_u32 + .set_bits(0..6, u8_to_decimal32(self.frame)) + .set_bit(6, self.drop_frame) + .set_bit(7, self.color_frame) + .set_bits(8..15, u8_to_decimal32(self.seconds)) + .set_bit(15, self.field_phase) + .set_bits(16..23, u8_to_decimal32(self.minutes)) + .set_bit(23, self.binary_group_flags[0]) + .set_bits(24..30, u8_to_decimal32(self.hours)) + .set_bit(30, self.binary_group_flags[1]) + .set_bit(31, self.binary_group_flags[2]) + ) + } + + /// Unpack a time code from one TV60 encoded u32 value and the encoded user data. + /// This is the encoding which is used within a binary exr file. + pub fn from_tv60_time(tv60_time: u32, user_data: u32) -> Self { + Self { + frame: u8_from_decimal32(tv60_time.get_bits(0..6)), // cast cannot fail, as these are less than 8 bits + drop_frame: tv60_time.get_bit(6), + color_frame: tv60_time.get_bit(7), + seconds: u8_from_decimal32(tv60_time.get_bits(8..15)), // cast cannot fail, as these are less than 8 bits + field_phase: tv60_time.get_bit(15), + minutes: u8_from_decimal32(tv60_time.get_bits(16..23)), // cast cannot fail, as these are less than 8 bits + hours: u8_from_decimal32(tv60_time.get_bits(24..30)), // cast cannot fail, as these are less than 8 bits + binary_group_flags: [ + tv60_time.get_bit(23), + tv60_time.get_bit(30), + tv60_time.get_bit(31), + ], + + binary_groups: Self::unpack_user_data_from_u32(user_data) + } + } + + /// Pack the SMPTE time code into a u32 value, according to TV50 packing. + /// This encoding does not support the `drop_frame` flag, it will be lost. + pub fn pack_time_as_tv50_u32(&self) -> Result<u32> { + Ok(*self.pack_time_as_tv60_u32()? + + // swap some fields by replacing some bits in the packed u32 + .set_bit(6, false) + .set_bit(15, self.binary_group_flags[0]) + .set_bit(30, self.binary_group_flags[1]) + .set_bit(23, self.binary_group_flags[2]) + .set_bit(31, self.field_phase) + ) + } + + /// Unpack a time code from one TV50 encoded u32 value and the encoded user data. + /// This encoding does not support the `drop_frame` flag, it will always be false. + pub fn from_tv50_time(tv50_time: u32, user_data: u32) -> Self { + Self { + drop_frame: false, // do not use bit [6] + + // swap some fields: + field_phase: tv50_time.get_bit(31), + binary_group_flags: [ + tv50_time.get_bit(15), + tv50_time.get_bit(30), + tv50_time.get_bit(23), + ], + + .. Self::from_tv60_time(tv50_time, user_data) + } + } + + + /// Pack the SMPTE time code into a u32 value, according to FILM24 packing. + /// This encoding does not support the `drop_frame` and `color_frame` flags, they will be lost. + pub fn pack_time_as_film24_u32(&self) -> Result<u32> { + Ok(*self.pack_time_as_tv60_u32()? + .set_bit(6, false) + .set_bit(7, false) + ) + } + + /// Unpack a time code from one TV60 encoded u32 value and the encoded user data. + /// This encoding does not support the `drop_frame` and `color_frame` flags, they will always be `false`. + pub fn from_film24_time(film24_time: u32, user_data: u32) -> Self { + Self { + drop_frame: false, // bit [6] + color_frame: false, // bit [7] + .. Self::from_tv60_time(film24_time, user_data) + } + } + + + // in rust, group index starts at zero, not at one. + fn user_data_bit_indices(group_index: usize) -> std::ops::Range<usize> { + let min_bit = 4 * group_index; + min_bit .. min_bit + 4 // +4, not +3, as `Range` is exclusive + } + + /// Pack the user data `u8` array into one u32. + /// User data values are clamped to the valid range (maximum value is 4). + pub fn pack_user_data_as_u32(&self) -> u32 { + let packed = self.binary_groups.iter().enumerate().fold(0_u32, |mut packed, (group_index, group_value)| + *packed.set_bits(Self::user_data_bit_indices(group_index), *group_value.min(&15) as u32) + ); + + debug_assert_eq!(Self::unpack_user_data_from_u32(packed), self.binary_groups, "round trip user data encoding"); + packed + } + + // Unpack the encoded u32 user data to an array of bytes, each byte having a value from 0 to 4. + fn unpack_user_data_from_u32(user_data: u32) -> [u8; 8] { + (0..8).map(|group_index| user_data.get_bits(Self::user_data_bit_indices(group_index)) as u8) + .collect::<SmallVec<[u8;8]>>().into_inner().expect("array index bug") + } + + + /// Write this time code to the byte stream, encoded as TV60 integers. + /// Returns an `Error::Invalid` if the fields are out of the allowed range. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.pack_time_as_tv60_u32()?.write(write)?; // will validate + self.pack_user_data_as_u32().write(write)?; + Ok(()) + } + + /// Read the time code, without validating, extracting from TV60 integers. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let time_and_flags = u32::read(read)?; + let user_data = u32::read(read)?; + Ok(Self::from_tv60_time(time_and_flags, user_data)) + } +} + +impl Chromaticities { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 8 * f32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.red.x().write(write)?; + self.red.y().write(write)?; + + self.green.x().write(write)?; + self.green.y().write(write)?; + + self.blue.x().write(write)?; + self.blue.y().write(write)?; + + self.white.x().write(write)?; + self.white.y().write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + Ok(Chromaticities { + red: Vec2(f32::read(read)?, f32::read(read)?), + green: Vec2(f32::read(read)?, f32::read(read)?), + blue: Vec2(f32::read(read)?, f32::read(read)?), + white: Vec2(f32::read(read)?, f32::read(read)?), + }) + } +} + +impl Compression { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { u8::BYTE_SIZE } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use self::Compression::*; + match self { + Uncompressed => 0_u8, + RLE => 1_u8, + ZIP1 => 2_u8, + ZIP16 => 3_u8, + PIZ => 4_u8, + PXR24 => 5_u8, + B44 => 6_u8, + B44A => 7_u8, + DWAA(_) => 8_u8, + DWAB(_) => 9_u8, + }.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use self::Compression::*; + Ok(match u8::read(read)? { + 0 => Uncompressed, + 1 => RLE, + 2 => ZIP1, + 3 => ZIP16, + 4 => PIZ, + 5 => PXR24, + 6 => B44, + 7 => B44A, + 8 => DWAA(None), + 9 => DWAB(None), + _ => return Err(Error::unsupported("unknown compression method")), + }) + } +} + +impl EnvironmentMap { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + u8::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use self::EnvironmentMap::*; + match self { + LatitudeLongitude => 0_u8, + Cube => 1_u8 + }.write(write)?; + + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use self::EnvironmentMap::*; + Ok(match u8::read(read)? { + 0 => LatitudeLongitude, + 1 => Cube, + _ => return Err(Error::invalid("environment map attribute value")), + }) + } +} + +impl KeyCode { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 6 * i32::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + self.film_manufacturer_code.write(write)?; + self.film_type.write(write)?; + self.film_roll_prefix.write(write)?; + self.count.write(write)?; + self.perforation_offset.write(write)?; + self.perforations_per_count.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + Ok(KeyCode { + film_manufacturer_code: i32::read(read)?, + film_type: i32::read(read)?, + film_roll_prefix: i32::read(read)?, + count: i32::read(read)?, + perforation_offset: i32::read(read)?, + perforations_per_frame: i32::read(read)?, + perforations_per_count: i32::read(read)?, + }) + } +} + +impl LineOrder { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + u8::BYTE_SIZE + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use self::LineOrder::*; + match self { + Increasing => 0_u8, + Decreasing => 1_u8, + Unspecified => 2_u8, + }.write(write)?; + + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use self::LineOrder::*; + Ok(match u8::read(read)? { + 0 => Increasing, + 1 => Decreasing, + 2 => Unspecified, + _ => return Err(Error::invalid("line order attribute value")), + }) + } +} + + + + +impl Preview { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + 2 * u32::BYTE_SIZE + self.pixel_data.len() + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + u32::write(self.size.width() as u32, write)?; + u32::write(self.size.height() as u32, write)?; + + i8::write_slice(write, &self.pixel_data)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let width = u32::read(read)? as usize; + let height = u32::read(read)? as usize; + + if let Some(pixel_count) = width.checked_mul(height) { + // Multiply by the number of bytes per pixel. + if let Some(byte_count) = pixel_count.checked_mul(4) { + let pixel_data = i8::read_vec( + read, + byte_count, + 1024 * 1024 * 4, + None, + "preview attribute pixel count", + )?; + + let preview = Preview { + size: Vec2(width, height), + pixel_data, + }; + + return Ok(preview); + } + } + + return Err(Error::invalid( + format!("Overflow while calculating preview image Attribute size \ + (width: {}, height: {}).", + width, + height))); + } + + /// Validate this instance. + pub fn validate(&self, strict: bool) -> UnitResult { + if strict && (self.size.area() * 4 != self.pixel_data.len()) { + return Err(Error::invalid("preview dimensions do not match content length")) + } + + Ok(()) + } +} + +impl ::std::fmt::Debug for Preview { + fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + write!(f, "Preview ({}x{} px)", self.size.width(), self.size.height()) + } +} + +impl TileDescription { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 2 * u32::BYTE_SIZE + 1 // size x,y + (level mode + rounding mode) + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + u32::write(self.tile_size.width() as u32, write)?; + u32::write(self.tile_size.height() as u32, write)?; + + let level_mode = match self.level_mode { + LevelMode::Singular => 0_u8, + LevelMode::MipMap => 1_u8, + LevelMode::RipMap => 2_u8, + }; + + let rounding_mode = match self.rounding_mode { + RoundingMode::Down => 0_u8, + RoundingMode::Up => 1_u8, + }; + + let mode: u8 = level_mode + (rounding_mode * 16); + mode.write(write)?; + Ok(()) + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + let x_size = u32::read(read)? as usize; + let y_size = u32::read(read)? as usize; + + let mode = u8::read(read)?; + + // wow you really saved that one byte here + // mode = level_mode + (rounding_mode * 16) + let level_mode = mode & 0b00001111; // wow that works + let rounding_mode = mode >> 4; // wow that works + + let level_mode = match level_mode { + 0 => LevelMode::Singular, + 1 => LevelMode::MipMap, + 2 => LevelMode::RipMap, + _ => return Err(Error::invalid("tile description level mode")), + }; + + let rounding_mode = match rounding_mode { + 0 => RoundingMode::Down, + 1 => RoundingMode::Up, + _ => return Err(Error::invalid("tile description rounding mode")), + }; + + Ok(TileDescription { tile_size: Vec2(x_size, y_size), level_mode, rounding_mode, }) + } + + /// Validate this instance. + pub fn validate(&self) -> UnitResult { + let max = i32::MAX as i64 / 2; + + if self.tile_size.width() == 0 || self.tile_size.height() == 0 + || self.tile_size.width() as i64 >= max || self.tile_size.height() as i64 >= max + { + return Err(Error::invalid("tile size")) + } + + Ok(()) + } +} + + +/// Number of bytes this attribute would consume in an exr file. +// TODO instead of pre calculating byte size, write to a tmp buffer whose length is inspected before actually writing? +pub fn byte_size(name: &Text, value: &AttributeValue) -> usize { + name.null_terminated_byte_size() + + value.kind_name().len() + sequence_end::byte_size() + + i32::BYTE_SIZE // serialized byte size + + value.byte_size() +} + +/// Without validation, write this attribute to the byte stream. +pub fn write<W: Write>(name: &[u8], value: &AttributeValue, write: &mut W) -> UnitResult { + Text::write_null_terminated_bytes(name, write)?; + Text::write_null_terminated_bytes(value.kind_name(), write)?; + i32::write(value.byte_size() as i32, write)?; + value.write(write) +} + +/// Read the attribute without validating. The result may be `Ok` even if this single attribute is invalid. +pub fn read(read: &mut PeekRead<impl Read>, max_size: usize) -> Result<(Text, Result<AttributeValue>)> { + let name = Text::read_null_terminated(read, max_size)?; + let kind = Text::read_null_terminated(read, max_size)?; + let size = i32_to_usize(i32::read(read)?, "attribute size")?; + let value = AttributeValue::read(read, kind, size)?; + Ok((name, value)) +} + +/// Validate this attribute. +pub fn validate(name: &Text, value: &AttributeValue, long_names: &mut bool, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + name.validate(true, Some(long_names))?; // only name text has length restriction + value.validate(allow_sampling, data_window, strict) // attribute value text length is never restricted +} + + +impl AttributeValue { + + /// Number of bytes this would consume in an exr file. + pub fn byte_size(&self) -> usize { + use self::AttributeValue::*; + + match *self { + IntegerBounds(_) => self::IntegerBounds::byte_size(), + FloatRect(_) => self::FloatRect::byte_size(), + + I32(_) => i32::BYTE_SIZE, + F32(_) => f32::BYTE_SIZE, + F64(_) => f64::BYTE_SIZE, + + Rational(_) => { i32::BYTE_SIZE + u32::BYTE_SIZE }, + TimeCode(_) => self::TimeCode::BYTE_SIZE, + + IntVec2(_) => { 2 * i32::BYTE_SIZE }, + FloatVec2(_) => { 2 * f32::BYTE_SIZE }, + IntVec3(_) => { 3 * i32::BYTE_SIZE }, + FloatVec3(_) => { 3 * f32::BYTE_SIZE }, + + ChannelList(ref channels) => channels.byte_size(), + Chromaticities(_) => self::Chromaticities::byte_size(), + Compression(_) => self::Compression::byte_size(), + EnvironmentMap(_) => self::EnvironmentMap::byte_size(), + + KeyCode(_) => self::KeyCode::byte_size(), + LineOrder(_) => self::LineOrder::byte_size(), + + Matrix3x3(ref value) => value.len() * f32::BYTE_SIZE, + Matrix4x4(ref value) => value.len() * f32::BYTE_SIZE, + + Preview(ref value) => value.byte_size(), + + // attribute value texts never have limited size. + // also, don't serialize size, as it can be inferred from attribute size + Text(ref value) => value.bytes.len(), + + TextVector(ref value) => value.iter().map(self::Text::i32_sized_byte_size).sum(), + TileDescription(_) => self::TileDescription::byte_size(), + Custom { ref bytes, .. } => bytes.len(), + BlockType(ref kind) => kind.byte_size() + } + } + + /// The exr name string of the type that an attribute can have. + pub fn kind_name(&self) -> &[u8] { + use self::AttributeValue::*; + use self::type_names as ty; + + match *self { + IntegerBounds(_) => ty::I32BOX2, + FloatRect(_) => ty::F32BOX2, + I32(_) => ty::I32, + F32(_) => ty::F32, + F64(_) => ty::F64, + Rational(_) => ty::RATIONAL, + TimeCode(_) => ty::TIME_CODE, + IntVec2(_) => ty::I32VEC2, + FloatVec2(_) => ty::F32VEC2, + IntVec3(_) => ty::I32VEC3, + FloatVec3(_) => ty::F32VEC3, + ChannelList(_) => ty::CHANNEL_LIST, + Chromaticities(_) => ty::CHROMATICITIES, + Compression(_) => ty::COMPRESSION, + EnvironmentMap(_) => ty::ENVIRONMENT_MAP, + KeyCode(_) => ty::KEY_CODE, + LineOrder(_) => ty::LINE_ORDER, + Matrix3x3(_) => ty::F32MATRIX3X3, + Matrix4x4(_) => ty::F32MATRIX4X4, + Preview(_) => ty::PREVIEW, + Text(_) => ty::TEXT, + TextVector(_) => ty::TEXT_VECTOR, + TileDescription(_) => ty::TILES, + Custom { ref kind, .. } => &kind.bytes, + BlockType(_) => super::BlockType::TYPE_NAME, + } + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(&self, write: &mut W) -> UnitResult { + use self::AttributeValue::*; + match *self { + IntegerBounds(value) => value.write(write)?, + FloatRect(value) => value.write(write)?, + + I32(value) => value.write(write)?, + F32(value) => value.write(write)?, + F64(value) => value.write(write)?, + + Rational((a, b)) => { a.write(write)?; b.write(write)?; }, + TimeCode(codes) => { codes.write(write)?; }, + + IntVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; }, + FloatVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; }, + IntVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; }, + FloatVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; }, + + ChannelList(ref channels) => channels.write(write)?, + Chromaticities(ref value) => value.write(write)?, + Compression(value) => value.write(write)?, + EnvironmentMap(value) => value.write(write)?, + + KeyCode(value) => value.write(write)?, + LineOrder(value) => value.write(write)?, + + Matrix3x3(mut value) => f32::write_slice(write, &mut value)?, + Matrix4x4(mut value) => f32::write_slice(write, &mut value)?, + + Preview(ref value) => { value.write(write)?; }, + + // attribute value texts never have limited size. + // also, don't serialize size, as it can be inferred from attribute size + Text(ref value) => u8::write_slice(write, value.bytes.as_slice())?, + + TextVector(ref value) => self::Text::write_vec_of_i32_sized_texts(write, value)?, + TileDescription(ref value) => value.write(write)?, + Custom { ref bytes, .. } => u8::write_slice(write, &bytes)?, // write.write(&bytes).map(|_| ()), + BlockType(kind) => kind.write(write)? + }; + + Ok(()) + } + + /// Read the value without validating. + /// Returns `Ok(Ok(attribute))` for valid attributes. + /// Returns `Ok(Err(Error))` for invalid attributes from a valid byte source. + /// Returns `Err(Error)` for invalid byte sources, for example for invalid files. + pub fn read(read: &mut PeekRead<impl Read>, kind: Text, byte_size: usize) -> Result<Result<Self>> { + use self::AttributeValue::*; + use self::type_names as ty; + + // always read bytes + let attribute_bytes = u8::read_vec(read, byte_size, 128, None, "attribute value size")?; + // TODO no allocation for small attributes // : SmallVec<[u8; 64]> = smallvec![0; byte_size]; + + let parse_attribute = move || { + let reader = &mut attribute_bytes.as_slice(); + + Ok(match kind.bytes.as_slice() { + ty::I32BOX2 => IntegerBounds(self::IntegerBounds::read(reader)?), + ty::F32BOX2 => FloatRect(self::FloatRect::read(reader)?), + + ty::I32 => I32(i32::read(reader)?), + ty::F32 => F32(f32::read(reader)?), + ty::F64 => F64(f64::read(reader)?), + + ty::RATIONAL => Rational({ + let a = i32::read(reader)?; + let b = u32::read(reader)?; + (a, b) + }), + + ty::TIME_CODE => TimeCode(self::TimeCode::read(reader)?), + + ty::I32VEC2 => IntVec2({ + let a = i32::read(reader)?; + let b = i32::read(reader)?; + Vec2(a, b) + }), + + ty::F32VEC2 => FloatVec2({ + let a = f32::read(reader)?; + let b = f32::read(reader)?; + Vec2(a, b) + }), + + ty::I32VEC3 => IntVec3({ + let a = i32::read(reader)?; + let b = i32::read(reader)?; + let c = i32::read(reader)?; + (a, b, c) + }), + + ty::F32VEC3 => FloatVec3({ + let a = f32::read(reader)?; + let b = f32::read(reader)?; + let c = f32::read(reader)?; + (a, b, c) + }), + + ty::CHANNEL_LIST => ChannelList(self::ChannelList::read(&mut PeekRead::new(attribute_bytes.as_slice()))?), + ty::CHROMATICITIES => Chromaticities(self::Chromaticities::read(reader)?), + ty::COMPRESSION => Compression(self::Compression::read(reader)?), + ty::ENVIRONMENT_MAP => EnvironmentMap(self::EnvironmentMap::read(reader)?), + + ty::KEY_CODE => KeyCode(self::KeyCode::read(reader)?), + ty::LINE_ORDER => LineOrder(self::LineOrder::read(reader)?), + + ty::F32MATRIX3X3 => Matrix3x3({ + let mut result = [0.0_f32; 9]; + f32::read_slice(reader, &mut result)?; + result + }), + + ty::F32MATRIX4X4 => Matrix4x4({ + let mut result = [0.0_f32; 16]; + f32::read_slice(reader, &mut result)?; + result + }), + + ty::PREVIEW => Preview(self::Preview::read(reader)?), + ty::TEXT => Text(self::Text::read_sized(reader, byte_size)?), + + // the number of strings can be inferred from the total attribute size + ty::TEXT_VECTOR => TextVector(self::Text::read_vec_of_i32_sized( + &mut PeekRead::new(attribute_bytes.as_slice()), + byte_size + )?), + + ty::TILES => TileDescription(self::TileDescription::read(reader)?), + + _ => Custom { kind: kind.clone(), bytes: attribute_bytes.clone() } // TODO no clone + }) + }; + + Ok(parse_attribute()) + } + + /// Validate this instance. + pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult { + use self::AttributeValue::*; + + match *self { + ChannelList(ref channels) => channels.validate(allow_sampling, data_window, strict)?, + TileDescription(ref value) => value.validate()?, + Preview(ref value) => value.validate(strict)?, + TimeCode(ref time_code) => time_code.validate(strict)?, + + TextVector(ref vec) => if strict && vec.is_empty() { + return Err(Error::invalid("text vector may not be empty")) + }, + + _ => {} + }; + + Ok(()) + } + + + /// Return `Ok(i32)` if this attribute is an i32. + pub fn to_i32(&self) -> Result<i32> { + match *self { + AttributeValue::I32(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(f32)` if this attribute is an f32. + pub fn to_f32(&self) -> Result<f32> { + match *self { + AttributeValue::F32(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(Text)` if this attribute is a text. + pub fn into_text(self) -> Result<Text> { + match self { + AttributeValue::Text(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(Text)` if this attribute is a text. + pub fn to_text(&self) -> Result<&Text> { + match self { + AttributeValue::Text(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(Chromaticities)` if this attribute is a chromaticities attribute. + pub fn to_chromaticities(&self) -> Result<Chromaticities> { + match *self { + AttributeValue::Chromaticities(value) => Ok(value), + _ => Err(invalid_type()) + } + } + + /// Return `Ok(TimeCode)` if this attribute is a time code. + pub fn to_time_code(&self) -> Result<TimeCode> { + match *self { + AttributeValue::TimeCode(value) => Ok(value), + _ => Err(invalid_type()) + } + } +} + + + +/// Contains string literals identifying the type of an attribute. +pub mod type_names { + macro_rules! define_attribute_type_names { + ( $($name: ident : $value: expr),* ) => { + $( + /// The byte-string name of this attribute type as it appears in an exr file. + pub const $name: &'static [u8] = $value; + )* + }; + } + + define_attribute_type_names! { + I32BOX2: b"box2i", + F32BOX2: b"box2f", + I32: b"int", + F32: b"float", + F64: b"double", + RATIONAL: b"rational", + TIME_CODE: b"timecode", + I32VEC2: b"v2i", + F32VEC2: b"v2f", + I32VEC3: b"v3i", + F32VEC3: b"v3f", + CHANNEL_LIST: b"chlist", + CHROMATICITIES: b"chromaticities", + COMPRESSION: b"compression", + ENVIRONMENT_MAP:b"envmap", + KEY_CODE: b"keycode", + LINE_ORDER: b"lineOrder", + F32MATRIX3X3: b"m33f", + F32MATRIX4X4: b"m44f", + PREVIEW: b"preview", + TEXT: b"string", + TEXT_VECTOR: b"stringvector", + TILES: b"tiledesc" + } +} + + +#[cfg(test)] +mod test { + use super::*; + use ::std::io::Cursor; + use rand::{random, thread_rng, Rng}; + + #[test] + fn text_ord() { + for _ in 0..1024 { + let text1 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect()); + let text2 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect()); + + assert_eq!(text1.to_string().cmp(&text2.to_string()), text1.cmp(&text2), "in text {:?} vs {:?}", text1, text2); + } + } + + #[test] + fn rounding_up(){ + let round_up = RoundingMode::Up; + assert_eq!(round_up.divide(10, 10), 1, "divide equal"); + assert_eq!(round_up.divide(10, 2), 5, "divide even"); + assert_eq!(round_up.divide(10, 5), 2, "divide even"); + + assert_eq!(round_up.divide(8, 5), 2, "round up"); + assert_eq!(round_up.divide(10, 3), 4, "round up"); + assert_eq!(round_up.divide(100, 50), 2, "divide even"); + assert_eq!(round_up.divide(100, 49), 3, "round up"); + } + + #[test] + fn rounding_down(){ + let round_down = RoundingMode::Down; + assert_eq!(round_down.divide(8, 5), 1, "round down"); + assert_eq!(round_down.divide(10, 3), 3, "round down"); + assert_eq!(round_down.divide(100, 50), 2, "divide even"); + assert_eq!(round_down.divide(100, 49), 2, "round down"); + assert_eq!(round_down.divide(100, 51), 1, "round down"); + } + + #[test] + fn tile_description_write_read_roundtrip(){ + let tiles = [ + TileDescription { + tile_size: Vec2(31, 7), + level_mode: LevelMode::MipMap, + rounding_mode: RoundingMode::Down, + }, + + TileDescription { + tile_size: Vec2(0, 0), + level_mode: LevelMode::Singular, + rounding_mode: RoundingMode::Up, + }, + + TileDescription { + tile_size: Vec2(4294967294, 4294967295), + level_mode: LevelMode::RipMap, + rounding_mode: RoundingMode::Down, + }, + ]; + + for tile in &tiles { + let mut bytes = Vec::new(); + tile.write(&mut bytes).unwrap(); + + let new_tile = TileDescription::read(&mut Cursor::new(bytes)).unwrap(); + assert_eq!(*tile, new_tile, "tile round trip"); + } + } + + #[test] + fn attribute_write_read_roundtrip_and_byte_size(){ + let attributes = [ + ( + Text::from("greeting"), + AttributeValue::Text(Text::from("hello")), + ), + ( + Text::from("age"), + AttributeValue::I32(923), + ), + ( + Text::from("leg count"), + AttributeValue::F64(9.114939599234), + ), + ( + Text::from("rabbit area"), + AttributeValue::FloatRect(FloatRect { + min: Vec2(23.4234, 345.23), + max: Vec2(68623.0, 3.12425926538), + }), + ), + ( + Text::from("rabbit area int"), + AttributeValue::IntegerBounds(IntegerBounds { + position: Vec2(23, 345), + size: Vec2(68623, 3), + }), + ), + ( + Text::from("rabbit area int"), + AttributeValue::IntegerBounds(IntegerBounds { + position: Vec2(-(i32::MAX / 2 - 1), -(i32::MAX / 2 - 1)), + size: Vec2(i32::MAX as usize - 2, i32::MAX as usize - 2), + }), + ), + ( + Text::from("rabbit area int 2"), + AttributeValue::IntegerBounds(IntegerBounds { + position: Vec2(0, 0), + size: Vec2(i32::MAX as usize / 2 - 1, i32::MAX as usize / 2 - 1), + }), + ), + ( + Text::from("tests are difficult"), + AttributeValue::TextVector(vec![ + Text::from("sdoifjpsdv"), + Text::from("sdoifjpsdvxxxx"), + Text::from("sdoifjasd"), + Text::from("sdoifj"), + Text::from("sdoifjddddddddasdasd"), + ]), + ), + ( + Text::from("what should we eat tonight"), + AttributeValue::Preview(Preview { + size: Vec2(10, 30), + pixel_data: vec![31; 10 * 30 * 4], + }), + ), + ( + Text::from("leg count, again"), + AttributeValue::ChannelList(ChannelList::new(smallvec![ + ChannelDescription { + name: Text::from("Green"), + sample_type: SampleType::F16, + quantize_linearly: false, + sampling: Vec2(1,2) + }, + ChannelDescription { + name: Text::from("Red"), + sample_type: SampleType::F32, + quantize_linearly: true, + sampling: Vec2(1,2) + }, + ChannelDescription { + name: Text::from("Purple"), + sample_type: SampleType::U32, + quantize_linearly: false, + sampling: Vec2(0,0) + } + ], + )), + ), + ]; + + for (name, value) in &attributes { + let mut bytes = Vec::new(); + super::write(name.as_slice(), value, &mut bytes).unwrap(); + assert_eq!(super::byte_size(name, value), bytes.len(), "attribute.byte_size() for {:?}", (name, value)); + + let new_attribute = super::read(&mut PeekRead::new(Cursor::new(bytes)), 300).unwrap(); + assert_eq!((name.clone(), value.clone()), (new_attribute.0, new_attribute.1.unwrap()), "attribute round trip"); + } + + + { + let (name, value) = ( + Text::from("asdkaspfokpaosdkfpaokswdpoakpsfokaposdkf"), + AttributeValue::I32(0), + ); + + let mut long_names = false; + super::validate(&name, &value, &mut long_names, false, IntegerBounds::zero(), false).unwrap(); + assert!(long_names); + } + + { + let (name, value) = ( + Text::from("sdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfpo"), + AttributeValue::I32(0), + ); + + super::validate(&name, &value, &mut false, false, IntegerBounds::zero(), false).expect_err("name length check failed"); + } + } + + #[test] + fn time_code_pack(){ + let mut rng = thread_rng(); + + let codes = std::iter::repeat_with(|| TimeCode { + hours: rng.gen_range(0 .. 24), + minutes: rng.gen_range(0 .. 60), + seconds: rng.gen_range(0 .. 60), + frame: rng.gen_range(0 .. 29), + drop_frame: random(), + color_frame: random(), + field_phase: random(), + binary_group_flags: [random(),random(),random()], + binary_groups: std::iter::repeat_with(|| rng.gen_range(0 .. 16)).take(8) + .collect::<SmallVec<[u8;8]>>().into_inner().unwrap() + }); + + for code in codes.take(500) { + code.validate(true).expect("invalid timecode test input"); + + { // through tv60 packing, roundtrip + let packed_tv60 = code.pack_time_as_tv60_u32().expect("invalid timecode test input"); + let packed_user = code.pack_user_data_as_u32(); + assert_eq!(TimeCode::from_tv60_time(packed_tv60, packed_user), code); + } + + { // through bytes, roundtrip + let mut bytes = Vec::<u8>::new(); + code.write(&mut bytes).unwrap(); + let decoded = TimeCode::read(&mut bytes.as_slice()).unwrap(); + assert_eq!(code, decoded); + } + + { + let tv50_code = TimeCode { + drop_frame: false, // apparently, tv50 does not support drop frame, so do not use this value + .. code + }; + + let packed_tv50 = code.pack_time_as_tv50_u32().expect("invalid timecode test input"); + let packed_user = code.pack_user_data_as_u32(); + assert_eq!(TimeCode::from_tv50_time(packed_tv50, packed_user), tv50_code); + } + + { + let film24_code = TimeCode { + // apparently, film24 does not support some flags, so do not use those values + color_frame: false, + drop_frame: false, + .. code + }; + + let packed_film24 = code.pack_time_as_film24_u32().expect("invalid timecode test input"); + let packed_user = code.pack_user_data_as_u32(); + assert_eq!(TimeCode::from_film24_time(packed_film24, packed_user), film24_code); + } + } + } + +} diff --git a/vendor/exr/src/meta/header.rs b/vendor/exr/src/meta/header.rs new file mode 100644 index 0000000..b322b18 --- /dev/null +++ b/vendor/exr/src/meta/header.rs @@ -0,0 +1,1197 @@ + +//! Contains collections of common attributes. +//! Defines some data types that list all standard attributes. + +use std::collections::HashMap; +use crate::meta::attribute::*; // FIXME shouldn't this need some more imports???? +use crate::meta::*; +use crate::math::Vec2; + +// TODO rename header to LayerDescription! + +/// Describes a single layer in a file. +/// A file can have any number of layers. +/// The meta data contains one header per layer. +#[derive(Clone, Debug, PartialEq)] +pub struct Header { + + /// List of channels in this layer. + pub channels: ChannelList, + + /// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`. + pub compression: Compression, + + /// Describes how the pixels of this layer are divided into smaller blocks. + /// A single block can be loaded without processing all bytes of a file. + /// + /// Also describes whether a file contains multiple resolution levels: mip maps or rip maps. + /// This allows loading not the full resolution, but the smallest sensible resolution. + // + // Required if file contains deep data or multiple layers. + // Note: This value must agree with the version field's tile bit and deep data bit. + // In this crate, this attribute will always have a value, for simplicity. + pub blocks: BlockDescription, + + /// In what order the tiles of this header occur in the file. + pub line_order: LineOrder, + + /// The resolution of this layer. Equivalent to the size of the `DataWindow`. + pub layer_size: Vec2<usize>, + + /// Whether this layer contains deep data. + pub deep: bool, + + /// This library supports only deep data version 1. + pub deep_data_version: Option<i32>, + + /// Number of chunks, that is, scan line blocks or tiles, that this image has been divided into. + /// This number is calculated once at the beginning + /// of the read process or when creating a header object. + /// + /// This value includes all chunks of all resolution levels. + /// + /// + /// __Warning__ + /// _This value is relied upon. You should probably use `Header::with_encoding`, + /// which automatically updates the chunk count._ + pub chunk_count: usize, + + // Required for deep data (deepscanline and deeptile) layers. + // Note: Since the value of "maxSamplesPerPixel" + // maybe be unknown at the time of opening the + // file, the value “ -1 ” is written to the file to + // indicate an unknown value. When the file is + // closed, this will be overwritten with the correct value. + // If file writing does not complete + // correctly due to an error, the value -1 will + // remain. In this case, the value must be derived + // by decoding each chunk in the layer + /// Maximum number of samples in a single pixel in a deep image. + pub max_samples_per_pixel: Option<usize>, + + /// Includes mandatory fields like pixel aspect or display window + /// which must be the same for all layers. + pub shared_attributes: ImageAttributes, + + /// Does not include the attributes required for reading the file contents. + /// Excludes standard fields that must be the same for all headers. + pub own_attributes: LayerAttributes, +} + +/// Includes mandatory fields like pixel aspect or display window +/// which must be the same for all layers. +/// For more attributes, see struct `LayerAttributes`. +#[derive(Clone, PartialEq, Debug)] +pub struct ImageAttributes { + + /// The rectangle anywhere in the global infinite 2D space + /// that clips all contents of the file. + pub display_window: IntegerBounds, + + /// Aspect ratio of each pixel in this header. + pub pixel_aspect: f32, + + /// The chromaticities attribute of the image. See the `Chromaticities` type. + pub chromaticities: Option<Chromaticities>, + + /// The time code of the image. + pub time_code: Option<TimeCode>, + + /// Contains custom attributes. + /// Does not contain the attributes already present in the `ImageAttributes`. + /// Contains only attributes that are standardized to be the same for all headers: chromaticities and time codes. + pub other: HashMap<Text, AttributeValue>, +} + +/// Does not include the attributes required for reading the file contents. +/// Excludes standard fields that must be the same for all headers. +/// For more attributes, see struct `ImageAttributes`. +#[derive(Clone, PartialEq)] +pub struct LayerAttributes { + + /// The name of this layer. + /// Required if this file contains deep data or multiple layers. + // As this is an attribute value, it is not restricted in length, may even be empty + pub layer_name: Option<Text>, + + /// The top left corner of the rectangle that positions this layer + /// within the global infinite 2D space of the whole file. + /// This represents the position of the `DataWindow`. + pub layer_position: Vec2<i32>, + + /// Part of the perspective projection. Default should be `(0, 0)`. + // TODO same for all layers? + pub screen_window_center: Vec2<f32>, + + // TODO same for all layers? + /// Part of the perspective projection. Default should be `1`. + pub screen_window_width: f32, + + /// The white luminance of the colors. + /// Defines the luminance in candelas per square meter, Nits, of the rgb value `(1, 1, 1)`. + // If the chromaticities and the whiteLuminance of an RGB image are + // known, then it is possible to convert the image's pixels from RGB + // to CIE XYZ tristimulus values (see function RGBtoXYZ() in header + // file ImfChromaticities.h). + pub white_luminance: Option<f32>, + + /// The adopted neutral of the colors. Specifies the CIE (x,y) frequency coordinates that should + /// be considered neutral during color rendering. Pixels in the image + /// whose CIE (x,y) frequency coordinates match the adopted neutral value should + /// be mapped to neutral values on the given display. + pub adopted_neutral: Option<Vec2<f32>>, + + /// Name of the color transform function that is applied for rendering the image. + pub rendering_transform_name: Option<Text>, + + /// Name of the color transform function that computes the look modification of the image. + pub look_modification_transform_name: Option<Text>, + + /// The horizontal density, in pixels per inch. + /// The image's vertical output density can be computed using `horizontal_density * pixel_aspect_ratio`. + pub horizontal_density: Option<f32>, + + /// Name of the owner. + pub owner: Option<Text>, + + /// Additional textual information. + pub comments: Option<Text>, + + /// The date of image creation, in `YYYY:MM:DD hh:mm:ss` format. + // TODO parse! + pub capture_date: Option<Text>, + + /// Time offset from UTC. + pub utc_offset: Option<f32>, + + /// Geographical image location. + pub longitude: Option<f32>, + + /// Geographical image location. + pub latitude: Option<f32>, + + /// Geographical image location. + pub altitude: Option<f32>, + + /// Camera focus in meters. + pub focus: Option<f32>, + + /// Exposure time in seconds. + pub exposure: Option<f32>, + + /// Camera aperture measured in f-stops. Equals the focal length + /// of the lens divided by the diameter of the iris opening. + pub aperture: Option<f32>, + + /// Iso-speed of the camera sensor. + pub iso_speed: Option<f32>, + + /// If this is an environment map, specifies how to interpret it. + pub environment_map: Option<EnvironmentMap>, + + /// Identifies film manufacturer, film type, film roll and frame position within the roll. + pub film_key_code: Option<KeyCode>, + + /// Specifies how texture map images are extrapolated. + /// Values can be `black`, `clamp`, `periodic`, or `mirror`. + pub wrap_mode_name: Option<Text>, + + /// Frames per second if this is a frame in a sequence. + pub frames_per_second: Option<Rational>, + + /// Specifies the view names for multi-view, for example stereo, image files. + pub multi_view_names: Option<Vec<Text>>, + + /// The matrix that transforms 3D points from the world to the camera coordinate space. + /// Left-handed coordinate system, y up, z forward. + pub world_to_camera: Option<Matrix4x4>, + + /// The matrix that transforms 3D points from the world to the "Normalized Device Coordinate" space. + /// Left-handed coordinate system, y up, z forward. + pub world_to_normalized_device: Option<Matrix4x4>, + + /// Specifies whether the pixels in a deep image are sorted and non-overlapping. + pub deep_image_state: Option<Rational>, + + /// If the image was cropped, contains the original data window. + pub original_data_window: Option<IntegerBounds>, + + /// An 8-bit rgba image representing the rendered image. + pub preview: Option<Preview>, + + /// Name of the view, which is typically either `"right"` or `"left"` for a stereoscopic image. + pub view_name: Option<Text>, + + /// The name of the software that produced this image. + pub software_name: Option<Text>, + + /// The near clip plane of the virtual camera projection. + pub near_clip_plane: Option<f32>, + + /// The far clip plane of the virtual camera projection. + pub far_clip_plane: Option<f32>, + + /// The field of view angle, along the horizontal axis, in degrees. + pub horizontal_field_of_view: Option<f32>, + + /// The field of view angle, along the horizontal axis, in degrees. + pub vertical_field_of_view: Option<f32>, + + /// Contains custom attributes. + /// Does not contain the attributes already present in the `Header` or `LayerAttributes` struct. + /// Does not contain attributes that are standardized to be the same for all layers: no chromaticities and no time codes. + pub other: HashMap<Text, AttributeValue>, +} + + +impl LayerAttributes { + + /// Create default layer attributes with a data position of zero. + pub fn named(layer_name: impl Into<Text>) -> Self { + Self { + layer_name: Some(layer_name.into()), + .. Self::default() + } + } + + /// Set the data position of this layer. + pub fn with_position(self, data_position: Vec2<i32>) -> Self { + Self { layer_position: data_position, ..self } + } + + /// Set all common camera projection attributes at once. + pub fn with_camera_frustum( + self, + world_to_camera: Matrix4x4, + world_to_normalized_device: Matrix4x4, + field_of_view: impl Into<Vec2<f32>>, + depth_clip_range: std::ops::Range<f32>, + ) -> Self + { + let fov = field_of_view.into(); + + Self { + world_to_normalized_device: Some(world_to_normalized_device), + world_to_camera: Some(world_to_camera), + horizontal_field_of_view: Some(fov.x()), + vertical_field_of_view: Some(fov.y()), + near_clip_plane: Some(depth_clip_range.start), + far_clip_plane: Some(depth_clip_range.end), + ..self + } + } +} + +impl ImageAttributes { + + /// Set the display position and size of this image. + pub fn new(display_window: IntegerBounds) -> Self { + Self { + pixel_aspect: 1.0, + chromaticities: None, + time_code: None, + other: Default::default(), + display_window, + } + } + + /// Set the display position to zero and use the specified size for this image. + pub fn with_size(size: impl Into<Vec2<usize>>) -> Self { + Self::new(IntegerBounds::from_dimensions(size)) + } +} + + + + +impl Header { + + /// Create a new Header with the specified name, display window and channels. + /// Use `Header::with_encoding` and the similar methods to add further properties to the header. + /// + /// The other settings are left to their default values: + /// - RLE compression + /// - display window equal to data window + /// - tiles (64 x 64 px) + /// - unspecified line order + /// - no custom attributes + pub fn new(name: Text, data_size: impl Into<Vec2<usize>>, channels: SmallVec<[ChannelDescription; 5]>) -> Self { + let data_size: Vec2<usize> = data_size.into(); + + let compression = Compression::RLE; + let blocks = BlockDescription::Tiles(TileDescription { + tile_size: Vec2(64, 64), + level_mode: LevelMode::Singular, + rounding_mode: RoundingMode::Down + }); + + Self { + layer_size: data_size, + compression, + blocks, + + channels: ChannelList::new(channels), + line_order: LineOrder::Unspecified, + + shared_attributes: ImageAttributes::with_size(data_size), + own_attributes: LayerAttributes::named(name), + + chunk_count: compute_chunk_count(compression, data_size, blocks), + + deep: false, + deep_data_version: None, + max_samples_per_pixel: None, + } + } + + /// Set the display window, that is, the global clipping rectangle. + /// __Must be the same for all headers of a file.__ + pub fn with_display_window(mut self, display_window: IntegerBounds) -> Self { + self.shared_attributes.display_window = display_window; + self + } + + /// Set the offset of this layer. + pub fn with_position(mut self, position: Vec2<i32>) -> Self { + self.own_attributes.layer_position = position; + self + } + + /// Set compression, tiling, and line order. Automatically computes chunk count. + pub fn with_encoding(self, compression: Compression, blocks: BlockDescription, line_order: LineOrder) -> Self { + Self { + chunk_count: compute_chunk_count(compression, self.layer_size, blocks), + compression, blocks, line_order, + .. self + } + } + + /// Set **all** attributes of the header that are not shared with all other headers in the image. + pub fn with_attributes(self, own_attributes: LayerAttributes) -> Self { + Self { own_attributes, .. self } + } + + /// Set **all** attributes of the header that are shared with all other headers in the image. + pub fn with_shared_attributes(self, shared_attributes: ImageAttributes) -> Self { + Self { shared_attributes, .. self } + } + + /// Iterate over all blocks, in the order specified by the headers line order attribute. + /// Unspecified line order is treated as increasing line order. + /// Also enumerates the index of each block in the header, as if it were sorted in increasing line order. + pub fn enumerate_ordered_blocks(&self) -> impl Iterator<Item=(usize, TileIndices)> + Send { + let increasing_y = self.blocks_increasing_y_order().enumerate(); + + // TODO without box? + let ordered: Box<dyn Send + Iterator<Item=(usize, TileIndices)>> = { + if self.line_order == LineOrder::Decreasing { Box::new(increasing_y.rev()) } + else { Box::new(increasing_y) } + }; + + ordered + } + + /*/// Iterate over all blocks, in the order specified by the headers line order attribute. + /// Also includes an index of the block if it were `LineOrder::Increasing`, starting at zero for this header. + pub fn enumerate_ordered_blocks(&self) -> impl Iterator<Item = (usize, TileIndices)> + Send { + let increasing_y = self.blocks_increasing_y_order().enumerate(); + + let ordered: Box<dyn Send + Iterator<Item = (usize, TileIndices)>> = { + if self.line_order == LineOrder::Decreasing { + Box::new(increasing_y.rev()) // TODO without box? + } + else { + Box::new(increasing_y) + } + }; + + ordered + }*/ + + /// Iterate over all tile indices in this header in `LineOrder::Increasing` order. + pub fn blocks_increasing_y_order(&self) -> impl Iterator<Item = TileIndices> + ExactSizeIterator + DoubleEndedIterator { + fn tiles_of(image_size: Vec2<usize>, tile_size: Vec2<usize>, level_index: Vec2<usize>) -> impl Iterator<Item=TileIndices> { + fn divide_and_rest(total_size: usize, block_size: usize) -> impl Iterator<Item=(usize, usize)> { + let block_count = compute_block_count(total_size, block_size); + (0..block_count).map(move |block_index| ( + block_index, calculate_block_size(total_size, block_size, block_index).expect("block size calculation bug") + )) + } + + divide_and_rest(image_size.height(), tile_size.height()).flat_map(move |(y_index, tile_height)|{ + divide_and_rest(image_size.width(), tile_size.width()).map(move |(x_index, tile_width)|{ + TileIndices { + size: Vec2(tile_width, tile_height), + location: TileCoordinates { tile_index: Vec2(x_index, y_index), level_index, }, + } + }) + }) + } + + let vec: Vec<TileIndices> = { + if let BlockDescription::Tiles(tiles) = self.blocks { + match tiles.level_mode { + LevelMode::Singular => { + tiles_of(self.layer_size, tiles.tile_size, Vec2(0, 0)).collect() + }, + LevelMode::MipMap => { + mip_map_levels(tiles.rounding_mode, self.layer_size) + .flat_map(move |(level_index, level_size)|{ + tiles_of(level_size, tiles.tile_size, Vec2(level_index, level_index)) + }) + .collect() + }, + LevelMode::RipMap => { + rip_map_levels(tiles.rounding_mode, self.layer_size) + .flat_map(move |(level_index, level_size)| { + tiles_of(level_size, tiles.tile_size, level_index) + }) + .collect() + } + } + } + else { + let tiles = Vec2(self.layer_size.0, self.compression.scan_lines_per_block()); + tiles_of(self.layer_size, tiles, Vec2(0, 0)).collect() + } + }; + + vec.into_iter() // TODO without collect + } + + /* TODO + /// The block indices of this header, ordered as they would appear in the file. + pub fn ordered_block_indices<'s>(&'s self, layer_index: usize) -> impl 's + Iterator<Item=BlockIndex> { + self.enumerate_ordered_blocks().map(|(chunk_index, tile)|{ + let data_indices = self.get_absolute_block_pixel_coordinates(tile.location).expect("tile coordinate bug"); + + BlockIndex { + layer: layer_index, + level: tile.location.level_index, + pixel_position: data_indices.position.to_usize("data indices start").expect("data index bug"), + pixel_size: data_indices.size, + } + }) + }*/ + + // TODO reuse this function everywhere + /// The default pixel resolution of a single block (tile or scan line block). + /// Not all blocks have this size, because they may be cutoff at the end of the image. + pub fn max_block_pixel_size(&self) -> Vec2<usize> { + match self.blocks { + BlockDescription::ScanLines => Vec2(self.layer_size.0, self.compression.scan_lines_per_block()), + BlockDescription::Tiles(tiles) => tiles.tile_size, + } + } + + /// Calculate the position of a block in the global infinite 2D space of a file. May be negative. + pub fn get_block_data_window_pixel_coordinates(&self, tile: TileCoordinates) -> Result<IntegerBounds> { + let data = self.get_absolute_block_pixel_coordinates(tile)?; + Ok(data.with_origin(self.own_attributes.layer_position)) + } + + /// Calculate the pixel index rectangle inside this header. Is not negative. Starts at `0`. + pub fn get_absolute_block_pixel_coordinates(&self, tile: TileCoordinates) -> Result<IntegerBounds> { + if let BlockDescription::Tiles(tiles) = self.blocks { + let Vec2(data_width, data_height) = self.layer_size; + + let data_width = compute_level_size(tiles.rounding_mode, data_width, tile.level_index.x()); + let data_height = compute_level_size(tiles.rounding_mode, data_height, tile.level_index.y()); + let absolute_tile_coordinates = tile.to_data_indices(tiles.tile_size, Vec2(data_width, data_height))?; + + if absolute_tile_coordinates.position.x() as i64 >= data_width as i64 || absolute_tile_coordinates.position.y() as i64 >= data_height as i64 { + return Err(Error::invalid("data block tile index")) + } + + Ok(absolute_tile_coordinates) + } + else { // this is a scanline image + debug_assert_eq!(tile.tile_index.0, 0, "block index calculation bug"); + + let (y, height) = calculate_block_position_and_size( + self.layer_size.height(), + self.compression.scan_lines_per_block(), + tile.tile_index.y() + )?; + + Ok(IntegerBounds { + position: Vec2(0, usize_to_i32(y)), + size: Vec2(self.layer_size.width(), height) + }) + } + + // TODO deep data? + } + + /// Return the tile index, converting scan line block coordinates to tile indices. + /// Starts at `0` and is not negative. + pub fn get_block_data_indices(&self, block: &CompressedBlock) -> Result<TileCoordinates> { + Ok(match block { + CompressedBlock::Tile(ref tile) => { + tile.coordinates + }, + + CompressedBlock::ScanLine(ref block) => { + let size = self.compression.scan_lines_per_block() as i32; + + let diff = block.y_coordinate.checked_sub(self.own_attributes.layer_position.y()).ok_or(Error::invalid("invalid header"))?; + let y = diff.checked_div(size).ok_or(Error::invalid("invalid header"))?; + + if y < 0 { + return Err(Error::invalid("scan block y coordinate")); + } + + TileCoordinates { + tile_index: Vec2(0, y as usize), + level_index: Vec2(0, 0) + } + }, + + _ => return Err(Error::unsupported("deep data not supported yet")) + }) + } + + /// Computes the absolute tile coordinate data indices, which start at `0`. + pub fn get_scan_line_block_tile_coordinates(&self, block_y_coordinate: i32) -> Result<TileCoordinates> { + let size = self.compression.scan_lines_per_block() as i32; + + let diff = block_y_coordinate.checked_sub(self.own_attributes.layer_position.1).ok_or(Error::invalid("invalid header"))?; + let y = diff.checked_div(size).ok_or(Error::invalid("invalid header"))?; + + if y < 0 { + return Err(Error::invalid("scan block y coordinate")); + } + + Ok(TileCoordinates { + tile_index: Vec2(0, y as usize), + level_index: Vec2(0, 0) + }) + } + + /// Maximum byte length of an uncompressed or compressed block, used for validation. + pub fn max_block_byte_size(&self) -> usize { + self.channels.bytes_per_pixel * match self.blocks { + BlockDescription::Tiles(tiles) => tiles.tile_size.area(), + BlockDescription::ScanLines => self.compression.scan_lines_per_block() * self.layer_size.width() + // TODO What about deep data??? + } + } + + /// Returns the number of bytes that the pixels of this header will require + /// when stored without compression. Respects multi-resolution levels and subsampling. + pub fn total_pixel_bytes(&self) -> usize { + assert!(!self.deep); + + let pixel_count_of_levels = |size: Vec2<usize>| -> usize { + match self.blocks { + BlockDescription::ScanLines => size.area(), + BlockDescription::Tiles(tile_description) => match tile_description.level_mode { + LevelMode::Singular => size.area(), + + LevelMode::MipMap => mip_map_levels(tile_description.rounding_mode, size) + .map(|(_, size)| size.area()).sum(), + + LevelMode::RipMap => rip_map_levels(tile_description.rounding_mode, size) + .map(|(_, size)| size.area()).sum(), + } + } + }; + + self.channels.list.iter() + .map(|channel: &ChannelDescription| + pixel_count_of_levels(channel.subsampled_resolution(self.layer_size)) * channel.sample_type.bytes_per_sample() + ) + .sum() + + } + + /// Approximates the maximum number of bytes that the pixels of this header will consume in a file. + /// Due to compression, the actual byte size may be smaller. + pub fn max_pixel_file_bytes(&self) -> usize { + assert!(!self.deep); + + self.chunk_count * 64 // at most 64 bytes overhead for each chunk (header index, tile description, chunk size, and more) + + self.total_pixel_bytes() + } + + /// Validate this instance. + pub fn validate(&self, is_multilayer: bool, long_names: &mut bool, strict: bool) -> UnitResult { + + self.data_window().validate(None)?; + self.shared_attributes.display_window.validate(None)?; + + if strict { + if is_multilayer { + if self.own_attributes.layer_name.is_none() { + return Err(missing_attribute("layer name for multi layer file")); + } + } + + if self.blocks == BlockDescription::ScanLines && self.line_order == LineOrder::Unspecified { + return Err(Error::invalid("unspecified line order in scan line images")); + } + + if self.layer_size == Vec2(0, 0) { + return Err(Error::invalid("empty data window")); + } + + if self.shared_attributes.display_window.size == Vec2(0,0) { + return Err(Error::invalid("empty display window")); + } + + if !self.shared_attributes.pixel_aspect.is_normal() || self.shared_attributes.pixel_aspect < 1.0e-6 || self.shared_attributes.pixel_aspect > 1.0e6 { + return Err(Error::invalid("pixel aspect ratio")); + } + + if self.own_attributes.screen_window_width < 0.0 { + return Err(Error::invalid("screen window width")); + } + } + + let allow_subsampling = !self.deep && self.blocks == BlockDescription::ScanLines; + self.channels.validate(allow_subsampling, self.data_window(), strict)?; + + for (name, value) in &self.shared_attributes.other { + attribute::validate(name, value, long_names, allow_subsampling, self.data_window(), strict)?; + } + + for (name, value) in &self.own_attributes.other { + attribute::validate(name, value, long_names, allow_subsampling, self.data_window(), strict)?; + } + + // this is only to check whether someone tampered with our precious values, to avoid writing an invalid file + if self.chunk_count != compute_chunk_count(self.compression, self.layer_size, self.blocks) { + return Err(Error::invalid("chunk count attribute")); // TODO this may be an expensive check? + } + + // check if attribute names appear twice + if strict { + for (name, _) in &self.shared_attributes.other { + if self.own_attributes.other.contains_key(name) { + return Err(Error::invalid(format!("duplicate attribute name: `{}`", name))); + } + } + + for &reserved in header::standard_names::ALL.iter() { + let name = Text::from_bytes_unchecked(SmallVec::from_slice(reserved)); + if self.own_attributes.other.contains_key(&name) || self.shared_attributes.other.contains_key(&name) { + return Err(Error::invalid(format!( + "attribute name `{}` is reserved and cannot be custom", + Text::from_bytes_unchecked(reserved.into()) + ))); + } + } + } + + if self.deep { + if strict { + if self.own_attributes.layer_name.is_none() { + return Err(missing_attribute("layer name for deep file")); + } + + if self.max_samples_per_pixel.is_none() { + return Err(Error::invalid("missing max samples per pixel attribute for deepdata")); + } + } + + match self.deep_data_version { + Some(1) => {}, + Some(_) => return Err(Error::unsupported("deep data version")), + None => return Err(missing_attribute("deep data version")), + } + + if !self.compression.supports_deep_data() { + return Err(Error::invalid("compression method does not support deep data")); + } + } + + Ok(()) + } + + /// Read the headers without validating them. + pub fn read_all(read: &mut PeekRead<impl Read>, version: &Requirements, pedantic: bool) -> Result<Headers> { + if !version.is_multilayer() { + Ok(smallvec![ Header::read(read, version, pedantic)? ]) + } + else { + let mut headers = SmallVec::new(); + + while !sequence_end::has_come(read)? { + headers.push(Header::read(read, version, pedantic)?); + } + + Ok(headers) + } + } + + /// Without validation, write the headers to the byte stream. + pub fn write_all(headers: &[Header], write: &mut impl Write, is_multilayer: bool) -> UnitResult { + for header in headers { + header.write(write)?; + } + + if is_multilayer { + sequence_end::write(write)?; + } + + Ok(()) + } + + /// Read the value without validating. + pub fn read(read: &mut PeekRead<impl Read>, requirements: &Requirements, pedantic: bool) -> Result<Self> { + let max_string_len = if requirements.has_long_names { 256 } else { 32 }; // TODO DRY this information + + // these required attributes will be filled when encountered while parsing + let mut tiles = None; + let mut block_type = None; + let mut version = None; + let mut chunk_count = None; + let mut max_samples_per_pixel = None; + let mut channels = None; + let mut compression = None; + let mut data_window = None; + let mut display_window = None; + let mut line_order = None; + + let mut dwa_compression_level = None; + + let mut layer_attributes = LayerAttributes::default(); + let mut image_attributes = ImageAttributes::new(IntegerBounds::zero()); + + // read each attribute in this header + while !sequence_end::has_come(read)? { + let (attribute_name, value) = attribute::read(read, max_string_len)?; + + // if the attribute value itself is ok, record it + match value { + Ok(value) => { + use crate::meta::header::standard_names as name; + use crate::meta::attribute::AttributeValue::*; + + // if the attribute is a required attribute, set the corresponding variable directly. + // otherwise, add the attribute to the vector of custom attributes + + // the following attributes will only be set if the type matches the commonly used type for that attribute + match (attribute_name.as_slice(), value) { + (name::BLOCK_TYPE, Text(value)) => block_type = Some(attribute::BlockType::parse(value)?), + (name::TILES, TileDescription(value)) => tiles = Some(value), + (name::CHANNELS, ChannelList(value)) => channels = Some(value), + (name::COMPRESSION, Compression(value)) => compression = Some(value), + (name::DATA_WINDOW, IntegerBounds(value)) => data_window = Some(value), + (name::DISPLAY_WINDOW, IntegerBounds(value)) => display_window = Some(value), + (name::LINE_ORDER, LineOrder(value)) => line_order = Some(value), + (name::DEEP_DATA_VERSION, I32(value)) => version = Some(value), + + (name::MAX_SAMPLES, I32(value)) => max_samples_per_pixel = Some( + i32_to_usize(value, "max sample count")? + ), + + (name::CHUNKS, I32(value)) => chunk_count = Some( + i32_to_usize(value, "chunk count")? + ), + + (name::NAME, Text(value)) => layer_attributes.layer_name = Some(value), + (name::WINDOW_CENTER, FloatVec2(value)) => layer_attributes.screen_window_center = value, + (name::WINDOW_WIDTH, F32(value)) => layer_attributes.screen_window_width = value, + + (name::WHITE_LUMINANCE, F32(value)) => layer_attributes.white_luminance = Some(value), + (name::ADOPTED_NEUTRAL, FloatVec2(value)) => layer_attributes.adopted_neutral = Some(value), + (name::RENDERING_TRANSFORM, Text(value)) => layer_attributes.rendering_transform_name = Some(value), + (name::LOOK_MOD_TRANSFORM, Text(value)) => layer_attributes.look_modification_transform_name = Some(value), + (name::X_DENSITY, F32(value)) => layer_attributes.horizontal_density = Some(value), + + (name::OWNER, Text(value)) => layer_attributes.owner = Some(value), + (name::COMMENTS, Text(value)) => layer_attributes.comments = Some(value), + (name::CAPTURE_DATE, Text(value)) => layer_attributes.capture_date = Some(value), + (name::UTC_OFFSET, F32(value)) => layer_attributes.utc_offset = Some(value), + (name::LONGITUDE, F32(value)) => layer_attributes.longitude = Some(value), + (name::LATITUDE, F32(value)) => layer_attributes.latitude = Some(value), + (name::ALTITUDE, F32(value)) => layer_attributes.altitude = Some(value), + (name::FOCUS, F32(value)) => layer_attributes.focus = Some(value), + (name::EXPOSURE_TIME, F32(value)) => layer_attributes.exposure = Some(value), + (name::APERTURE, F32(value)) => layer_attributes.aperture = Some(value), + (name::ISO_SPEED, F32(value)) => layer_attributes.iso_speed = Some(value), + (name::ENVIRONMENT_MAP, EnvironmentMap(value)) => layer_attributes.environment_map = Some(value), + (name::KEY_CODE, KeyCode(value)) => layer_attributes.film_key_code = Some(value), + (name::WRAP_MODES, Text(value)) => layer_attributes.wrap_mode_name = Some(value), + (name::FRAMES_PER_SECOND, Rational(value)) => layer_attributes.frames_per_second = Some(value), + (name::MULTI_VIEW, TextVector(value)) => layer_attributes.multi_view_names = Some(value), + (name::WORLD_TO_CAMERA, Matrix4x4(value)) => layer_attributes.world_to_camera = Some(value), + (name::WORLD_TO_NDC, Matrix4x4(value)) => layer_attributes.world_to_normalized_device = Some(value), + (name::DEEP_IMAGE_STATE, Rational(value)) => layer_attributes.deep_image_state = Some(value), + (name::ORIGINAL_DATA_WINDOW, IntegerBounds(value)) => layer_attributes.original_data_window = Some(value), + (name::DWA_COMPRESSION_LEVEL, F32(value)) => dwa_compression_level = Some(value), + (name::PREVIEW, Preview(value)) => layer_attributes.preview = Some(value), + (name::VIEW, Text(value)) => layer_attributes.view_name = Some(value), + + (name::NEAR, F32(value)) => layer_attributes.near_clip_plane = Some(value), + (name::FAR, F32(value)) => layer_attributes.far_clip_plane = Some(value), + (name::FOV_X, F32(value)) => layer_attributes.horizontal_field_of_view = Some(value), + (name::FOV_Y, F32(value)) => layer_attributes.vertical_field_of_view = Some(value), + (name::SOFTWARE, Text(value)) => layer_attributes.software_name = Some(value), + + (name::PIXEL_ASPECT, F32(value)) => image_attributes.pixel_aspect = value, + (name::TIME_CODE, TimeCode(value)) => image_attributes.time_code = Some(value), + (name::CHROMATICITIES, Chromaticities(value)) => image_attributes.chromaticities = Some(value), + + // insert unknown attributes of these types into image attributes, + // as these must be the same for all headers + (_, value @ Chromaticities(_)) | + (_, value @ TimeCode(_)) => { + image_attributes.other.insert(attribute_name, value); + }, + + // insert unknown attributes into layer attributes + (_, value) => { + layer_attributes.other.insert(attribute_name, value); + }, + + } + }, + + // in case the attribute value itself is not ok, but the rest of the image is + // only abort reading the image if desired + Err(error) => { + if pedantic { return Err(error); } + } + } + } + + // construct compression with parameters from properties + let compression = match (dwa_compression_level, compression) { + (Some(level), Some(Compression::DWAA(_))) => Some(Compression::DWAA(Some(level))), + (Some(level), Some(Compression::DWAB(_))) => Some(Compression::DWAB(Some(level))), + (_, other) => other, + // FIXME dwa compression level gets lost if any other compression is used later in the process + }; + + let compression = compression.ok_or(missing_attribute("compression"))?; + image_attributes.display_window = display_window.ok_or(missing_attribute("display window"))?; + + let data_window = data_window.ok_or(missing_attribute("data window"))?; + data_window.validate(None)?; // validate now to avoid errors when computing the chunk_count + layer_attributes.layer_position = data_window.position; + + + // validate now to avoid errors when computing the chunk_count + if let Some(tiles) = tiles { tiles.validate()?; } + let blocks = match block_type { + None if requirements.is_single_layer_and_tiled => { + BlockDescription::Tiles(tiles.ok_or(missing_attribute("tiles"))?) + }, + Some(BlockType::Tile) | Some(BlockType::DeepTile) => { + BlockDescription::Tiles(tiles.ok_or(missing_attribute("tiles"))?) + }, + + _ => BlockDescription::ScanLines, + }; + + let computed_chunk_count = compute_chunk_count(compression, data_window.size, blocks); + if chunk_count.is_some() && pedantic && chunk_count != Some(computed_chunk_count) { + return Err(Error::invalid("chunk count not matching data size")); + } + + let header = Header { + compression, + + // always compute ourselves, because we cannot trust anyone out there 😱 + chunk_count: computed_chunk_count, + + layer_size: data_window.size, + + shared_attributes: image_attributes, + own_attributes: layer_attributes, + + channels: channels.ok_or(missing_attribute("channels"))?, + line_order: line_order.unwrap_or(LineOrder::Unspecified), + + blocks, + max_samples_per_pixel, + deep_data_version: version, + deep: block_type == Some(BlockType::DeepScanLine) || block_type == Some(BlockType::DeepTile), + }; + + Ok(header) + } + + /// Without validation, write this instance to the byte stream. + pub fn write(&self, write: &mut impl Write) -> UnitResult { + + macro_rules! write_attributes { + ( $($name: ident : $variant: ident = $value: expr),* ) => { $( + attribute::write($name, & $variant ($value .clone()), write)?; // TODO without clone + )* }; + } + + macro_rules! write_optional_attributes { + ( $($name: ident : $variant: ident = $value: expr),* ) => { $( + if let Some(value) = $value { + attribute::write($name, & $variant (value.clone()), write)?; // TODO without clone + }; + )* }; + } + + use crate::meta::header::standard_names::*; + use AttributeValue::*; + + let (block_type, tiles) = match self.blocks { + BlockDescription::ScanLines => (attribute::BlockType::ScanLine, None), + BlockDescription::Tiles(tiles) => (attribute::BlockType::Tile, Some(tiles)) + }; + + fn usize_as_i32(value: usize) -> AttributeValue { + I32(i32::try_from(value).expect("u32 exceeds i32 range")) + } + + write_optional_attributes!( + TILES: TileDescription = &tiles, + DEEP_DATA_VERSION: I32 = &self.deep_data_version, + MAX_SAMPLES: usize_as_i32 = &self.max_samples_per_pixel + ); + + write_attributes!( + // chunks is not actually required, but always computed in this library anyways + CHUNKS: usize_as_i32 = &self.chunk_count, + + BLOCK_TYPE: BlockType = &block_type, + CHANNELS: ChannelList = &self.channels, + COMPRESSION: Compression = &self.compression, + LINE_ORDER: LineOrder = &self.line_order, + DATA_WINDOW: IntegerBounds = &self.data_window(), + + DISPLAY_WINDOW: IntegerBounds = &self.shared_attributes.display_window, + PIXEL_ASPECT: F32 = &self.shared_attributes.pixel_aspect, + + WINDOW_CENTER: FloatVec2 = &self.own_attributes.screen_window_center, + WINDOW_WIDTH: F32 = &self.own_attributes.screen_window_width + ); + + write_optional_attributes!( + NAME: Text = &self.own_attributes.layer_name, + WHITE_LUMINANCE: F32 = &self.own_attributes.white_luminance, + ADOPTED_NEUTRAL: FloatVec2 = &self.own_attributes.adopted_neutral, + RENDERING_TRANSFORM: Text = &self.own_attributes.rendering_transform_name, + LOOK_MOD_TRANSFORM: Text = &self.own_attributes.look_modification_transform_name, + X_DENSITY: F32 = &self.own_attributes.horizontal_density, + OWNER: Text = &self.own_attributes.owner, + COMMENTS: Text = &self.own_attributes.comments, + CAPTURE_DATE: Text = &self.own_attributes.capture_date, + UTC_OFFSET: F32 = &self.own_attributes.utc_offset, + LONGITUDE: F32 = &self.own_attributes.longitude, + LATITUDE: F32 = &self.own_attributes.latitude, + ALTITUDE: F32 = &self.own_attributes.altitude, + FOCUS: F32 = &self.own_attributes.focus, + EXPOSURE_TIME: F32 = &self.own_attributes.exposure, + APERTURE: F32 = &self.own_attributes.aperture, + ISO_SPEED: F32 = &self.own_attributes.iso_speed, + ENVIRONMENT_MAP: EnvironmentMap = &self.own_attributes.environment_map, + KEY_CODE: KeyCode = &self.own_attributes.film_key_code, + TIME_CODE: TimeCode = &self.shared_attributes.time_code, + WRAP_MODES: Text = &self.own_attributes.wrap_mode_name, + FRAMES_PER_SECOND: Rational = &self.own_attributes.frames_per_second, + MULTI_VIEW: TextVector = &self.own_attributes.multi_view_names, + WORLD_TO_CAMERA: Matrix4x4 = &self.own_attributes.world_to_camera, + WORLD_TO_NDC: Matrix4x4 = &self.own_attributes.world_to_normalized_device, + DEEP_IMAGE_STATE: Rational = &self.own_attributes.deep_image_state, + ORIGINAL_DATA_WINDOW: IntegerBounds = &self.own_attributes.original_data_window, + CHROMATICITIES: Chromaticities = &self.shared_attributes.chromaticities, + PREVIEW: Preview = &self.own_attributes.preview, + VIEW: Text = &self.own_attributes.view_name, + NEAR: F32 = &self.own_attributes.near_clip_plane, + FAR: F32 = &self.own_attributes.far_clip_plane, + FOV_X: F32 = &self.own_attributes.horizontal_field_of_view, + FOV_Y: F32 = &self.own_attributes.vertical_field_of_view, + SOFTWARE: Text = &self.own_attributes.software_name + ); + + // dwa writes compression parameters as attribute. + match self.compression { + attribute::Compression::DWAA(Some(level)) | + attribute::Compression::DWAB(Some(level)) => + attribute::write(DWA_COMPRESSION_LEVEL, &F32(level), write)?, + + _ => {} + }; + + + for (name, value) in &self.shared_attributes.other { + attribute::write(name.as_slice(), value, write)?; + } + + for (name, value) in &self.own_attributes.other { + attribute::write(name.as_slice(), value, write)?; + } + + sequence_end::write(write)?; + Ok(()) + } + + /// The rectangle describing the bounding box of this layer + /// within the infinite global 2D space of the file. + pub fn data_window(&self) -> IntegerBounds { + IntegerBounds::new(self.own_attributes.layer_position, self.layer_size) + } +} + + + +/// Collection of required attribute names. +pub mod standard_names { + macro_rules! define_required_attribute_names { + ( $($name: ident : $value: expr),* ) => { + + /// A list containing all reserved names. + pub const ALL: &'static [&'static [u8]] = &[ + $( $value ),* + ]; + + $( + /// The byte-string name of this required attribute as it appears in an exr file. + pub const $name: &'static [u8] = $value; + )* + }; + } + + define_required_attribute_names! { + TILES: b"tiles", + NAME: b"name", + BLOCK_TYPE: b"type", + DEEP_DATA_VERSION: b"version", + CHUNKS: b"chunkCount", + MAX_SAMPLES: b"maxSamplesPerPixel", + CHANNELS: b"channels", + COMPRESSION: b"compression", + DATA_WINDOW: b"dataWindow", + DISPLAY_WINDOW: b"displayWindow", + LINE_ORDER: b"lineOrder", + PIXEL_ASPECT: b"pixelAspectRatio", + WINDOW_CENTER: b"screenWindowCenter", + WINDOW_WIDTH: b"screenWindowWidth", + WHITE_LUMINANCE: b"whiteLuminance", + ADOPTED_NEUTRAL: b"adoptedNeutral", + RENDERING_TRANSFORM: b"renderingTransform", + LOOK_MOD_TRANSFORM: b"lookModTransform", + X_DENSITY: b"xDensity", + OWNER: b"owner", + COMMENTS: b"comments", + CAPTURE_DATE: b"capDate", + UTC_OFFSET: b"utcOffset", + LONGITUDE: b"longitude", + LATITUDE: b"latitude", + ALTITUDE: b"altitude", + FOCUS: b"focus", + EXPOSURE_TIME: b"expTime", + APERTURE: b"aperture", + ISO_SPEED: b"isoSpeed", + ENVIRONMENT_MAP: b"envmap", + KEY_CODE: b"keyCode", + TIME_CODE: b"timeCode", + WRAP_MODES: b"wrapmodes", + FRAMES_PER_SECOND: b"framesPerSecond", + MULTI_VIEW: b"multiView", + WORLD_TO_CAMERA: b"worldToCamera", + WORLD_TO_NDC: b"worldToNDC", + DEEP_IMAGE_STATE: b"deepImageState", + ORIGINAL_DATA_WINDOW: b"originalDataWindow", + DWA_COMPRESSION_LEVEL: b"dwaCompressionLevel", + PREVIEW: b"preview", + VIEW: b"view", + CHROMATICITIES: b"chromaticities", + NEAR: b"near", + FAR: b"far", + FOV_X: b"fieldOfViewHorizontal", + FOV_Y: b"fieldOfViewVertical", + SOFTWARE: b"software" + } +} + + +impl Default for LayerAttributes { + fn default() -> Self { + Self { + layer_position: Vec2(0, 0), + screen_window_center: Vec2(0.0, 0.0), + screen_window_width: 1.0, + layer_name: None, + white_luminance: None, + adopted_neutral: None, + rendering_transform_name: None, + look_modification_transform_name: None, + horizontal_density: None, + owner: None, + comments: None, + capture_date: None, + utc_offset: None, + longitude: None, + latitude: None, + altitude: None, + focus: None, + exposure: None, + aperture: None, + iso_speed: None, + environment_map: None, + film_key_code: None, + wrap_mode_name: None, + frames_per_second: None, + multi_view_names: None, + world_to_camera: None, + world_to_normalized_device: None, + deep_image_state: None, + original_data_window: None, + preview: None, + view_name: None, + software_name: None, + near_clip_plane: None, + far_clip_plane: None, + horizontal_field_of_view: None, + vertical_field_of_view: None, + other: Default::default() + } + } +} + +impl std::fmt::Debug for LayerAttributes { + fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + let default_self = Self::default(); + + let mut debug = formatter.debug_struct("LayerAttributes (default values omitted)"); + + // always debug the following field + debug.field("name", &self.layer_name); + + macro_rules! debug_non_default_fields { + ( $( $name: ident ),* ) => { $( + + if self.$name != default_self.$name { + debug.field(stringify!($name), &self.$name); + } + + )* }; + } + + // only debug these fields if they are not the default value + debug_non_default_fields! { + screen_window_center, screen_window_width, + white_luminance, adopted_neutral, horizontal_density, + rendering_transform_name, look_modification_transform_name, + owner, comments, + capture_date, utc_offset, + longitude, latitude, altitude, + focus, exposure, aperture, iso_speed, + environment_map, film_key_code, wrap_mode_name, + frames_per_second, multi_view_names, + world_to_camera, world_to_normalized_device, + deep_image_state, original_data_window, + preview, view_name, + vertical_field_of_view, horizontal_field_of_view, + near_clip_plane, far_clip_plane, software_name + } + + for (name, value) in &self.other { + debug.field(&format!("\"{}\"", name), value); + } + + // debug.finish_non_exhaustive() TODO + debug.finish() + } +} diff --git a/vendor/exr/src/meta/mod.rs b/vendor/exr/src/meta/mod.rs new file mode 100644 index 0000000..0c36af8 --- /dev/null +++ b/vendor/exr/src/meta/mod.rs @@ -0,0 +1,821 @@ + +//! Describes all meta data possible in an exr file. +//! Contains functionality to read and write meta data from bytes. +//! Browse the `exr::image` module to get started with the high-level interface. + +pub mod attribute; +pub mod header; + + +use crate::io::*; +use ::smallvec::SmallVec; +use self::attribute::*; +use crate::block::chunk::{TileCoordinates, CompressedBlock}; +use crate::error::*; +use std::fs::File; +use std::io::{BufReader}; +use crate::math::*; +use std::collections::{HashSet}; +use std::convert::TryFrom; +use crate::meta::header::{Header}; +use crate::block::{BlockIndex, UncompressedBlock}; + + +// TODO rename MetaData to ImageInfo? + +/// Contains the complete meta data of an exr image. +/// Defines how the image is split up in the file, +/// the number and type of images and channels, +/// and various other attributes. +/// The usage of custom attributes is encouraged. +#[derive(Debug, Clone, PartialEq)] +pub struct MetaData { + + /// Some flags summarizing the features that must be supported to decode the file. + pub requirements: Requirements, + + /// One header to describe each layer in this file. + // TODO rename to layer descriptions? + pub headers: Headers, +} + + +/// List of `Header`s. +pub type Headers = SmallVec<[Header; 3]>; + +/// List of `OffsetTable`s. +pub type OffsetTables = SmallVec<[OffsetTable; 3]>; + + +/// The offset table is an ordered list of indices referencing pixel data in the exr file. +/// For each pixel tile in the image, an index exists, which points to the byte-location +/// of the corresponding pixel data in the file. That index can be used to load specific +/// portions of an image without processing all bytes in a file. For each header, +/// an offset table exists with its indices ordered by `LineOrder::Increasing`. +// If the multipart bit is unset and the chunkCount attribute is not present, +// the number of entries in the chunk table is computed using the +// dataWindow, tileDesc, and compression attribute. +// +// If the multipart bit is set, the header must contain a +// chunkCount attribute, that contains the length of the offset table. +pub type OffsetTable = Vec<u64>; + + +/// A summary of requirements that must be met to read this exr file. +/// Used to determine whether this file can be read by a given reader. +/// It includes the OpenEXR version number. This library aims to support version `2.0`. +#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)] +pub struct Requirements { + + /// This library supports reading version 1 and 2, and writing version 2. + // TODO write version 1 for simple images + pub file_format_version: u8, + + /// If true, this image has tiled blocks and contains only a single layer. + /// If false and not deep and not multilayer, this image is a single layer image with scan line blocks. + pub is_single_layer_and_tiled: bool, + + // in c or bad c++ this might have been relevant (omg is he allowed to say that) + /// Whether this file has strings with a length greater than 31. + /// Strings can never be longer than 255. + pub has_long_names: bool, + + /// This image contains at least one layer with deep data. + pub has_deep_data: bool, + + /// Whether this file contains multiple layers. + pub has_multiple_layers: bool, +} + + +/// Locates a rectangular section of pixels in an image. +#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)] +pub struct TileIndices { + + /// Index of the tile. + pub location: TileCoordinates, + + /// Pixel size of the tile. + pub size: Vec2<usize>, +} + +/// How the image pixels are split up into separate blocks. +#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] +pub enum BlockDescription { + + /// The image is divided into scan line blocks. + /// The number of scan lines in a block depends on the compression method. + ScanLines, + + /// The image is divided into tile blocks. + /// Also specifies the size of each tile in the image + /// and whether this image contains multiple resolution levels. + Tiles(TileDescription) +} + + +/*impl TileIndices { + pub fn cmp(&self, other: &Self) -> Ordering { + match self.location.level_index.1.cmp(&other.location.level_index.1) { + Ordering::Equal => { + match self.location.level_index.0.cmp(&other.location.level_index.0) { + Ordering::Equal => { + match self.location.tile_index.1.cmp(&other.location.tile_index.1) { + Ordering::Equal => { + self.location.tile_index.0.cmp(&other.location.tile_index.0) + }, + + other => other, + } + }, + + other => other + } + }, + + other => other + } + } +}*/ + +impl BlockDescription { + + /// Whether this image is tiled. If false, this image is divided into scan line blocks. + pub fn has_tiles(&self) -> bool { + match self { + BlockDescription::Tiles { .. } => true, + _ => false + } + } +} + + + + + +/// The first four bytes of each exr file. +/// Used to abort reading non-exr files. +pub mod magic_number { + use super::*; + + /// The first four bytes of each exr file. + pub const BYTES: [u8; 4] = [0x76, 0x2f, 0x31, 0x01]; + + /// Without validation, write this instance to the byte stream. + pub fn write(write: &mut impl Write) -> Result<()> { + u8::write_slice(write, &self::BYTES) + } + + /// Consumes four bytes from the reader and returns whether the file may be an exr file. + // TODO check if exr before allocating BufRead + pub fn is_exr(read: &mut impl Read) -> Result<bool> { + let mut magic_num = [0; 4]; + u8::read_slice(read, &mut magic_num)?; + Ok(magic_num == self::BYTES) + } + + /// Validate this image. If it is an exr file, return `Ok(())`. + pub fn validate_exr(read: &mut impl Read) -> UnitResult { + if self::is_exr(read)? { + Ok(()) + + } else { + Err(Error::invalid("file identifier missing")) + } + } +} + +/// A `0_u8` at the end of a sequence. +pub mod sequence_end { + use super::*; + + /// Number of bytes this would consume in an exr file. + pub fn byte_size() -> usize { + 1 + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(write: &mut W) -> UnitResult { + 0_u8.write(write) + } + + /// Peeks the next byte. If it is zero, consumes the byte and returns true. + pub fn has_come(read: &mut PeekRead<impl Read>) -> Result<bool> { + Ok(read.skip_if_eq(0)?) + } +} + +fn missing_attribute(name: &str) -> Error { + Error::invalid(format!("missing or invalid {} attribute", name)) +} + + +/// Compute the number of tiles required to contain all values. +pub fn compute_block_count(full_res: usize, tile_size: usize) -> usize { + // round up, because if the image is not evenly divisible by the tiles, + // we add another tile at the end (which is only partially used) + RoundingMode::Up.divide(full_res, tile_size) +} + +/// Compute the start position and size of a block inside a dimension. +#[inline] +pub fn calculate_block_position_and_size(total_size: usize, block_size: usize, block_index: usize) -> Result<(usize, usize)> { + let block_position = block_size * block_index; + + Ok(( + block_position, + calculate_block_size(total_size, block_size, block_position)? + )) +} + +/// Calculate the size of a single block. If this is the last block, +/// this only returns the required size, which is always smaller than the default block size. +// TODO use this method everywhere instead of convoluted formulas +#[inline] +pub fn calculate_block_size(total_size: usize, block_size: usize, block_position: usize) -> Result<usize> { + if block_position >= total_size { + return Err(Error::invalid("block index")) + } + + if block_position + block_size <= total_size { + Ok(block_size) + } + else { + Ok(total_size - block_position) + } +} + + +/// Calculate number of mip levels in a given resolution. +// TODO this should be cached? log2 may be very expensive +pub fn compute_level_count(round: RoundingMode, full_res: usize) -> usize { + usize::try_from(round.log2(u32::try_from(full_res).unwrap())).unwrap() + 1 +} + +/// Calculate the size of a single mip level by index. +// TODO this should be cached? log2 may be very expensive +pub fn compute_level_size(round: RoundingMode, full_res: usize, level_index: usize) -> usize { + assert!(level_index < std::mem::size_of::<usize>() * 8, "largest level size exceeds maximum integer value"); + round.divide(full_res, 1 << level_index).max(1) +} + +/// Iterates over all rip map level resolutions of a given size, including the indices of each level. +/// The order of iteration conforms to `LineOrder::Increasing`. +// TODO cache these? +// TODO compute these directly instead of summing up an iterator? +pub fn rip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(Vec2<usize>, Vec2<usize>)> { + rip_map_indices(round, max_resolution).map(move |level_indices|{ + // TODO progressively divide instead?? + let width = compute_level_size(round, max_resolution.width(), level_indices.x()); + let height = compute_level_size(round, max_resolution.height(), level_indices.y()); + (level_indices, Vec2(width, height)) + }) +} + +/// Iterates over all mip map level resolutions of a given size, including the indices of each level. +/// The order of iteration conforms to `LineOrder::Increasing`. +// TODO cache all these level values when computing table offset size?? +// TODO compute these directly instead of summing up an iterator? +pub fn mip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(usize, Vec2<usize>)> { + mip_map_indices(round, max_resolution) + .map(move |level_index|{ + // TODO progressively divide instead?? + let width = compute_level_size(round, max_resolution.width(), level_index); + let height = compute_level_size(round, max_resolution.height(), level_index); + (level_index, Vec2(width, height)) + }) +} + +/// Iterates over all rip map level indices of a given size. +/// The order of iteration conforms to `LineOrder::Increasing`. +pub fn rip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=Vec2<usize>> { + let (width, height) = ( + compute_level_count(round, max_resolution.width()), + compute_level_count(round, max_resolution.height()) + ); + + (0..height).flat_map(move |y_level|{ + (0..width).map(move |x_level|{ + Vec2(x_level, y_level) + }) + }) +} + +/// Iterates over all mip map level indices of a given size. +/// The order of iteration conforms to `LineOrder::Increasing`. +pub fn mip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=usize> { + 0..compute_level_count(round, max_resolution.width().max(max_resolution.height())) +} + +/// Compute the number of chunks that an image is divided into. May be an expensive operation. +// If not multilayer and chunkCount not present, +// the number of entries in the chunk table is computed +// using the dataWindow and tileDesc attributes and the compression format +pub fn compute_chunk_count(compression: Compression, data_size: Vec2<usize>, blocks: BlockDescription) -> usize { + + if let BlockDescription::Tiles(tiles) = blocks { + let round = tiles.rounding_mode; + let Vec2(tile_width, tile_height) = tiles.tile_size; + + // TODO cache all these level values?? + use crate::meta::attribute::LevelMode::*; + match tiles.level_mode { + Singular => { + let tiles_x = compute_block_count(data_size.width(), tile_width); + let tiles_y = compute_block_count(data_size.height(), tile_height); + tiles_x * tiles_y + } + + MipMap => { + mip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| { + compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height) + }).sum() + }, + + RipMap => { + rip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| { + compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height) + }).sum() + } + } + } + + // scan line blocks never have mip maps + else { + compute_block_count(data_size.height(), compression.scan_lines_per_block()) + } +} + + + +impl MetaData { + + /// Read the exr meta data from a file. + /// Use `read_from_unbuffered` instead if you do not have a file. + /// Does not validate the meta data. + #[must_use] + pub fn read_from_file(path: impl AsRef<::std::path::Path>, pedantic: bool) -> Result<Self> { + Self::read_from_unbuffered(File::open(path)?, pedantic) + } + + /// Buffer the reader and then read the exr meta data from it. + /// Use `read_from_buffered` if your reader is an in-memory reader. + /// Use `read_from_file` if you have a file path. + /// Does not validate the meta data. + #[must_use] + pub fn read_from_unbuffered(unbuffered: impl Read, pedantic: bool) -> Result<Self> { + Self::read_from_buffered(BufReader::new(unbuffered), pedantic) + } + + /// Read the exr meta data from a reader. + /// Use `read_from_file` if you have a file path. + /// Use `read_from_unbuffered` if this is not an in-memory reader. + /// Does not validate the meta data. + #[must_use] + pub fn read_from_buffered(buffered: impl Read, pedantic: bool) -> Result<Self> { + let mut read = PeekRead::new(buffered); + MetaData::read_unvalidated_from_buffered_peekable(&mut read, pedantic) + } + + /// Does __not validate__ the meta data completely. + #[must_use] + pub(crate) fn read_unvalidated_from_buffered_peekable(read: &mut PeekRead<impl Read>, pedantic: bool) -> Result<Self> { + magic_number::validate_exr(read)?; + + let requirements = Requirements::read(read)?; + + // do this check now in order to fast-fail for newer versions and features than version 2 + requirements.validate()?; + + let headers = Header::read_all(read, &requirements, pedantic)?; + + // TODO check if supporting requirements 2 always implies supporting requirements 1 + Ok(MetaData { requirements, headers }) + } + + /// Validates the meta data. + #[must_use] + pub(crate) fn read_validated_from_buffered_peekable( + read: &mut PeekRead<impl Read>, pedantic: bool + ) -> Result<Self> { + let meta_data = Self::read_unvalidated_from_buffered_peekable(read, !pedantic)?; + MetaData::validate(meta_data.headers.as_slice(), pedantic)?; + Ok(meta_data) + } + + /// Validates the meta data and writes it to the stream. + /// If pedantic, throws errors for files that may produce errors in other exr readers. + /// Returns the automatically detected minimum requirement flags. + pub(crate) fn write_validating_to_buffered(write: &mut impl Write, headers: &[Header], pedantic: bool) -> Result<Requirements> { + // pedantic validation to not allow slightly invalid files + // that still could be read correctly in theory + let minimal_requirements = Self::validate(headers, pedantic)?; + + magic_number::write(write)?; + minimal_requirements.write(write)?; + Header::write_all(headers, write, minimal_requirements.has_multiple_layers)?; + Ok(minimal_requirements) + } + + /// Read one offset table from the reader for each header. + pub fn read_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<OffsetTables> { + headers.iter() + .map(|header| u64::read_vec(read, header.chunk_count, u16::MAX as usize, None, "offset table size")) + .collect() + } + + /// Skip the offset tables by advancing the reader by the required byte count. + // TODO use seek for large (probably all) tables! + pub fn skip_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<usize> { + let chunk_count: usize = headers.iter().map(|header| header.chunk_count).sum(); + crate::io::skip_bytes(read, chunk_count * u64::BYTE_SIZE)?; // TODO this should seek for large tables + Ok(chunk_count) + } + + /// This iterator tells you the block indices of all blocks that must be in the image. + /// The order of the blocks depends on the `LineOrder` attribute + /// (unspecified line order is treated the same as increasing line order). + /// The blocks written to the file must be exactly in this order, + /// except for when the `LineOrder` is unspecified. + /// The index represents the block index, in increasing line order, within the header. + pub fn enumerate_ordered_header_block_indices(&self) -> impl '_ + Iterator<Item=(usize, BlockIndex)> { + crate::block::enumerate_ordered_header_block_indices(&self.headers) + } + + /// Go through all the block indices in the correct order and call the specified closure for each of these blocks. + /// That way, the blocks indices are filled with real block data and returned as an iterator. + /// The closure returns the an `UncompressedBlock` for each block index. + pub fn collect_ordered_blocks<'s>(&'s self, mut get_block: impl 's + FnMut(BlockIndex) -> UncompressedBlock) + -> impl 's + Iterator<Item=(usize, UncompressedBlock)> + { + self.enumerate_ordered_header_block_indices().map(move |(index_in_header, block_index)|{ + (index_in_header, get_block(block_index)) + }) + } + + /// Go through all the block indices in the correct order and call the specified closure for each of these blocks. + /// That way, the blocks indices are filled with real block data and returned as an iterator. + /// The closure returns the byte data for each block index. + pub fn collect_ordered_block_data<'s>(&'s self, mut get_block_data: impl 's + FnMut(BlockIndex) -> Vec<u8>) + -> impl 's + Iterator<Item=(usize, UncompressedBlock)> + { + self.collect_ordered_blocks(move |block_index| + UncompressedBlock { index: block_index, data: get_block_data(block_index) } + ) + } + + /// Validates this meta data. Returns the minimal possible requirements. + pub fn validate(headers: &[Header], pedantic: bool) -> Result<Requirements> { + if headers.len() == 0 { + return Err(Error::invalid("at least one layer is required")); + } + + let deep = false; // TODO deep data + let is_multilayer = headers.len() > 1; + let first_header_has_tiles = headers.iter().next() + .map_or(false, |header| header.blocks.has_tiles()); + + let mut minimal_requirements = Requirements { + // according to the spec, version 2 should only be necessary if `is_multilayer || deep`. + // but the current open exr library does not support images with version 1, so always use version 2. + file_format_version: 2, + + // start as low as possible, later increasing if required + has_long_names: false, + + is_single_layer_and_tiled: !is_multilayer && first_header_has_tiles, + has_multiple_layers: is_multilayer, + has_deep_data: deep, + }; + + for header in headers { + if header.deep { // TODO deep data (and then remove this check) + return Err(Error::unsupported("deep data not supported yet")); + } + + header.validate(is_multilayer, &mut minimal_requirements.has_long_names, pedantic)?; + } + + // TODO validation fn! + /*if let Some(max) = max_pixel_bytes { + let byte_size: usize = headers.iter() + .map(|header| header.total_pixel_bytes()) + .sum(); + + if byte_size > max { + return Err(Error::invalid("image larger than specified maximum")); + } + }*/ + + if pedantic { // check for duplicate header names + let mut header_names = HashSet::with_capacity(headers.len()); + for header in headers { + if !header_names.insert(&header.own_attributes.layer_name) { + return Err(Error::invalid(format!( + "duplicate layer name: `{}`", + header.own_attributes.layer_name.as_ref().expect("header validation bug") + ))); + } + } + } + + if pedantic { + let must_share = headers.iter().flat_map(|header| header.own_attributes.other.iter()) + .any(|(_, value)| value.to_chromaticities().is_ok() || value.to_time_code().is_ok()); + + if must_share { + return Err(Error::invalid("chromaticities and time code attributes must must not exist in own attributes but shared instead")); + } + } + + if pedantic && headers.len() > 1 { // check for attributes that should not differ in between headers + let first_header = headers.first().expect("header count validation bug"); + let first_header_attributes = &first_header.shared_attributes; + + for header in &headers[1..] { + if &header.shared_attributes != first_header_attributes { + return Err(Error::invalid("display window, pixel aspect, chromaticities, and time code attributes must be equal for all headers")) + } + } + } + + debug_assert!(minimal_requirements.validate().is_ok(), "inferred requirements are invalid"); + Ok(minimal_requirements) + } +} + + + + +impl Requirements { + + // this is actually used for control flow, as the number of headers may be 1 in a multilayer file + /// Is this file declared to contain multiple layers? + pub fn is_multilayer(&self) -> bool { + self.has_multiple_layers + } + + /// Read the value without validating. + pub fn read<R: Read>(read: &mut R) -> Result<Self> { + use ::bit_field::BitField; + + let version_and_flags = u32::read(read)?; + + // take the 8 least significant bits, they contain the file format version number + let version = (version_and_flags & 0x000F) as u8; + + // the 24 most significant bits are treated as a set of boolean flags + let is_single_tile = version_and_flags.get_bit(9); + let has_long_names = version_and_flags.get_bit(10); + let has_deep_data = version_and_flags.get_bit(11); + let has_multiple_layers = version_and_flags.get_bit(12); + + // all remaining bits except 9, 10, 11 and 12 are reserved and should be 0 + // if a file has any of these bits set to 1, it means this file contains + // a feature that we don't support + let unknown_flags = version_and_flags >> 13; // all flags excluding the 12 bits we already parsed + + if unknown_flags != 0 { // TODO test if this correctly detects unsupported files + return Err(Error::unsupported("too new file feature flags")); + } + + let version = Requirements { + file_format_version: version, + is_single_layer_and_tiled: is_single_tile, has_long_names, + has_deep_data, has_multiple_layers, + }; + + Ok(version) + } + + /// Without validation, write this instance to the byte stream. + pub fn write<W: Write>(self, write: &mut W) -> UnitResult { + use ::bit_field::BitField; + + // the 8 least significant bits contain the file format version number + // and the flags are set to 0 + let mut version_and_flags = self.file_format_version as u32; + + // the 24 most significant bits are treated as a set of boolean flags + version_and_flags.set_bit(9, self.is_single_layer_and_tiled); + version_and_flags.set_bit(10, self.has_long_names); + version_and_flags.set_bit(11, self.has_deep_data); + version_and_flags.set_bit(12, self.has_multiple_layers); + // all remaining bits except 9, 10, 11 and 12 are reserved and should be 0 + + version_and_flags.write(write)?; + Ok(()) + } + + /// Validate this instance. + pub fn validate(&self) -> UnitResult { + if self.file_format_version == 2 { + + match ( + self.is_single_layer_and_tiled, self.has_deep_data, self.has_multiple_layers, + self.file_format_version + ) { + // Single-part scan line. One normal scan line image. + (false, false, false, 1..=2) => Ok(()), + + // Single-part tile. One normal tiled image. + (true, false, false, 1..=2) => Ok(()), + + // Multi-part (new in 2.0). + // Multiple normal images (scan line and/or tiled). + (false, false, true, 2) => Ok(()), + + // Single-part deep data (new in 2.0). + // One deep tile or deep scan line part + (false, true, false, 2) => Ok(()), + + // Multi-part deep data (new in 2.0). + // Multiple parts (any combination of: + // tiles, scan lines, deep tiles and/or deep scan lines). + (false, true, true, 2) => Ok(()), + + _ => Err(Error::invalid("file feature flags")) + } + } + else { + Err(Error::unsupported("file versions other than 2.0 are not supported")) + } + } +} + + +#[cfg(test)] +mod test { + use super::*; + use crate::meta::header::{ImageAttributes, LayerAttributes}; + + #[test] + fn round_trip_requirements() { + let requirements = Requirements { + file_format_version: 2, + is_single_layer_and_tiled: true, + has_long_names: false, + has_deep_data: true, + has_multiple_layers: false + }; + + let mut data: Vec<u8> = Vec::new(); + requirements.write(&mut data).unwrap(); + let read = Requirements::read(&mut data.as_slice()).unwrap(); + assert_eq!(requirements, read); + } + + #[test] + fn round_trip(){ + let header = Header { + channels: ChannelList::new(smallvec![ + ChannelDescription { + name: Text::from("main"), + sample_type: SampleType::U32, + quantize_linearly: false, + sampling: Vec2(1, 1) + } + ], + ), + compression: Compression::Uncompressed, + line_order: LineOrder::Increasing, + deep_data_version: Some(1), + chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines), + max_samples_per_pixel: Some(4), + shared_attributes: ImageAttributes { + pixel_aspect: 3.0, + .. ImageAttributes::new(IntegerBounds { + position: Vec2(2,1), + size: Vec2(11, 9) + }) + }, + + blocks: BlockDescription::ScanLines, + deep: false, + layer_size: Vec2(2000, 333), + own_attributes: LayerAttributes { + layer_name: Some(Text::from("test name lol")), + layer_position: Vec2(3, -5), + screen_window_center: Vec2(0.3, 99.0), + screen_window_width: 0.19, + .. Default::default() + } + }; + + let meta = MetaData { + requirements: Requirements { + file_format_version: 2, + is_single_layer_and_tiled: false, + has_long_names: false, + has_deep_data: false, + has_multiple_layers: false + }, + headers: smallvec![ header ], + }; + + + let mut data: Vec<u8> = Vec::new(); + MetaData::write_validating_to_buffered(&mut data, meta.headers.as_slice(), true).unwrap(); + let meta2 = MetaData::read_from_buffered(data.as_slice(), false).unwrap(); + MetaData::validate(meta2.headers.as_slice(), true).unwrap(); + assert_eq!(meta, meta2); + } + + #[test] + fn infer_low_requirements() { + let header_version_1_short_names = Header { + channels: ChannelList::new(smallvec![ + ChannelDescription { + name: Text::from("main"), + sample_type: SampleType::U32, + quantize_linearly: false, + sampling: Vec2(1, 1) + } + ], + ), + compression: Compression::Uncompressed, + line_order: LineOrder::Increasing, + deep_data_version: Some(1), + chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines), + max_samples_per_pixel: Some(4), + shared_attributes: ImageAttributes { + pixel_aspect: 3.0, + .. ImageAttributes::new(IntegerBounds { + position: Vec2(2,1), + size: Vec2(11, 9) + }) + }, + blocks: BlockDescription::ScanLines, + deep: false, + layer_size: Vec2(2000, 333), + own_attributes: LayerAttributes { + other: vec![ + (Text::try_from("x").unwrap(), AttributeValue::F32(3.0)), + (Text::try_from("y").unwrap(), AttributeValue::F32(-1.0)), + ].into_iter().collect(), + .. Default::default() + } + }; + + let low_requirements = MetaData::validate( + &[header_version_1_short_names], true + ).unwrap(); + + assert_eq!(low_requirements.has_long_names, false); + assert_eq!(low_requirements.file_format_version, 2); // always have version 2 + assert_eq!(low_requirements.has_deep_data, false); + assert_eq!(low_requirements.has_multiple_layers, false); + } + + #[test] + fn infer_high_requirements() { + let header_version_2_long_names = Header { + channels: ChannelList::new( + smallvec![ + ChannelDescription { + name: Text::new_or_panic("main"), + sample_type: SampleType::U32, + quantize_linearly: false, + sampling: Vec2(1, 1) + } + ], + ), + compression: Compression::Uncompressed, + line_order: LineOrder::Increasing, + deep_data_version: Some(1), + chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines), + max_samples_per_pixel: Some(4), + shared_attributes: ImageAttributes { + pixel_aspect: 3.0, + .. ImageAttributes::new(IntegerBounds { + position: Vec2(2,1), + size: Vec2(11, 9) + }) + }, + blocks: BlockDescription::ScanLines, + deep: false, + layer_size: Vec2(2000, 333), + own_attributes: LayerAttributes { + layer_name: Some(Text::new_or_panic("oasdasoidfj")), + other: vec![ + (Text::new_or_panic("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"), AttributeValue::F32(3.0)), + (Text::new_or_panic("y"), AttributeValue::F32(-1.0)), + ].into_iter().collect(), + .. Default::default() + } + }; + + let mut layer_2 = header_version_2_long_names.clone(); + layer_2.own_attributes.layer_name = Some(Text::new_or_panic("anythingelse")); + + let low_requirements = MetaData::validate( + &[header_version_2_long_names, layer_2], true + ).unwrap(); + + assert_eq!(low_requirements.has_long_names, true); + assert_eq!(low_requirements.file_format_version, 2); + assert_eq!(low_requirements.has_deep_data, false); + assert_eq!(low_requirements.has_multiple_layers, true); + } +} + |