aboutsummaryrefslogtreecommitdiff
path: root/vendor/fdeflate/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/fdeflate/src/lib.rs')
-rw-r--r--vendor/fdeflate/src/lib.rs123
1 files changed, 123 insertions, 0 deletions
diff --git a/vendor/fdeflate/src/lib.rs b/vendor/fdeflate/src/lib.rs
new file mode 100644
index 0000000..569c872
--- /dev/null
+++ b/vendor/fdeflate/src/lib.rs
@@ -0,0 +1,123 @@
+//! A fast deflate implementation.
+//!
+//! This crate contains an optimized implementation of the deflate algorithm tuned to compress PNG
+//! images. It is compatible with standard zlib, but make a bunch of simplifying assumptions that
+//! drastically improve encoding performance:
+//!
+//! - Exactly one block per deflate stream.
+//! - No distance codes except for run length encoding of zeros.
+//! - A single fixed huffman tree trained on a large corpus of PNG images.
+//! - All huffman codes are 12 bits or less.
+//!
+//! It also contains a fast decompressor that supports arbitrary zlib streams but does especially
+//! well on streams that meet the above assumptions.
+//!
+//! # Inspiration
+//!
+//! The algorithms in this crate take inspiration from multiple sources:
+//! * [fpnge](https://github.com/veluca93/fpnge)
+//! * [zune-inflate](https://github.com/etemesi254/zune-image/tree/main/zune-inflate)
+//! * [RealTime Data Compression blog](https://fastcompression.blogspot.com/2015/10/huffman-revisited-part-4-multi-bytes.html)
+#![forbid(unsafe_code)]
+#![warn(missing_docs)]
+
+mod compress;
+mod decompress;
+mod tables;
+
+pub use compress::{compress_to_vec, Compressor, StoredOnlyCompressor};
+pub use decompress::{
+ decompress_to_vec, decompress_to_vec_bounded, BoundedDecompressionError, DecompressionError,
+ Decompressor,
+};
+
+/// Build a length limited huffman tree.
+///
+/// Dynamic programming algorithm from fpnge.
+#[doc(hidden)]
+pub fn compute_code_lengths(
+ freqs: &[u64],
+ min_limit: &[u8],
+ max_limit: &[u8],
+ calculated_nbits: &mut [u8],
+) {
+ debug_assert_eq!(freqs.len(), min_limit.len());
+ debug_assert_eq!(freqs.len(), max_limit.len());
+ debug_assert_eq!(freqs.len(), calculated_nbits.len());
+ let len = freqs.len();
+
+ for i in 0..len {
+ debug_assert!(min_limit[i] >= 1);
+ debug_assert!(min_limit[i] <= max_limit[i]);
+ }
+
+ let precision = *max_limit.iter().max().unwrap();
+ let num_patterns = 1 << precision;
+
+ let mut dynp = vec![u64::MAX; (num_patterns + 1) * (len + 1)];
+ let index = |sym: usize, off: usize| sym * (num_patterns + 1) + off;
+
+ dynp[index(0, 0)] = 0;
+ for sym in 0..len {
+ for bits in min_limit[sym]..=max_limit[sym] {
+ let off_delta = 1 << (precision - bits);
+ for off in 0..=num_patterns.saturating_sub(off_delta) {
+ dynp[index(sym + 1, off + off_delta)] = dynp[index(sym, off)]
+ .saturating_add(freqs[sym] * u64::from(bits))
+ .min(dynp[index(sym + 1, off + off_delta)]);
+ }
+ }
+ }
+
+ let mut sym = len;
+ let mut off = num_patterns;
+
+ while sym > 0 {
+ sym -= 1;
+ assert!(off > 0);
+
+ for bits in min_limit[sym]..=max_limit[sym] {
+ let off_delta = 1 << (precision - bits);
+ if off_delta <= off
+ && dynp[index(sym + 1, off)]
+ == dynp[index(sym, off - off_delta)]
+ .saturating_add(freqs[sym] * u64::from(bits))
+ {
+ off -= off_delta;
+ calculated_nbits[sym] = bits;
+ break;
+ }
+ }
+ }
+
+ for i in 0..len {
+ debug_assert!(calculated_nbits[i] >= min_limit[i]);
+ debug_assert!(calculated_nbits[i] <= max_limit[i]);
+ }
+}
+
+const fn compute_codes<const NSYMS: usize>(lengths: &[u8; NSYMS]) -> Option<[u16; NSYMS]> {
+ let mut codes = [0u16; NSYMS];
+
+ let mut code = 0u32;
+
+ let mut len = 1;
+ while len <= 16 {
+ let mut i = 0;
+ while i < lengths.len() {
+ if lengths[i] == len {
+ codes[i] = (code as u16).reverse_bits() >> (16 - len);
+ code += 1;
+ }
+ i += 1;
+ }
+ code <<= 1;
+ len += 1;
+ }
+
+ if code == 2 << 16 {
+ Some(codes)
+ } else {
+ None
+ }
+}