aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/codecs/openexr.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/codecs/openexr.rs')
-rw-r--r--vendor/image/src/codecs/openexr.rs592
1 files changed, 0 insertions, 592 deletions
diff --git a/vendor/image/src/codecs/openexr.rs b/vendor/image/src/codecs/openexr.rs
deleted file mode 100644
index 52d6ba9..0000000
--- a/vendor/image/src/codecs/openexr.rs
+++ /dev/null
@@ -1,592 +0,0 @@
-//! Decoding of OpenEXR (.exr) Images
-//!
-//! OpenEXR is an image format that is widely used, especially in VFX,
-//! because it supports lossless and lossy compression for float data.
-//!
-//! This decoder only supports RGB and RGBA images.
-//! If an image does not contain alpha information,
-//! it is defaulted to `1.0` (no transparency).
-//!
-//! # Related Links
-//! * <https://www.openexr.com/documentation.html> - The OpenEXR reference.
-//!
-//!
-//! Current limitations (July 2021):
-//! - only pixel type `Rgba32F` and `Rgba16F` are supported
-//! - only non-deep rgb/rgba files supported, no conversion from/to YCbCr or similar
-//! - only the first non-deep rgb layer is used
-//! - only the largest mip map level is used
-//! - pixels outside display window are lost
-//! - meta data is lost
-//! - dwaa/dwab compressed images not supported yet by the exr library
-//! - (chroma) subsampling not supported yet by the exr library
-use exr::prelude::*;
-
-use crate::error::{DecodingError, EncodingError, ImageFormatHint};
-use crate::image::decoder_to_vec;
-use crate::{
- ColorType, ExtendedColorType, ImageDecoder, ImageEncoder, ImageError, ImageFormat, ImageResult,
- Progress,
-};
-use std::convert::TryInto;
-use std::io::{Cursor, Read, Seek, Write};
-
-/// An OpenEXR decoder. Immediately reads the meta data from the file.
-#[derive(Debug)]
-pub struct OpenExrDecoder<R> {
- exr_reader: exr::block::reader::Reader<R>,
-
- // select a header that is rgb and not deep
- header_index: usize,
-
- // decode either rgb or rgba.
- // can be specified to include or discard alpha channels.
- // if none, the alpha channel will only be allocated where the file contains data for it.
- alpha_preference: Option<bool>,
-
- alpha_present_in_file: bool,
-}
-
-impl<R: Read + Seek> OpenExrDecoder<R> {
- /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
- /// Assumes the reader is buffered. In most cases,
- /// you should wrap your reader in a `BufReader` for best performance.
- /// Loads an alpha channel if the file has alpha samples.
- /// Use `with_alpha_preference` if you want to load or not load alpha unconditionally.
- pub fn new(source: R) -> ImageResult<Self> {
- Self::with_alpha_preference(source, None)
- }
-
- /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
- /// Assumes the reader is buffered. In most cases,
- /// you should wrap your reader in a `BufReader` for best performance.
- /// If alpha preference is specified, an alpha channel will
- /// always be present or always be not present in the returned image.
- /// If alpha preference is none, the alpha channel will only be returned if it is found in the file.
- pub fn with_alpha_preference(source: R, alpha_preference: Option<bool>) -> ImageResult<Self> {
- // read meta data, then wait for further instructions, keeping the file open and ready
- let exr_reader = exr::block::read(source, false).map_err(to_image_err)?;
-
- let header_index = exr_reader
- .headers()
- .iter()
- .position(|header| {
- // check if r/g/b exists in the channels
- let has_rgb = ["R", "G", "B"]
- .iter()
- .all(|&required| // alpha will be optional
- header.channels.find_index_of_channel(&Text::from(required)).is_some());
-
- // we currently dont support deep images, or images with other color spaces than rgb
- !header.deep && has_rgb
- })
- .ok_or_else(|| {
- ImageError::Decoding(DecodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- "image does not contain non-deep rgb channels",
- ))
- })?;
-
- let has_alpha = exr_reader.headers()[header_index]
- .channels
- .find_index_of_channel(&Text::from("A"))
- .is_some();
-
- Ok(Self {
- alpha_preference,
- exr_reader,
- header_index,
- alpha_present_in_file: has_alpha,
- })
- }
-
- // does not leak exrs-specific meta data into public api, just does it for this module
- fn selected_exr_header(&self) -> &exr::meta::header::Header {
- &self.exr_reader.meta_data().headers[self.header_index]
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for OpenExrDecoder<R> {
- type Reader = Cursor<Vec<u8>>;
-
- fn dimensions(&self) -> (u32, u32) {
- let size = self
- .selected_exr_header()
- .shared_attributes
- .display_window
- .size;
- (size.width() as u32, size.height() as u32)
- }
-
- fn color_type(&self) -> ColorType {
- let returns_alpha = self.alpha_preference.unwrap_or(self.alpha_present_in_file);
- if returns_alpha {
- ColorType::Rgba32F
- } else {
- ColorType::Rgb32F
- }
- }
-
- fn original_color_type(&self) -> ExtendedColorType {
- if self.alpha_present_in_file {
- ExtendedColorType::Rgba32F
- } else {
- ExtendedColorType::Rgb32F
- }
- }
-
- /// Use `read_image` instead if possible,
- /// as this method creates a whole new buffer just to contain the entire image.
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(Cursor::new(decoder_to_vec(self)?))
- }
-
- fn scanline_bytes(&self) -> u64 {
- // we cannot always read individual scan lines for every file,
- // as the tiles or lines in the file could be in random or reversed order.
- // therefore we currently read all lines at once
- // Todo: optimize for specific exr.line_order?
- self.total_bytes()
- }
-
- // reads with or without alpha, depending on `self.alpha_preference` and `self.alpha_present_in_file`
- fn read_image_with_progress<F: Fn(Progress)>(
- self,
- unaligned_bytes: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- let blocks_in_header = self.selected_exr_header().chunk_count as u64;
- let channel_count = self.color_type().channel_count() as usize;
-
- let display_window = self.selected_exr_header().shared_attributes.display_window;
- let data_window_offset =
- self.selected_exr_header().own_attributes.layer_position - display_window.position;
-
- {
- // check whether the buffer is large enough for the dimensions of the file
- let (width, height) = self.dimensions();
- let bytes_per_pixel = self.color_type().bytes_per_pixel() as usize;
- let expected_byte_count = (width as usize)
- .checked_mul(height as usize)
- .and_then(|size| size.checked_mul(bytes_per_pixel));
-
- // if the width and height does not match the length of the bytes, the arguments are invalid
- let has_invalid_size_or_overflowed = expected_byte_count
- .map(|expected_byte_count| unaligned_bytes.len() != expected_byte_count)
- // otherwise, size calculation overflowed, is bigger than memory,
- // therefore data is too small, so it is invalid.
- .unwrap_or(true);
-
- if has_invalid_size_or_overflowed {
- panic!("byte buffer not large enough for the specified dimensions and f32 pixels");
- }
- }
-
- let result = read()
- .no_deep_data()
- .largest_resolution_level()
- .rgba_channels(
- move |_size, _channels| vec![0_f32; display_window.size.area() * channel_count],
- move |buffer, index_in_data_window, (r, g, b, a_or_1): (f32, f32, f32, f32)| {
- let index_in_display_window =
- index_in_data_window.to_i32() + data_window_offset;
-
- // only keep pixels inside the data window
- // TODO filter chunks based on this
- if index_in_display_window.x() >= 0
- && index_in_display_window.y() >= 0
- && index_in_display_window.x() < display_window.size.width() as i32
- && index_in_display_window.y() < display_window.size.height() as i32
- {
- let index_in_display_window =
- index_in_display_window.to_usize("index bug").unwrap();
- let first_f32_index =
- index_in_display_window.flat_index_for_size(display_window.size);
-
- buffer[first_f32_index * channel_count
- ..(first_f32_index + 1) * channel_count]
- .copy_from_slice(&[r, g, b, a_or_1][0..channel_count]);
-
- // TODO white point chromaticities + srgb/linear conversion?
- }
- },
- )
- .first_valid_layer() // TODO select exact layer by self.header_index?
- .all_attributes()
- .on_progress(|progress| {
- progress_callback(
- Progress::new(
- (progress * blocks_in_header as f64) as u64,
- blocks_in_header,
- ), // TODO precision errors?
- );
- })
- .from_chunks(self.exr_reader)
- .map_err(to_image_err)?;
-
- // TODO this copy is strictly not necessary, but the exr api is a little too simple for reading into a borrowed target slice
-
- // this cast is safe and works with any alignment, as bytes are copied, and not f32 values.
- // note: buffer slice length is checked in the beginning of this function and will be correct at this point
- unaligned_bytes.copy_from_slice(bytemuck::cast_slice(
- result.layer_data.channel_data.pixels.as_slice(),
- ));
- Ok(())
- }
-}
-
-/// Write a raw byte buffer of pixels,
-/// returning an Error if it has an invalid length.
-///
-/// Assumes the writer is buffered. In most cases,
-/// you should wrap your writer in a `BufWriter` for best performance.
-// private. access via `OpenExrEncoder`
-fn write_buffer(
- mut buffered_write: impl Write + Seek,
- unaligned_bytes: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
-) -> ImageResult<()> {
- let width = width as usize;
- let height = height as usize;
-
- {
- // check whether the buffer is large enough for the specified dimensions
- let expected_byte_count = width
- .checked_mul(height)
- .and_then(|size| size.checked_mul(color_type.bytes_per_pixel() as usize));
-
- // if the width and height does not match the length of the bytes, the arguments are invalid
- let has_invalid_size_or_overflowed = expected_byte_count
- .map(|expected_byte_count| unaligned_bytes.len() < expected_byte_count)
- // otherwise, size calculation overflowed, is bigger than memory,
- // therefore data is too small, so it is invalid.
- .unwrap_or(true);
-
- if has_invalid_size_or_overflowed {
- return Err(ImageError::Encoding(EncodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- "byte buffer not large enough for the specified dimensions and f32 pixels",
- )));
- }
- }
-
- // bytes might be unaligned so we cannot cast the whole thing, instead lookup each f32 individually
- let lookup_f32 = move |f32_index: usize| {
- let unaligned_f32_bytes_slice = &unaligned_bytes[f32_index * 4..(f32_index + 1) * 4];
- let f32_bytes_array = unaligned_f32_bytes_slice
- .try_into()
- .expect("indexing error");
- f32::from_ne_bytes(f32_bytes_array)
- };
-
- match color_type {
- ColorType::Rgb32F => {
- exr::prelude::Image // TODO compression method zip??
- ::from_channels(
- (width, height),
- SpecificChannels::rgb(|pixel: Vec2<usize>| {
- let pixel_index = 3 * pixel.flat_index_for_size(Vec2(width, height));
- (
- lookup_f32(pixel_index),
- lookup_f32(pixel_index + 1),
- lookup_f32(pixel_index + 2),
- )
- }),
- )
- .write()
- // .on_progress(|progress| todo!())
- .to_buffered(&mut buffered_write)
- .map_err(to_image_err)?;
- }
-
- ColorType::Rgba32F => {
- exr::prelude::Image // TODO compression method zip??
- ::from_channels(
- (width, height),
- SpecificChannels::rgba(|pixel: Vec2<usize>| {
- let pixel_index = 4 * pixel.flat_index_for_size(Vec2(width, height));
- (
- lookup_f32(pixel_index),
- lookup_f32(pixel_index + 1),
- lookup_f32(pixel_index + 2),
- lookup_f32(pixel_index + 3),
- )
- }),
- )
- .write()
- // .on_progress(|progress| todo!())
- .to_buffered(&mut buffered_write)
- .map_err(to_image_err)?;
- }
-
- // TODO other color types and channel types
- unsupported_color_type => {
- return Err(ImageError::Encoding(EncodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- format!(
- "writing color type {:?} not yet supported",
- unsupported_color_type
- ),
- )))
- }
- }
-
- Ok(())
-}
-
-// TODO is this struct and trait actually used anywhere?
-/// A thin wrapper that implements `ImageEncoder` for OpenEXR images. Will behave like `image::codecs::openexr::write_buffer`.
-#[derive(Debug)]
-pub struct OpenExrEncoder<W>(W);
-
-impl<W> OpenExrEncoder<W> {
- /// Create an `ImageEncoder`. Does not write anything yet. Writing later will behave like `image::codecs::openexr::write_buffer`.
- // use constructor, not public field, for future backwards-compatibility
- pub fn new(write: W) -> Self {
- Self(write)
- }
-}
-
-impl<W> ImageEncoder for OpenExrEncoder<W>
-where
- W: Write + Seek,
-{
- /// Writes the complete image.
- ///
- /// Returns an Error if it has an invalid length.
- /// Assumes the writer is buffered. In most cases,
- /// you should wrap your writer in a `BufWriter` for best performance.
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- write_buffer(self.0, buf, width, height, color_type)
- }
-}
-
-fn to_image_err(exr_error: Error) -> ImageError {
- ImageError::Decoding(DecodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- exr_error.to_string(),
- ))
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- use std::io::BufReader;
- use std::path::{Path, PathBuf};
-
- use crate::buffer_::{Rgb32FImage, Rgba32FImage};
- use crate::error::{LimitError, LimitErrorKind};
- use crate::{ImageBuffer, Rgb, Rgba};
-
- const BASE_PATH: &[&str] = &[".", "tests", "images", "exr"];
-
- /// Write an `Rgb32FImage`.
- /// Assumes the writer is buffered. In most cases,
- /// you should wrap your writer in a `BufWriter` for best performance.
- fn write_rgb_image(write: impl Write + Seek, image: &Rgb32FImage) -> ImageResult<()> {
- write_buffer(
- write,
- bytemuck::cast_slice(image.as_raw().as_slice()),
- image.width(),
- image.height(),
- ColorType::Rgb32F,
- )
- }
-
- /// Write an `Rgba32FImage`.
- /// Assumes the writer is buffered. In most cases,
- /// you should wrap your writer in a `BufWriter` for best performance.
- fn write_rgba_image(write: impl Write + Seek, image: &Rgba32FImage) -> ImageResult<()> {
- write_buffer(
- write,
- bytemuck::cast_slice(image.as_raw().as_slice()),
- image.width(),
- image.height(),
- ColorType::Rgba32F,
- )
- }
-
- /// Read the file from the specified path into an `Rgba32FImage`.
- fn read_as_rgba_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgba32FImage> {
- read_as_rgba_image(BufReader::new(std::fs::File::open(path)?))
- }
-
- /// Read the file from the specified path into an `Rgb32FImage`.
- fn read_as_rgb_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgb32FImage> {
- read_as_rgb_image(BufReader::new(std::fs::File::open(path)?))
- }
-
- /// Read the file from the specified path into an `Rgb32FImage`.
- fn read_as_rgb_image(read: impl Read + Seek) -> ImageResult<Rgb32FImage> {
- let decoder = OpenExrDecoder::with_alpha_preference(read, Some(false))?;
- let (width, height) = decoder.dimensions();
- let buffer: Vec<f32> = decoder_to_vec(decoder)?;
-
- ImageBuffer::from_raw(width, height, buffer)
- // this should be the only reason for the "from raw" call to fail,
- // even though such a large allocation would probably cause an error much earlier
- .ok_or_else(|| {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- })
- }
-
- /// Read the file from the specified path into an `Rgba32FImage`.
- fn read_as_rgba_image(read: impl Read + Seek) -> ImageResult<Rgba32FImage> {
- let decoder = OpenExrDecoder::with_alpha_preference(read, Some(true))?;
- let (width, height) = decoder.dimensions();
- let buffer: Vec<f32> = decoder_to_vec(decoder)?;
-
- ImageBuffer::from_raw(width, height, buffer)
- // this should be the only reason for the "from raw" call to fail,
- // even though such a large allocation would probably cause an error much earlier
- .ok_or_else(|| {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- })
- }
-
- #[test]
- fn compare_exr_hdr() {
- if cfg!(not(feature = "hdr")) {
- eprintln!("warning: to run all the openexr tests, activate the hdr feature flag");
- }
-
- #[cfg(feature = "hdr")]
- {
- let folder = BASE_PATH.iter().collect::<PathBuf>();
- let reference_path = folder.clone().join("overexposed gradient.hdr");
- let exr_path = folder
- .clone()
- .join("overexposed gradient - data window equals display window.exr");
-
- let hdr: Vec<Rgb<f32>> = crate::codecs::hdr::HdrDecoder::new(std::io::BufReader::new(
- std::fs::File::open(&reference_path).unwrap(),
- ))
- .unwrap()
- .read_image_hdr()
- .unwrap();
-
- let exr_pixels: Rgb32FImage = read_as_rgb_image_from_file(exr_path).unwrap();
- assert_eq!(
- exr_pixels.dimensions().0 * exr_pixels.dimensions().1,
- hdr.len() as u32
- );
-
- for (expected, found) in hdr.iter().zip(exr_pixels.pixels()) {
- for (expected, found) in expected.0.iter().zip(found.0.iter()) {
- // the large tolerance seems to be caused by
- // the RGBE u8x4 pixel quantization of the hdr image format
- assert!(
- (expected - found).abs() < 0.1,
- "expected {}, found {}",
- expected,
- found
- );
- }
- }
- }
- }
-
- #[test]
- fn roundtrip_rgba() {
- let mut next_random = vec![1.0, 0.0, -1.0, -3.14, 27.0, 11.0, 31.0]
- .into_iter()
- .cycle();
- let mut next_random = move || next_random.next().unwrap();
-
- let generated_image: Rgba32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
- Rgba([next_random(), next_random(), next_random(), next_random()])
- });
-
- let mut bytes = vec![];
- write_rgba_image(Cursor::new(&mut bytes), &generated_image).unwrap();
- let decoded_image = read_as_rgba_image(Cursor::new(bytes)).unwrap();
-
- debug_assert_eq!(generated_image, decoded_image);
- }
-
- #[test]
- fn roundtrip_rgb() {
- let mut next_random = vec![1.0, 0.0, -1.0, -3.14, 27.0, 11.0, 31.0]
- .into_iter()
- .cycle();
- let mut next_random = move || next_random.next().unwrap();
-
- let generated_image: Rgb32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
- Rgb([next_random(), next_random(), next_random()])
- });
-
- let mut bytes = vec![];
- write_rgb_image(Cursor::new(&mut bytes), &generated_image).unwrap();
- let decoded_image = read_as_rgb_image(Cursor::new(bytes)).unwrap();
-
- debug_assert_eq!(generated_image, decoded_image);
- }
-
- #[test]
- fn compare_rgba_rgb() {
- let exr_path = BASE_PATH
- .iter()
- .collect::<PathBuf>()
- .join("overexposed gradient - data window equals display window.exr");
-
- let rgb: Rgb32FImage = read_as_rgb_image_from_file(&exr_path).unwrap();
- let rgba: Rgba32FImage = read_as_rgba_image_from_file(&exr_path).unwrap();
-
- assert_eq!(rgba.dimensions(), rgb.dimensions());
-
- for (Rgb(rgb), Rgba(rgba)) in rgb.pixels().zip(rgba.pixels()) {
- assert_eq!(rgb, &rgba[..3]);
- }
- }
-
- #[test]
- fn compare_cropped() {
- // like in photoshop, exr images may have layers placed anywhere in a canvas.
- // we don't want to load the pixels from the layer, but we want to load the pixels from the canvas.
- // a layer might be smaller than the canvas, in that case the canvas should be transparent black
- // where no layer was covering it. a layer might also be larger than the canvas,
- // these pixels should be discarded.
- //
- // in this test we want to make sure that an
- // auto-cropped image will be reproduced to the original.
-
- let exr_path = BASE_PATH.iter().collect::<PathBuf>();
- let original = exr_path.clone().join("cropping - uncropped original.exr");
- let cropped = exr_path
- .clone()
- .join("cropping - data window differs display window.exr");
-
- // smoke-check that the exr files are actually not the same
- {
- let original_exr = read_first_flat_layer_from_file(&original).unwrap();
- let cropped_exr = read_first_flat_layer_from_file(&cropped).unwrap();
- assert_eq!(
- original_exr.attributes.display_window,
- cropped_exr.attributes.display_window
- );
- assert_ne!(
- original_exr.layer_data.attributes.layer_position,
- cropped_exr.layer_data.attributes.layer_position
- );
- assert_ne!(original_exr.layer_data.size, cropped_exr.layer_data.size);
- }
-
- // check that they result in the same image
- let original: Rgba32FImage = read_as_rgba_image_from_file(&original).unwrap();
- let cropped: Rgba32FImage = read_as_rgba_image_from_file(&cropped).unwrap();
- assert_eq!(original.dimensions(), cropped.dimensions());
-
- // the following is not a simple assert_eq, as in case of an error,
- // the whole image would be printed to the console, which takes forever
- assert!(original.pixels().zip(cropped.pixels()).all(|(a, b)| a == b));
- }
-}