aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/codecs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/codecs')
-rw-r--r--vendor/image/src/codecs/avif/decoder.rs177
-rw-r--r--vendor/image/src/codecs/avif/encoder.rs274
-rw-r--r--vendor/image/src/codecs/avif/mod.rs14
-rw-r--r--vendor/image/src/codecs/bmp/decoder.rs1483
-rw-r--r--vendor/image/src/codecs/bmp/encoder.rs388
-rw-r--r--vendor/image/src/codecs/bmp/mod.rs14
-rw-r--r--vendor/image/src/codecs/dds.rs375
-rw-r--r--vendor/image/src/codecs/dxt.rs869
-rw-r--r--vendor/image/src/codecs/farbfeld.rs400
-rw-r--r--vendor/image/src/codecs/gif.rs606
-rw-r--r--vendor/image/src/codecs/hdr/decoder.rs1033
-rw-r--r--vendor/image/src/codecs/hdr/encoder.rs433
-rw-r--r--vendor/image/src/codecs/hdr/mod.rs15
-rw-r--r--vendor/image/src/codecs/ico/decoder.rs470
-rw-r--r--vendor/image/src/codecs/ico/encoder.rs194
-rw-r--r--vendor/image/src/codecs/ico/mod.rs14
-rw-r--r--vendor/image/src/codecs/jpeg/decoder.rs1289
-rw-r--r--vendor/image/src/codecs/jpeg/encoder.rs1074
-rw-r--r--vendor/image/src/codecs/jpeg/entropy.rs63
-rw-r--r--vendor/image/src/codecs/jpeg/mod.rs16
-rw-r--r--vendor/image/src/codecs/jpeg/transform.rs196
-rw-r--r--vendor/image/src/codecs/openexr.rs592
-rw-r--r--vendor/image/src/codecs/png.rs778
-rw-r--r--vendor/image/src/codecs/pnm/autobreak.rs124
-rw-r--r--vendor/image/src/codecs/pnm/decoder.rs1272
-rw-r--r--vendor/image/src/codecs/pnm/encoder.rs673
-rw-r--r--vendor/image/src/codecs/pnm/header.rs354
-rw-r--r--vendor/image/src/codecs/pnm/mod.rs184
-rw-r--r--vendor/image/src/codecs/qoi.rs104
-rw-r--r--vendor/image/src/codecs/tga/decoder.rs502
-rw-r--r--vendor/image/src/codecs/tga/encoder.rs215
-rw-r--r--vendor/image/src/codecs/tga/header.rs150
-rw-r--r--vendor/image/src/codecs/tga/mod.rs17
-rw-r--r--vendor/image/src/codecs/tiff.rs353
-rw-r--r--vendor/image/src/codecs/webp/decoder.rs399
-rw-r--r--vendor/image/src/codecs/webp/encoder.rs242
-rw-r--r--vendor/image/src/codecs/webp/extended.rs839
-rw-r--r--vendor/image/src/codecs/webp/huffman.rs202
-rw-r--r--vendor/image/src/codecs/webp/loop_filter.rs147
-rw-r--r--vendor/image/src/codecs/webp/lossless.rs783
-rw-r--r--vendor/image/src/codecs/webp/lossless_transform.rs464
-rw-r--r--vendor/image/src/codecs/webp/mod.rs28
-rw-r--r--vendor/image/src/codecs/webp/transform.rs77
-rw-r--r--vendor/image/src/codecs/webp/vp8.rs2932
44 files changed, 0 insertions, 20828 deletions
diff --git a/vendor/image/src/codecs/avif/decoder.rs b/vendor/image/src/codecs/avif/decoder.rs
deleted file mode 100644
index acba4f8..0000000
--- a/vendor/image/src/codecs/avif/decoder.rs
+++ /dev/null
@@ -1,177 +0,0 @@
-//! Decoding of AVIF images.
-///
-/// The [AVIF] specification defines an image derivative of the AV1 bitstream, an open video codec.
-///
-/// [AVIF]: https://aomediacodec.github.io/av1-avif/
-use std::convert::TryFrom;
-use std::error::Error;
-use std::io::{self, Cursor, Read};
-use std::marker::PhantomData;
-use std::mem;
-
-use crate::error::DecodingError;
-use crate::{ColorType, ImageDecoder, ImageError, ImageFormat, ImageResult};
-
-use dav1d::{PixelLayout, PlanarImageComponent};
-use dcv_color_primitives as dcp;
-use mp4parse::{read_avif, ParseStrictness};
-
-fn error_map<E: Into<Box<dyn Error + Send + Sync>>>(err: E) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Avif.into(), err))
-}
-
-/// AVIF Decoder.
-///
-/// Reads one image into the chosen input.
-pub struct AvifDecoder<R> {
- inner: PhantomData<R>,
- picture: dav1d::Picture,
- alpha_picture: Option<dav1d::Picture>,
- icc_profile: Option<Vec<u8>>,
-}
-
-impl<R: Read> AvifDecoder<R> {
- /// Create a new decoder that reads its input from `r`.
- pub fn new(mut r: R) -> ImageResult<Self> {
- let ctx = read_avif(&mut r, ParseStrictness::Normal).map_err(error_map)?;
- let coded = ctx.primary_item_coded_data().unwrap_or_default();
-
- let mut primary_decoder = dav1d::Decoder::new();
- primary_decoder
- .send_data(coded, None, None, None)
- .map_err(error_map)?;
- let picture = primary_decoder.get_picture().map_err(error_map)?;
- let alpha_item = ctx.alpha_item_coded_data().unwrap_or_default();
- let alpha_picture = if !alpha_item.is_empty() {
- let mut alpha_decoder = dav1d::Decoder::new();
- alpha_decoder
- .send_data(alpha_item, None, None, None)
- .map_err(error_map)?;
- Some(alpha_decoder.get_picture().map_err(error_map)?)
- } else {
- None
- };
- let icc_profile = ctx
- .icc_colour_information()
- .map(|x| x.ok().unwrap_or_default())
- .map(|x| x.to_vec());
-
- assert_eq!(picture.bit_depth(), 8);
- Ok(AvifDecoder {
- inner: PhantomData,
- picture,
- alpha_picture,
- icc_profile,
- })
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct AvifReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for AvifReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for AvifDecoder<R> {
- type Reader = AvifReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.picture.width(), self.picture.height())
- }
-
- fn color_type(&self) -> ColorType {
- ColorType::Rgba8
- }
-
- fn icc_profile(&mut self) -> Option<Vec<u8>> {
- self.icc_profile.clone()
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- let plane = self.picture.plane(PlanarImageComponent::Y);
- Ok(AvifReader(
- Cursor::new(plane.as_ref().to_vec()),
- PhantomData,
- ))
- }
-
- fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- dcp::initialize();
-
- if self.picture.pixel_layout() != PixelLayout::I400 {
- let pixel_format = match self.picture.pixel_layout() {
- PixelLayout::I400 => todo!(),
- PixelLayout::I420 => dcp::PixelFormat::I420,
- PixelLayout::I422 => dcp::PixelFormat::I422,
- PixelLayout::I444 => dcp::PixelFormat::I444,
- PixelLayout::Unknown => panic!("Unknown pixel layout"),
- };
- let src_format = dcp::ImageFormat {
- pixel_format,
- color_space: dcp::ColorSpace::Bt601,
- num_planes: 3,
- };
- let dst_format = dcp::ImageFormat {
- pixel_format: dcp::PixelFormat::Rgba,
- color_space: dcp::ColorSpace::Lrgb,
- num_planes: 1,
- };
- let (width, height) = self.dimensions();
- let planes = &[
- self.picture.plane(PlanarImageComponent::Y),
- self.picture.plane(PlanarImageComponent::U),
- self.picture.plane(PlanarImageComponent::V),
- ];
- let src_buffers = planes.iter().map(AsRef::as_ref).collect::<Vec<_>>();
- let strides = &[
- self.picture.stride(PlanarImageComponent::Y) as usize,
- self.picture.stride(PlanarImageComponent::U) as usize,
- self.picture.stride(PlanarImageComponent::V) as usize,
- ];
- let dst_buffers = &mut [&mut buf[..]];
- dcp::convert_image(
- width,
- height,
- &src_format,
- Some(strides),
- &src_buffers,
- &dst_format,
- None,
- dst_buffers,
- )
- .map_err(error_map)?;
- } else {
- let plane = self.picture.plane(PlanarImageComponent::Y);
- buf.copy_from_slice(plane.as_ref());
- }
-
- if let Some(picture) = self.alpha_picture {
- assert_eq!(picture.pixel_layout(), PixelLayout::I400);
- let stride = picture.stride(PlanarImageComponent::Y) as usize;
- let plane = picture.plane(PlanarImageComponent::Y);
- let width = picture.width();
- for (buf, slice) in Iterator::zip(
- buf.chunks_exact_mut(width as usize * 4),
- plane.as_ref().chunks_exact(stride),
- ) {
- for i in 0..width as usize {
- buf[3 + i * 4] = slice[i];
- }
- }
- }
-
- Ok(())
- }
-}
diff --git a/vendor/image/src/codecs/avif/encoder.rs b/vendor/image/src/codecs/avif/encoder.rs
deleted file mode 100644
index 7484ff1..0000000
--- a/vendor/image/src/codecs/avif/encoder.rs
+++ /dev/null
@@ -1,274 +0,0 @@
-//! Encoding of AVIF images.
-///
-/// The [AVIF] specification defines an image derivative of the AV1 bitstream, an open video codec.
-///
-/// [AVIF]: https://aomediacodec.github.io/av1-avif/
-use std::borrow::Cow;
-use std::cmp::min;
-use std::io::Write;
-
-use crate::buffer::ConvertBuffer;
-use crate::color::{FromColor, Luma, LumaA, Rgb, Rgba};
-use crate::error::{
- EncodingError, ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::{ColorType, ImageBuffer, ImageEncoder, ImageFormat, Pixel};
-use crate::{ImageError, ImageResult};
-
-use bytemuck::{try_cast_slice, try_cast_slice_mut, Pod, PodCastError};
-use num_traits::Zero;
-use ravif::{Encoder, Img, RGB8, RGBA8};
-use rgb::AsPixels;
-
-/// AVIF Encoder.
-///
-/// Writes one image into the chosen output.
-pub struct AvifEncoder<W> {
- inner: W,
- encoder: Encoder,
-}
-
-/// An enumeration over supported AVIF color spaces
-#[derive(Debug, Copy, Clone, PartialEq, Eq)]
-#[non_exhaustive]
-pub enum ColorSpace {
- /// sRGB colorspace
- Srgb,
- /// BT.709 colorspace
- Bt709,
-}
-
-impl ColorSpace {
- fn to_ravif(self) -> ravif::ColorSpace {
- match self {
- Self::Srgb => ravif::ColorSpace::RGB,
- Self::Bt709 => ravif::ColorSpace::YCbCr,
- }
- }
-}
-
-enum RgbColor<'buf> {
- Rgb8(Img<&'buf [RGB8]>),
- Rgba8(Img<&'buf [RGBA8]>),
-}
-
-impl<W: Write> AvifEncoder<W> {
- /// Create a new encoder that writes its output to `w`.
- pub fn new(w: W) -> Self {
- AvifEncoder::new_with_speed_quality(w, 4, 80) // `cavif` uses these defaults
- }
-
- /// Create a new encoder with specified speed and quality, that writes its output to `w`.
- /// `speed` accepts a value in the range 0-10, where 0 is the slowest and 10 is the fastest.
- /// `quality` accepts a value in the range 0-100, where 0 is the worst and 100 is the best.
- pub fn new_with_speed_quality(w: W, speed: u8, quality: u8) -> Self {
- // Clamp quality and speed to range
- let quality = min(quality, 100);
- let speed = min(speed, 10);
-
- let encoder = Encoder::new()
- .with_quality(f32::from(quality))
- .with_alpha_quality(f32::from(quality))
- .with_speed(speed);
-
- AvifEncoder { inner: w, encoder }
- }
-
- /// Encode with the specified `color_space`.
- pub fn with_colorspace(mut self, color_space: ColorSpace) -> Self {
- self.encoder = self
- .encoder
- .with_internal_color_space(color_space.to_ravif());
- self
- }
-
- /// Configures `rayon` thread pool size.
- /// The default `None` is to use all threads in the default `rayon` thread pool.
- pub fn with_num_threads(mut self, num_threads: Option<usize>) -> Self {
- self.encoder = self.encoder.with_num_threads(num_threads);
- self
- }
-}
-
-impl<W: Write> ImageEncoder for AvifEncoder<W> {
- /// Encode image data with the indicated color type.
- ///
- /// The encoder currently requires all data to be RGBA8, it will be converted internally if
- /// necessary. When data is suitably aligned, i.e. u16 channels to two bytes, then the
- /// conversion may be more efficient.
- fn write_image(
- mut self,
- data: &[u8],
- width: u32,
- height: u32,
- color: ColorType,
- ) -> ImageResult<()> {
- self.set_color(color);
- // `ravif` needs strongly typed data so let's convert. We can either use a temporarily
- // owned version in our own buffer or zero-copy if possible by using the input buffer.
- // This requires going through `rgb`.
- let mut fallback = vec![]; // This vector is used if we need to do a color conversion.
- let result = match Self::encode_as_img(&mut fallback, data, width, height, color)? {
- RgbColor::Rgb8(buffer) => self.encoder.encode_rgb(buffer),
- RgbColor::Rgba8(buffer) => self.encoder.encode_rgba(buffer),
- };
- let data = result.map_err(|err| {
- ImageError::Encoding(EncodingError::new(ImageFormat::Avif.into(), err))
- })?;
- self.inner.write_all(&data.avif_file)?;
- Ok(())
- }
-}
-
-impl<W: Write> AvifEncoder<W> {
- // Does not currently do anything. Mirrors behaviour of old config function.
- fn set_color(&mut self, _color: ColorType) {
- // self.config.color_space = ColorSpace::RGB;
- }
-
- fn encode_as_img<'buf>(
- fallback: &'buf mut Vec<u8>,
- data: &'buf [u8],
- width: u32,
- height: u32,
- color: ColorType,
- ) -> ImageResult<RgbColor<'buf>> {
- // Error wrapping utility for color dependent buffer dimensions.
- fn try_from_raw<P: Pixel + 'static>(
- data: &[P::Subpixel],
- width: u32,
- height: u32,
- ) -> ImageResult<ImageBuffer<P, &[P::Subpixel]>> {
- ImageBuffer::from_raw(width, height, data).ok_or_else(|| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })
- }
-
- // Convert to target color type using few buffer allocations.
- fn convert_into<'buf, P>(
- buf: &'buf mut Vec<u8>,
- image: ImageBuffer<P, &[P::Subpixel]>,
- ) -> Img<&'buf [RGBA8]>
- where
- P: Pixel + 'static,
- Rgba<u8>: FromColor<P>,
- {
- let (width, height) = image.dimensions();
- // TODO: conversion re-using the target buffer?
- let image: ImageBuffer<Rgba<u8>, _> = image.convert();
- *buf = image.into_raw();
- Img::new(buf.as_pixels(), width as usize, height as usize)
- }
-
- // Cast the input slice using few buffer allocations if possible.
- // In particular try not to allocate if the caller did the infallible reverse.
- fn cast_buffer<Channel>(buf: &[u8]) -> ImageResult<Cow<[Channel]>>
- where
- Channel: Pod + Zero,
- {
- match try_cast_slice(buf) {
- Ok(slice) => Ok(Cow::Borrowed(slice)),
- Err(PodCastError::OutputSliceWouldHaveSlop) => Err(ImageError::Parameter(
- ParameterError::from_kind(ParameterErrorKind::DimensionMismatch),
- )),
- Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) => {
- // Sad, but let's allocate.
- // bytemuck checks alignment _before_ slop but size mismatch before this..
- if buf.len() % std::mem::size_of::<Channel>() != 0 {
- Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )))
- } else {
- let len = buf.len() / std::mem::size_of::<Channel>();
- let mut data = vec![Channel::zero(); len];
- let view = try_cast_slice_mut::<_, u8>(data.as_mut_slice()).unwrap();
- view.copy_from_slice(buf);
- Ok(Cow::Owned(data))
- }
- }
- Err(err) => {
- // Are you trying to encode a ZST??
- Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(format!("{:?}", err)),
- )))
- }
- }
- }
-
- match color {
- ColorType::Rgb8 => {
- // ravif doesn't do any checks but has some asserts, so we do the checks.
- let img = try_from_raw::<Rgb<u8>>(data, width, height)?;
- // Now, internally ravif uses u32 but it takes usize. We could do some checked
- // conversion but instead we use that a non-empty image must be addressable.
- if img.pixels().len() == 0 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- Ok(RgbColor::Rgb8(Img::new(
- rgb::AsPixels::as_pixels(data),
- width as usize,
- height as usize,
- )))
- }
- ColorType::Rgba8 => {
- // ravif doesn't do any checks but has some asserts, so we do the checks.
- let img = try_from_raw::<Rgba<u8>>(data, width, height)?;
- // Now, internally ravif uses u32 but it takes usize. We could do some checked
- // conversion but instead we use that a non-empty image must be addressable.
- if img.pixels().len() == 0 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- Ok(RgbColor::Rgba8(Img::new(
- rgb::AsPixels::as_pixels(data),
- width as usize,
- height as usize,
- )))
- }
- // we need a separate buffer..
- ColorType::L8 => {
- let image = try_from_raw::<Luma<u8>>(data, width, height)?;
- Ok(RgbColor::Rgba8(convert_into(fallback, image)))
- }
- ColorType::La8 => {
- let image = try_from_raw::<LumaA<u8>>(data, width, height)?;
- Ok(RgbColor::Rgba8(convert_into(fallback, image)))
- }
- // we need to really convert data..
- ColorType::L16 => {
- let buffer = cast_buffer(data)?;
- let image = try_from_raw::<Luma<u16>>(&buffer, width, height)?;
- Ok(RgbColor::Rgba8(convert_into(fallback, image)))
- }
- ColorType::La16 => {
- let buffer = cast_buffer(data)?;
- let image = try_from_raw::<LumaA<u16>>(&buffer, width, height)?;
- Ok(RgbColor::Rgba8(convert_into(fallback, image)))
- }
- ColorType::Rgb16 => {
- let buffer = cast_buffer(data)?;
- let image = try_from_raw::<Rgb<u16>>(&buffer, width, height)?;
- Ok(RgbColor::Rgba8(convert_into(fallback, image)))
- }
- ColorType::Rgba16 => {
- let buffer = cast_buffer(data)?;
- let image = try_from_raw::<Rgba<u16>>(&buffer, width, height)?;
- Ok(RgbColor::Rgba8(convert_into(fallback, image)))
- }
- // for cases we do not support at all?
- _ => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Avif.into(),
- UnsupportedErrorKind::Color(color.into()),
- ),
- )),
- }
- }
-}
diff --git a/vendor/image/src/codecs/avif/mod.rs b/vendor/image/src/codecs/avif/mod.rs
deleted file mode 100644
index f74217c..0000000
--- a/vendor/image/src/codecs/avif/mod.rs
+++ /dev/null
@@ -1,14 +0,0 @@
-//! Encoding of AVIF images.
-///
-/// The [AVIF] specification defines an image derivative of the AV1 bitstream, an open video codec.
-///
-/// [AVIF]: https://aomediacodec.github.io/av1-avif/
-#[cfg(feature = "avif-decoder")]
-pub use self::decoder::AvifDecoder;
-#[cfg(feature = "avif-encoder")]
-pub use self::encoder::{AvifEncoder, ColorSpace};
-
-#[cfg(feature = "avif-decoder")]
-mod decoder;
-#[cfg(feature = "avif-encoder")]
-mod encoder;
diff --git a/vendor/image/src/codecs/bmp/decoder.rs b/vendor/image/src/codecs/bmp/decoder.rs
deleted file mode 100644
index 58c0650..0000000
--- a/vendor/image/src/codecs/bmp/decoder.rs
+++ /dev/null
@@ -1,1483 +0,0 @@
-use std::cmp::{self, Ordering};
-use std::convert::TryFrom;
-use std::io::{self, Cursor, Read, Seek, SeekFrom};
-use std::iter::{repeat, Iterator, Rev};
-use std::marker::PhantomData;
-use std::slice::ChunksMut;
-use std::{error, fmt, mem};
-
-use byteorder::{LittleEndian, ReadBytesExt};
-
-use crate::color::ColorType;
-use crate::error::{
- DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageFormat, Progress};
-
-const BITMAPCOREHEADER_SIZE: u32 = 12;
-const BITMAPINFOHEADER_SIZE: u32 = 40;
-const BITMAPV2HEADER_SIZE: u32 = 52;
-const BITMAPV3HEADER_SIZE: u32 = 56;
-const BITMAPV4HEADER_SIZE: u32 = 108;
-const BITMAPV5HEADER_SIZE: u32 = 124;
-
-static LOOKUP_TABLE_3_BIT_TO_8_BIT: [u8; 8] = [0, 36, 73, 109, 146, 182, 219, 255];
-static LOOKUP_TABLE_4_BIT_TO_8_BIT: [u8; 16] = [
- 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
-];
-static LOOKUP_TABLE_5_BIT_TO_8_BIT: [u8; 32] = [
- 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173,
- 181, 189, 197, 206, 214, 222, 230, 239, 247, 255,
-];
-static LOOKUP_TABLE_6_BIT_TO_8_BIT: [u8; 64] = [
- 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93,
- 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170,
- 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247,
- 251, 255,
-];
-
-static R5_G5_B5_COLOR_MASK: Bitfields = Bitfields {
- r: Bitfield { len: 5, shift: 10 },
- g: Bitfield { len: 5, shift: 5 },
- b: Bitfield { len: 5, shift: 0 },
- a: Bitfield { len: 0, shift: 0 },
-};
-const R8_G8_B8_COLOR_MASK: Bitfields = Bitfields {
- r: Bitfield { len: 8, shift: 24 },
- g: Bitfield { len: 8, shift: 16 },
- b: Bitfield { len: 8, shift: 8 },
- a: Bitfield { len: 0, shift: 0 },
-};
-const R8_G8_B8_A8_COLOR_MASK: Bitfields = Bitfields {
- r: Bitfield { len: 8, shift: 16 },
- g: Bitfield { len: 8, shift: 8 },
- b: Bitfield { len: 8, shift: 0 },
- a: Bitfield { len: 8, shift: 24 },
-};
-
-const RLE_ESCAPE: u8 = 0;
-const RLE_ESCAPE_EOL: u8 = 0;
-const RLE_ESCAPE_EOF: u8 = 1;
-const RLE_ESCAPE_DELTA: u8 = 2;
-
-/// The maximum width/height the decoder will process.
-const MAX_WIDTH_HEIGHT: i32 = 0xFFFF;
-
-#[derive(PartialEq, Copy, Clone)]
-enum ImageType {
- Palette,
- RGB16,
- RGB24,
- RGB32,
- RGBA32,
- RLE8,
- RLE4,
- Bitfields16,
- Bitfields32,
-}
-
-#[derive(PartialEq)]
-enum BMPHeaderType {
- Core,
- Info,
- V2,
- V3,
- V4,
- V5,
-}
-
-#[derive(PartialEq)]
-enum FormatFullBytes {
- RGB24,
- RGB32,
- RGBA32,
- Format888,
-}
-
-enum Chunker<'a> {
- FromTop(ChunksMut<'a, u8>),
- FromBottom(Rev<ChunksMut<'a, u8>>),
-}
-
-pub(crate) struct RowIterator<'a> {
- chunks: Chunker<'a>,
-}
-
-impl<'a> Iterator for RowIterator<'a> {
- type Item = &'a mut [u8];
-
- #[inline(always)]
- fn next(&mut self) -> Option<&'a mut [u8]> {
- match self.chunks {
- Chunker::FromTop(ref mut chunks) => chunks.next(),
- Chunker::FromBottom(ref mut chunks) => chunks.next(),
- }
- }
-}
-
-/// All errors that can occur when attempting to parse a BMP
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum DecoderError {
- // Failed to decompress RLE data.
- CorruptRleData,
-
- /// The bitfield mask interleaves set and unset bits
- BitfieldMaskNonContiguous,
- /// Bitfield mask invalid (e.g. too long for specified type)
- BitfieldMaskInvalid,
- /// Bitfield (of the specified width – 16- or 32-bit) mask not present
- BitfieldMaskMissing(u32),
- /// Bitfield (of the specified width – 16- or 32-bit) masks not present
- BitfieldMasksMissing(u32),
-
- /// BMP's "BM" signature wrong or missing
- BmpSignatureInvalid,
- /// More than the exactly one allowed plane specified by the format
- MoreThanOnePlane,
- /// Invalid amount of bits per channel for the specified image type
- InvalidChannelWidth(ChannelWidthError, u16),
-
- /// The width is negative
- NegativeWidth(i32),
- /// One of the dimensions is larger than a soft limit
- ImageTooLarge(i32, i32),
- /// The height is `i32::min_value()`
- ///
- /// General negative heights specify top-down DIBs
- InvalidHeight,
-
- /// Specified image type is invalid for top-down BMPs (i.e. is compressed)
- ImageTypeInvalidForTopDown(u32),
- /// Image type not currently recognized by the decoder
- ImageTypeUnknown(u32),
-
- /// Bitmap header smaller than the core header
- HeaderTooSmall(u32),
-
- /// The palette is bigger than allowed by the bit count of the BMP
- PaletteSizeExceeded {
- colors_used: u32,
- bit_count: u16,
- },
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::CorruptRleData => f.write_str("Corrupt RLE data"),
- DecoderError::BitfieldMaskNonContiguous => f.write_str("Non-contiguous bitfield mask"),
- DecoderError::BitfieldMaskInvalid => f.write_str("Invalid bitfield mask"),
- DecoderError::BitfieldMaskMissing(bb) => {
- f.write_fmt(format_args!("Missing {}-bit bitfield mask", bb))
- }
- DecoderError::BitfieldMasksMissing(bb) => {
- f.write_fmt(format_args!("Missing {}-bit bitfield masks", bb))
- }
- DecoderError::BmpSignatureInvalid => f.write_str("BMP signature not found"),
- DecoderError::MoreThanOnePlane => f.write_str("More than one plane"),
- DecoderError::InvalidChannelWidth(tp, n) => {
- f.write_fmt(format_args!("Invalid channel bit count for {}: {}", tp, n))
- }
- DecoderError::NegativeWidth(w) => f.write_fmt(format_args!("Negative width ({})", w)),
- DecoderError::ImageTooLarge(w, h) => f.write_fmt(format_args!(
- "Image too large (one of ({}, {}) > soft limit of {})",
- w, h, MAX_WIDTH_HEIGHT
- )),
- DecoderError::InvalidHeight => f.write_str("Invalid height"),
- DecoderError::ImageTypeInvalidForTopDown(tp) => f.write_fmt(format_args!(
- "Invalid image type {} for top-down image.",
- tp
- )),
- DecoderError::ImageTypeUnknown(tp) => {
- f.write_fmt(format_args!("Unknown image compression type {}", tp))
- }
- DecoderError::HeaderTooSmall(s) => {
- f.write_fmt(format_args!("Bitmap header too small ({} bytes)", s))
- }
- DecoderError::PaletteSizeExceeded {
- colors_used,
- bit_count,
- } => f.write_fmt(format_args!(
- "Palette size {} exceeds maximum size for BMP with bit count of {}",
- colors_used, bit_count
- )),
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Bmp.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-/// Distinct image types whose saved channel width can be invalid
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum ChannelWidthError {
- /// RGB
- Rgb,
- /// 8-bit run length encoding
- Rle8,
- /// 4-bit run length encoding
- Rle4,
- /// Bitfields (16- or 32-bit)
- Bitfields,
-}
-
-impl fmt::Display for ChannelWidthError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.write_str(match self {
- ChannelWidthError::Rgb => "RGB",
- ChannelWidthError::Rle8 => "RLE8",
- ChannelWidthError::Rle4 => "RLE4",
- ChannelWidthError::Bitfields => "bitfields",
- })
- }
-}
-
-/// Convenience function to check if the combination of width, length and number of
-/// channels would result in a buffer that would overflow.
-fn check_for_overflow(width: i32, length: i32, channels: usize) -> ImageResult<()> {
- num_bytes(width, length, channels)
- .map(|_| ())
- .ok_or_else(|| {
- ImageError::Unsupported(UnsupportedError::from_format_and_kind(
- ImageFormat::Bmp.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}x{} w/{} channels) are too large",
- width, length, channels
- )),
- ))
- })
-}
-
-/// Calculate how many many bytes a buffer holding a decoded image with these properties would
-/// require. Returns `None` if the buffer size would overflow or if one of the sizes are negative.
-fn num_bytes(width: i32, length: i32, channels: usize) -> Option<usize> {
- if width <= 0 || length <= 0 {
- None
- } else {
- match channels.checked_mul(width as usize) {
- Some(n) => n.checked_mul(length as usize),
- None => None,
- }
- }
-}
-
-/// Call the provided function on each row of the provided buffer, returning Err if the provided
-/// function returns an error, extends the buffer if it's not large enough.
-fn with_rows<F>(
- buffer: &mut [u8],
- width: i32,
- height: i32,
- channels: usize,
- top_down: bool,
- mut func: F,
-) -> io::Result<()>
-where
- F: FnMut(&mut [u8]) -> io::Result<()>,
-{
- // An overflow should already have been checked for when this is called,
- // though we check anyhow, as it somehow seems to increase performance slightly.
- let row_width = channels.checked_mul(width as usize).unwrap();
- let full_image_size = row_width.checked_mul(height as usize).unwrap();
- assert_eq!(buffer.len(), full_image_size);
-
- if !top_down {
- for row in buffer.chunks_mut(row_width).rev() {
- func(row)?;
- }
- } else {
- for row in buffer.chunks_mut(row_width) {
- func(row)?;
- }
- }
- Ok(())
-}
-
-fn set_8bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
- pixel_iter: &mut ChunksMut<u8>,
- palette: &[[u8; 3]],
- indices: T,
- n_pixels: usize,
-) -> bool {
- for idx in indices.take(n_pixels) {
- if let Some(pixel) = pixel_iter.next() {
- let rgb = palette[*idx as usize];
- pixel[0] = rgb[0];
- pixel[1] = rgb[1];
- pixel[2] = rgb[2];
- } else {
- return false;
- }
- }
- true
-}
-
-fn set_4bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
- pixel_iter: &mut ChunksMut<u8>,
- palette: &[[u8; 3]],
- indices: T,
- mut n_pixels: usize,
-) -> bool {
- for idx in indices {
- macro_rules! set_pixel {
- ($i:expr) => {
- if n_pixels == 0 {
- break;
- }
- if let Some(pixel) = pixel_iter.next() {
- let rgb = palette[$i as usize];
- pixel[0] = rgb[0];
- pixel[1] = rgb[1];
- pixel[2] = rgb[2];
- } else {
- return false;
- }
- n_pixels -= 1;
- };
- }
- set_pixel!(idx >> 4);
- set_pixel!(idx & 0xf);
- }
- true
-}
-
-#[rustfmt::skip]
-fn set_2bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
- pixel_iter: &mut ChunksMut<u8>,
- palette: &[[u8; 3]],
- indices: T,
- mut n_pixels: usize,
-) -> bool {
- for idx in indices {
- macro_rules! set_pixel {
- ($i:expr) => {
- if n_pixels == 0 {
- break;
- }
- if let Some(pixel) = pixel_iter.next() {
- let rgb = palette[$i as usize];
- pixel[0] = rgb[0];
- pixel[1] = rgb[1];
- pixel[2] = rgb[2];
- } else {
- return false;
- }
- n_pixels -= 1;
- };
- }
- set_pixel!((idx >> 6) & 0x3u8);
- set_pixel!((idx >> 4) & 0x3u8);
- set_pixel!((idx >> 2) & 0x3u8);
- set_pixel!( idx & 0x3u8);
- }
- true
-}
-
-fn set_1bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
- pixel_iter: &mut ChunksMut<u8>,
- palette: &[[u8; 3]],
- indices: T,
-) {
- for idx in indices {
- let mut bit = 0x80;
- loop {
- if let Some(pixel) = pixel_iter.next() {
- let rgb = palette[((idx & bit) != 0) as usize];
- pixel[0] = rgb[0];
- pixel[1] = rgb[1];
- pixel[2] = rgb[2];
- } else {
- return;
- }
-
- bit >>= 1;
- if bit == 0 {
- break;
- }
- }
- }
-}
-
-#[derive(PartialEq, Eq)]
-struct Bitfield {
- shift: u32,
- len: u32,
-}
-
-impl Bitfield {
- fn from_mask(mask: u32, max_len: u32) -> ImageResult<Bitfield> {
- if mask == 0 {
- return Ok(Bitfield { shift: 0, len: 0 });
- }
- let mut shift = mask.trailing_zeros();
- let mut len = (!(mask >> shift)).trailing_zeros();
- if len != mask.count_ones() {
- return Err(DecoderError::BitfieldMaskNonContiguous.into());
- }
- if len + shift > max_len {
- return Err(DecoderError::BitfieldMaskInvalid.into());
- }
- if len > 8 {
- shift += len - 8;
- len = 8;
- }
- Ok(Bitfield { shift, len })
- }
-
- fn read(&self, data: u32) -> u8 {
- let data = data >> self.shift;
- match self.len {
- 1 => ((data & 0b1) * 0xff) as u8,
- 2 => ((data & 0b11) * 0x55) as u8,
- 3 => LOOKUP_TABLE_3_BIT_TO_8_BIT[(data & 0b00_0111) as usize],
- 4 => LOOKUP_TABLE_4_BIT_TO_8_BIT[(data & 0b00_1111) as usize],
- 5 => LOOKUP_TABLE_5_BIT_TO_8_BIT[(data & 0b01_1111) as usize],
- 6 => LOOKUP_TABLE_6_BIT_TO_8_BIT[(data & 0b11_1111) as usize],
- 7 => ((data & 0x7f) << 1 | (data & 0x7f) >> 6) as u8,
- 8 => (data & 0xff) as u8,
- _ => panic!(),
- }
- }
-}
-
-#[derive(PartialEq, Eq)]
-struct Bitfields {
- r: Bitfield,
- g: Bitfield,
- b: Bitfield,
- a: Bitfield,
-}
-
-impl Bitfields {
- fn from_mask(
- r_mask: u32,
- g_mask: u32,
- b_mask: u32,
- a_mask: u32,
- max_len: u32,
- ) -> ImageResult<Bitfields> {
- let bitfields = Bitfields {
- r: Bitfield::from_mask(r_mask, max_len)?,
- g: Bitfield::from_mask(g_mask, max_len)?,
- b: Bitfield::from_mask(b_mask, max_len)?,
- a: Bitfield::from_mask(a_mask, max_len)?,
- };
- if bitfields.r.len == 0 || bitfields.g.len == 0 || bitfields.b.len == 0 {
- return Err(DecoderError::BitfieldMaskMissing(max_len).into());
- }
- Ok(bitfields)
- }
-}
-
-/// A bmp decoder
-pub struct BmpDecoder<R> {
- reader: R,
-
- bmp_header_type: BMPHeaderType,
- indexed_color: bool,
-
- width: i32,
- height: i32,
- data_offset: u64,
- top_down: bool,
- no_file_header: bool,
- add_alpha_channel: bool,
- has_loaded_metadata: bool,
- image_type: ImageType,
-
- bit_count: u16,
- colors_used: u32,
- palette: Option<Vec<[u8; 3]>>,
- bitfields: Option<Bitfields>,
-}
-
-enum RLEInsn {
- EndOfFile,
- EndOfRow,
- Delta(u8, u8),
- Absolute(u8, Vec<u8>),
- PixelRun(u8, u8),
-}
-
-impl<R: Read + Seek> BmpDecoder<R> {
- fn new_decoder(reader: R) -> BmpDecoder<R> {
- BmpDecoder {
- reader,
-
- bmp_header_type: BMPHeaderType::Info,
- indexed_color: false,
-
- width: 0,
- height: 0,
- data_offset: 0,
- top_down: false,
- no_file_header: false,
- add_alpha_channel: false,
- has_loaded_metadata: false,
- image_type: ImageType::Palette,
-
- bit_count: 0,
- colors_used: 0,
- palette: None,
- bitfields: None,
- }
- }
-
- /// Create a new decoder that decodes from the stream ```r```
- pub fn new(reader: R) -> ImageResult<BmpDecoder<R>> {
- let mut decoder = Self::new_decoder(reader);
- decoder.read_metadata()?;
- Ok(decoder)
- }
-
- /// Create a new decoder that decodes from the stream ```r``` without first
- /// reading a BITMAPFILEHEADER. This is useful for decoding the CF_DIB format
- /// directly from the Windows clipboard.
- pub fn new_without_file_header(reader: R) -> ImageResult<BmpDecoder<R>> {
- let mut decoder = Self::new_decoder(reader);
- decoder.no_file_header = true;
- decoder.read_metadata()?;
- Ok(decoder)
- }
-
- #[cfg(feature = "ico")]
- pub(crate) fn new_with_ico_format(reader: R) -> ImageResult<BmpDecoder<R>> {
- let mut decoder = Self::new_decoder(reader);
- decoder.read_metadata_in_ico_format()?;
- Ok(decoder)
- }
-
- /// If true, the palette in BMP does not apply to the image even if it is found.
- /// In other words, the output image is the indexed color.
- pub fn set_indexed_color(&mut self, indexed_color: bool) {
- self.indexed_color = indexed_color;
- }
-
- #[cfg(feature = "ico")]
- pub(crate) fn reader(&mut self) -> &mut R {
- &mut self.reader
- }
-
- fn read_file_header(&mut self) -> ImageResult<()> {
- if self.no_file_header {
- return Ok(());
- }
- let mut signature = [0; 2];
- self.reader.read_exact(&mut signature)?;
-
- if signature != b"BM"[..] {
- return Err(DecoderError::BmpSignatureInvalid.into());
- }
-
- // The next 8 bytes represent file size, followed the 4 reserved bytes
- // We're not interesting these values
- self.reader.read_u32::<LittleEndian>()?;
- self.reader.read_u32::<LittleEndian>()?;
-
- self.data_offset = u64::from(self.reader.read_u32::<LittleEndian>()?);
-
- Ok(())
- }
-
- /// Read BITMAPCOREHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183372(v=vs.85).aspx
- ///
- /// returns Err if any of the values are invalid.
- fn read_bitmap_core_header(&mut self) -> ImageResult<()> {
- // As height/width values in BMP files with core headers are only 16 bits long,
- // they won't be larger than `MAX_WIDTH_HEIGHT`.
- self.width = i32::from(self.reader.read_u16::<LittleEndian>()?);
- self.height = i32::from(self.reader.read_u16::<LittleEndian>()?);
-
- check_for_overflow(self.width, self.height, self.num_channels())?;
-
- // Number of planes (format specifies that this should be 1).
- if self.reader.read_u16::<LittleEndian>()? != 1 {
- return Err(DecoderError::MoreThanOnePlane.into());
- }
-
- self.bit_count = self.reader.read_u16::<LittleEndian>()?;
- self.image_type = match self.bit_count {
- 1 | 4 | 8 => ImageType::Palette,
- 24 => ImageType::RGB24,
- _ => {
- return Err(DecoderError::InvalidChannelWidth(
- ChannelWidthError::Rgb,
- self.bit_count,
- )
- .into())
- }
- };
-
- Ok(())
- }
-
- /// Read BITMAPINFOHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183376(v=vs.85).aspx
- /// or BITMAPV{2|3|4|5}HEADER.
- ///
- /// returns Err if any of the values are invalid.
- fn read_bitmap_info_header(&mut self) -> ImageResult<()> {
- self.width = self.reader.read_i32::<LittleEndian>()?;
- self.height = self.reader.read_i32::<LittleEndian>()?;
-
- // Width can not be negative
- if self.width < 0 {
- return Err(DecoderError::NegativeWidth(self.width).into());
- } else if self.width > MAX_WIDTH_HEIGHT || self.height > MAX_WIDTH_HEIGHT {
- // Limit very large image sizes to avoid OOM issues. Images with these sizes are
- // unlikely to be valid anyhow.
- return Err(DecoderError::ImageTooLarge(self.width, self.height).into());
- }
-
- if self.height == i32::min_value() {
- return Err(DecoderError::InvalidHeight.into());
- }
-
- // A negative height indicates a top-down DIB.
- if self.height < 0 {
- self.height *= -1;
- self.top_down = true;
- }
-
- check_for_overflow(self.width, self.height, self.num_channels())?;
-
- // Number of planes (format specifies that this should be 1).
- if self.reader.read_u16::<LittleEndian>()? != 1 {
- return Err(DecoderError::MoreThanOnePlane.into());
- }
-
- self.bit_count = self.reader.read_u16::<LittleEndian>()?;
- let image_type_u32 = self.reader.read_u32::<LittleEndian>()?;
-
- // Top-down dibs can not be compressed.
- if self.top_down && image_type_u32 != 0 && image_type_u32 != 3 {
- return Err(DecoderError::ImageTypeInvalidForTopDown(image_type_u32).into());
- }
- self.image_type = match image_type_u32 {
- 0 => match self.bit_count {
- 1 | 2 | 4 | 8 => ImageType::Palette,
- 16 => ImageType::RGB16,
- 24 => ImageType::RGB24,
- 32 if self.add_alpha_channel => ImageType::RGBA32,
- 32 => ImageType::RGB32,
- _ => {
- return Err(DecoderError::InvalidChannelWidth(
- ChannelWidthError::Rgb,
- self.bit_count,
- )
- .into())
- }
- },
- 1 => match self.bit_count {
- 8 => ImageType::RLE8,
- _ => {
- return Err(DecoderError::InvalidChannelWidth(
- ChannelWidthError::Rle8,
- self.bit_count,
- )
- .into())
- }
- },
- 2 => match self.bit_count {
- 4 => ImageType::RLE4,
- _ => {
- return Err(DecoderError::InvalidChannelWidth(
- ChannelWidthError::Rle4,
- self.bit_count,
- )
- .into())
- }
- },
- 3 => match self.bit_count {
- 16 => ImageType::Bitfields16,
- 32 => ImageType::Bitfields32,
- _ => {
- return Err(DecoderError::InvalidChannelWidth(
- ChannelWidthError::Bitfields,
- self.bit_count,
- )
- .into())
- }
- },
- 4 => {
- // JPEG compression is not implemented yet.
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Bmp.into(),
- UnsupportedErrorKind::GenericFeature("JPEG compression".to_owned()),
- ),
- ));
- }
- 5 => {
- // PNG compression is not implemented yet.
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Bmp.into(),
- UnsupportedErrorKind::GenericFeature("PNG compression".to_owned()),
- ),
- ));
- }
- 11 | 12 | 13 => {
- // CMYK types are not implemented yet.
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Bmp.into(),
- UnsupportedErrorKind::GenericFeature("CMYK format".to_owned()),
- ),
- ));
- }
- _ => {
- // Unknown compression type.
- return Err(DecoderError::ImageTypeUnknown(image_type_u32).into());
- }
- };
-
- // The next 12 bytes represent data array size in bytes,
- // followed the horizontal and vertical printing resolutions
- // We will calculate the pixel array size using width & height of image
- // We're not interesting the horz or vert printing resolutions
- self.reader.read_u32::<LittleEndian>()?;
- self.reader.read_u32::<LittleEndian>()?;
- self.reader.read_u32::<LittleEndian>()?;
-
- self.colors_used = self.reader.read_u32::<LittleEndian>()?;
-
- // The next 4 bytes represent number of "important" colors
- // We're not interested in this value, so we'll skip it
- self.reader.read_u32::<LittleEndian>()?;
-
- Ok(())
- }
-
- fn read_bitmasks(&mut self) -> ImageResult<()> {
- let r_mask = self.reader.read_u32::<LittleEndian>()?;
- let g_mask = self.reader.read_u32::<LittleEndian>()?;
- let b_mask = self.reader.read_u32::<LittleEndian>()?;
-
- let a_mask = match self.bmp_header_type {
- BMPHeaderType::V3 | BMPHeaderType::V4 | BMPHeaderType::V5 => {
- self.reader.read_u32::<LittleEndian>()?
- }
- _ => 0,
- };
-
- self.bitfields = match self.image_type {
- ImageType::Bitfields16 => {
- Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 16)?)
- }
- ImageType::Bitfields32 => {
- Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 32)?)
- }
- _ => None,
- };
-
- if self.bitfields.is_some() && a_mask != 0 {
- self.add_alpha_channel = true;
- }
-
- Ok(())
- }
-
- fn read_metadata(&mut self) -> ImageResult<()> {
- if !self.has_loaded_metadata {
- self.read_file_header()?;
- let bmp_header_offset = self.reader.stream_position()?;
- let bmp_header_size = self.reader.read_u32::<LittleEndian>()?;
- let bmp_header_end = bmp_header_offset + u64::from(bmp_header_size);
-
- self.bmp_header_type = match bmp_header_size {
- BITMAPCOREHEADER_SIZE => BMPHeaderType::Core,
- BITMAPINFOHEADER_SIZE => BMPHeaderType::Info,
- BITMAPV2HEADER_SIZE => BMPHeaderType::V2,
- BITMAPV3HEADER_SIZE => BMPHeaderType::V3,
- BITMAPV4HEADER_SIZE => BMPHeaderType::V4,
- BITMAPV5HEADER_SIZE => BMPHeaderType::V5,
- _ if bmp_header_size < BITMAPCOREHEADER_SIZE => {
- // Size of any valid header types won't be smaller than core header type.
- return Err(DecoderError::HeaderTooSmall(bmp_header_size).into());
- }
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Bmp.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Unknown bitmap header type (size={})",
- bmp_header_size
- )),
- ),
- ))
- }
- };
-
- match self.bmp_header_type {
- BMPHeaderType::Core => {
- self.read_bitmap_core_header()?;
- }
- BMPHeaderType::Info
- | BMPHeaderType::V2
- | BMPHeaderType::V3
- | BMPHeaderType::V4
- | BMPHeaderType::V5 => {
- self.read_bitmap_info_header()?;
- }
- };
-
- match self.image_type {
- ImageType::Bitfields16 | ImageType::Bitfields32 => self.read_bitmasks()?,
- _ => {}
- };
-
- self.reader.seek(SeekFrom::Start(bmp_header_end))?;
-
- match self.image_type {
- ImageType::Palette | ImageType::RLE4 | ImageType::RLE8 => self.read_palette()?,
- _ => {}
- };
-
- if self.no_file_header {
- // Use the offset of the end of metadata instead of reading a BMP file header.
- self.data_offset = self.reader.stream_position()?;
- }
-
- self.has_loaded_metadata = true;
- }
- Ok(())
- }
-
- #[cfg(feature = "ico")]
- #[doc(hidden)]
- pub fn read_metadata_in_ico_format(&mut self) -> ImageResult<()> {
- self.no_file_header = true;
- self.add_alpha_channel = true;
- self.read_metadata()?;
-
- // The height field in an ICO file is doubled to account for the AND mask
- // (whether or not an AND mask is actually present).
- self.height /= 2;
- Ok(())
- }
-
- fn get_palette_size(&mut self) -> ImageResult<usize> {
- match self.colors_used {
- 0 => Ok(1 << self.bit_count),
- _ => {
- if self.colors_used > 1 << self.bit_count {
- return Err(DecoderError::PaletteSizeExceeded {
- colors_used: self.colors_used,
- bit_count: self.bit_count,
- }
- .into());
- }
- Ok(self.colors_used as usize)
- }
- }
- }
-
- fn bytes_per_color(&self) -> usize {
- match self.bmp_header_type {
- BMPHeaderType::Core => 3,
- _ => 4,
- }
- }
-
- fn read_palette(&mut self) -> ImageResult<()> {
- const MAX_PALETTE_SIZE: usize = 256; // Palette indices are u8.
-
- let bytes_per_color = self.bytes_per_color();
- let palette_size = self.get_palette_size()?;
- let max_length = MAX_PALETTE_SIZE * bytes_per_color;
-
- let length = palette_size * bytes_per_color;
- let mut buf = Vec::with_capacity(max_length);
-
- // Resize and read the palette entries to the buffer.
- // We limit the buffer to at most 256 colours to avoid any oom issues as
- // 8-bit images can't reference more than 256 indexes anyhow.
- buf.resize(cmp::min(length, max_length), 0);
- self.reader.by_ref().read_exact(&mut buf)?;
-
- // Allocate 256 entries even if palette_size is smaller, to prevent corrupt files from
- // causing an out-of-bounds array access.
- match length.cmp(&max_length) {
- Ordering::Greater => {
- self.reader
- .seek(SeekFrom::Current((length - max_length) as i64))?;
- }
- Ordering::Less => buf.resize(max_length, 0),
- Ordering::Equal => (),
- }
-
- let p: Vec<[u8; 3]> = (0..MAX_PALETTE_SIZE)
- .map(|i| {
- let b = buf[bytes_per_color * i];
- let g = buf[bytes_per_color * i + 1];
- let r = buf[bytes_per_color * i + 2];
- [r, g, b]
- })
- .collect();
-
- self.palette = Some(p);
-
- Ok(())
- }
-
- /// Get the palette that is embedded in the BMP image, if any.
- pub fn get_palette(&self) -> Option<&[[u8; 3]]> {
- self.palette.as_ref().map(|vec| &vec[..])
- }
-
- fn num_channels(&self) -> usize {
- if self.indexed_color {
- 1
- } else if self.add_alpha_channel {
- 4
- } else {
- 3
- }
- }
-
- fn rows<'a>(&self, pixel_data: &'a mut [u8]) -> RowIterator<'a> {
- let stride = self.width as usize * self.num_channels();
- if self.top_down {
- RowIterator {
- chunks: Chunker::FromTop(pixel_data.chunks_mut(stride)),
- }
- } else {
- RowIterator {
- chunks: Chunker::FromBottom(pixel_data.chunks_mut(stride).rev()),
- }
- }
- }
-
- fn read_palettized_pixel_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
- let num_channels = self.num_channels();
- let row_byte_length = ((i32::from(self.bit_count) * self.width + 31) / 32 * 4) as usize;
- let mut indices = vec![0; row_byte_length];
- let palette = self.palette.as_ref().unwrap();
- let bit_count = self.bit_count;
- let reader = &mut self.reader;
- let width = self.width as usize;
- let skip_palette = self.indexed_color;
-
- reader.seek(SeekFrom::Start(self.data_offset))?;
-
- if num_channels == 4 {
- buf.chunks_exact_mut(4).for_each(|c| c[3] = 0xFF);
- }
-
- with_rows(
- buf,
- self.width,
- self.height,
- num_channels,
- self.top_down,
- |row| {
- reader.read_exact(&mut indices)?;
- if skip_palette {
- row.clone_from_slice(&indices[0..width]);
- } else {
- let mut pixel_iter = row.chunks_mut(num_channels);
- match bit_count {
- 1 => {
- set_1bit_pixel_run(&mut pixel_iter, palette, indices.iter());
- }
- 2 => {
- set_2bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
- }
- 4 => {
- set_4bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
- }
- 8 => {
- set_8bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
- }
- _ => panic!(),
- };
- }
- Ok(())
- },
- )?;
-
- Ok(())
- }
-
- fn read_16_bit_pixel_data(
- &mut self,
- buf: &mut [u8],
- bitfields: Option<&Bitfields>,
- ) -> ImageResult<()> {
- let num_channels = self.num_channels();
- let row_padding_len = self.width as usize % 2 * 2;
- let row_padding = &mut [0; 2][..row_padding_len];
- let bitfields = match bitfields {
- Some(b) => b,
- None => self.bitfields.as_ref().unwrap(),
- };
- let reader = &mut self.reader;
-
- reader.seek(SeekFrom::Start(self.data_offset))?;
-
- with_rows(
- buf,
- self.width,
- self.height,
- num_channels,
- self.top_down,
- |row| {
- for pixel in row.chunks_mut(num_channels) {
- let data = u32::from(reader.read_u16::<LittleEndian>()?);
-
- pixel[0] = bitfields.r.read(data);
- pixel[1] = bitfields.g.read(data);
- pixel[2] = bitfields.b.read(data);
- if num_channels == 4 {
- if bitfields.a.len != 0 {
- pixel[3] = bitfields.a.read(data);
- } else {
- pixel[3] = 0xFF;
- }
- }
- }
- reader.read_exact(row_padding)
- },
- )?;
-
- Ok(())
- }
-
- /// Read image data from a reader in 32-bit formats that use bitfields.
- fn read_32_bit_pixel_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
- let num_channels = self.num_channels();
-
- let bitfields = self.bitfields.as_ref().unwrap();
-
- let reader = &mut self.reader;
- reader.seek(SeekFrom::Start(self.data_offset))?;
-
- with_rows(
- buf,
- self.width,
- self.height,
- num_channels,
- self.top_down,
- |row| {
- for pixel in row.chunks_mut(num_channels) {
- let data = reader.read_u32::<LittleEndian>()?;
-
- pixel[0] = bitfields.r.read(data);
- pixel[1] = bitfields.g.read(data);
- pixel[2] = bitfields.b.read(data);
- if num_channels == 4 {
- if bitfields.a.len != 0 {
- pixel[3] = bitfields.a.read(data);
- } else {
- pixel[3] = 0xff;
- }
- }
- }
- Ok(())
- },
- )?;
-
- Ok(())
- }
-
- /// Read image data from a reader where the colours are stored as 8-bit values (24 or 32-bit).
- fn read_full_byte_pixel_data(
- &mut self,
- buf: &mut [u8],
- format: &FormatFullBytes,
- ) -> ImageResult<()> {
- let num_channels = self.num_channels();
- let row_padding_len = match *format {
- FormatFullBytes::RGB24 => (4 - (self.width as usize * 3) % 4) % 4,
- _ => 0,
- };
- let row_padding = &mut [0; 4][..row_padding_len];
-
- self.reader.seek(SeekFrom::Start(self.data_offset))?;
-
- let reader = &mut self.reader;
-
- with_rows(
- buf,
- self.width,
- self.height,
- num_channels,
- self.top_down,
- |row| {
- for pixel in row.chunks_mut(num_channels) {
- if *format == FormatFullBytes::Format888 {
- reader.read_u8()?;
- }
-
- // Read the colour values (b, g, r).
- // Reading 3 bytes and reversing them is significantly faster than reading one
- // at a time.
- reader.read_exact(&mut pixel[0..3])?;
- pixel[0..3].reverse();
-
- if *format == FormatFullBytes::RGB32 {
- reader.read_u8()?;
- }
-
- // Read the alpha channel if present
- if *format == FormatFullBytes::RGBA32 {
- reader.read_exact(&mut pixel[3..4])?;
- } else if num_channels == 4 {
- pixel[3] = 0xFF;
- }
- }
- reader.read_exact(row_padding)
- },
- )?;
-
- Ok(())
- }
-
- fn read_rle_data(&mut self, buf: &mut [u8], image_type: ImageType) -> ImageResult<()> {
- // Seek to the start of the actual image data.
- self.reader.seek(SeekFrom::Start(self.data_offset))?;
-
- let num_channels = self.num_channels();
- let p = self.palette.as_ref().unwrap();
-
- // Handling deltas in the RLE scheme means that we need to manually
- // iterate through rows and pixels. Even if we didn't have to handle
- // deltas, we have to ensure that a single runlength doesn't straddle
- // two rows.
- let mut row_iter = self.rows(buf);
-
- while let Some(row) = row_iter.next() {
- let mut pixel_iter = row.chunks_mut(num_channels);
-
- let mut x = 0;
- loop {
- let instruction = {
- let control_byte = self.reader.read_u8()?;
- match control_byte {
- RLE_ESCAPE => {
- let op = self.reader.read_u8()?;
-
- match op {
- RLE_ESCAPE_EOL => RLEInsn::EndOfRow,
- RLE_ESCAPE_EOF => RLEInsn::EndOfFile,
- RLE_ESCAPE_DELTA => {
- let xdelta = self.reader.read_u8()?;
- let ydelta = self.reader.read_u8()?;
- RLEInsn::Delta(xdelta, ydelta)
- }
- _ => {
- let mut length = op as usize;
- if self.image_type == ImageType::RLE4 {
- length = (length + 1) / 2;
- }
- length += length & 1;
- let mut buffer = vec![0; length];
- self.reader.read_exact(&mut buffer)?;
- RLEInsn::Absolute(op, buffer)
- }
- }
- }
- _ => {
- let palette_index = self.reader.read_u8()?;
- RLEInsn::PixelRun(control_byte, palette_index)
- }
- }
- };
-
- match instruction {
- RLEInsn::EndOfFile => {
- pixel_iter.for_each(|p| p.fill(0));
- row_iter.for_each(|r| r.fill(0));
- return Ok(());
- }
- RLEInsn::EndOfRow => {
- pixel_iter.for_each(|p| p.fill(0));
- break;
- }
- RLEInsn::Delta(x_delta, y_delta) => {
- // The msdn site on bitmap compression doesn't specify
- // what happens to the values skipped when encountering
- // a delta code, however IE and the windows image
- // preview seems to replace them with black pixels,
- // so we stick to that.
-
- if y_delta > 0 {
- // Zero out the remainder of the current row.
- pixel_iter.for_each(|p| p.fill(0));
-
- // If any full rows are skipped, zero them out.
- for _ in 1..y_delta {
- let row = row_iter.next().ok_or(DecoderError::CorruptRleData)?;
- row.fill(0);
- }
-
- // Set the pixel iterator to the start of the next row.
- pixel_iter = row_iter
- .next()
- .ok_or(DecoderError::CorruptRleData)?
- .chunks_mut(num_channels);
-
- // Zero out the pixels up to the current point in the row.
- for _ in 0..x {
- pixel_iter
- .next()
- .ok_or(DecoderError::CorruptRleData)?
- .fill(0);
- }
- }
-
- for _ in 0..x_delta {
- let pixel = pixel_iter.next().ok_or(DecoderError::CorruptRleData)?;
- pixel.fill(0);
- }
- x += x_delta as usize;
- }
- RLEInsn::Absolute(length, indices) => {
- // Absolute mode cannot span rows, so if we run
- // out of pixels to process, we should stop
- // processing the image.
- match image_type {
- ImageType::RLE8 => {
- if !set_8bit_pixel_run(
- &mut pixel_iter,
- p,
- indices.iter(),
- length as usize,
- ) {
- return Err(DecoderError::CorruptRleData.into());
- }
- }
- ImageType::RLE4 => {
- if !set_4bit_pixel_run(
- &mut pixel_iter,
- p,
- indices.iter(),
- length as usize,
- ) {
- return Err(DecoderError::CorruptRleData.into());
- }
- }
- _ => unreachable!(),
- }
- x += length as usize;
- }
- RLEInsn::PixelRun(n_pixels, palette_index) => {
- // A pixel run isn't allowed to span rows, but we
- // simply continue on to the next row if we run
- // out of pixels to set.
- match image_type {
- ImageType::RLE8 => {
- if !set_8bit_pixel_run(
- &mut pixel_iter,
- p,
- repeat(&palette_index),
- n_pixels as usize,
- ) {
- return Err(DecoderError::CorruptRleData.into());
- }
- }
- ImageType::RLE4 => {
- if !set_4bit_pixel_run(
- &mut pixel_iter,
- p,
- repeat(&palette_index),
- n_pixels as usize,
- ) {
- return Err(DecoderError::CorruptRleData.into());
- }
- }
- _ => unreachable!(),
- }
- x += n_pixels as usize;
- }
- }
- }
- }
-
- Ok(())
- }
-
- /// Read the actual data of the image. This function is deliberately not public because it
- /// cannot be called multiple times without seeking back the underlying reader in between.
- pub(crate) fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
- match self.image_type {
- ImageType::Palette => self.read_palettized_pixel_data(buf),
- ImageType::RGB16 => self.read_16_bit_pixel_data(buf, Some(&R5_G5_B5_COLOR_MASK)),
- ImageType::RGB24 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGB24),
- ImageType::RGB32 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGB32),
- ImageType::RGBA32 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGBA32),
- ImageType::RLE8 => self.read_rle_data(buf, ImageType::RLE8),
- ImageType::RLE4 => self.read_rle_data(buf, ImageType::RLE4),
- ImageType::Bitfields16 => match self.bitfields {
- Some(_) => self.read_16_bit_pixel_data(buf, None),
- None => Err(DecoderError::BitfieldMasksMissing(16).into()),
- },
- ImageType::Bitfields32 => match self.bitfields {
- Some(R8_G8_B8_COLOR_MASK) => {
- self.read_full_byte_pixel_data(buf, &FormatFullBytes::Format888)
- }
- Some(R8_G8_B8_A8_COLOR_MASK) => {
- self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGBA32)
- }
- Some(_) => self.read_32_bit_pixel_data(buf),
- None => Err(DecoderError::BitfieldMasksMissing(32).into()),
- },
- }
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct BmpReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for BmpReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for BmpDecoder<R> {
- type Reader = BmpReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.width as u32, self.height as u32)
- }
-
- fn color_type(&self) -> ColorType {
- if self.indexed_color {
- ColorType::L8
- } else if self.add_alpha_channel {
- ColorType::Rgba8
- } else {
- ColorType::Rgb8
- }
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(BmpReader(
- Cursor::new(image::decoder_to_vec(self)?),
- PhantomData,
- ))
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
- self.read_image_data(buf)
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for BmpDecoder<R> {
- fn read_rect_with_progress<F: Fn(Progress)>(
- &mut self,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
- buf: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- let start = self.reader.stream_position()?;
- image::load_rect(
- x,
- y,
- width,
- height,
- buf,
- progress_callback,
- self,
- |_, _| Ok(()),
- |s, buf| s.read_image_data(buf),
- )?;
- self.reader.seek(SeekFrom::Start(start))?;
- Ok(())
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn test_bitfield_len() {
- for len in 1..9 {
- let bitfield = Bitfield { shift: 0, len };
- for i in 0..(1 << len) {
- let read = bitfield.read(i);
- let calc = (i as f64 / ((1 << len) - 1) as f64 * 255f64).round() as u8;
- if read != calc {
- println!("len:{} i:{} read:{} calc:{}", len, i, read, calc);
- }
- assert_eq!(read, calc);
- }
- }
- }
-
- #[test]
- fn read_rect() {
- let f = std::fs::File::open("tests/images/bmp/images/Core_8_Bit.bmp").unwrap();
- let mut decoder = super::BmpDecoder::new(f).unwrap();
-
- let mut buf: Vec<u8> = vec![0; 8 * 8 * 3];
- decoder.read_rect(0, 0, 8, 8, &mut *buf).unwrap();
- }
-
- #[test]
- fn read_rle_too_short() {
- let data = vec![
- 0x42, 0x4d, 0x04, 0xee, 0xfe, 0xff, 0xff, 0x10, 0xff, 0x00, 0x04, 0x00, 0x00, 0x00,
- 0x7c, 0x00, 0x00, 0x00, 0x0c, 0x41, 0x00, 0x00, 0x07, 0x10, 0x00, 0x00, 0x01, 0x00,
- 0x04, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00,
- 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x21,
- 0xff, 0x00, 0x66, 0x61, 0x72, 0x62, 0x66, 0x65, 0x6c, 0x64, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0xff, 0xd8, 0xff, 0x00, 0x00, 0x19, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfa, 0xff, 0x00, 0x00, 0x00,
- 0x00, 0x01, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0f, 0x00,
- 0x00, 0x00, 0x00, 0x2d, 0x31, 0x31, 0x35, 0x36, 0x00, 0xff, 0x00, 0x00, 0x52, 0x3a,
- 0x37, 0x30, 0x7e, 0x71, 0x63, 0x91, 0x5a, 0x04, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d, 0x35, 0x37, 0x00, 0xff, 0x00, 0x00, 0x52,
- 0x3a, 0x37, 0x30, 0x7e, 0x71, 0x63, 0x91, 0x5a, 0x04, 0x05, 0x3c, 0x00, 0x00, 0x11,
- 0x00, 0x5d, 0x7a, 0x82, 0xb7, 0xca, 0x2d, 0x31, 0xff, 0xff, 0xc7, 0x95, 0x33, 0x2e,
- 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00,
- 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x66, 0x00, 0x4d,
- 0x4d, 0x00, 0x2a, 0x00,
- ];
-
- let decoder = BmpDecoder::new(Cursor::new(&data)).unwrap();
- let mut buf = vec![0; usize::try_from(decoder.total_bytes()).unwrap()];
- assert!(decoder.read_image(&mut buf).is_ok());
- }
-
- #[test]
- fn test_no_header() {
- let tests = [
- "Info_R8_G8_B8.bmp",
- "Info_A8_R8_G8_B8.bmp",
- "Info_8_Bit.bmp",
- "Info_4_Bit.bmp",
- "Info_1_Bit.bmp",
- ];
-
- for name in &tests {
- let path = format!("tests/images/bmp/images/{name}");
- let ref_img = crate::open(&path).unwrap();
- let mut data = std::fs::read(&path).unwrap();
- // skip the BITMAPFILEHEADER
- let slice = &mut data[14..];
- let decoder = BmpDecoder::new_without_file_header(Cursor::new(slice)).unwrap();
- let no_hdr_img = crate::DynamicImage::from_decoder(decoder).unwrap();
- assert_eq!(ref_img, no_hdr_img);
- }
- }
-}
diff --git a/vendor/image/src/codecs/bmp/encoder.rs b/vendor/image/src/codecs/bmp/encoder.rs
deleted file mode 100644
index c90c063..0000000
--- a/vendor/image/src/codecs/bmp/encoder.rs
+++ /dev/null
@@ -1,388 +0,0 @@
-use byteorder::{LittleEndian, WriteBytesExt};
-use std::io::{self, Write};
-
-use crate::error::{
- EncodingError, ImageError, ImageFormatHint, ImageResult, ParameterError, ParameterErrorKind,
-};
-use crate::image::ImageEncoder;
-use crate::{color, ImageFormat};
-
-const BITMAPFILEHEADER_SIZE: u32 = 14;
-const BITMAPINFOHEADER_SIZE: u32 = 40;
-const BITMAPV4HEADER_SIZE: u32 = 108;
-
-/// The representation of a BMP encoder.
-pub struct BmpEncoder<'a, W: 'a> {
- writer: &'a mut W,
-}
-
-impl<'a, W: Write + 'a> BmpEncoder<'a, W> {
- /// Create a new encoder that writes its output to ```w```.
- pub fn new(w: &'a mut W) -> Self {
- BmpEncoder { writer: w }
- }
-
- /// Encodes the image ```image```
- /// that has dimensions ```width``` and ```height```
- /// and ```ColorType``` ```c```.
- pub fn encode(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- c: color::ColorType,
- ) -> ImageResult<()> {
- self.encode_with_palette(image, width, height, c, None)
- }
-
- /// Same as ```encode```, but allow a palette to be passed in.
- /// The ```palette``` is ignored for color types other than Luma/Luma-with-alpha.
- pub fn encode_with_palette(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- c: color::ColorType,
- palette: Option<&[[u8; 3]]>,
- ) -> ImageResult<()> {
- if palette.is_some() && c != color::ColorType::L8 && c != color::ColorType::La8 {
- return Err(ImageError::IoError(io::Error::new(
- io::ErrorKind::InvalidInput,
- format!(
- "Unsupported color type {:?} when using a non-empty palette. Supported types: Gray(8), GrayA(8).",
- c
- ),
- )));
- }
-
- let bmp_header_size = BITMAPFILEHEADER_SIZE;
-
- let (dib_header_size, written_pixel_size, palette_color_count) =
- get_pixel_info(c, palette)?;
- let row_pad_size = (4 - (width * written_pixel_size) % 4) % 4; // each row must be padded to a multiple of 4 bytes
- let image_size = width
- .checked_mul(height)
- .and_then(|v| v.checked_mul(written_pixel_size))
- .and_then(|v| v.checked_add(height * row_pad_size))
- .ok_or_else(|| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })?;
- let palette_size = palette_color_count * 4; // all palette colors are BGRA
- let file_size = bmp_header_size
- .checked_add(dib_header_size)
- .and_then(|v| v.checked_add(palette_size))
- .and_then(|v| v.checked_add(image_size))
- .ok_or_else(|| {
- ImageError::Encoding(EncodingError::new(
- ImageFormatHint::Exact(ImageFormat::Bmp),
- "calculated BMP header size larger than 2^32",
- ))
- })?;
-
- // write BMP header
- self.writer.write_u8(b'B')?;
- self.writer.write_u8(b'M')?;
- self.writer.write_u32::<LittleEndian>(file_size)?; // file size
- self.writer.write_u16::<LittleEndian>(0)?; // reserved 1
- self.writer.write_u16::<LittleEndian>(0)?; // reserved 2
- self.writer
- .write_u32::<LittleEndian>(bmp_header_size + dib_header_size + palette_size)?; // image data offset
-
- // write DIB header
- self.writer.write_u32::<LittleEndian>(dib_header_size)?;
- self.writer.write_i32::<LittleEndian>(width as i32)?;
- self.writer.write_i32::<LittleEndian>(height as i32)?;
- self.writer.write_u16::<LittleEndian>(1)?; // color planes
- self.writer
- .write_u16::<LittleEndian>((written_pixel_size * 8) as u16)?; // bits per pixel
- if dib_header_size >= BITMAPV4HEADER_SIZE {
- // Assume BGRA32
- self.writer.write_u32::<LittleEndian>(3)?; // compression method - bitfields
- } else {
- self.writer.write_u32::<LittleEndian>(0)?; // compression method - no compression
- }
- self.writer.write_u32::<LittleEndian>(image_size)?;
- self.writer.write_i32::<LittleEndian>(0)?; // horizontal ppm
- self.writer.write_i32::<LittleEndian>(0)?; // vertical ppm
- self.writer.write_u32::<LittleEndian>(palette_color_count)?;
- self.writer.write_u32::<LittleEndian>(0)?; // all colors are important
- if dib_header_size >= BITMAPV4HEADER_SIZE {
- // Assume BGRA32
- self.writer.write_u32::<LittleEndian>(0xff << 16)?; // red mask
- self.writer.write_u32::<LittleEndian>(0xff << 8)?; // green mask
- self.writer.write_u32::<LittleEndian>(0xff)?; // blue mask
- self.writer.write_u32::<LittleEndian>(0xff << 24)?; // alpha mask
- self.writer.write_u32::<LittleEndian>(0x73524742)?; // colorspace - sRGB
-
- // endpoints (3x3) and gamma (3)
- for _ in 0..12 {
- self.writer.write_u32::<LittleEndian>(0)?;
- }
- }
-
- // write image data
- match c {
- color::ColorType::Rgb8 => self.encode_rgb(image, width, height, row_pad_size, 3)?,
- color::ColorType::Rgba8 => self.encode_rgba(image, width, height, row_pad_size, 4)?,
- color::ColorType::L8 => {
- self.encode_gray(image, width, height, row_pad_size, 1, palette)?
- }
- color::ColorType::La8 => {
- self.encode_gray(image, width, height, row_pad_size, 2, palette)?
- }
- _ => {
- return Err(ImageError::IoError(io::Error::new(
- io::ErrorKind::InvalidInput,
- &get_unsupported_error_message(c)[..],
- )))
- }
- }
-
- Ok(())
- }
-
- fn encode_rgb(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- row_pad_size: u32,
- bytes_per_pixel: u32,
- ) -> io::Result<()> {
- let width = width as usize;
- let height = height as usize;
- let x_stride = bytes_per_pixel as usize;
- let y_stride = width * x_stride;
- for row in (0..height).rev() {
- // from the bottom up
- let row_start = row * y_stride;
- for px in image[row_start..][..y_stride].chunks_exact(x_stride) {
- let r = px[0];
- let g = px[1];
- let b = px[2];
- // written as BGR
- self.writer.write_all(&[b, g, r])?;
- }
- self.write_row_pad(row_pad_size)?;
- }
-
- Ok(())
- }
-
- fn encode_rgba(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- row_pad_size: u32,
- bytes_per_pixel: u32,
- ) -> io::Result<()> {
- let width = width as usize;
- let height = height as usize;
- let x_stride = bytes_per_pixel as usize;
- let y_stride = width * x_stride;
- for row in (0..height).rev() {
- // from the bottom up
- let row_start = row * y_stride;
- for px in image[row_start..][..y_stride].chunks_exact(x_stride) {
- let r = px[0];
- let g = px[1];
- let b = px[2];
- let a = px[3];
- // written as BGRA
- self.writer.write_all(&[b, g, r, a])?;
- }
- self.write_row_pad(row_pad_size)?;
- }
-
- Ok(())
- }
-
- fn encode_gray(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- row_pad_size: u32,
- bytes_per_pixel: u32,
- palette: Option<&[[u8; 3]]>,
- ) -> io::Result<()> {
- // write grayscale palette
- if let Some(palette) = palette {
- for item in palette {
- // each color is written as BGRA, where A is always 0
- self.writer.write_all(&[item[2], item[1], item[0], 0])?;
- }
- } else {
- for val in 0u8..=255 {
- // each color is written as BGRA, where A is always 0 and since only grayscale is being written, B = G = R = index
- self.writer.write_all(&[val, val, val, 0])?;
- }
- }
-
- // write image data
- let x_stride = bytes_per_pixel;
- let y_stride = width * x_stride;
- for row in (0..height).rev() {
- // from the bottom up
- let row_start = row * y_stride;
- for col in 0..width {
- let pixel_start = (row_start + (col * x_stride)) as usize;
- // color value is equal to the palette index
- self.writer.write_u8(image[pixel_start])?;
- // alpha is never written as it's not widely supported
- }
-
- self.write_row_pad(row_pad_size)?;
- }
-
- Ok(())
- }
-
- fn write_row_pad(&mut self, row_pad_size: u32) -> io::Result<()> {
- for _ in 0..row_pad_size {
- self.writer.write_u8(0)?;
- }
-
- Ok(())
- }
-}
-
-impl<'a, W: Write> ImageEncoder for BmpEncoder<'a, W> {
- fn write_image(
- mut self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: color::ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
-
-fn get_unsupported_error_message(c: color::ColorType) -> String {
- format!(
- "Unsupported color type {:?}. Supported types: RGB(8), RGBA(8), Gray(8), GrayA(8).",
- c
- )
-}
-
-/// Returns a tuple representing: (dib header size, written pixel size, palette color count).
-fn get_pixel_info(c: color::ColorType, palette: Option<&[[u8; 3]]>) -> io::Result<(u32, u32, u32)> {
- let sizes = match c {
- color::ColorType::Rgb8 => (BITMAPINFOHEADER_SIZE, 3, 0),
- color::ColorType::Rgba8 => (BITMAPV4HEADER_SIZE, 4, 0),
- color::ColorType::L8 => (
- BITMAPINFOHEADER_SIZE,
- 1,
- palette.map(|p| p.len()).unwrap_or(256) as u32,
- ),
- color::ColorType::La8 => (
- BITMAPINFOHEADER_SIZE,
- 1,
- palette.map(|p| p.len()).unwrap_or(256) as u32,
- ),
- _ => {
- return Err(io::Error::new(
- io::ErrorKind::InvalidInput,
- &get_unsupported_error_message(c)[..],
- ))
- }
- };
-
- Ok(sizes)
-}
-
-#[cfg(test)]
-mod tests {
- use super::super::BmpDecoder;
- use super::BmpEncoder;
- use crate::color::ColorType;
- use crate::image::ImageDecoder;
- use std::io::Cursor;
-
- fn round_trip_image(image: &[u8], width: u32, height: u32, c: ColorType) -> Vec<u8> {
- let mut encoded_data = Vec::new();
- {
- let mut encoder = BmpEncoder::new(&mut encoded_data);
- encoder
- .encode(&image, width, height, c)
- .expect("could not encode image");
- }
-
- let decoder = BmpDecoder::new(Cursor::new(&encoded_data)).expect("failed to decode");
-
- let mut buf = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut buf).expect("failed to decode");
- buf
- }
-
- #[test]
- fn round_trip_single_pixel_rgb() {
- let image = [255u8, 0, 0]; // single red pixel
- let decoded = round_trip_image(&image, 1, 1, ColorType::Rgb8);
- assert_eq!(3, decoded.len());
- assert_eq!(255, decoded[0]);
- assert_eq!(0, decoded[1]);
- assert_eq!(0, decoded[2]);
- }
-
- #[test]
- #[cfg(target_pointer_width = "64")]
- fn huge_files_return_error() {
- let mut encoded_data = Vec::new();
- let image = vec![0u8; 3 * 40_000 * 40_000]; // 40_000x40_000 pixels, 3 bytes per pixel, allocated on the heap
- let mut encoder = BmpEncoder::new(&mut encoded_data);
- let result = encoder.encode(&image, 40_000, 40_000, ColorType::Rgb8);
- assert!(result.is_err());
- }
-
- #[test]
- fn round_trip_single_pixel_rgba() {
- let image = [1, 2, 3, 4];
- let decoded = round_trip_image(&image, 1, 1, ColorType::Rgba8);
- assert_eq!(&decoded[..], &image[..]);
- }
-
- #[test]
- fn round_trip_3px_rgb() {
- let image = [0u8; 3 * 3 * 3]; // 3x3 pixels, 3 bytes per pixel
- let _decoded = round_trip_image(&image, 3, 3, ColorType::Rgb8);
- }
-
- #[test]
- fn round_trip_gray() {
- let image = [0u8, 1, 2]; // 3 pixels
- let decoded = round_trip_image(&image, 3, 1, ColorType::L8);
- // should be read back as 3 RGB pixels
- assert_eq!(9, decoded.len());
- assert_eq!(0, decoded[0]);
- assert_eq!(0, decoded[1]);
- assert_eq!(0, decoded[2]);
- assert_eq!(1, decoded[3]);
- assert_eq!(1, decoded[4]);
- assert_eq!(1, decoded[5]);
- assert_eq!(2, decoded[6]);
- assert_eq!(2, decoded[7]);
- assert_eq!(2, decoded[8]);
- }
-
- #[test]
- fn round_trip_graya() {
- let image = [0u8, 0, 1, 0, 2, 0]; // 3 pixels, each with an alpha channel
- let decoded = round_trip_image(&image, 1, 3, ColorType::La8);
- // should be read back as 3 RGB pixels
- assert_eq!(9, decoded.len());
- assert_eq!(0, decoded[0]);
- assert_eq!(0, decoded[1]);
- assert_eq!(0, decoded[2]);
- assert_eq!(1, decoded[3]);
- assert_eq!(1, decoded[4]);
- assert_eq!(1, decoded[5]);
- assert_eq!(2, decoded[6]);
- assert_eq!(2, decoded[7]);
- assert_eq!(2, decoded[8]);
- }
-}
diff --git a/vendor/image/src/codecs/bmp/mod.rs b/vendor/image/src/codecs/bmp/mod.rs
deleted file mode 100644
index 549b1cf..0000000
--- a/vendor/image/src/codecs/bmp/mod.rs
+++ /dev/null
@@ -1,14 +0,0 @@
-//! Decoding and Encoding of BMP Images
-//!
-//! A decoder and encoder for BMP (Windows Bitmap) images
-//!
-//! # Related Links
-//! * <https://msdn.microsoft.com/en-us/library/windows/desktop/dd183375%28v=vs.85%29.aspx>
-//! * <https://en.wikipedia.org/wiki/BMP_file_format>
-//!
-
-pub use self::decoder::BmpDecoder;
-pub use self::encoder::BmpEncoder;
-
-mod decoder;
-mod encoder;
diff --git a/vendor/image/src/codecs/dds.rs b/vendor/image/src/codecs/dds.rs
deleted file mode 100644
index f0a7357..0000000
--- a/vendor/image/src/codecs/dds.rs
+++ /dev/null
@@ -1,375 +0,0 @@
-//! Decoding of DDS images
-//!
-//! DDS (DirectDraw Surface) is a container format for storing DXT (S3TC) compressed images.
-//!
-//! # Related Links
-//! * <https://docs.microsoft.com/en-us/windows/win32/direct3ddds/dx-graphics-dds-pguide> - Description of the DDS format.
-
-use std::io::Read;
-use std::{error, fmt};
-
-use byteorder::{LittleEndian, ReadBytesExt};
-
-#[allow(deprecated)]
-use crate::codecs::dxt::{DxtDecoder, DxtReader, DxtVariant};
-use crate::color::ColorType;
-use crate::error::{
- DecodingError, ImageError, ImageFormatHint, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{ImageDecoder, ImageFormat};
-
-/// Errors that can occur during decoding and parsing a DDS image
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum DecoderError {
- /// Wrong DDS channel width
- PixelFormatSizeInvalid(u32),
- /// Wrong DDS header size
- HeaderSizeInvalid(u32),
- /// Wrong DDS header flags
- HeaderFlagsInvalid(u32),
-
- /// Invalid DXGI format in DX10 header
- DxgiFormatInvalid(u32),
- /// Invalid resource dimension
- ResourceDimensionInvalid(u32),
- /// Invalid flags in DX10 header
- Dx10FlagsInvalid(u32),
- /// Invalid array size in DX10 header
- Dx10ArraySizeInvalid(u32),
-
- /// DDS "DDS " signature invalid or missing
- DdsSignatureInvalid,
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::PixelFormatSizeInvalid(s) => {
- f.write_fmt(format_args!("Invalid DDS PixelFormat size: {}", s))
- }
- DecoderError::HeaderSizeInvalid(s) => {
- f.write_fmt(format_args!("Invalid DDS header size: {}", s))
- }
- DecoderError::HeaderFlagsInvalid(fs) => {
- f.write_fmt(format_args!("Invalid DDS header flags: {:#010X}", fs))
- }
- DecoderError::DxgiFormatInvalid(df) => {
- f.write_fmt(format_args!("Invalid DDS DXGI format: {}", df))
- }
- DecoderError::ResourceDimensionInvalid(d) => {
- f.write_fmt(format_args!("Invalid DDS resource dimension: {}", d))
- }
- DecoderError::Dx10FlagsInvalid(fs) => {
- f.write_fmt(format_args!("Invalid DDS DX10 header flags: {:#010X}", fs))
- }
- DecoderError::Dx10ArraySizeInvalid(s) => {
- f.write_fmt(format_args!("Invalid DDS DX10 array size: {}", s))
- }
- DecoderError::DdsSignatureInvalid => f.write_str("DDS signature not found"),
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Dds.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-/// Header used by DDS image files
-#[derive(Debug)]
-struct Header {
- _flags: u32,
- height: u32,
- width: u32,
- _pitch_or_linear_size: u32,
- _depth: u32,
- _mipmap_count: u32,
- pixel_format: PixelFormat,
- _caps: u32,
- _caps2: u32,
-}
-
-/// Extended DX10 header used by some DDS image files
-#[derive(Debug)]
-struct DX10Header {
- dxgi_format: u32,
- resource_dimension: u32,
- misc_flag: u32,
- array_size: u32,
- misc_flags_2: u32,
-}
-
-/// DDS pixel format
-#[derive(Debug)]
-struct PixelFormat {
- flags: u32,
- fourcc: [u8; 4],
- _rgb_bit_count: u32,
- _r_bit_mask: u32,
- _g_bit_mask: u32,
- _b_bit_mask: u32,
- _a_bit_mask: u32,
-}
-
-impl PixelFormat {
- fn from_reader(r: &mut dyn Read) -> ImageResult<Self> {
- let size = r.read_u32::<LittleEndian>()?;
- if size != 32 {
- return Err(DecoderError::PixelFormatSizeInvalid(size).into());
- }
-
- Ok(Self {
- flags: r.read_u32::<LittleEndian>()?,
- fourcc: {
- let mut v = [0; 4];
- r.read_exact(&mut v)?;
- v
- },
- _rgb_bit_count: r.read_u32::<LittleEndian>()?,
- _r_bit_mask: r.read_u32::<LittleEndian>()?,
- _g_bit_mask: r.read_u32::<LittleEndian>()?,
- _b_bit_mask: r.read_u32::<LittleEndian>()?,
- _a_bit_mask: r.read_u32::<LittleEndian>()?,
- })
- }
-}
-
-impl Header {
- fn from_reader(r: &mut dyn Read) -> ImageResult<Self> {
- let size = r.read_u32::<LittleEndian>()?;
- if size != 124 {
- return Err(DecoderError::HeaderSizeInvalid(size).into());
- }
-
- const REQUIRED_FLAGS: u32 = 0x1 | 0x2 | 0x4 | 0x1000;
- const VALID_FLAGS: u32 = 0x1 | 0x2 | 0x4 | 0x8 | 0x1000 | 0x20000 | 0x80000 | 0x800000;
- let flags = r.read_u32::<LittleEndian>()?;
- if flags & (REQUIRED_FLAGS | !VALID_FLAGS) != REQUIRED_FLAGS {
- return Err(DecoderError::HeaderFlagsInvalid(flags).into());
- }
-
- let height = r.read_u32::<LittleEndian>()?;
- let width = r.read_u32::<LittleEndian>()?;
- let pitch_or_linear_size = r.read_u32::<LittleEndian>()?;
- let depth = r.read_u32::<LittleEndian>()?;
- let mipmap_count = r.read_u32::<LittleEndian>()?;
- // Skip `dwReserved1`
- {
- let mut skipped = [0; 4 * 11];
- r.read_exact(&mut skipped)?;
- }
- let pixel_format = PixelFormat::from_reader(r)?;
- let caps = r.read_u32::<LittleEndian>()?;
- let caps2 = r.read_u32::<LittleEndian>()?;
- // Skip `dwCaps3`, `dwCaps4`, `dwReserved2` (unused)
- {
- let mut skipped = [0; 4 + 4 + 4];
- r.read_exact(&mut skipped)?;
- }
-
- Ok(Self {
- _flags: flags,
- height,
- width,
- _pitch_or_linear_size: pitch_or_linear_size,
- _depth: depth,
- _mipmap_count: mipmap_count,
- pixel_format,
- _caps: caps,
- _caps2: caps2,
- })
- }
-}
-
-impl DX10Header {
- fn from_reader(r: &mut dyn Read) -> ImageResult<Self> {
- let dxgi_format = r.read_u32::<LittleEndian>()?;
- let resource_dimension = r.read_u32::<LittleEndian>()?;
- let misc_flag = r.read_u32::<LittleEndian>()?;
- let array_size = r.read_u32::<LittleEndian>()?;
- let misc_flags_2 = r.read_u32::<LittleEndian>()?;
-
- let dx10_header = Self {
- dxgi_format,
- resource_dimension,
- misc_flag,
- array_size,
- misc_flags_2,
- };
- dx10_header.validate()?;
-
- Ok(dx10_header)
- }
-
- fn validate(&self) -> Result<(), ImageError> {
- // Note: see https://docs.microsoft.com/en-us/windows/win32/direct3ddds/dds-header-dxt10 for info on valid values
- if self.dxgi_format > 132 {
- // Invalid format
- return Err(DecoderError::DxgiFormatInvalid(self.dxgi_format).into());
- }
-
- if self.resource_dimension < 2 || self.resource_dimension > 4 {
- // Invalid dimension
- // Only 1D (2), 2D (3) and 3D (4) resource dimensions are allowed
- return Err(DecoderError::ResourceDimensionInvalid(self.resource_dimension).into());
- }
-
- if self.misc_flag != 0x0 && self.misc_flag != 0x4 {
- // Invalid flag
- // Only no (0x0) and DDS_RESOURCE_MISC_TEXTURECUBE (0x4) flags are allowed
- return Err(DecoderError::Dx10FlagsInvalid(self.misc_flag).into());
- }
-
- if self.resource_dimension == 4 && self.array_size != 1 {
- // Invalid array size
- // 3D textures (resource dimension == 4) must have an array size of 1
- return Err(DecoderError::Dx10ArraySizeInvalid(self.array_size).into());
- }
-
- if self.misc_flags_2 > 0x4 {
- // Invalid alpha flags
- return Err(DecoderError::Dx10FlagsInvalid(self.misc_flags_2).into());
- }
-
- Ok(())
- }
-}
-
-/// The representation of a DDS decoder
-pub struct DdsDecoder<R: Read> {
- #[allow(deprecated)]
- inner: DxtDecoder<R>,
-}
-
-impl<R: Read> DdsDecoder<R> {
- /// Create a new decoder that decodes from the stream `r`
- pub fn new(mut r: R) -> ImageResult<Self> {
- let mut magic = [0; 4];
- r.read_exact(&mut magic)?;
- if magic != b"DDS "[..] {
- return Err(DecoderError::DdsSignatureInvalid.into());
- }
-
- let header = Header::from_reader(&mut r)?;
-
- if header.pixel_format.flags & 0x4 != 0 {
- #[allow(deprecated)]
- let variant = match &header.pixel_format.fourcc {
- b"DXT1" => DxtVariant::DXT1,
- b"DXT3" => DxtVariant::DXT3,
- b"DXT5" => DxtVariant::DXT5,
- b"DX10" => {
- let dx10_header = DX10Header::from_reader(&mut r)?;
- // Format equivalents were taken from https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
- // The enum integer values were taken from https://docs.microsoft.com/en-us/windows/win32/api/dxgiformat/ne-dxgiformat-dxgi_format
- // DXT1 represents the different BC1 variants, DTX3 represents the different BC2 variants and DTX5 represents the different BC3 variants
- match dx10_header.dxgi_format {
- 70 | 71 | 72 => DxtVariant::DXT1, // DXGI_FORMAT_BC1_TYPELESS, DXGI_FORMAT_BC1_UNORM or DXGI_FORMAT_BC1_UNORM_SRGB
- 73 | 74 | 75 => DxtVariant::DXT3, // DXGI_FORMAT_BC2_TYPELESS, DXGI_FORMAT_BC2_UNORM or DXGI_FORMAT_BC2_UNORM_SRGB
- 76 | 77 | 78 => DxtVariant::DXT5, // DXGI_FORMAT_BC3_TYPELESS, DXGI_FORMAT_BC3_UNORM or DXGI_FORMAT_BC3_UNORM_SRGB
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Dds.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "DDS DXGI Format {}",
- dx10_header.dxgi_format
- )),
- ),
- ))
- }
- }
- }
- fourcc => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Dds.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "DDS FourCC {:?}",
- fourcc
- )),
- ),
- ))
- }
- };
-
- #[allow(deprecated)]
- let bytes_per_pixel = variant.color_type().bytes_per_pixel();
-
- if crate::utils::check_dimension_overflow(header.width, header.height, bytes_per_pixel)
- {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Dds.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}x{}) are too large",
- header.width, header.height
- )),
- ),
- ));
- }
-
- #[allow(deprecated)]
- let inner = DxtDecoder::new(r, header.width, header.height, variant)?;
- Ok(Self { inner })
- } else {
- // For now, supports only DXT variants
- Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Dds.into(),
- UnsupportedErrorKind::Format(ImageFormatHint::Name("DDS".to_string())),
- ),
- ))
- }
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for DdsDecoder<R> {
- #[allow(deprecated)]
- type Reader = DxtReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- self.inner.dimensions()
- }
-
- fn color_type(&self) -> ColorType {
- self.inner.color_type()
- }
-
- fn scanline_bytes(&self) -> u64 {
- self.inner.scanline_bytes()
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- self.inner.into_reader()
- }
-
- fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
- self.inner.read_image(buf)
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn dimension_overflow() {
- // A DXT1 header set to 0xFFFF_FFFC width and height (the highest u32%4 == 0)
- let header = vec![
- 0x44, 0x44, 0x53, 0x20, 0x7C, 0x0, 0x0, 0x0, 0x7, 0x10, 0x8, 0x0, 0xFC, 0xFF, 0xFF,
- 0xFF, 0xFC, 0xFF, 0xFF, 0xFF, 0x0, 0xC0, 0x12, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0,
- 0x0, 0x49, 0x4D, 0x41, 0x47, 0x45, 0x4D, 0x41, 0x47, 0x49, 0x43, 0x4B, 0x0, 0x0, 0x0,
- 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
- 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x20, 0x0, 0x0, 0x0,
- 0x4, 0x0, 0x0, 0x0, 0x44, 0x58, 0x54, 0x31, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
- 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10, 0x0, 0x0, 0x0,
- 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
- ];
-
- assert!(DdsDecoder::new(&header[..]).is_err());
- }
-}
diff --git a/vendor/image/src/codecs/dxt.rs b/vendor/image/src/codecs/dxt.rs
deleted file mode 100644
index 8737fb3..0000000
--- a/vendor/image/src/codecs/dxt.rs
+++ /dev/null
@@ -1,869 +0,0 @@
-//! Decoding of DXT (S3TC) compression
-//!
-//! DXT is an image format that supports lossy compression
-//!
-//! # Related Links
-//! * <https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt> - Description of the DXT compression OpenGL extensions.
-//!
-//! Note: this module only implements bare DXT encoding/decoding, it does not parse formats that can contain DXT files like .dds
-
-use std::convert::TryFrom;
-use std::io::{self, Read, Seek, SeekFrom, Write};
-
-use crate::color::ColorType;
-use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
-use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageReadBuffer, Progress};
-
-/// What version of DXT compression are we using?
-/// Note that DXT2 and DXT4 are left away as they're
-/// just DXT3 and DXT5 with premultiplied alpha
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum DxtVariant {
- /// The DXT1 format. 48 bytes of RGB data in a 4x4 pixel square is
- /// compressed into an 8 byte block of DXT1 data
- DXT1,
- /// The DXT3 format. 64 bytes of RGBA data in a 4x4 pixel square is
- /// compressed into a 16 byte block of DXT3 data
- DXT3,
- /// The DXT5 format. 64 bytes of RGBA data in a 4x4 pixel square is
- /// compressed into a 16 byte block of DXT5 data
- DXT5,
-}
-
-impl DxtVariant {
- /// Returns the amount of bytes of raw image data
- /// that is encoded in a single DXTn block
- fn decoded_bytes_per_block(self) -> usize {
- match self {
- DxtVariant::DXT1 => 48,
- DxtVariant::DXT3 | DxtVariant::DXT5 => 64,
- }
- }
-
- /// Returns the amount of bytes per block of encoded DXTn data
- fn encoded_bytes_per_block(self) -> usize {
- match self {
- DxtVariant::DXT1 => 8,
- DxtVariant::DXT3 | DxtVariant::DXT5 => 16,
- }
- }
-
- /// Returns the color type that is stored in this DXT variant
- pub fn color_type(self) -> ColorType {
- match self {
- DxtVariant::DXT1 => ColorType::Rgb8,
- DxtVariant::DXT3 | DxtVariant::DXT5 => ColorType::Rgba8,
- }
- }
-}
-
-/// DXT decoder
-pub struct DxtDecoder<R: Read> {
- inner: R,
- width_blocks: u32,
- height_blocks: u32,
- variant: DxtVariant,
- row: u32,
-}
-
-impl<R: Read> DxtDecoder<R> {
- /// Create a new DXT decoder that decodes from the stream ```r```.
- /// As DXT is often stored as raw buffers with the width/height
- /// somewhere else the width and height of the image need
- /// to be passed in ```width``` and ```height```, as well as the
- /// DXT variant in ```variant```.
- /// width and height are required to be powers of 2 and at least 4.
- /// otherwise an error will be returned
- pub fn new(
- r: R,
- width: u32,
- height: u32,
- variant: DxtVariant,
- ) -> Result<DxtDecoder<R>, ImageError> {
- if width % 4 != 0 || height % 4 != 0 {
- // TODO: this is actually a bit of a weird case. We could return `DecodingError` but
- // it's not really the format that is wrong However, the encoder should surely return
- // `EncodingError` so it would be the logical choice for symmetry.
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
- let width_blocks = width / 4;
- let height_blocks = height / 4;
- Ok(DxtDecoder {
- inner: r,
- width_blocks,
- height_blocks,
- variant,
- row: 0,
- })
- }
-
- fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.scanline_bytes()));
-
- let mut src =
- vec![0u8; self.variant.encoded_bytes_per_block() * self.width_blocks as usize];
- self.inner.read_exact(&mut src)?;
- match self.variant {
- DxtVariant::DXT1 => decode_dxt1_row(&src, buf),
- DxtVariant::DXT3 => decode_dxt3_row(&src, buf),
- DxtVariant::DXT5 => decode_dxt5_row(&src, buf),
- }
- self.row += 1;
- Ok(buf.len())
- }
-}
-
-// Note that, due to the way that DXT compression works, a scanline is considered to consist out of
-// 4 lines of pixels.
-impl<'a, R: 'a + Read> ImageDecoder<'a> for DxtDecoder<R> {
- type Reader = DxtReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.width_blocks * 4, self.height_blocks * 4)
- }
-
- fn color_type(&self) -> ColorType {
- self.variant.color_type()
- }
-
- fn scanline_bytes(&self) -> u64 {
- self.variant.decoded_bytes_per_block() as u64 * u64::from(self.width_blocks)
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(DxtReader {
- buffer: ImageReadBuffer::new(self.scanline_bytes(), self.total_bytes()),
- decoder: self,
- })
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- for chunk in buf.chunks_mut(self.scanline_bytes().max(1) as usize) {
- self.read_scanline(chunk)?;
- }
- Ok(())
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for DxtDecoder<R> {
- fn read_rect_with_progress<F: Fn(Progress)>(
- &mut self,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
- buf: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- let encoded_scanline_bytes =
- self.variant.encoded_bytes_per_block() as u64 * u64::from(self.width_blocks);
-
- let start = self.inner.stream_position()?;
- image::load_rect(
- x,
- y,
- width,
- height,
- buf,
- progress_callback,
- self,
- |s, scanline| {
- s.inner
- .seek(SeekFrom::Start(start + scanline * encoded_scanline_bytes))?;
- Ok(())
- },
- |s, buf| s.read_scanline(buf).map(|_| ()),
- )?;
- self.inner.seek(SeekFrom::Start(start))?;
- Ok(())
- }
-}
-
-/// DXT reader
-pub struct DxtReader<R: Read> {
- buffer: ImageReadBuffer,
- decoder: DxtDecoder<R>,
-}
-
-impl<R: Read> Read for DxtReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- let decoder = &mut self.decoder;
- self.buffer.read(buf, |buf| decoder.read_scanline(buf))
- }
-}
-
-/// DXT encoder
-pub struct DxtEncoder<W: Write> {
- w: W,
-}
-
-impl<W: Write> DxtEncoder<W> {
- /// Create a new encoder that writes its output to ```w```
- pub fn new(w: W) -> DxtEncoder<W> {
- DxtEncoder { w }
- }
-
- /// Encodes the image data ```data```
- /// that has dimensions ```width``` and ```height```
- /// in ```DxtVariant``` ```variant```
- /// data is assumed to be in variant.color_type()
- pub fn encode(
- mut self,
- data: &[u8],
- width: u32,
- height: u32,
- variant: DxtVariant,
- ) -> ImageResult<()> {
- if width % 4 != 0 || height % 4 != 0 {
- // TODO: this is not very idiomatic yet. Should return an EncodingError.
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
- let width_blocks = width / 4;
- let height_blocks = height / 4;
-
- let stride = variant.decoded_bytes_per_block();
-
- assert!(data.len() >= width_blocks as usize * height_blocks as usize * stride);
-
- for chunk in data.chunks(width_blocks as usize * stride) {
- let data = match variant {
- DxtVariant::DXT1 => encode_dxt1_row(chunk),
- DxtVariant::DXT3 => encode_dxt3_row(chunk),
- DxtVariant::DXT5 => encode_dxt5_row(chunk),
- };
- self.w.write_all(&data)?;
- }
- Ok(())
- }
-}
-
-/**
- * Actual encoding/decoding logic below.
- */
-use std::mem::swap;
-
-type Rgb = [u8; 3];
-
-/// decodes a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value into 8-bit RGB
-/// mapping is done so min/max range values are preserved. So for 5-bit
-/// values 0x00 -> 0x00 and 0x1F -> 0xFF
-fn enc565_decode(value: u16) -> Rgb {
- let red = (value >> 11) & 0x1F;
- let green = (value >> 5) & 0x3F;
- let blue = (value) & 0x1F;
- [
- (red * 0xFF / 0x1F) as u8,
- (green * 0xFF / 0x3F) as u8,
- (blue * 0xFF / 0x1F) as u8,
- ]
-}
-
-/// encodes an 8-bit RGB value into a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value
-/// mapping preserves min/max values. It is guaranteed that i == encode(decode(i)) for all i
-fn enc565_encode(rgb: Rgb) -> u16 {
- let red = (u16::from(rgb[0]) * 0x1F + 0x7E) / 0xFF;
- let green = (u16::from(rgb[1]) * 0x3F + 0x7E) / 0xFF;
- let blue = (u16::from(rgb[2]) * 0x1F + 0x7E) / 0xFF;
- (red << 11) | (green << 5) | blue
-}
-
-/// utility function: squares a value
-fn square(a: i32) -> i32 {
- a * a
-}
-
-/// returns the squared error between two RGB values
-fn diff(a: Rgb, b: Rgb) -> i32 {
- square(i32::from(a[0]) - i32::from(b[0]))
- + square(i32::from(a[1]) - i32::from(b[1]))
- + square(i32::from(a[2]) - i32::from(b[2]))
-}
-
-/*
- * Functions for decoding DXT compression
- */
-
-/// Constructs the DXT5 alpha lookup table from the two alpha entries
-/// if alpha0 > alpha1, constructs a table of [a0, a1, 6 linearly interpolated values from a0 to a1]
-/// if alpha0 <= alpha1, constructs a table of [a0, a1, 4 linearly interpolated values from a0 to a1, 0, 0xFF]
-fn alpha_table_dxt5(alpha0: u8, alpha1: u8) -> [u8; 8] {
- let mut table = [alpha0, alpha1, 0, 0, 0, 0, 0, 0xFF];
- if alpha0 > alpha1 {
- for i in 2..8u16 {
- table[i as usize] =
- (((8 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 7) as u8;
- }
- } else {
- for i in 2..6u16 {
- table[i as usize] =
- (((6 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 5) as u8;
- }
- }
- table
-}
-
-/// decodes an 8-byte dxt color block into the RGB channels of a 16xRGB or 16xRGBA block.
-/// source should have a length of 8, dest a length of 48 (RGB) or 64 (RGBA)
-fn decode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
- // sanity checks, also enable the compiler to elide all following bound checks
- assert!(source.len() == 8 && (dest.len() == 48 || dest.len() == 64));
- // calculate pitch to store RGB values in dest (3 for RGB, 4 for RGBA)
- let pitch = dest.len() / 16;
-
- // extract color data
- let color0 = u16::from(source[0]) | (u16::from(source[1]) << 8);
- let color1 = u16::from(source[2]) | (u16::from(source[3]) << 8);
- let color_table = u32::from(source[4])
- | (u32::from(source[5]) << 8)
- | (u32::from(source[6]) << 16)
- | (u32::from(source[7]) << 24);
- // let color_table = source[4..8].iter().rev().fold(0, |t, &b| (t << 8) | b as u32);
-
- // decode the colors to rgb format
- let mut colors = [[0; 3]; 4];
- colors[0] = enc565_decode(color0);
- colors[1] = enc565_decode(color1);
-
- // determine color interpolation method
- if color0 > color1 || !is_dxt1 {
- // linearly interpolate the other two color table entries
- for i in 0..3 {
- colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
- colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
- }
- } else {
- // linearly interpolate one other entry, keep the other at 0
- for i in 0..3 {
- colors[2][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
- }
- }
-
- // serialize the result. Every color is determined by looking up
- // two bits in color_table which identify which color to actually pick from the 4 possible colors
- for i in 0..16 {
- dest[i * pitch..i * pitch + 3]
- .copy_from_slice(&colors[(color_table >> (i * 2)) as usize & 3]);
- }
-}
-
-/// Decodes a 16-byte bock of dxt5 data to a 16xRGBA block
-fn decode_dxt5_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 16 && dest.len() == 64);
-
- // extract alpha index table (stored as little endian 64-bit value)
- let alpha_table = source[2..8]
- .iter()
- .rev()
- .fold(0, |t, &b| (t << 8) | u64::from(b));
-
- // alhpa level decode
- let alphas = alpha_table_dxt5(source[0], source[1]);
-
- // serialize alpha
- for i in 0..16 {
- dest[i * 4 + 3] = alphas[(alpha_table >> (i * 3)) as usize & 7];
- }
-
- // handle colors
- decode_dxt_colors(&source[8..16], dest, false);
-}
-
-/// Decodes a 16-byte bock of dxt3 data to a 16xRGBA block
-fn decode_dxt3_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 16 && dest.len() == 64);
-
- // extract alpha index table (stored as little endian 64-bit value)
- let alpha_table = source[0..8]
- .iter()
- .rev()
- .fold(0, |t, &b| (t << 8) | u64::from(b));
-
- // serialize alpha (stored as 4-bit values)
- for i in 0..16 {
- dest[i * 4 + 3] = ((alpha_table >> (i * 4)) as u8 & 0xF) * 0x11;
- }
-
- // handle colors
- decode_dxt_colors(&source[8..16], dest, false);
-}
-
-/// Decodes a 8-byte bock of dxt5 data to a 16xRGB block
-fn decode_dxt1_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 8 && dest.len() == 48);
- decode_dxt_colors(source, dest, true);
-}
-
-/// Decode a row of DXT1 data to four rows of RGB data.
-/// source.len() should be a multiple of 8, otherwise this panics.
-fn decode_dxt1_row(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() % 8 == 0);
- let block_count = source.len() / 8;
- assert!(dest.len() >= block_count * 48);
-
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 48];
-
- for (x, encoded_block) in source.chunks(8).enumerate() {
- decode_dxt1_block(encoded_block, &mut decoded_block);
-
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 12;
- dest[offset..offset + 12].copy_from_slice(&decoded_block[line * 12..(line + 1) * 12]);
- }
- }
-}
-
-/// Decode a row of DXT3 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn decode_dxt3_row(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() % 16 == 0);
- let block_count = source.len() / 16;
- assert!(dest.len() >= block_count * 64);
-
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in source.chunks(16).enumerate() {
- decode_dxt3_block(encoded_block, &mut decoded_block);
-
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
- }
- }
-}
-
-/// Decode a row of DXT5 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn decode_dxt5_row(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() % 16 == 0);
- let block_count = source.len() / 16;
- assert!(dest.len() >= block_count * 64);
-
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in source.chunks(16).enumerate() {
- decode_dxt5_block(encoded_block, &mut decoded_block);
-
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
- }
- }
-}
-
-/*
- * Functions for encoding DXT compression
- */
-
-/// Tries to perform the color encoding part of dxt compression
-/// the approach taken is simple, it picks unique combinations
-/// of the colors present in the block, and attempts to encode the
-/// block with each, picking the encoding that yields the least
-/// squared error out of all of them.
-///
-/// This could probably be faster but is already reasonably fast
-/// and a good reference impl to optimize others against.
-///
-/// Another way to perform this analysis would be to perform a
-/// singular value decomposition of the different colors, and
-/// then pick 2 points on this line as the base colors. But
-/// this is still rather unwieldy math and has issues
-/// with the 3-linear-colors-and-0 case, it's also worse
-/// at conserving the original colors.
-///
-/// source: should be RGBAx16 or RGBx16 bytes of data,
-/// dest 8 bytes of resulting encoded color data
-fn encode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
- // sanity checks and determine stride when parsing the source data
- assert!((source.len() == 64 || source.len() == 48) && dest.len() == 8);
- let stride = source.len() / 16;
-
- // reference colors array
- let mut colors = [[0u8; 3]; 4];
-
- // Put the colors we're going to be processing in an array with pure RGB layout
- // note: we reverse the pixel order here. The reason for this is found in the inner quantization loop.
- let mut targets = [[0u8; 3]; 16];
- for (s, d) in source.chunks(stride).rev().zip(&mut targets) {
- *d = [s[0], s[1], s[2]];
- }
-
- // roundtrip all colors through the r5g6b5 encoding
- for rgb in &mut targets {
- *rgb = enc565_decode(enc565_encode(*rgb));
- }
-
- // and deduplicate the set of colors to choose from as the algorithm is O(N^2) in this
- let mut colorspace_ = [[0u8; 3]; 16];
- let mut colorspace_len = 0;
- for color in &targets {
- if !colorspace_[..colorspace_len].contains(color) {
- colorspace_[colorspace_len] = *color;
- colorspace_len += 1;
- }
- }
- let mut colorspace = &colorspace_[..colorspace_len];
-
- // in case of slight gradients it can happen that there's only one entry left in the color table.
- // as the resulting banding can be quite bad if we would just left the block at the closest
- // encodable color, we have a special path here that tries to emulate the wanted color
- // using the linear interpolation between gradients
- if colorspace.len() == 1 {
- // the base color we got from colorspace reduction
- let ref_rgb = colorspace[0];
- // the unreduced color in this block that's the furthest away from the actual block
- let mut rgb = targets
- .iter()
- .cloned()
- .max_by_key(|rgb| diff(*rgb, ref_rgb))
- .unwrap();
- // amplify differences by 2.5, which should push them to the next quantized value
- // if possible without overshoot
- for i in 0..3 {
- rgb[i] =
- ((i16::from(rgb[i]) - i16::from(ref_rgb[i])) * 5 / 2 + i16::from(ref_rgb[i])) as u8;
- }
-
- // roundtrip it through quantization
- let encoded = enc565_encode(rgb);
- let rgb = enc565_decode(encoded);
-
- // in case this didn't land us a different color the best way to represent this field is
- // as a single color block
- if rgb == ref_rgb {
- dest[0] = encoded as u8;
- dest[1] = (encoded >> 8) as u8;
-
- for d in dest.iter_mut().take(8).skip(2) {
- *d = 0;
- }
- return;
- }
-
- // we did find a separate value: add it to the options so after one round of quantization
- // we're done
- colorspace_[1] = rgb;
- colorspace = &colorspace_[..2];
- }
-
- // block quantization loop: we basically just try every possible combination, returning
- // the combination with the least squared error
- // stores the best candidate colors
- let mut chosen_colors = [[0; 3]; 4];
- // did this index table use the [0,0,0] variant
- let mut chosen_use_0 = false;
- // error calculated for the last entry
- let mut chosen_error = 0xFFFF_FFFFu32;
-
- // loop through unique permutations of the colorspace, where c1 != c2
- 'search: for (i, &c1) in colorspace.iter().enumerate() {
- colors[0] = c1;
-
- for &c2 in &colorspace[0..i] {
- colors[1] = c2;
-
- if is_dxt1 {
- // what's inside here is ran at most 120 times.
- for use_0 in 0..2 {
- // and 240 times here.
-
- if use_0 != 0 {
- // interpolate one color, set the other to 0
- for i in 0..3 {
- colors[2][i] =
- ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
- }
- colors[3] = [0, 0, 0];
- } else {
- // interpolate to get 2 more colors
- for i in 0..3 {
- colors[2][i] =
- ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3)
- as u8;
- colors[3][i] =
- ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3)
- as u8;
- }
- }
-
- // calculate the total error if we were to quantize the block with these color combinations
- // both these loops have statically known iteration counts and are well vectorizable
- // note that the inside of this can be run about 15360 times worst case, i.e. 960 times per
- // pixel.
- let total_error = targets
- .iter()
- .map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap())
- .sum();
-
- // update the match if we found a better one
- if total_error < chosen_error {
- chosen_colors = colors;
- chosen_use_0 = use_0 != 0;
- chosen_error = total_error;
-
- // if we've got a perfect or at most 1 LSB off match, we're done
- if total_error < 4 {
- break 'search;
- }
- }
- }
- } else {
- // what's inside here is ran at most 120 times.
-
- // interpolate to get 2 more colors
- for i in 0..3 {
- colors[2][i] =
- ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
- colors[3][i] =
- ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
- }
-
- // calculate the total error if we were to quantize the block with these color combinations
- // both these loops have statically known iteration counts and are well vectorizable
- // note that the inside of this can be run about 15360 times worst case, i.e. 960 times per
- // pixel.
- let total_error = targets
- .iter()
- .map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap())
- .sum();
-
- // update the match if we found a better one
- if total_error < chosen_error {
- chosen_colors = colors;
- chosen_error = total_error;
-
- // if we've got a perfect or at most 1 LSB off match, we're done
- if total_error < 4 {
- break 'search;
- }
- }
- }
- }
- }
-
- // calculate the final indices
- // note that targets is already in reverse pixel order, to make the index computation easy.
- let mut chosen_indices = 0u32;
- for t in &targets {
- let (idx, _) = chosen_colors
- .iter()
- .enumerate()
- .min_by_key(|&(_, c)| diff(*c, *t))
- .unwrap();
- chosen_indices = (chosen_indices << 2) | idx as u32;
- }
-
- // encode the colors
- let mut color0 = enc565_encode(chosen_colors[0]);
- let mut color1 = enc565_encode(chosen_colors[1]);
-
- // determine encoding. Note that color0 == color1 is impossible at this point
- if is_dxt1 {
- if color0 > color1 {
- if chosen_use_0 {
- swap(&mut color0, &mut color1);
- // Indexes are packed 2 bits wide, swap index 0/1 but preserve 2/3.
- let filter = (chosen_indices & 0xAAAA_AAAA) >> 1;
- chosen_indices ^= filter ^ 0x5555_5555;
- }
- } else if !chosen_use_0 {
- swap(&mut color0, &mut color1);
- // Indexes are packed 2 bits wide, swap index 0/1 and 2/3.
- chosen_indices ^= 0x5555_5555;
- }
- }
-
- // encode everything.
- dest[0] = color0 as u8;
- dest[1] = (color0 >> 8) as u8;
- dest[2] = color1 as u8;
- dest[3] = (color1 >> 8) as u8;
- for i in 0..4 {
- dest[i + 4] = (chosen_indices >> (i * 8)) as u8;
- }
-}
-
-/// Encodes a buffer of 16 alpha bytes into a dxt5 alpha index table,
-/// where the alpha table they are indexed against is created by
-/// calling alpha_table_dxt5(alpha0, alpha1)
-/// returns the resulting error and alpha table
-fn encode_dxt5_alpha(alpha0: u8, alpha1: u8, alphas: &[u8; 16]) -> (i32, u64) {
- // create a table for the given alpha ranges
- let table = alpha_table_dxt5(alpha0, alpha1);
- let mut indices = 0u64;
- let mut total_error = 0i32;
-
- // least error brute force search
- for (i, &a) in alphas.iter().enumerate() {
- let (index, error) = table
- .iter()
- .enumerate()
- .map(|(i, &e)| (i, square(i32::from(e) - i32::from(a))))
- .min_by_key(|&(_, e)| e)
- .unwrap();
- total_error += error;
- indices |= (index as u64) << (i * 3);
- }
-
- (total_error, indices)
-}
-
-/// Encodes a RGBAx16 sequence of bytes to a 16 bytes DXT5 block
-fn encode_dxt5_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 64 && dest.len() == 16);
-
- // perform dxt color encoding
- encode_dxt_colors(source, &mut dest[8..16], false);
-
- // copy out the alpha bytes
- let mut alphas = [0; 16];
- for i in 0..16 {
- alphas[i] = source[i * 4 + 3];
- }
-
- // try both alpha compression methods, see which has the least error.
- let alpha07 = alphas.iter().cloned().min().unwrap();
- let alpha17 = alphas.iter().cloned().max().unwrap();
- let (error7, indices7) = encode_dxt5_alpha(alpha07, alpha17, &alphas);
-
- // if all alphas are 0 or 255 it doesn't particularly matter what we do here.
- let alpha05 = alphas
- .iter()
- .cloned()
- .filter(|&i| i != 255)
- .max()
- .unwrap_or(255);
- let alpha15 = alphas
- .iter()
- .cloned()
- .filter(|&i| i != 0)
- .min()
- .unwrap_or(0);
- let (error5, indices5) = encode_dxt5_alpha(alpha05, alpha15, &alphas);
-
- // pick the best one, encode the min/max values
- let mut alpha_table = if error5 < error7 {
- dest[0] = alpha05;
- dest[1] = alpha15;
- indices5
- } else {
- dest[0] = alpha07;
- dest[1] = alpha17;
- indices7
- };
-
- // encode the alphas
- for byte in dest[2..8].iter_mut() {
- *byte = alpha_table as u8;
- alpha_table >>= 8;
- }
-}
-
-/// Encodes a RGBAx16 sequence of bytes into a 16 bytes DXT3 block
-fn encode_dxt3_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 64 && dest.len() == 16);
-
- // perform dxt color encoding
- encode_dxt_colors(source, &mut dest[8..16], false);
-
- // DXT3 alpha compression is very simple, just round towards the nearest value
-
- // index the alpha values into the 64bit alpha table
- let mut alpha_table = 0u64;
- for i in 0..16 {
- let alpha = u64::from(source[i * 4 + 3]);
- let alpha = (alpha + 0x8) / 0x11;
- alpha_table |= alpha << (i * 4);
- }
-
- // encode the alpha values
- for byte in &mut dest[0..8] {
- *byte = alpha_table as u8;
- alpha_table >>= 8;
- }
-}
-
-/// Encodes a RGBx16 sequence of bytes into a 8 bytes DXT1 block
-fn encode_dxt1_block(source: &[u8], dest: &mut [u8]) {
- assert!(source.len() == 48 && dest.len() == 8);
-
- // perform dxt color encoding
- encode_dxt_colors(source, dest, true);
-}
-
-/// Decode a row of DXT1 data to four rows of RGBA data.
-/// source.len() should be a multiple of 8, otherwise this panics.
-fn encode_dxt1_row(source: &[u8]) -> Vec<u8> {
- assert!(source.len() % 48 == 0);
- let block_count = source.len() / 48;
-
- let mut dest = vec![0u8; block_count * 8];
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 48];
-
- for (x, encoded_block) in dest.chunks_mut(8).enumerate() {
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 12;
- decoded_block[line * 12..(line + 1) * 12].copy_from_slice(&source[offset..offset + 12]);
- }
-
- encode_dxt1_block(&decoded_block, encoded_block);
- }
- dest
-}
-
-/// Decode a row of DXT3 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn encode_dxt3_row(source: &[u8]) -> Vec<u8> {
- assert!(source.len() % 64 == 0);
- let block_count = source.len() / 64;
-
- let mut dest = vec![0u8; block_count * 16];
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in dest.chunks_mut(16).enumerate() {
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]);
- }
-
- encode_dxt3_block(&decoded_block, encoded_block);
- }
- dest
-}
-
-/// Decode a row of DXT5 data to four rows of RGBA data.
-/// source.len() should be a multiple of 16, otherwise this panics.
-fn encode_dxt5_row(source: &[u8]) -> Vec<u8> {
- assert!(source.len() % 64 == 0);
- let block_count = source.len() / 64;
-
- let mut dest = vec![0u8; block_count * 16];
- // contains the 16 decoded pixels per block
- let mut decoded_block = [0u8; 64];
-
- for (x, encoded_block) in dest.chunks_mut(16).enumerate() {
- // copy the values from the decoded block to linewise RGB layout
- for line in 0..4 {
- let offset = (block_count * line + x) * 16;
- decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]);
- }
-
- encode_dxt5_block(&decoded_block, encoded_block);
- }
- dest
-}
diff --git a/vendor/image/src/codecs/farbfeld.rs b/vendor/image/src/codecs/farbfeld.rs
deleted file mode 100644
index b543ade..0000000
--- a/vendor/image/src/codecs/farbfeld.rs
+++ /dev/null
@@ -1,400 +0,0 @@
-//! Decoding of farbfeld images
-//!
-//! farbfeld is a lossless image format which is easy to parse, pipe and compress.
-//!
-//! It has the following format:
-//!
-//! | Bytes | Description |
-//! |--------|---------------------------------------------------------|
-//! | 8 | "farbfeld" magic value |
-//! | 4 | 32-Bit BE unsigned integer (width) |
-//! | 4 | 32-Bit BE unsigned integer (height) |
-//! | [2222] | 4⋅16-Bit BE unsigned integers [RGBA] / pixel, row-major |
-//!
-//! The RGB-data should be sRGB for best interoperability and not alpha-premultiplied.
-//!
-//! # Related Links
-//! * <https://tools.suckless.org/farbfeld/> - the farbfeld specification
-
-use std::convert::TryFrom;
-use std::i64;
-use std::io::{self, Read, Seek, SeekFrom, Write};
-
-use byteorder::{BigEndian, ByteOrder, NativeEndian};
-
-use crate::color::ColorType;
-use crate::error::{
- DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageEncoder, ImageFormat, Progress};
-
-/// farbfeld Reader
-pub struct FarbfeldReader<R: Read> {
- width: u32,
- height: u32,
- inner: R,
- /// Relative to the start of the pixel data
- current_offset: u64,
- cached_byte: Option<u8>,
-}
-
-impl<R: Read> FarbfeldReader<R> {
- fn new(mut buffered_read: R) -> ImageResult<FarbfeldReader<R>> {
- fn read_dimm<R: Read>(from: &mut R) -> ImageResult<u32> {
- let mut buf = [0u8; 4];
- from.read_exact(&mut buf).map_err(|err| {
- ImageError::Decoding(DecodingError::new(ImageFormat::Farbfeld.into(), err))
- })?;
- Ok(BigEndian::read_u32(&buf))
- }
-
- let mut magic = [0u8; 8];
- buffered_read.read_exact(&mut magic).map_err(|err| {
- ImageError::Decoding(DecodingError::new(ImageFormat::Farbfeld.into(), err))
- })?;
- if &magic != b"farbfeld" {
- return Err(ImageError::Decoding(DecodingError::new(
- ImageFormat::Farbfeld.into(),
- format!("Invalid magic: {:02x?}", magic),
- )));
- }
-
- let reader = FarbfeldReader {
- width: read_dimm(&mut buffered_read)?,
- height: read_dimm(&mut buffered_read)?,
- inner: buffered_read,
- current_offset: 0,
- cached_byte: None,
- };
-
- if crate::utils::check_dimension_overflow(
- reader.width,
- reader.height,
- // ColorType is always rgba16
- ColorType::Rgba16.bytes_per_pixel(),
- ) {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Farbfeld.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}x{}) are too large",
- reader.width, reader.height
- )),
- ),
- ));
- }
-
- Ok(reader)
- }
-}
-
-impl<R: Read> Read for FarbfeldReader<R> {
- fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
- let mut bytes_written = 0;
- if let Some(byte) = self.cached_byte.take() {
- buf[0] = byte;
- buf = &mut buf[1..];
- bytes_written = 1;
- self.current_offset += 1;
- }
-
- if buf.len() == 1 {
- buf[0] = cache_byte(&mut self.inner, &mut self.cached_byte)?;
- bytes_written += 1;
- self.current_offset += 1;
- } else {
- for channel_out in buf.chunks_exact_mut(2) {
- consume_channel(&mut self.inner, channel_out)?;
- bytes_written += 2;
- self.current_offset += 2;
- }
- }
-
- Ok(bytes_written)
- }
-}
-
-impl<R: Read + Seek> Seek for FarbfeldReader<R> {
- fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
- fn parse_offset(original_offset: u64, end_offset: u64, pos: SeekFrom) -> Option<i64> {
- match pos {
- SeekFrom::Start(off) => i64::try_from(off)
- .ok()?
- .checked_sub(i64::try_from(original_offset).ok()?),
- SeekFrom::End(off) => {
- if off < i64::try_from(end_offset).unwrap_or(i64::MAX) {
- None
- } else {
- Some(i64::try_from(end_offset.checked_sub(original_offset)?).ok()? + off)
- }
- }
- SeekFrom::Current(off) => {
- if off < i64::try_from(original_offset).unwrap_or(i64::MAX) {
- None
- } else {
- Some(off)
- }
- }
- }
- }
-
- let original_offset = self.current_offset;
- let end_offset = self.width as u64 * self.height as u64 * 2;
- let offset_from_current =
- parse_offset(original_offset, end_offset, pos).ok_or_else(|| {
- io::Error::new(
- io::ErrorKind::InvalidInput,
- "invalid seek to a negative or overflowing position",
- )
- })?;
-
- // TODO: convert to seek_relative() once that gets stabilised
- self.inner.seek(SeekFrom::Current(offset_from_current))?;
- self.current_offset = if offset_from_current < 0 {
- original_offset.checked_sub(offset_from_current.wrapping_neg() as u64)
- } else {
- original_offset.checked_add(offset_from_current as u64)
- }
- .expect("This should've been checked above");
-
- if self.current_offset < end_offset && self.current_offset % 2 == 1 {
- let curr = self.inner.seek(SeekFrom::Current(-1))?;
- cache_byte(&mut self.inner, &mut self.cached_byte)?;
- self.inner.seek(SeekFrom::Start(curr))?;
- } else {
- self.cached_byte = None;
- }
-
- Ok(original_offset)
- }
-}
-
-fn consume_channel<R: Read>(from: &mut R, to: &mut [u8]) -> io::Result<()> {
- let mut ibuf = [0u8; 2];
- from.read_exact(&mut ibuf)?;
- NativeEndian::write_u16(to, BigEndian::read_u16(&ibuf));
- Ok(())
-}
-
-fn cache_byte<R: Read>(from: &mut R, cached_byte: &mut Option<u8>) -> io::Result<u8> {
- let mut obuf = [0u8; 2];
- consume_channel(from, &mut obuf)?;
- *cached_byte = Some(obuf[1]);
- Ok(obuf[0])
-}
-
-/// farbfeld decoder
-pub struct FarbfeldDecoder<R: Read> {
- reader: FarbfeldReader<R>,
-}
-
-impl<R: Read> FarbfeldDecoder<R> {
- /// Creates a new decoder that decodes from the stream ```r```
- pub fn new(buffered_read: R) -> ImageResult<FarbfeldDecoder<R>> {
- Ok(FarbfeldDecoder {
- reader: FarbfeldReader::new(buffered_read)?,
- })
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for FarbfeldDecoder<R> {
- type Reader = FarbfeldReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.reader.width, self.reader.height)
- }
-
- fn color_type(&self) -> ColorType {
- ColorType::Rgba16
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(self.reader)
- }
-
- fn scanline_bytes(&self) -> u64 {
- 2
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for FarbfeldDecoder<R> {
- fn read_rect_with_progress<F: Fn(Progress)>(
- &mut self,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
- buf: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- // A "scanline" (defined as "shortest non-caching read" in the doc) is just one channel in this case
-
- let start = self.reader.stream_position()?;
- image::load_rect(
- x,
- y,
- width,
- height,
- buf,
- progress_callback,
- self,
- |s, scanline| s.reader.seek(SeekFrom::Start(scanline * 2)).map(|_| ()),
- |s, buf| s.reader.read_exact(buf),
- )?;
- self.reader.seek(SeekFrom::Start(start))?;
- Ok(())
- }
-}
-
-/// farbfeld encoder
-pub struct FarbfeldEncoder<W: Write> {
- w: W,
-}
-
-impl<W: Write> FarbfeldEncoder<W> {
- /// Create a new encoder that writes its output to ```w```. The writer should be buffered.
- pub fn new(buffered_writer: W) -> FarbfeldEncoder<W> {
- FarbfeldEncoder { w: buffered_writer }
- }
-
- /// Encodes the image ```data``` (native endian)
- /// that has dimensions ```width``` and ```height```
- pub fn encode(self, data: &[u8], width: u32, height: u32) -> ImageResult<()> {
- self.encode_impl(data, width, height)?;
- Ok(())
- }
-
- fn encode_impl(mut self, data: &[u8], width: u32, height: u32) -> io::Result<()> {
- self.w.write_all(b"farbfeld")?;
-
- let mut buf = [0u8; 4];
- BigEndian::write_u32(&mut buf, width);
- self.w.write_all(&buf)?;
-
- BigEndian::write_u32(&mut buf, height);
- self.w.write_all(&buf)?;
-
- for channel in data.chunks_exact(2) {
- BigEndian::write_u16(&mut buf, NativeEndian::read_u16(channel));
- self.w.write_all(&buf[..2])?;
- }
-
- Ok(())
- }
-}
-
-impl<W: Write> ImageEncoder for FarbfeldEncoder<W> {
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- if color_type != ColorType::Rgba16 {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Farbfeld.into(),
- UnsupportedErrorKind::Color(color_type.into()),
- ),
- ));
- }
-
- self.encode(buf, width, height)
- }
-}
-
-#[cfg(test)]
-mod tests {
- use crate::codecs::farbfeld::FarbfeldDecoder;
- use crate::ImageDecoderRect;
- use byteorder::{ByteOrder, NativeEndian};
- use std::io::{Cursor, Seek, SeekFrom};
-
- static RECTANGLE_IN: &[u8] = b"farbfeld\
- \x00\x00\x00\x02\x00\x00\x00\x03\
- \xFF\x01\xFE\x02\xFD\x03\xFC\x04\xFB\x05\xFA\x06\xF9\x07\xF8\x08\
- \xF7\x09\xF6\x0A\xF5\x0B\xF4\x0C\xF3\x0D\xF2\x0E\xF1\x0F\xF0\x10\
- \xEF\x11\xEE\x12\xED\x13\xEC\x14\xEB\x15\xEA\x16\xE9\x17\xE8\x18";
-
- #[test]
- fn read_rect_1x2() {
- static RECTANGLE_OUT: &[u16] = &[
- 0xF30D, 0xF20E, 0xF10F, 0xF010, 0xEB15, 0xEA16, 0xE917, 0xE818,
- ];
-
- read_rect(1, 1, 1, 2, RECTANGLE_OUT);
- }
-
- #[test]
- fn read_rect_2x2() {
- static RECTANGLE_OUT: &[u16] = &[
- 0xFF01, 0xFE02, 0xFD03, 0xFC04, 0xFB05, 0xFA06, 0xF907, 0xF808, 0xF709, 0xF60A, 0xF50B,
- 0xF40C, 0xF30D, 0xF20E, 0xF10F, 0xF010,
- ];
-
- read_rect(0, 0, 2, 2, RECTANGLE_OUT);
- }
-
- #[test]
- fn read_rect_2x1() {
- static RECTANGLE_OUT: &[u16] = &[
- 0xEF11, 0xEE12, 0xED13, 0xEC14, 0xEB15, 0xEA16, 0xE917, 0xE818,
- ];
-
- read_rect(0, 2, 2, 1, RECTANGLE_OUT);
- }
-
- #[test]
- fn read_rect_2x3() {
- static RECTANGLE_OUT: &[u16] = &[
- 0xFF01, 0xFE02, 0xFD03, 0xFC04, 0xFB05, 0xFA06, 0xF907, 0xF808, 0xF709, 0xF60A, 0xF50B,
- 0xF40C, 0xF30D, 0xF20E, 0xF10F, 0xF010, 0xEF11, 0xEE12, 0xED13, 0xEC14, 0xEB15, 0xEA16,
- 0xE917, 0xE818,
- ];
-
- read_rect(0, 0, 2, 3, RECTANGLE_OUT);
- }
-
- #[test]
- fn read_rect_in_stream() {
- static RECTANGLE_OUT: &[u16] = &[0xEF11, 0xEE12, 0xED13, 0xEC14];
-
- let mut input = vec![];
- input.extend_from_slice(b"This is a 31-byte-long prologue");
- input.extend_from_slice(RECTANGLE_IN);
- let mut input_cur = Cursor::new(input);
- input_cur.seek(SeekFrom::Start(31)).unwrap();
-
- let mut out_buf = [0u8; 64];
- FarbfeldDecoder::new(input_cur)
- .unwrap()
- .read_rect(0, 2, 1, 1, &mut out_buf)
- .unwrap();
- let exp = degenerate_pixels(RECTANGLE_OUT);
- assert_eq!(&out_buf[..exp.len()], &exp[..]);
- }
-
- #[test]
- fn dimension_overflow() {
- let header = b"farbfeld\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
-
- assert!(FarbfeldDecoder::new(Cursor::new(header)).is_err());
- }
-
- fn read_rect(x: u32, y: u32, width: u32, height: u32, exp_wide: &[u16]) {
- let mut out_buf = [0u8; 64];
- FarbfeldDecoder::new(Cursor::new(RECTANGLE_IN))
- .unwrap()
- .read_rect(x, y, width, height, &mut out_buf)
- .unwrap();
- let exp = degenerate_pixels(exp_wide);
- assert_eq!(&out_buf[..exp.len()], &exp[..]);
- }
-
- fn degenerate_pixels(exp_wide: &[u16]) -> Vec<u8> {
- let mut exp = vec![0u8; exp_wide.len() * 2];
- NativeEndian::write_u16_into(exp_wide, &mut exp);
- exp
- }
-}
diff --git a/vendor/image/src/codecs/gif.rs b/vendor/image/src/codecs/gif.rs
deleted file mode 100644
index dcbd841..0000000
--- a/vendor/image/src/codecs/gif.rs
+++ /dev/null
@@ -1,606 +0,0 @@
-//! Decoding of GIF Images
-//!
-//! GIF (Graphics Interchange Format) is an image format that supports lossless compression.
-//!
-//! # Related Links
-//! * <http://www.w3.org/Graphics/GIF/spec-gif89a.txt> - The GIF Specification
-//!
-//! # Examples
-//! ```rust,no_run
-//! use image::codecs::gif::{GifDecoder, GifEncoder};
-//! use image::{ImageDecoder, AnimationDecoder};
-//! use std::fs::File;
-//! # fn main() -> std::io::Result<()> {
-//! // Decode a gif into frames
-//! let file_in = File::open("foo.gif")?;
-//! let mut decoder = GifDecoder::new(file_in).unwrap();
-//! let frames = decoder.into_frames();
-//! let frames = frames.collect_frames().expect("error decoding gif");
-//!
-//! // Encode frames into a gif and save to a file
-//! let mut file_out = File::open("out.gif")?;
-//! let mut encoder = GifEncoder::new(file_out);
-//! encoder.encode_frames(frames.into_iter());
-//! # Ok(())
-//! # }
-//! ```
-#![allow(clippy::while_let_loop)]
-
-use std::convert::TryFrom;
-use std::convert::TryInto;
-use std::io::{self, Cursor, Read, Write};
-use std::marker::PhantomData;
-use std::mem;
-
-use gif::ColorOutput;
-use gif::{DisposalMethod, Frame};
-use num_rational::Ratio;
-
-use crate::animation;
-use crate::color::{ColorType, Rgba};
-use crate::error::{
- DecodingError, EncodingError, ImageError, ImageResult, ParameterError, ParameterErrorKind,
- UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{self, AnimationDecoder, ImageDecoder, ImageFormat};
-use crate::io::Limits;
-use crate::traits::Pixel;
-use crate::ImageBuffer;
-
-/// GIF decoder
-pub struct GifDecoder<R: Read> {
- reader: gif::Decoder<R>,
- limits: Limits,
-}
-
-impl<R: Read> GifDecoder<R> {
- /// Creates a new decoder that decodes the input steam `r`
- pub fn new(r: R) -> ImageResult<GifDecoder<R>> {
- let mut decoder = gif::DecodeOptions::new();
- decoder.set_color_output(ColorOutput::RGBA);
-
- Ok(GifDecoder {
- reader: decoder.read_info(r).map_err(ImageError::from_decoding)?,
- limits: Limits::default(),
- })
- }
-
- /// Creates a new decoder that decodes the input steam `r`, using limits `limits`
- pub fn with_limits(r: R, limits: Limits) -> ImageResult<GifDecoder<R>> {
- let mut decoder = gif::DecodeOptions::new();
- decoder.set_color_output(ColorOutput::RGBA);
-
- Ok(GifDecoder {
- reader: decoder.read_info(r).map_err(ImageError::from_decoding)?,
- limits,
- })
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct GifReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for GifReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for GifDecoder<R> {
- type Reader = GifReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (
- u32::from(self.reader.width()),
- u32::from(self.reader.height()),
- )
- }
-
- fn color_type(&self) -> ColorType {
- ColorType::Rgba8
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(GifReader(
- Cursor::new(image::decoder_to_vec(self)?),
- PhantomData,
- ))
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- let frame = match self
- .reader
- .next_frame_info()
- .map_err(ImageError::from_decoding)?
- {
- Some(frame) => FrameInfo::new_from_frame(frame),
- None => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::NoMoreData,
- )))
- }
- };
-
- let (width, height) = self.dimensions();
-
- if frame.left == 0
- && frame.width == width
- && (frame.top as u64 + frame.height as u64 <= height as u64)
- {
- // If the frame matches the logical screen, or, as a more general case,
- // fits into it and touches its left and right borders, then
- // we can directly write it into the buffer without causing line wraparound.
- let line_length = usize::try_from(width)
- .unwrap()
- .checked_mul(self.color_type().bytes_per_pixel() as usize)
- .unwrap();
-
- // isolate the portion of the buffer to read the frame data into.
- // the chunks above and below it are going to be zeroed.
- let (blank_top, rest) =
- buf.split_at_mut(line_length.checked_mul(frame.top as usize).unwrap());
- let (buf, blank_bottom) =
- rest.split_at_mut(line_length.checked_mul(frame.height as usize).unwrap());
-
- debug_assert_eq!(buf.len(), self.reader.buffer_size());
-
- // this is only necessary in case the buffer is not zeroed
- for b in blank_top {
- *b = 0;
- }
- // fill the middle section with the frame data
- self.reader
- .read_into_buffer(buf)
- .map_err(ImageError::from_decoding)?;
- // this is only necessary in case the buffer is not zeroed
- for b in blank_bottom {
- *b = 0;
- }
- } else {
- // If the frame does not match the logical screen, read into an extra buffer
- // and 'insert' the frame from left/top to logical screen width/height.
- let buffer_size = self.reader.buffer_size();
-
- self.limits.reserve_usize(buffer_size)?;
-
- let mut frame_buffer = vec![0; buffer_size];
-
- self.limits.free_usize(buffer_size);
-
- self.reader
- .read_into_buffer(&mut frame_buffer[..])
- .map_err(ImageError::from_decoding)?;
-
- let frame_buffer = ImageBuffer::from_raw(frame.width, frame.height, frame_buffer);
- let image_buffer = ImageBuffer::from_raw(width, height, buf);
-
- // `buffer_size` uses wrapping arithmetic, thus might not report the
- // correct storage requirement if the result does not fit in `usize`.
- // `ImageBuffer::from_raw` detects overflow and reports by returning `None`.
- if frame_buffer.is_none() || image_buffer.is_none() {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Gif.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}, {}) are too large",
- frame.width, frame.height
- )),
- ),
- ));
- }
-
- let frame_buffer = frame_buffer.unwrap();
- let mut image_buffer = image_buffer.unwrap();
-
- for (x, y, pixel) in image_buffer.enumerate_pixels_mut() {
- let frame_x = x.wrapping_sub(frame.left);
- let frame_y = y.wrapping_sub(frame.top);
-
- if frame_x < frame.width && frame_y < frame.height {
- *pixel = *frame_buffer.get_pixel(frame_x, frame_y);
- } else {
- // this is only necessary in case the buffer is not zeroed
- *pixel = Rgba([0, 0, 0, 0]);
- }
- }
- }
-
- Ok(())
- }
-}
-
-struct GifFrameIterator<R: Read> {
- reader: gif::Decoder<R>,
-
- width: u32,
- height: u32,
-
- non_disposed_frame: ImageBuffer<Rgba<u8>, Vec<u8>>,
-}
-
-impl<R: Read> GifFrameIterator<R> {
- fn new(decoder: GifDecoder<R>) -> GifFrameIterator<R> {
- let (width, height) = decoder.dimensions();
-
- // intentionally ignore the background color for web compatibility
-
- // create the first non disposed frame
- let non_disposed_frame = ImageBuffer::from_pixel(width, height, Rgba([0, 0, 0, 0]));
-
- GifFrameIterator {
- reader: decoder.reader,
- width,
- height,
- non_disposed_frame,
- }
- }
-}
-
-impl<R: Read> Iterator for GifFrameIterator<R> {
- type Item = ImageResult<animation::Frame>;
-
- fn next(&mut self) -> Option<ImageResult<animation::Frame>> {
- // begin looping over each frame
-
- let frame = match self.reader.next_frame_info() {
- Ok(frame_info) => {
- if let Some(frame) = frame_info {
- FrameInfo::new_from_frame(frame)
- } else {
- // no more frames
- return None;
- }
- }
- Err(err) => return Some(Err(ImageError::from_decoding(err))),
- };
-
- let mut vec = vec![0; self.reader.buffer_size()];
- if let Err(err) = self.reader.read_into_buffer(&mut vec) {
- return Some(Err(ImageError::from_decoding(err)));
- }
-
- // create the image buffer from the raw frame.
- // `buffer_size` uses wrapping arithmetic, thus might not report the
- // correct storage requirement if the result does not fit in `usize`.
- // on the other hand, `ImageBuffer::from_raw` detects overflow and
- // reports by returning `None`.
- let mut frame_buffer = match ImageBuffer::from_raw(frame.width, frame.height, vec) {
- Some(frame_buffer) => frame_buffer,
- None => {
- return Some(Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Gif.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}, {}) are too large",
- frame.width, frame.height
- )),
- ),
- )))
- }
- };
-
- // blend the current frame with the non-disposed frame, then update
- // the non-disposed frame according to the disposal method.
- fn blend_and_dispose_pixel(
- dispose: DisposalMethod,
- previous: &mut Rgba<u8>,
- current: &mut Rgba<u8>,
- ) {
- let pixel_alpha = current.channels()[3];
- if pixel_alpha == 0 {
- *current = *previous;
- }
-
- match dispose {
- DisposalMethod::Any | DisposalMethod::Keep => {
- // do not dispose
- // (keep pixels from this frame)
- // note: the `Any` disposal method is underspecified in the GIF
- // spec, but most viewers treat it identically to `Keep`
- *previous = *current;
- }
- DisposalMethod::Background => {
- // restore to background color
- // (background shows through transparent pixels in the next frame)
- *previous = Rgba([0, 0, 0, 0]);
- }
- DisposalMethod::Previous => {
- // restore to previous
- // (dispose frames leaving the last none disposal frame)
- }
- }
- }
-
- // if `frame_buffer`'s frame exactly matches the entire image, then
- // use it directly, else create a new buffer to hold the composited
- // image.
- let image_buffer = if (frame.left, frame.top) == (0, 0)
- && (self.width, self.height) == frame_buffer.dimensions()
- {
- for (x, y, pixel) in frame_buffer.enumerate_pixels_mut() {
- let previous_pixel = self.non_disposed_frame.get_pixel_mut(x, y);
- blend_and_dispose_pixel(frame.disposal_method, previous_pixel, pixel);
- }
- frame_buffer
- } else {
- ImageBuffer::from_fn(self.width, self.height, |x, y| {
- let frame_x = x.wrapping_sub(frame.left);
- let frame_y = y.wrapping_sub(frame.top);
- let previous_pixel = self.non_disposed_frame.get_pixel_mut(x, y);
-
- if frame_x < frame_buffer.width() && frame_y < frame_buffer.height() {
- let mut pixel = *frame_buffer.get_pixel(frame_x, frame_y);
- blend_and_dispose_pixel(frame.disposal_method, previous_pixel, &mut pixel);
- pixel
- } else {
- // out of bounds, return pixel from previous frame
- *previous_pixel
- }
- })
- };
-
- Some(Ok(animation::Frame::from_parts(
- image_buffer,
- 0,
- 0,
- frame.delay,
- )))
- }
-}
-
-impl<'a, R: Read + 'a> AnimationDecoder<'a> for GifDecoder<R> {
- fn into_frames(self) -> animation::Frames<'a> {
- animation::Frames::new(Box::new(GifFrameIterator::new(self)))
- }
-}
-
-struct FrameInfo {
- left: u32,
- top: u32,
- width: u32,
- height: u32,
- disposal_method: DisposalMethod,
- delay: animation::Delay,
-}
-
-impl FrameInfo {
- fn new_from_frame(frame: &Frame) -> FrameInfo {
- FrameInfo {
- left: u32::from(frame.left),
- top: u32::from(frame.top),
- width: u32::from(frame.width),
- height: u32::from(frame.height),
- disposal_method: frame.dispose,
- // frame.delay is in units of 10ms so frame.delay*10 is in ms
- delay: animation::Delay::from_ratio(Ratio::new(u32::from(frame.delay) * 10, 1)),
- }
- }
-}
-
-/// Number of repetitions for a GIF animation
-#[derive(Clone, Copy, Debug)]
-pub enum Repeat {
- /// Finite number of repetitions
- Finite(u16),
- /// Looping GIF
- Infinite,
-}
-
-impl Repeat {
- pub(crate) fn to_gif_enum(&self) -> gif::Repeat {
- match self {
- Repeat::Finite(n) => gif::Repeat::Finite(*n),
- Repeat::Infinite => gif::Repeat::Infinite,
- }
- }
-}
-
-/// GIF encoder.
-pub struct GifEncoder<W: Write> {
- w: Option<W>,
- gif_encoder: Option<gif::Encoder<W>>,
- speed: i32,
- repeat: Option<Repeat>,
-}
-
-impl<W: Write> GifEncoder<W> {
- /// Creates a new GIF encoder with a speed of 1. This prioritizes quality over performance at any cost.
- pub fn new(w: W) -> GifEncoder<W> {
- Self::new_with_speed(w, 1)
- }
-
- /// Create a new GIF encoder, and has the speed parameter `speed`. See
- /// [`Frame::from_rgba_speed`](https://docs.rs/gif/latest/gif/struct.Frame.html#method.from_rgba_speed)
- /// for more information.
- pub fn new_with_speed(w: W, speed: i32) -> GifEncoder<W> {
- assert!(
- (1..=30).contains(&speed),
- "speed needs to be in the range [1, 30]"
- );
- GifEncoder {
- w: Some(w),
- gif_encoder: None,
- speed,
- repeat: None,
- }
- }
-
- /// Set the repeat behaviour of the encoded GIF
- pub fn set_repeat(&mut self, repeat: Repeat) -> ImageResult<()> {
- if let Some(ref mut encoder) = self.gif_encoder {
- encoder
- .set_repeat(repeat.to_gif_enum())
- .map_err(ImageError::from_encoding)?;
- }
- self.repeat = Some(repeat);
- Ok(())
- }
-
- /// Encode a single image.
- pub fn encode(
- &mut self,
- data: &[u8],
- width: u32,
- height: u32,
- color: ColorType,
- ) -> ImageResult<()> {
- let (width, height) = self.gif_dimensions(width, height)?;
- match color {
- ColorType::Rgb8 => self.encode_gif(Frame::from_rgb(width, height, data)),
- ColorType::Rgba8 => {
- self.encode_gif(Frame::from_rgba(width, height, &mut data.to_owned()))
- }
- _ => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Gif.into(),
- UnsupportedErrorKind::Color(color.into()),
- ),
- )),
- }
- }
-
- /// Encode one frame of animation.
- pub fn encode_frame(&mut self, img_frame: animation::Frame) -> ImageResult<()> {
- let frame = self.convert_frame(img_frame)?;
- self.encode_gif(frame)
- }
-
- /// Encodes Frames.
- /// Consider using `try_encode_frames` instead to encode an `animation::Frames` like iterator.
- pub fn encode_frames<F>(&mut self, frames: F) -> ImageResult<()>
- where
- F: IntoIterator<Item = animation::Frame>,
- {
- for img_frame in frames {
- self.encode_frame(img_frame)?;
- }
- Ok(())
- }
-
- /// Try to encode a collection of `ImageResult<animation::Frame>` objects.
- /// Use this function to encode an `animation::Frames` like iterator.
- /// Whenever an `Err` item is encountered, that value is returned without further actions.
- pub fn try_encode_frames<F>(&mut self, frames: F) -> ImageResult<()>
- where
- F: IntoIterator<Item = ImageResult<animation::Frame>>,
- {
- for img_frame in frames {
- self.encode_frame(img_frame?)?;
- }
- Ok(())
- }
-
- pub(crate) fn convert_frame(
- &mut self,
- img_frame: animation::Frame,
- ) -> ImageResult<Frame<'static>> {
- // get the delay before converting img_frame
- let frame_delay = img_frame.delay().into_ratio().to_integer();
- // convert img_frame into RgbaImage
- let mut rbga_frame = img_frame.into_buffer();
- let (width, height) = self.gif_dimensions(rbga_frame.width(), rbga_frame.height())?;
-
- // Create the gif::Frame from the animation::Frame
- let mut frame = Frame::from_rgba_speed(width, height, &mut rbga_frame, self.speed);
- // Saturate the conversion to u16::MAX instead of returning an error as that
- // would require a new special cased variant in ParameterErrorKind which most
- // likely couldn't be reused for other cases. This isn't a bad trade-off given
- // that the current algorithm is already lossy.
- frame.delay = (frame_delay / 10).try_into().unwrap_or(std::u16::MAX);
-
- Ok(frame)
- }
-
- fn gif_dimensions(&self, width: u32, height: u32) -> ImageResult<(u16, u16)> {
- fn inner_dimensions(width: u32, height: u32) -> Option<(u16, u16)> {
- let width = u16::try_from(width).ok()?;
- let height = u16::try_from(height).ok()?;
- Some((width, height))
- }
-
- // TODO: this is not very idiomatic yet. Should return an EncodingError.
- inner_dimensions(width, height).ok_or_else(|| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })
- }
-
- pub(crate) fn encode_gif(&mut self, mut frame: Frame) -> ImageResult<()> {
- let gif_encoder;
- if let Some(ref mut encoder) = self.gif_encoder {
- gif_encoder = encoder;
- } else {
- let writer = self.w.take().unwrap();
- let mut encoder = gif::Encoder::new(writer, frame.width, frame.height, &[])
- .map_err(ImageError::from_encoding)?;
- if let Some(ref repeat) = self.repeat {
- encoder
- .set_repeat(repeat.to_gif_enum())
- .map_err(ImageError::from_encoding)?;
- }
- self.gif_encoder = Some(encoder);
- gif_encoder = self.gif_encoder.as_mut().unwrap()
- }
-
- frame.dispose = gif::DisposalMethod::Background;
-
- gif_encoder
- .write_frame(&frame)
- .map_err(ImageError::from_encoding)
- }
-}
-
-impl ImageError {
- fn from_decoding(err: gif::DecodingError) -> ImageError {
- use gif::DecodingError::*;
- match err {
- err @ Format(_) => {
- ImageError::Decoding(DecodingError::new(ImageFormat::Gif.into(), err))
- }
- Io(io_err) => ImageError::IoError(io_err),
- }
- }
-
- fn from_encoding(err: gif::EncodingError) -> ImageError {
- use gif::EncodingError::*;
- match err {
- err @ Format(_) => {
- ImageError::Encoding(EncodingError::new(ImageFormat::Gif.into(), err))
- }
- Io(io_err) => ImageError::IoError(io_err),
- }
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn frames_exceeding_logical_screen_size() {
- // This is a gif with 10x10 logical screen, but a 16x16 frame + 6px offset inside.
- let data = vec![
- 0x47, 0x49, 0x46, 0x38, 0x39, 0x61, 0x0A, 0x00, 0x0A, 0x00, 0xF0, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x0E, 0xFF, 0x1F, 0x21, 0xF9, 0x04, 0x09, 0x64, 0x00, 0x00, 0x00, 0x2C,
- 0x06, 0x00, 0x06, 0x00, 0x10, 0x00, 0x10, 0x00, 0x00, 0x02, 0x23, 0x84, 0x8F, 0xA9,
- 0xBB, 0xE1, 0xE8, 0x42, 0x8A, 0x0F, 0x50, 0x79, 0xAE, 0xD1, 0xF9, 0x7A, 0xE8, 0x71,
- 0x5B, 0x48, 0x81, 0x64, 0xD5, 0x91, 0xCA, 0x89, 0x4D, 0x21, 0x63, 0x89, 0x4C, 0x09,
- 0x77, 0xF5, 0x6D, 0x14, 0x00, 0x3B,
- ];
-
- let decoder = GifDecoder::new(Cursor::new(data)).unwrap();
- let mut buf = vec![0u8; decoder.total_bytes() as usize];
-
- assert!(decoder.read_image(&mut buf).is_ok());
- }
-}
diff --git a/vendor/image/src/codecs/hdr/decoder.rs b/vendor/image/src/codecs/hdr/decoder.rs
deleted file mode 100644
index 8329d57..0000000
--- a/vendor/image/src/codecs/hdr/decoder.rs
+++ /dev/null
@@ -1,1033 +0,0 @@
-use crate::Primitive;
-use num_traits::identities::Zero;
-#[cfg(test)]
-use std::borrow::Cow;
-use std::convert::TryFrom;
-use std::io::{self, BufRead, Cursor, Read, Seek};
-use std::iter::Iterator;
-use std::marker::PhantomData;
-use std::num::{ParseFloatError, ParseIntError};
-use std::path::Path;
-use std::{error, fmt, mem};
-
-use crate::color::{ColorType, Rgb};
-use crate::error::{
- DecodingError, ImageError, ImageFormatHint, ImageResult, ParameterError, ParameterErrorKind,
- UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageFormat, Progress};
-
-/// Errors that can occur during decoding and parsing of a HDR image
-#[derive(Debug, Clone, PartialEq, Eq)]
-enum DecoderError {
- /// HDR's "#?RADIANCE" signature wrong or missing
- RadianceHdrSignatureInvalid,
- /// EOF before end of header
- TruncatedHeader,
- /// EOF instead of image dimensions
- TruncatedDimensions,
-
- /// A value couldn't be parsed
- UnparsableF32(LineType, ParseFloatError),
- /// A value couldn't be parsed
- UnparsableU32(LineType, ParseIntError),
- /// Not enough numbers in line
- LineTooShort(LineType),
-
- /// COLORCORR contains too many numbers in strict mode
- ExtraneousColorcorrNumbers,
-
- /// Dimensions line had too few elements
- DimensionsLineTooShort(usize, usize),
- /// Dimensions line had too many elements
- DimensionsLineTooLong(usize),
-
- /// The length of a scanline (1) wasn't a match for the specified length (2)
- WrongScanlineLength(usize, usize),
- /// First pixel of a scanline is a run length marker
- FirstPixelRlMarker,
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::RadianceHdrSignatureInvalid => {
- f.write_str("Radiance HDR signature not found")
- }
- DecoderError::TruncatedHeader => f.write_str("EOF in header"),
- DecoderError::TruncatedDimensions => f.write_str("EOF in dimensions line"),
- DecoderError::UnparsableF32(line, pe) => {
- f.write_fmt(format_args!("Cannot parse {} value as f32: {}", line, pe))
- }
- DecoderError::UnparsableU32(line, pe) => {
- f.write_fmt(format_args!("Cannot parse {} value as u32: {}", line, pe))
- }
- DecoderError::LineTooShort(line) => {
- f.write_fmt(format_args!("Not enough numbers in {}", line))
- }
- DecoderError::ExtraneousColorcorrNumbers => f.write_str("Extra numbers in COLORCORR"),
- DecoderError::DimensionsLineTooShort(elements, expected) => f.write_fmt(format_args!(
- "Dimensions line too short: have {} elements, expected {}",
- elements, expected
- )),
- DecoderError::DimensionsLineTooLong(expected) => f.write_fmt(format_args!(
- "Dimensions line too long, expected {} elements",
- expected
- )),
- DecoderError::WrongScanlineLength(len, expected) => f.write_fmt(format_args!(
- "Wrong length of decoded scanline: got {}, expected {}",
- len, expected
- )),
- DecoderError::FirstPixelRlMarker => {
- f.write_str("First pixel of a scanline shouldn't be run length marker")
- }
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Hdr.into(), e))
- }
-}
-
-impl error::Error for DecoderError {
- fn source(&self) -> Option<&(dyn error::Error + 'static)> {
- match self {
- DecoderError::UnparsableF32(_, err) => Some(err),
- DecoderError::UnparsableU32(_, err) => Some(err),
- _ => None,
- }
- }
-}
-
-/// Lines which contain parsable data that can fail
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum LineType {
- Exposure,
- Pixaspect,
- Colorcorr,
- DimensionsHeight,
- DimensionsWidth,
-}
-
-impl fmt::Display for LineType {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.write_str(match self {
- LineType::Exposure => "EXPOSURE",
- LineType::Pixaspect => "PIXASPECT",
- LineType::Colorcorr => "COLORCORR",
- LineType::DimensionsHeight => "height dimension",
- LineType::DimensionsWidth => "width dimension",
- })
- }
-}
-
-/// Adapter to conform to `ImageDecoder` trait
-#[derive(Debug)]
-pub struct HdrAdapter<R: Read> {
- inner: Option<HdrDecoder<R>>,
- // data: Option<Vec<u8>>,
- meta: HdrMetadata,
-}
-
-impl<R: BufRead> HdrAdapter<R> {
- /// Creates adapter
- pub fn new(r: R) -> ImageResult<HdrAdapter<R>> {
- let decoder = HdrDecoder::new(r)?;
- let meta = decoder.metadata();
- Ok(HdrAdapter {
- inner: Some(decoder),
- meta,
- })
- }
-
- /// Allows reading old Radiance HDR images
- pub fn new_nonstrict(r: R) -> ImageResult<HdrAdapter<R>> {
- let decoder = HdrDecoder::with_strictness(r, false)?;
- let meta = decoder.metadata();
- Ok(HdrAdapter {
- inner: Some(decoder),
- meta,
- })
- }
-
- /// Read the actual data of the image, and store it in Self::data.
- fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
- match self.inner.take() {
- Some(decoder) => {
- let img: Vec<Rgb<u8>> = decoder.read_image_ldr()?;
- for (i, Rgb(data)) in img.into_iter().enumerate() {
- buf[(i * 3)..][..3].copy_from_slice(&data);
- }
-
- Ok(())
- }
- None => Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::NoMoreData,
- ))),
- }
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct HdrReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for HdrReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + BufRead> ImageDecoder<'a> for HdrAdapter<R> {
- type Reader = HdrReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.meta.width, self.meta.height)
- }
-
- fn color_type(&self) -> ColorType {
- ColorType::Rgb8
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(HdrReader(
- Cursor::new(image::decoder_to_vec(self)?),
- PhantomData,
- ))
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- self.read_image_data(buf)
- }
-}
-
-impl<'a, R: 'a + BufRead + Seek> ImageDecoderRect<'a> for HdrAdapter<R> {
- fn read_rect_with_progress<F: Fn(Progress)>(
- &mut self,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
- buf: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- image::load_rect(
- x,
- y,
- width,
- height,
- buf,
- progress_callback,
- self,
- |_, _| unreachable!(),
- |s, buf| s.read_image_data(buf),
- )
- }
-}
-
-/// Radiance HDR file signature
-pub const SIGNATURE: &[u8] = b"#?RADIANCE";
-const SIGNATURE_LENGTH: usize = 10;
-
-/// An Radiance HDR decoder
-#[derive(Debug)]
-pub struct HdrDecoder<R> {
- r: R,
- width: u32,
- height: u32,
- meta: HdrMetadata,
-}
-
-/// Refer to [wikipedia](https://en.wikipedia.org/wiki/RGBE_image_format)
-#[repr(C)]
-#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
-pub struct Rgbe8Pixel {
- /// Color components
- pub c: [u8; 3],
- /// Exponent
- pub e: u8,
-}
-
-/// Creates `Rgbe8Pixel` from components
-pub fn rgbe8(r: u8, g: u8, b: u8, e: u8) -> Rgbe8Pixel {
- Rgbe8Pixel { c: [r, g, b], e }
-}
-
-impl Rgbe8Pixel {
- /// Converts `Rgbe8Pixel` into `Rgb<f32>` linearly
- #[inline]
- pub fn to_hdr(self) -> Rgb<f32> {
- if self.e == 0 {
- Rgb([0.0, 0.0, 0.0])
- } else {
- // let exp = f32::ldexp(1., self.e as isize - (128 + 8)); // unstable
- let exp = f32::exp2(<f32 as From<_>>::from(self.e) - (128.0 + 8.0));
- Rgb([
- exp * <f32 as From<_>>::from(self.c[0]),
- exp * <f32 as From<_>>::from(self.c[1]),
- exp * <f32 as From<_>>::from(self.c[2]),
- ])
- }
- }
-
- /// Converts `Rgbe8Pixel` into `Rgb<T>` with scale=1 and gamma=2.2
- ///
- /// color_ldr = (color_hdr*scale)<sup>gamma</sup>
- ///
- /// # Panic
- ///
- /// Panics when `T::max_value()` cannot be represented as f32.
- #[inline]
- pub fn to_ldr<T: Primitive + Zero>(self) -> Rgb<T> {
- self.to_ldr_scale_gamma(1.0, 2.2)
- }
-
- /// Converts `Rgbe8Pixel` into `Rgb<T>` using provided scale and gamma
- ///
- /// color_ldr = (color_hdr*scale)<sup>gamma</sup>
- ///
- /// # Panic
- ///
- /// Panics when `T::max_value()` cannot be represented as f32.
- /// Panics when scale or gamma is NaN
- #[inline]
- pub fn to_ldr_scale_gamma<T: Primitive + Zero>(self, scale: f32, gamma: f32) -> Rgb<T> {
- let Rgb(data) = self.to_hdr();
- let (r, g, b) = (data[0], data[1], data[2]);
- #[inline]
- fn sg<T: Primitive + Zero>(v: f32, scale: f32, gamma: f32) -> T {
- let t_max = T::max_value();
- // Disassembly shows that t_max_f32 is compiled into constant
- let t_max_f32: f32 = num_traits::NumCast::from(t_max)
- .expect("to_ldr_scale_gamma: maximum value of type is not representable as f32");
- let fv = f32::powf(v * scale, gamma) * t_max_f32 + 0.5;
- if fv < 0.0 {
- T::zero()
- } else if fv > t_max_f32 {
- t_max
- } else {
- num_traits::NumCast::from(fv)
- .expect("to_ldr_scale_gamma: cannot convert f32 to target type. NaN?")
- }
- }
- Rgb([
- sg(r, scale, gamma),
- sg(g, scale, gamma),
- sg(b, scale, gamma),
- ])
- }
-}
-
-impl<R: BufRead> HdrDecoder<R> {
- /// Reads Radiance HDR image header from stream `r`
- /// if the header is valid, creates HdrDecoder
- /// strict mode is enabled
- pub fn new(reader: R) -> ImageResult<HdrDecoder<R>> {
- HdrDecoder::with_strictness(reader, true)
- }
-
- /// Reads Radiance HDR image header from stream `reader`,
- /// if the header is valid, creates `HdrDecoder`.
- ///
- /// strict enables strict mode
- ///
- /// Warning! Reading wrong file in non-strict mode
- /// could consume file size worth of memory in the process.
- pub fn with_strictness(mut reader: R, strict: bool) -> ImageResult<HdrDecoder<R>> {
- let mut attributes = HdrMetadata::new();
-
- {
- // scope to make borrowck happy
- let r = &mut reader;
- if strict {
- let mut signature = [0; SIGNATURE_LENGTH];
- r.read_exact(&mut signature)?;
- if signature != SIGNATURE {
- return Err(DecoderError::RadianceHdrSignatureInvalid.into());
- } // no else
- // skip signature line ending
- read_line_u8(r)?;
- } else {
- // Old Radiance HDR files (*.pic) don't use signature
- // Let them be parsed in non-strict mode
- }
- // read header data until empty line
- loop {
- match read_line_u8(r)? {
- None => {
- // EOF before end of header
- return Err(DecoderError::TruncatedHeader.into());
- }
- Some(line) => {
- if line.is_empty() {
- // end of header
- break;
- } else if line[0] == b'#' {
- // line[0] will not panic, line.len() == 0 is false here
- // skip comments
- continue;
- } // no else
- // process attribute line
- let line = String::from_utf8_lossy(&line[..]);
- attributes.update_header_info(&line, strict)?;
- } // <= Some(line)
- } // match read_line_u8()
- } // loop
- } // scope to end borrow of reader
- // parse dimensions
- let (width, height) = match read_line_u8(&mut reader)? {
- None => {
- // EOF instead of image dimensions
- return Err(DecoderError::TruncatedDimensions.into());
- }
- Some(dimensions) => {
- let dimensions = String::from_utf8_lossy(&dimensions[..]);
- parse_dimensions_line(&dimensions, strict)?
- }
- };
-
- // color type is always rgb8
- if crate::utils::check_dimension_overflow(width, height, ColorType::Rgb8.bytes_per_pixel())
- {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Hdr.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}x{}) are too large",
- width, height
- )),
- ),
- ));
- }
-
- Ok(HdrDecoder {
- r: reader,
-
- width,
- height,
- meta: HdrMetadata {
- width,
- height,
- ..attributes
- },
- })
- } // end with_strictness
-
- /// Returns file metadata. Refer to `HdrMetadata` for details.
- pub fn metadata(&self) -> HdrMetadata {
- self.meta.clone()
- }
-
- /// Consumes decoder and returns a vector of RGBE8 pixels
- pub fn read_image_native(mut self) -> ImageResult<Vec<Rgbe8Pixel>> {
- // Don't read anything if image is empty
- if self.width == 0 || self.height == 0 {
- return Ok(vec![]);
- }
- // expression self.width > 0 && self.height > 0 is true from now to the end of this method
- let pixel_count = self.width as usize * self.height as usize;
- let mut ret = vec![Default::default(); pixel_count];
- for chunk in ret.chunks_mut(self.width as usize) {
- read_scanline(&mut self.r, chunk)?;
- }
- Ok(ret)
- }
-
- /// Consumes decoder and returns a vector of transformed pixels
- pub fn read_image_transform<T: Send, F: Send + Sync + Fn(Rgbe8Pixel) -> T>(
- mut self,
- f: F,
- output_slice: &mut [T],
- ) -> ImageResult<()> {
- assert_eq!(
- output_slice.len(),
- self.width as usize * self.height as usize
- );
-
- // Don't read anything if image is empty
- if self.width == 0 || self.height == 0 {
- return Ok(());
- }
-
- let chunks_iter = output_slice.chunks_mut(self.width as usize);
-
- let mut buf = vec![Default::default(); self.width as usize];
- for chunk in chunks_iter {
- // read_scanline overwrites the entire buffer or returns an Err,
- // so not resetting the buffer here is ok.
- read_scanline(&mut self.r, &mut buf[..])?;
- for (dst, &pix) in chunk.iter_mut().zip(buf.iter()) {
- *dst = f(pix);
- }
- }
- Ok(())
- }
-
- /// Consumes decoder and returns a vector of `Rgb<u8>` pixels.
- /// scale = 1, gamma = 2.2
- pub fn read_image_ldr(self) -> ImageResult<Vec<Rgb<u8>>> {
- let mut ret = vec![Rgb([0, 0, 0]); self.width as usize * self.height as usize];
- self.read_image_transform(|pix| pix.to_ldr(), &mut ret[..])?;
- Ok(ret)
- }
-
- /// Consumes decoder and returns a vector of `Rgb<f32>` pixels.
- ///
- pub fn read_image_hdr(self) -> ImageResult<Vec<Rgb<f32>>> {
- let mut ret = vec![Rgb([0.0, 0.0, 0.0]); self.width as usize * self.height as usize];
- self.read_image_transform(|pix| pix.to_hdr(), &mut ret[..])?;
- Ok(ret)
- }
-}
-
-impl<R: Read> IntoIterator for HdrDecoder<R> {
- type Item = ImageResult<Rgbe8Pixel>;
- type IntoIter = HdrImageDecoderIterator<R>;
-
- fn into_iter(self) -> Self::IntoIter {
- HdrImageDecoderIterator {
- r: self.r,
- scanline_cnt: self.height as usize,
- buf: vec![Default::default(); self.width as usize],
- col: 0,
- scanline: 0,
- trouble: true, // make first call to `next()` read scanline
- error_encountered: false,
- }
- }
-}
-
-/// Scanline buffered pixel by pixel iterator
-pub struct HdrImageDecoderIterator<R: Read> {
- r: R,
- scanline_cnt: usize,
- buf: Vec<Rgbe8Pixel>, // scanline buffer
- col: usize, // current position in scanline
- scanline: usize, // current scanline
- trouble: bool, // optimization, true indicates that we need to check something
- error_encountered: bool,
-}
-
-impl<R: Read> HdrImageDecoderIterator<R> {
- // Advances counter to the next pixel
- #[inline]
- fn advance(&mut self) {
- self.col += 1;
- if self.col == self.buf.len() {
- self.col = 0;
- self.scanline += 1;
- self.trouble = true;
- }
- }
-}
-
-impl<R: Read> Iterator for HdrImageDecoderIterator<R> {
- type Item = ImageResult<Rgbe8Pixel>;
-
- fn next(&mut self) -> Option<Self::Item> {
- if !self.trouble {
- let ret = self.buf[self.col];
- self.advance();
- Some(Ok(ret))
- } else {
- // some condition is pending
- if self.buf.is_empty() || self.scanline == self.scanline_cnt {
- // No more pixels
- return None;
- } // no else
- if self.error_encountered {
- self.advance();
- // Error was encountered. Keep producing errors.
- // ImageError can't implement Clone, so just dump some error
- return Some(Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::FailedAlready,
- ))));
- } // no else
- if self.col == 0 {
- // fill scanline buffer
- match read_scanline(&mut self.r, &mut self.buf[..]) {
- Ok(_) => {
- // no action required
- }
- Err(err) => {
- self.advance();
- self.error_encountered = true;
- self.trouble = true;
- return Some(Err(err));
- }
- }
- } // no else
- self.trouble = false;
- let ret = self.buf[0];
- self.advance();
- Some(Ok(ret))
- }
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- let total_cnt = self.buf.len() * self.scanline_cnt;
- let cur_cnt = self.buf.len() * self.scanline + self.col;
- let remaining = total_cnt - cur_cnt;
- (remaining, Some(remaining))
- }
-}
-
-impl<R: Read> ExactSizeIterator for HdrImageDecoderIterator<R> {}
-
-// Precondition: buf.len() > 0
-fn read_scanline<R: Read>(r: &mut R, buf: &mut [Rgbe8Pixel]) -> ImageResult<()> {
- assert!(!buf.is_empty());
- let width = buf.len();
- // first 4 bytes in scanline allow to determine compression method
- let fb = read_rgbe(r)?;
- if fb.c[0] == 2 && fb.c[1] == 2 && fb.c[2] < 128 {
- // denormalized pixel value (2,2,<128,_) indicates new per component RLE method
- // decode_component guarantees that offset is within 0 .. width
- // therefore we can skip bounds checking here, but we will not
- decode_component(r, width, |offset, value| buf[offset].c[0] = value)?;
- decode_component(r, width, |offset, value| buf[offset].c[1] = value)?;
- decode_component(r, width, |offset, value| buf[offset].c[2] = value)?;
- decode_component(r, width, |offset, value| buf[offset].e = value)?;
- } else {
- // old RLE method (it was considered old around 1991, should it be here?)
- decode_old_rle(r, fb, buf)?;
- }
- Ok(())
-}
-
-#[inline(always)]
-fn read_byte<R: Read>(r: &mut R) -> io::Result<u8> {
- let mut buf = [0u8];
- r.read_exact(&mut buf[..])?;
- Ok(buf[0])
-}
-
-// Guarantees that first parameter of set_component will be within pos .. pos+width
-#[inline]
-fn decode_component<R: Read, S: FnMut(usize, u8)>(
- r: &mut R,
- width: usize,
- mut set_component: S,
-) -> ImageResult<()> {
- let mut buf = [0; 128];
- let mut pos = 0;
- while pos < width {
- // increment position by a number of decompressed values
- pos += {
- let rl = read_byte(r)?;
- if rl <= 128 {
- // sanity check
- if pos + rl as usize > width {
- return Err(DecoderError::WrongScanlineLength(pos + rl as usize, width).into());
- }
- // read values
- r.read_exact(&mut buf[0..rl as usize])?;
- for (offset, &value) in buf[0..rl as usize].iter().enumerate() {
- set_component(pos + offset, value);
- }
- rl as usize
- } else {
- // run
- let rl = rl - 128;
- // sanity check
- if pos + rl as usize > width {
- return Err(DecoderError::WrongScanlineLength(pos + rl as usize, width).into());
- }
- // fill with same value
- let value = read_byte(r)?;
- for offset in 0..rl as usize {
- set_component(pos + offset, value);
- }
- rl as usize
- }
- };
- }
- if pos != width {
- return Err(DecoderError::WrongScanlineLength(pos, width).into());
- }
- Ok(())
-}
-
-// Decodes scanline, places it into buf
-// Precondition: buf.len() > 0
-// fb - first 4 bytes of scanline
-fn decode_old_rle<R: Read>(r: &mut R, fb: Rgbe8Pixel, buf: &mut [Rgbe8Pixel]) -> ImageResult<()> {
- assert!(!buf.is_empty());
- let width = buf.len();
- // convenience function.
- // returns run length if pixel is a run length marker
- #[inline]
- fn rl_marker(pix: Rgbe8Pixel) -> Option<usize> {
- if pix.c == [1, 1, 1] {
- Some(pix.e as usize)
- } else {
- None
- }
- }
- // first pixel in scanline should not be run length marker
- // it is error if it is
- if rl_marker(fb).is_some() {
- return Err(DecoderError::FirstPixelRlMarker.into());
- }
- buf[0] = fb; // set first pixel of scanline
-
- let mut x_off = 1; // current offset from beginning of a scanline
- let mut rl_mult = 1; // current run length multiplier
- let mut prev_pixel = fb;
- while x_off < width {
- let pix = read_rgbe(r)?;
- // it's harder to forget to increase x_off if I write this this way.
- x_off += {
- if let Some(rl) = rl_marker(pix) {
- // rl_mult takes care of consecutive RL markers
- let rl = rl * rl_mult;
- rl_mult *= 256;
- if x_off + rl <= width {
- // do run
- for b in &mut buf[x_off..x_off + rl] {
- *b = prev_pixel;
- }
- } else {
- return Err(DecoderError::WrongScanlineLength(x_off + rl, width).into());
- };
- rl // value to increase x_off by
- } else {
- rl_mult = 1; // chain of consecutive RL markers is broken
- prev_pixel = pix;
- buf[x_off] = pix;
- 1 // value to increase x_off by
- }
- };
- }
- if x_off != width {
- return Err(DecoderError::WrongScanlineLength(x_off, width).into());
- }
- Ok(())
-}
-
-fn read_rgbe<R: Read>(r: &mut R) -> io::Result<Rgbe8Pixel> {
- let mut buf = [0u8; 4];
- r.read_exact(&mut buf[..])?;
- Ok(Rgbe8Pixel {
- c: [buf[0], buf[1], buf[2]],
- e: buf[3],
- })
-}
-
-/// Metadata for Radiance HDR image
-#[derive(Debug, Clone)]
-pub struct HdrMetadata {
- /// Width of decoded image. It could be either scanline length,
- /// or scanline count, depending on image orientation.
- pub width: u32,
- /// Height of decoded image. It depends on orientation too.
- pub height: u32,
- /// Orientation matrix. For standard orientation it is ((1,0),(0,1)) - left to right, top to bottom.
- /// First pair tells how resulting pixel coordinates change along a scanline.
- /// Second pair tells how they change from one scanline to the next.
- pub orientation: ((i8, i8), (i8, i8)),
- /// Divide color values by exposure to get to get physical radiance in
- /// watts/steradian/m<sup>2</sup>
- ///
- /// Image may not contain physical data, even if this field is set.
- pub exposure: Option<f32>,
- /// Divide color values by corresponding tuple member (r, g, b) to get to get physical radiance
- /// in watts/steradian/m<sup>2</sup>
- ///
- /// Image may not contain physical data, even if this field is set.
- pub color_correction: Option<(f32, f32, f32)>,
- /// Pixel height divided by pixel width
- pub pixel_aspect_ratio: Option<f32>,
- /// All lines contained in image header are put here. Ordering of lines is preserved.
- /// Lines in the form "key=value" are represented as ("key", "value").
- /// All other lines are ("", "line")
- pub custom_attributes: Vec<(String, String)>,
-}
-
-impl HdrMetadata {
- fn new() -> HdrMetadata {
- HdrMetadata {
- width: 0,
- height: 0,
- orientation: ((1, 0), (0, 1)),
- exposure: None,
- color_correction: None,
- pixel_aspect_ratio: None,
- custom_attributes: vec![],
- }
- }
-
- // Updates header info, in strict mode returns error for malformed lines (no '=' separator)
- // unknown attributes are skipped
- fn update_header_info(&mut self, line: &str, strict: bool) -> ImageResult<()> {
- // split line at first '='
- // old Radiance HDR files (*.pic) feature tabs in key, so vvv trim
- let maybe_key_value = split_at_first(line, "=").map(|(key, value)| (key.trim(), value));
- // save all header lines in custom_attributes
- match maybe_key_value {
- Some((key, val)) => self
- .custom_attributes
- .push((key.to_owned(), val.to_owned())),
- None => self.custom_attributes.push(("".into(), line.to_owned())),
- }
- // parse known attributes
- match maybe_key_value {
- Some(("FORMAT", val)) => {
- if val.trim() != "32-bit_rle_rgbe" {
- // XYZE isn't supported yet
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Hdr.into(),
- UnsupportedErrorKind::Format(ImageFormatHint::Name(limit_string_len(
- val, 20,
- ))),
- ),
- ));
- }
- }
- Some(("EXPOSURE", val)) => {
- match val.trim().parse::<f32>() {
- Ok(v) => {
- self.exposure = Some(self.exposure.unwrap_or(1.0) * v); // all encountered exposure values should be multiplied
- }
- Err(parse_error) => {
- if strict {
- return Err(DecoderError::UnparsableF32(
- LineType::Exposure,
- parse_error,
- )
- .into());
- } // no else, skip this line in non-strict mode
- }
- };
- }
- Some(("PIXASPECT", val)) => {
- match val.trim().parse::<f32>() {
- Ok(v) => {
- self.pixel_aspect_ratio = Some(self.pixel_aspect_ratio.unwrap_or(1.0) * v);
- // all encountered exposure values should be multiplied
- }
- Err(parse_error) => {
- if strict {
- return Err(DecoderError::UnparsableF32(
- LineType::Pixaspect,
- parse_error,
- )
- .into());
- } // no else, skip this line in non-strict mode
- }
- };
- }
- Some(("COLORCORR", val)) => {
- let mut rgbcorr = [1.0, 1.0, 1.0];
- match parse_space_separated_f32(val, &mut rgbcorr, LineType::Colorcorr) {
- Ok(extra_numbers) => {
- if strict && extra_numbers {
- return Err(DecoderError::ExtraneousColorcorrNumbers.into());
- } // no else, just ignore extra numbers
- let (rc, gc, bc) = self.color_correction.unwrap_or((1.0, 1.0, 1.0));
- self.color_correction =
- Some((rc * rgbcorr[0], gc * rgbcorr[1], bc * rgbcorr[2]));
- }
- Err(err) => {
- if strict {
- return Err(err);
- } // no else, skip malformed line in non-strict mode
- }
- }
- }
- None => {
- // old Radiance HDR files (*.pic) contain commands in a header
- // just skip them
- }
- _ => {
- // skip unknown attribute
- }
- } // match attributes
- Ok(())
- }
-}
-
-fn parse_space_separated_f32(line: &str, vals: &mut [f32], line_tp: LineType) -> ImageResult<bool> {
- let mut nums = line.split_whitespace();
- for val in vals.iter_mut() {
- if let Some(num) = nums.next() {
- match num.parse::<f32>() {
- Ok(v) => *val = v,
- Err(err) => return Err(DecoderError::UnparsableF32(line_tp, err).into()),
- }
- } else {
- // not enough numbers in line
- return Err(DecoderError::LineTooShort(line_tp).into());
- }
- }
- Ok(nums.next().is_some())
-}
-
-// Parses dimension line "-Y height +X width"
-// returns (width, height) or error
-fn parse_dimensions_line(line: &str, strict: bool) -> ImageResult<(u32, u32)> {
- const DIMENSIONS_COUNT: usize = 4;
-
- let mut dim_parts = line.split_whitespace();
- let c1_tag = dim_parts
- .next()
- .ok_or(DecoderError::DimensionsLineTooShort(0, DIMENSIONS_COUNT))?;
- let c1_str = dim_parts
- .next()
- .ok_or(DecoderError::DimensionsLineTooShort(1, DIMENSIONS_COUNT))?;
- let c2_tag = dim_parts
- .next()
- .ok_or(DecoderError::DimensionsLineTooShort(2, DIMENSIONS_COUNT))?;
- let c2_str = dim_parts
- .next()
- .ok_or(DecoderError::DimensionsLineTooShort(3, DIMENSIONS_COUNT))?;
- if strict && dim_parts.next().is_some() {
- // extra data in dimensions line
- return Err(DecoderError::DimensionsLineTooLong(DIMENSIONS_COUNT).into());
- } // no else
- // dimensions line is in the form "-Y 10 +X 20"
- // There are 8 possible orientations: +Y +X, +X -Y and so on
- match (c1_tag, c2_tag) {
- ("-Y", "+X") => {
- // Common orientation (left-right, top-down)
- // c1_str is height, c2_str is width
- let height = c1_str
- .parse::<u32>()
- .map_err(|pe| DecoderError::UnparsableU32(LineType::DimensionsHeight, pe))?;
- let width = c2_str
- .parse::<u32>()
- .map_err(|pe| DecoderError::UnparsableU32(LineType::DimensionsWidth, pe))?;
- Ok((width, height))
- }
- _ => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Hdr.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Orientation {} {}",
- limit_string_len(c1_tag, 4),
- limit_string_len(c2_tag, 4)
- )),
- ),
- )),
- } // final expression. Returns value
-}
-
-// Returns string with no more than len+3 characters
-fn limit_string_len(s: &str, len: usize) -> String {
- let s_char_len = s.chars().count();
- if s_char_len > len {
- s.chars().take(len).chain("...".chars()).collect()
- } else {
- s.into()
- }
-}
-
-// Splits string into (before separator, after separator) tuple
-// or None if separator isn't found
-fn split_at_first<'a>(s: &'a str, separator: &str) -> Option<(&'a str, &'a str)> {
- match s.find(separator) {
- None | Some(0) => None,
- Some(p) if p >= s.len() - separator.len() => None,
- Some(p) => Some((&s[..p], &s[(p + separator.len())..])),
- }
-}
-
-#[test]
-fn split_at_first_test() {
- assert_eq!(split_at_first(&Cow::Owned("".into()), "="), None);
- assert_eq!(split_at_first(&Cow::Owned("=".into()), "="), None);
- assert_eq!(split_at_first(&Cow::Owned("= ".into()), "="), None);
- assert_eq!(
- split_at_first(&Cow::Owned(" = ".into()), "="),
- Some((" ", " "))
- );
- assert_eq!(
- split_at_first(&Cow::Owned("EXPOSURE= ".into()), "="),
- Some(("EXPOSURE", " "))
- );
- assert_eq!(
- split_at_first(&Cow::Owned("EXPOSURE= =".into()), "="),
- Some(("EXPOSURE", " ="))
- );
- assert_eq!(
- split_at_first(&Cow::Owned("EXPOSURE== =".into()), "=="),
- Some(("EXPOSURE", " ="))
- );
- assert_eq!(split_at_first(&Cow::Owned("EXPOSURE".into()), ""), None);
-}
-
-// Reads input until b"\n" or EOF
-// Returns vector of read bytes NOT including end of line characters
-// or return None to indicate end of file
-fn read_line_u8<R: BufRead>(r: &mut R) -> ::std::io::Result<Option<Vec<u8>>> {
- let mut ret = Vec::with_capacity(16);
- match r.read_until(b'\n', &mut ret) {
- Ok(0) => Ok(None),
- Ok(_) => {
- if let Some(&b'\n') = ret[..].last() {
- let _ = ret.pop();
- }
- Ok(Some(ret))
- }
- Err(err) => Err(err),
- }
-}
-
-#[test]
-fn read_line_u8_test() {
- let buf: Vec<_> = (&b"One\nTwo\nThree\nFour\n\n\n"[..]).into();
- let input = &mut ::std::io::Cursor::new(buf);
- assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"One"[..]);
- assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"Two"[..]);
- assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"Three"[..]);
- assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"Four"[..]);
- assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b""[..]);
- assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b""[..]);
- assert_eq!(read_line_u8(input).unwrap(), None);
-}
-
-/// Helper function for reading raw 3-channel f32 images
-pub fn read_raw_file<P: AsRef<Path>>(path: P) -> ::std::io::Result<Vec<Rgb<f32>>> {
- use byteorder::{LittleEndian as LE, ReadBytesExt};
- use std::fs::File;
- use std::io::BufReader;
-
- let mut r = BufReader::new(File::open(path)?);
- let w = r.read_u32::<LE>()? as usize;
- let h = r.read_u32::<LE>()? as usize;
- let c = r.read_u32::<LE>()? as usize;
- assert_eq!(c, 3);
- let cnt = w * h;
- let mut ret = Vec::with_capacity(cnt);
- for _ in 0..cnt {
- let cr = r.read_f32::<LE>()?;
- let cg = r.read_f32::<LE>()?;
- let cb = r.read_f32::<LE>()?;
- ret.push(Rgb([cr, cg, cb]));
- }
- Ok(ret)
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
- use std::io::Cursor;
-
- #[test]
- fn dimension_overflow() {
- let data = b"#?RADIANCE\nFORMAT=32-bit_rle_rgbe\n\n -Y 4294967295 +X 4294967295";
-
- assert!(HdrAdapter::new(Cursor::new(data)).is_err());
- assert!(HdrAdapter::new_nonstrict(Cursor::new(data)).is_err());
- }
-}
diff --git a/vendor/image/src/codecs/hdr/encoder.rs b/vendor/image/src/codecs/hdr/encoder.rs
deleted file mode 100644
index c3a176d..0000000
--- a/vendor/image/src/codecs/hdr/encoder.rs
+++ /dev/null
@@ -1,433 +0,0 @@
-use crate::codecs::hdr::{rgbe8, Rgbe8Pixel, SIGNATURE};
-use crate::color::Rgb;
-use crate::error::ImageResult;
-use std::cmp::Ordering;
-use std::io::{Result, Write};
-
-/// Radiance HDR encoder
-pub struct HdrEncoder<W: Write> {
- w: W,
-}
-
-impl<W: Write> HdrEncoder<W> {
- /// Creates encoder
- pub fn new(w: W) -> HdrEncoder<W> {
- HdrEncoder { w }
- }
-
- /// Encodes the image ```data```
- /// that has dimensions ```width``` and ```height```
- pub fn encode(mut self, data: &[Rgb<f32>], width: usize, height: usize) -> ImageResult<()> {
- assert!(data.len() >= width * height);
- let w = &mut self.w;
- w.write_all(SIGNATURE)?;
- w.write_all(b"\n")?;
- w.write_all(b"# Rust HDR encoder\n")?;
- w.write_all(b"FORMAT=32-bit_rle_rgbe\n\n")?;
- w.write_all(format!("-Y {} +X {}\n", height, width).as_bytes())?;
-
- if !(8..=32_768).contains(&width) {
- for &pix in data {
- write_rgbe8(w, to_rgbe8(pix))?;
- }
- } else {
- // new RLE marker contains scanline width
- let marker = rgbe8(2, 2, (width / 256) as u8, (width % 256) as u8);
- // buffers for encoded pixels
- let mut bufr = vec![0; width];
- let mut bufg = vec![0; width];
- let mut bufb = vec![0; width];
- let mut bufe = vec![0; width];
- let mut rle_buf = vec![0; width];
- for scanline in data.chunks(width) {
- for ((((r, g), b), e), &pix) in bufr
- .iter_mut()
- .zip(bufg.iter_mut())
- .zip(bufb.iter_mut())
- .zip(bufe.iter_mut())
- .zip(scanline.iter())
- {
- let cp = to_rgbe8(pix);
- *r = cp.c[0];
- *g = cp.c[1];
- *b = cp.c[2];
- *e = cp.e;
- }
- write_rgbe8(w, marker)?; // New RLE encoding marker
- rle_buf.clear();
- rle_compress(&bufr[..], &mut rle_buf);
- w.write_all(&rle_buf[..])?;
- rle_buf.clear();
- rle_compress(&bufg[..], &mut rle_buf);
- w.write_all(&rle_buf[..])?;
- rle_buf.clear();
- rle_compress(&bufb[..], &mut rle_buf);
- w.write_all(&rle_buf[..])?;
- rle_buf.clear();
- rle_compress(&bufe[..], &mut rle_buf);
- w.write_all(&rle_buf[..])?;
- }
- }
- Ok(())
- }
-}
-
-#[derive(Debug, PartialEq, Eq)]
-enum RunOrNot {
- Run(u8, usize),
- Norun(usize, usize),
-}
-use self::RunOrNot::{Norun, Run};
-
-const RUN_MAX_LEN: usize = 127;
-const NORUN_MAX_LEN: usize = 128;
-
-struct RunIterator<'a> {
- data: &'a [u8],
- curidx: usize,
-}
-
-impl<'a> RunIterator<'a> {
- fn new(data: &'a [u8]) -> RunIterator<'a> {
- RunIterator { data, curidx: 0 }
- }
-}
-
-impl<'a> Iterator for RunIterator<'a> {
- type Item = RunOrNot;
-
- fn next(&mut self) -> Option<Self::Item> {
- if self.curidx == self.data.len() {
- None
- } else {
- let cv = self.data[self.curidx];
- let crun = self.data[self.curidx..]
- .iter()
- .take_while(|&&v| v == cv)
- .take(RUN_MAX_LEN)
- .count();
- let ret = if crun > 2 {
- Run(cv, crun)
- } else {
- Norun(self.curidx, crun)
- };
- self.curidx += crun;
- Some(ret)
- }
- }
-}
-
-struct NorunCombineIterator<'a> {
- runiter: RunIterator<'a>,
- prev: Option<RunOrNot>,
-}
-
-impl<'a> NorunCombineIterator<'a> {
- fn new(data: &'a [u8]) -> NorunCombineIterator<'a> {
- NorunCombineIterator {
- runiter: RunIterator::new(data),
- prev: None,
- }
- }
-}
-
-// Combines sequential noruns produced by RunIterator
-impl<'a> Iterator for NorunCombineIterator<'a> {
- type Item = RunOrNot;
- fn next(&mut self) -> Option<Self::Item> {
- loop {
- match self.prev.take() {
- Some(Run(c, len)) => {
- // Just return stored run
- return Some(Run(c, len));
- }
- Some(Norun(idx, len)) => {
- // Let's see if we need to continue norun
- match self.runiter.next() {
- Some(Norun(_, len1)) => {
- // norun continues
- let clen = len + len1; // combined length
- match clen.cmp(&NORUN_MAX_LEN) {
- Ordering::Equal => return Some(Norun(idx, clen)),
- Ordering::Greater => {
- // combined norun exceeds maximum length. store extra part of norun
- self.prev =
- Some(Norun(idx + NORUN_MAX_LEN, clen - NORUN_MAX_LEN));
- // then return maximal norun
- return Some(Norun(idx, NORUN_MAX_LEN));
- }
- Ordering::Less => {
- // len + len1 < NORUN_MAX_LEN
- self.prev = Some(Norun(idx, len + len1));
- // combine and continue loop
- }
- }
- }
- Some(Run(c, len1)) => {
- // Run encountered. Store it
- self.prev = Some(Run(c, len1));
- return Some(Norun(idx, len)); // and return combined norun
- }
- None => {
- // End of sequence
- return Some(Norun(idx, len)); // return combined norun
- }
- }
- } // End match self.prev.take() == Some(NoRun())
- None => {
- // No norun to combine
- match self.runiter.next() {
- Some(Norun(idx, len)) => {
- self.prev = Some(Norun(idx, len));
- // store for combine and continue the loop
- }
- Some(Run(c, len)) => {
- // Some run. Just return it
- return Some(Run(c, len));
- }
- None => {
- // That's all, folks
- return None;
- }
- }
- } // End match self.prev.take() == None
- } // End match
- } // End loop
- }
-}
-
-// Appends RLE compressed ```data``` to ```rle```
-fn rle_compress(data: &[u8], rle: &mut Vec<u8>) {
- rle.clear();
- if data.is_empty() {
- rle.push(0); // Technically correct. It means read next 0 bytes.
- return;
- }
- // Task: split data into chunks of repeating (max 127) and non-repeating bytes (max 128)
- // Prepend non-repeating chunk with its length
- // Replace repeating byte with (run length + 128) and the byte
- for rnr in NorunCombineIterator::new(data) {
- match rnr {
- Run(c, len) => {
- assert!(len <= 127);
- rle.push(128u8 + len as u8);
- rle.push(c);
- }
- Norun(idx, len) => {
- assert!(len <= 128);
- rle.push(len as u8);
- rle.extend_from_slice(&data[idx..idx + len]);
- }
- }
- }
-}
-
-fn write_rgbe8<W: Write>(w: &mut W, v: Rgbe8Pixel) -> Result<()> {
- w.write_all(&[v.c[0], v.c[1], v.c[2], v.e])
-}
-
-/// Converts ```Rgb<f32>``` into ```Rgbe8Pixel```
-pub fn to_rgbe8(pix: Rgb<f32>) -> Rgbe8Pixel {
- let pix = pix.0;
- let mx = f32::max(pix[0], f32::max(pix[1], pix[2]));
- if mx <= 0.0 {
- Rgbe8Pixel { c: [0, 0, 0], e: 0 }
- } else {
- // let (frac, exp) = mx.frexp(); // unstable yet
- let exp = mx.log2().floor() as i32 + 1;
- let mul = f32::powi(2.0, exp);
- let mut conv = [0u8; 3];
- for (cv, &sv) in conv.iter_mut().zip(pix.iter()) {
- *cv = f32::trunc(sv / mul * 256.0) as u8;
- }
- Rgbe8Pixel {
- c: conv,
- e: (exp + 128) as u8,
- }
- }
-}
-
-#[test]
-fn to_rgbe8_test() {
- use crate::codecs::hdr::rgbe8;
- let test_cases = vec![rgbe8(0, 0, 0, 0), rgbe8(1, 1, 128, 128)];
- for &pix in &test_cases {
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- }
- for mc in 128..255 {
- // TODO: use inclusive range when stable
- let pix = rgbe8(mc, mc, mc, 100);
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- let pix = rgbe8(mc, 0, mc, 130);
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- let pix = rgbe8(0, 0, mc, 140);
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- let pix = rgbe8(1, 0, mc, 150);
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- let pix = rgbe8(1, mc, 10, 128);
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- for c in 0..255 {
- // Radiance HDR seems to be pre IEEE 754.
- // exponent can be -128 (represented as 0u8), so some colors cannot be represented in normalized f32
- // Let's exclude exponent value of -128 (0u8) from testing
- let pix = rgbe8(1, mc, c, if c == 0 { 1 } else { c });
- assert_eq!(pix, to_rgbe8(pix.to_hdr()));
- }
- }
- fn relative_dist(a: Rgb<f32>, b: Rgb<f32>) -> f32 {
- // maximal difference divided by maximal value
- let max_diff =
- a.0.iter()
- .zip(b.0.iter())
- .fold(0.0, |diff, (&a, &b)| f32::max(diff, (a - b).abs()));
- let max_val =
- a.0.iter()
- .chain(b.0.iter())
- .fold(0.0, |maxv, &a| f32::max(maxv, a));
- if max_val == 0.0 {
- 0.0
- } else {
- max_diff / max_val
- }
- }
- let test_values = vec![
- 0.000_001, 0.000_02, 0.000_3, 0.004, 0.05, 0.6, 7.0, 80.0, 900.0, 1_000.0, 20_000.0,
- 300_000.0,
- ];
- for &r in &test_values {
- for &g in &test_values {
- for &b in &test_values {
- let c1 = Rgb([r, g, b]);
- let c2 = to_rgbe8(c1).to_hdr();
- let rel_dist = relative_dist(c1, c2);
- // Maximal value is normalized to the range 128..256, thus we have 1/128 precision
- assert!(
- rel_dist <= 1.0 / 128.0,
- "Relative distance ({}) exceeds 1/128 for {:?} and {:?}",
- rel_dist,
- c1,
- c2
- );
- }
- }
- }
-}
-
-#[test]
-fn runiterator_test() {
- let data = [];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), None);
- let data = [5];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Norun(0, 1)));
- assert_eq!(run_iter.next(), None);
- let data = [1, 1];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Norun(0, 2)));
- assert_eq!(run_iter.next(), None);
- let data = [0, 0, 0];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Run(0u8, 3)));
- assert_eq!(run_iter.next(), None);
- let data = [0, 0, 1, 1];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Norun(0, 2)));
- assert_eq!(run_iter.next(), Some(Norun(2, 2)));
- assert_eq!(run_iter.next(), None);
- let data = [0, 0, 0, 1, 1];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Run(0u8, 3)));
- assert_eq!(run_iter.next(), Some(Norun(3, 2)));
- assert_eq!(run_iter.next(), None);
- let data = [1, 2, 2, 2];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Norun(0, 1)));
- assert_eq!(run_iter.next(), Some(Run(2u8, 3)));
- assert_eq!(run_iter.next(), None);
- let data = [1, 1, 2, 2, 2];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Norun(0, 2)));
- assert_eq!(run_iter.next(), Some(Run(2u8, 3)));
- assert_eq!(run_iter.next(), None);
- let data = [2; 128];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Run(2u8, 127)));
- assert_eq!(run_iter.next(), Some(Norun(127, 1)));
- assert_eq!(run_iter.next(), None);
- let data = [2; 129];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Run(2u8, 127)));
- assert_eq!(run_iter.next(), Some(Norun(127, 2)));
- assert_eq!(run_iter.next(), None);
- let data = [2; 130];
- let mut run_iter = RunIterator::new(&data[..]);
- assert_eq!(run_iter.next(), Some(Run(2u8, 127)));
- assert_eq!(run_iter.next(), Some(Run(2u8, 3)));
- assert_eq!(run_iter.next(), None);
-}
-
-#[test]
-fn noruncombine_test() {
- fn a<T>(mut v: Vec<T>, mut other: Vec<T>) -> Vec<T> {
- v.append(&mut other);
- v
- }
-
- let v = vec![];
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), None);
-
- let v = vec![1];
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Norun(0, 1)));
- assert_eq!(rsi.next(), None);
-
- let v = vec![2, 2];
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Norun(0, 2)));
- assert_eq!(rsi.next(), None);
-
- let v = vec![3, 3, 3];
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Run(3, 3)));
- assert_eq!(rsi.next(), None);
-
- let v = vec![4, 4, 3, 3, 3];
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Norun(0, 2)));
- assert_eq!(rsi.next(), Some(Run(3, 3)));
- assert_eq!(rsi.next(), None);
-
- let v = vec![40; 400];
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Run(40, 127)));
- assert_eq!(rsi.next(), Some(Run(40, 127)));
- assert_eq!(rsi.next(), Some(Run(40, 127)));
- assert_eq!(rsi.next(), Some(Run(40, 19)));
- assert_eq!(rsi.next(), None);
-
- let v = a(a(vec![5; 3], vec![6; 129]), vec![7, 3, 7, 10, 255]);
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Run(5, 3)));
- assert_eq!(rsi.next(), Some(Run(6, 127)));
- assert_eq!(rsi.next(), Some(Norun(130, 7)));
- assert_eq!(rsi.next(), None);
-
- let v = a(a(vec![5; 2], vec![6; 129]), vec![7, 3, 7, 7, 255]);
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Norun(0, 2)));
- assert_eq!(rsi.next(), Some(Run(6, 127)));
- assert_eq!(rsi.next(), Some(Norun(129, 7)));
- assert_eq!(rsi.next(), None);
-
- let v: Vec<_> = ::std::iter::repeat(())
- .flat_map(|_| (0..2))
- .take(257)
- .collect();
- let mut rsi = NorunCombineIterator::new(&v[..]);
- assert_eq!(rsi.next(), Some(Norun(0, 128)));
- assert_eq!(rsi.next(), Some(Norun(128, 128)));
- assert_eq!(rsi.next(), Some(Norun(256, 1)));
- assert_eq!(rsi.next(), None);
-}
diff --git a/vendor/image/src/codecs/hdr/mod.rs b/vendor/image/src/codecs/hdr/mod.rs
deleted file mode 100644
index b3325bc..0000000
--- a/vendor/image/src/codecs/hdr/mod.rs
+++ /dev/null
@@ -1,15 +0,0 @@
-//! Decoding of Radiance HDR Images
-//!
-//! A decoder for Radiance HDR images
-//!
-//! # Related Links
-//!
-//! * <http://radsite.lbl.gov/radiance/refer/filefmts.pdf>
-//! * <http://www.graphics.cornell.edu/~bjw/rgbe/rgbe.c>
-//!
-
-mod decoder;
-mod encoder;
-
-pub use self::decoder::*;
-pub use self::encoder::*;
diff --git a/vendor/image/src/codecs/ico/decoder.rs b/vendor/image/src/codecs/ico/decoder.rs
deleted file mode 100644
index 4f02787..0000000
--- a/vendor/image/src/codecs/ico/decoder.rs
+++ /dev/null
@@ -1,470 +0,0 @@
-use byteorder::{LittleEndian, ReadBytesExt};
-use std::convert::TryFrom;
-use std::io::{self, Cursor, Read, Seek, SeekFrom};
-use std::marker::PhantomData;
-use std::{error, fmt, mem};
-
-use crate::color::ColorType;
-use crate::error::{
- DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{self, ImageDecoder, ImageFormat};
-
-use self::InnerDecoder::*;
-use crate::codecs::bmp::BmpDecoder;
-use crate::codecs::png::{PngDecoder, PNG_SIGNATURE};
-
-/// Errors that can occur during decoding and parsing an ICO image or one of its enclosed images.
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum DecoderError {
- /// The ICO directory is empty
- NoEntries,
- /// The number of color planes (0 or 1), or the horizontal coordinate of the hotspot for CUR files too big.
- IcoEntryTooManyPlanesOrHotspot,
- /// The bit depth (may be 0 meaning unspecified), or the vertical coordinate of the hotspot for CUR files too big.
- IcoEntryTooManyBitsPerPixelOrHotspot,
-
- /// The entry is in PNG format and specified a length that is shorter than PNG header.
- PngShorterThanHeader,
- /// The enclosed PNG is not in RGBA, which is invalid: https://blogs.msdn.microsoft.com/oldnewthing/20101022-00/?p=12473/.
- PngNotRgba,
-
- /// The entry is in BMP format and specified a data size that is not correct for the image and optional mask data.
- InvalidDataSize,
-
- /// The dimensions specified by the entry does not match the dimensions in the header of the enclosed image.
- ImageEntryDimensionMismatch {
- /// The mismatched subimage's type
- format: IcoEntryImageFormat,
- /// The dimensions specified by the entry
- entry: (u16, u16),
- /// The dimensions of the image itself
- image: (u32, u32),
- },
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::NoEntries => f.write_str("ICO directory contains no image"),
- DecoderError::IcoEntryTooManyPlanesOrHotspot => {
- f.write_str("ICO image entry has too many color planes or too large hotspot value")
- }
- DecoderError::IcoEntryTooManyBitsPerPixelOrHotspot => f.write_str(
- "ICO image entry has too many bits per pixel or too large hotspot value",
- ),
- DecoderError::PngShorterThanHeader => {
- f.write_str("Entry specified a length that is shorter than PNG header!")
- }
- DecoderError::PngNotRgba => f.write_str("The PNG is not in RGBA format!"),
- DecoderError::InvalidDataSize => {
- f.write_str("ICO image data size did not match expected size")
- }
- DecoderError::ImageEntryDimensionMismatch {
- format,
- entry,
- image,
- } => f.write_fmt(format_args!(
- "Entry{:?} and {}{:?} dimensions do not match!",
- entry, format, image
- )),
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Ico.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-/// The image formats an ICO may contain
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum IcoEntryImageFormat {
- /// PNG in ARGB
- Png,
- /// BMP with optional alpha mask
- Bmp,
-}
-
-impl fmt::Display for IcoEntryImageFormat {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.write_str(match self {
- IcoEntryImageFormat::Png => "PNG",
- IcoEntryImageFormat::Bmp => "BMP",
- })
- }
-}
-
-impl From<IcoEntryImageFormat> for ImageFormat {
- fn from(val: IcoEntryImageFormat) -> Self {
- match val {
- IcoEntryImageFormat::Png => ImageFormat::Png,
- IcoEntryImageFormat::Bmp => ImageFormat::Bmp,
- }
- }
-}
-
-/// An ico decoder
-pub struct IcoDecoder<R: Read> {
- selected_entry: DirEntry,
- inner_decoder: InnerDecoder<R>,
-}
-
-enum InnerDecoder<R: Read> {
- Bmp(BmpDecoder<R>),
- Png(Box<PngDecoder<R>>),
-}
-
-#[derive(Clone, Copy, Default)]
-struct DirEntry {
- width: u8,
- height: u8,
- // We ignore some header fields as they will be replicated in the PNG, BMP and they are not
- // necessary for determining the best_entry.
- #[allow(unused)]
- color_count: u8,
- // Wikipedia has this to say:
- // Although Microsoft's technical documentation states that this value must be zero, the icon
- // encoder built into .NET (System.Drawing.Icon.Save) sets this value to 255. It appears that
- // the operating system ignores this value altogether.
- #[allow(unused)]
- reserved: u8,
-
- // We ignore some header fields as they will be replicated in the PNG, BMP and they are not
- // necessary for determining the best_entry.
- #[allow(unused)]
- num_color_planes: u16,
- bits_per_pixel: u16,
-
- image_length: u32,
- image_offset: u32,
-}
-
-impl<R: Read + Seek> IcoDecoder<R> {
- /// Create a new decoder that decodes from the stream ```r```
- pub fn new(mut r: R) -> ImageResult<IcoDecoder<R>> {
- let entries = read_entries(&mut r)?;
- let entry = best_entry(entries)?;
- let decoder = entry.decoder(r)?;
-
- Ok(IcoDecoder {
- selected_entry: entry,
- inner_decoder: decoder,
- })
- }
-}
-
-fn read_entries<R: Read>(r: &mut R) -> ImageResult<Vec<DirEntry>> {
- let _reserved = r.read_u16::<LittleEndian>()?;
- let _type = r.read_u16::<LittleEndian>()?;
- let count = r.read_u16::<LittleEndian>()?;
- (0..count).map(|_| read_entry(r)).collect()
-}
-
-fn read_entry<R: Read>(r: &mut R) -> ImageResult<DirEntry> {
- Ok(DirEntry {
- width: r.read_u8()?,
- height: r.read_u8()?,
- color_count: r.read_u8()?,
- reserved: r.read_u8()?,
- num_color_planes: {
- // This may be either the number of color planes (0 or 1), or the horizontal coordinate
- // of the hotspot for CUR files.
- let num = r.read_u16::<LittleEndian>()?;
- if num > 256 {
- return Err(DecoderError::IcoEntryTooManyPlanesOrHotspot.into());
- }
- num
- },
- bits_per_pixel: {
- // This may be either the bit depth (may be 0 meaning unspecified),
- // or the vertical coordinate of the hotspot for CUR files.
- let num = r.read_u16::<LittleEndian>()?;
- if num > 256 {
- return Err(DecoderError::IcoEntryTooManyBitsPerPixelOrHotspot.into());
- }
- num
- },
- image_length: r.read_u32::<LittleEndian>()?,
- image_offset: r.read_u32::<LittleEndian>()?,
- })
-}
-
-/// Find the entry with the highest (color depth, size).
-fn best_entry(mut entries: Vec<DirEntry>) -> ImageResult<DirEntry> {
- let mut best = entries.pop().ok_or(DecoderError::NoEntries)?;
-
- let mut best_score = (
- best.bits_per_pixel,
- u32::from(best.real_width()) * u32::from(best.real_height()),
- );
-
- for entry in entries {
- let score = (
- entry.bits_per_pixel,
- u32::from(entry.real_width()) * u32::from(entry.real_height()),
- );
- if score > best_score {
- best = entry;
- best_score = score;
- }
- }
- Ok(best)
-}
-
-impl DirEntry {
- fn real_width(&self) -> u16 {
- match self.width {
- 0 => 256,
- w => u16::from(w),
- }
- }
-
- fn real_height(&self) -> u16 {
- match self.height {
- 0 => 256,
- h => u16::from(h),
- }
- }
-
- fn matches_dimensions(&self, width: u32, height: u32) -> bool {
- u32::from(self.real_width()) == width.min(256)
- && u32::from(self.real_height()) == height.min(256)
- }
-
- fn seek_to_start<R: Read + Seek>(&self, r: &mut R) -> ImageResult<()> {
- r.seek(SeekFrom::Start(u64::from(self.image_offset)))?;
- Ok(())
- }
-
- fn is_png<R: Read + Seek>(&self, r: &mut R) -> ImageResult<bool> {
- self.seek_to_start(r)?;
-
- // Read the first 8 bytes to sniff the image.
- let mut signature = [0u8; 8];
- r.read_exact(&mut signature)?;
-
- Ok(signature == PNG_SIGNATURE)
- }
-
- fn decoder<R: Read + Seek>(&self, mut r: R) -> ImageResult<InnerDecoder<R>> {
- let is_png = self.is_png(&mut r)?;
- self.seek_to_start(&mut r)?;
-
- if is_png {
- Ok(Png(Box::new(PngDecoder::new(r)?)))
- } else {
- Ok(Bmp(BmpDecoder::new_with_ico_format(r)?))
- }
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct IcoReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for IcoReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for IcoDecoder<R> {
- type Reader = IcoReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- match self.inner_decoder {
- Bmp(ref decoder) => decoder.dimensions(),
- Png(ref decoder) => decoder.dimensions(),
- }
- }
-
- fn color_type(&self) -> ColorType {
- match self.inner_decoder {
- Bmp(ref decoder) => decoder.color_type(),
- Png(ref decoder) => decoder.color_type(),
- }
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(IcoReader(
- Cursor::new(image::decoder_to_vec(self)?),
- PhantomData,
- ))
- }
-
- fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
- match self.inner_decoder {
- Png(decoder) => {
- if self.selected_entry.image_length < PNG_SIGNATURE.len() as u32 {
- return Err(DecoderError::PngShorterThanHeader.into());
- }
-
- // Check if the image dimensions match the ones in the image data.
- let (width, height) = decoder.dimensions();
- if !self.selected_entry.matches_dimensions(width, height) {
- return Err(DecoderError::ImageEntryDimensionMismatch {
- format: IcoEntryImageFormat::Png,
- entry: (
- self.selected_entry.real_width(),
- self.selected_entry.real_height(),
- ),
- image: (width, height),
- }
- .into());
- }
-
- // Embedded PNG images can only be of the 32BPP RGBA format.
- // https://blogs.msdn.microsoft.com/oldnewthing/20101022-00/?p=12473/
- if decoder.color_type() != ColorType::Rgba8 {
- return Err(DecoderError::PngNotRgba.into());
- }
-
- decoder.read_image(buf)
- }
- Bmp(mut decoder) => {
- let (width, height) = decoder.dimensions();
- if !self.selected_entry.matches_dimensions(width, height) {
- return Err(DecoderError::ImageEntryDimensionMismatch {
- format: IcoEntryImageFormat::Bmp,
- entry: (
- self.selected_entry.real_width(),
- self.selected_entry.real_height(),
- ),
- image: (width, height),
- }
- .into());
- }
-
- // The ICO decoder needs an alpha channel to apply the AND mask.
- if decoder.color_type() != ColorType::Rgba8 {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Bmp.into(),
- UnsupportedErrorKind::Color(decoder.color_type().into()),
- ),
- ));
- }
-
- decoder.read_image_data(buf)?;
-
- let r = decoder.reader();
- let image_end = r.stream_position()?;
- let data_end = u64::from(self.selected_entry.image_offset)
- + u64::from(self.selected_entry.image_length);
-
- let mask_row_bytes = ((width + 31) / 32) * 4;
- let mask_length = u64::from(mask_row_bytes) * u64::from(height);
-
- // data_end should be image_end + the mask length (mask_row_bytes * height).
- // According to
- // https://devblogs.microsoft.com/oldnewthing/20101021-00/?p=12483
- // the mask is required, but according to Wikipedia
- // https://en.wikipedia.org/wiki/ICO_(file_format)
- // the mask is not required. Unfortunately, Wikipedia does not have a citation
- // for that claim, so we can't be sure which is correct.
- if data_end >= image_end + mask_length {
- // If there's an AND mask following the image, read and apply it.
- for y in 0..height {
- let mut x = 0;
- for _ in 0..mask_row_bytes {
- // Apply the bits of each byte until we reach the end of the row.
- let mask_byte = r.read_u8()?;
- for bit in (0..8).rev() {
- if x >= width {
- break;
- }
- if mask_byte & (1 << bit) != 0 {
- // Set alpha channel to transparent.
- buf[((height - y - 1) * width + x) as usize * 4 + 3] = 0;
- }
- x += 1;
- }
- }
- }
-
- Ok(())
- } else if data_end == image_end {
- // accept images with no mask data
- Ok(())
- } else {
- Err(DecoderError::InvalidDataSize.into())
- }
- }
- }
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- // Test if BMP images without alpha channel inside ICOs don't panic.
- // Because the test data is invalid decoding should produce an error.
- #[test]
- fn bmp_16_with_missing_alpha_channel() {
- let data = vec![
- 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x0e, 0x04, 0xc3, 0x7e, 0x00, 0x00, 0x00, 0x00,
- 0x7c, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0x01, 0x00,
- 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x8f, 0xf6, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x20, 0x66, 0x74, 0x83, 0x70, 0x61, 0x76, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
- 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xeb, 0x00, 0x9b, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x47, 0x0d,
- 0x0a, 0x1a, 0x0a, 0x00, 0x00, 0x00, 0x62, 0x49, 0x48, 0x44, 0x52, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c,
- 0x00, 0x00, 0x00, 0xc3, 0x3f, 0x94, 0x61, 0xaa, 0x17, 0x4d, 0x8d, 0x79, 0x1d, 0x8b,
- 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x2e, 0x28, 0x40, 0xe5, 0x9f,
- 0x4b, 0x4d, 0xe9, 0x87, 0xd3, 0xda, 0xd6, 0x89, 0x81, 0xc5, 0xa4, 0xa1, 0x60, 0x98,
- 0x31, 0xc7, 0x1d, 0xb6, 0x8f, 0x20, 0xc8, 0x3e, 0xee, 0xd8, 0xe4, 0x8f, 0xee, 0x7b,
- 0x48, 0x9b, 0x88, 0x25, 0x13, 0xda, 0xa4, 0x13, 0xa4, 0x00, 0x00, 0x00, 0x00, 0x40,
- 0x16, 0x01, 0xff, 0xff, 0xff, 0xff, 0xe9, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0xa3, 0x66, 0x64, 0x41, 0x54, 0xa3, 0xa3, 0x00, 0x00, 0x00, 0xb8, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa3, 0x66, 0x64, 0x41, 0x54, 0xa3, 0xa3,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x8f, 0xf6, 0xff, 0xff,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x66, 0x74, 0x83, 0x70, 0x61, 0x76,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff,
- 0xeb, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a, 0x00, 0x00, 0x00, 0x62, 0x49,
- 0x48, 0x44, 0x52, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0xff, 0xff, 0x94, 0xc8, 0x00, 0x02, 0x0c, 0x00, 0xff, 0xff, 0xc6,
- 0x84, 0x00, 0x2a, 0x75, 0x03, 0xa3, 0x05, 0xfb, 0xe1, 0x6e, 0xe8, 0x27, 0xd6, 0xd3,
- 0x96, 0xc1, 0xe4, 0x30, 0x0c, 0x05, 0xb9, 0xa3, 0x8b, 0x29, 0xda, 0xa4, 0xf1, 0x4d,
- 0xf3, 0xb2, 0x98, 0x2b, 0xe6, 0x93, 0x07, 0xf9, 0xca, 0x2b, 0xc2, 0x39, 0x20, 0xba,
- 0x7c, 0xa0, 0xb1, 0x43, 0xe6, 0xf9, 0xdc, 0xd1, 0xc2, 0x52, 0xdc, 0x41, 0xc1, 0x2f,
- 0x29, 0xf7, 0x46, 0x32, 0xda, 0x1b, 0x72, 0x8c, 0xe6, 0x2b, 0x01, 0xe5, 0x49, 0x21,
- 0x89, 0x89, 0xe4, 0x3d, 0xa1, 0xdb, 0x3b, 0x4a, 0x0b, 0x52, 0x86, 0x52, 0x33, 0x9d,
- 0xb2, 0xcf, 0x4a, 0x86, 0x53, 0xd7, 0xa9, 0x4b, 0xaf, 0x62, 0x06, 0x49, 0x53, 0x00,
- 0xc3, 0x3f, 0x94, 0x61, 0xaa, 0x17, 0x4d, 0x8d, 0x79, 0x1d, 0x8b, 0x10, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x2e, 0x28, 0x40, 0xe5, 0x9f, 0x4b, 0x4d, 0xe9,
- 0x87, 0xd3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe7, 0xc5, 0x00,
- 0x02, 0x00, 0x00, 0x00, 0x06, 0x00, 0x0b, 0x00, 0x50, 0x31, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x76, 0x76, 0x01, 0x00, 0x00, 0x00, 0x76, 0x00,
- 0x00, 0x23, 0x3f, 0x52, 0x41, 0x44, 0x49, 0x41, 0x4e, 0x43, 0x45, 0x61, 0x50, 0x35,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x4d, 0x47, 0x49, 0x46, 0x38, 0x37, 0x61, 0x05,
- 0x50, 0x37, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc7, 0x37, 0x61,
- ];
-
- let decoder = IcoDecoder::new(Cursor::new(&data)).unwrap();
- let mut buf = vec![0; usize::try_from(decoder.total_bytes()).unwrap()];
- assert!(decoder.read_image(&mut buf).is_err());
- }
-}
diff --git a/vendor/image/src/codecs/ico/encoder.rs b/vendor/image/src/codecs/ico/encoder.rs
deleted file mode 100644
index dd5961b..0000000
--- a/vendor/image/src/codecs/ico/encoder.rs
+++ /dev/null
@@ -1,194 +0,0 @@
-use byteorder::{LittleEndian, WriteBytesExt};
-use std::borrow::Cow;
-use std::io::{self, Write};
-
-use crate::color::ColorType;
-use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
-use crate::image::ImageEncoder;
-
-use crate::codecs::png::PngEncoder;
-
-// Enum value indicating an ICO image (as opposed to a CUR image):
-const ICO_IMAGE_TYPE: u16 = 1;
-// The length of an ICO file ICONDIR structure, in bytes:
-const ICO_ICONDIR_SIZE: u32 = 6;
-// The length of an ICO file DIRENTRY structure, in bytes:
-const ICO_DIRENTRY_SIZE: u32 = 16;
-
-/// ICO encoder
-pub struct IcoEncoder<W: Write> {
- w: W,
-}
-
-/// An ICO image entry
-pub struct IcoFrame<'a> {
- // Pre-encoded PNG or BMP
- encoded_image: Cow<'a, [u8]>,
- // Stored as `0 => 256, n => n`
- width: u8,
- // Stored as `0 => 256, n => n`
- height: u8,
- color_type: ColorType,
-}
-
-impl<'a> IcoFrame<'a> {
- /// Construct a new `IcoFrame` using a pre-encoded PNG or BMP
- ///
- /// The `width` and `height` must be between 1 and 256 (inclusive).
- pub fn with_encoded(
- encoded_image: impl Into<Cow<'a, [u8]>>,
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<Self> {
- let encoded_image = encoded_image.into();
-
- if !(1..=256).contains(&width) {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(format!(
- "the image width must be `1..=256`, instead width {} was provided",
- width,
- )),
- )));
- }
-
- if !(1..=256).contains(&height) {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(format!(
- "the image height must be `1..=256`, instead height {} was provided",
- height,
- )),
- )));
- }
-
- Ok(Self {
- encoded_image,
- width: width as u8,
- height: height as u8,
- color_type,
- })
- }
-
- /// Construct a new `IcoFrame` by encoding `buf` as a PNG
- ///
- /// The `width` and `height` must be between 1 and 256 (inclusive)
- pub fn as_png(buf: &[u8], width: u32, height: u32, color_type: ColorType) -> ImageResult<Self> {
- let mut image_data: Vec<u8> = Vec::new();
- PngEncoder::new(&mut image_data).write_image(buf, width, height, color_type)?;
-
- let frame = Self::with_encoded(image_data, width, height, color_type)?;
- Ok(frame)
- }
-}
-
-impl<W: Write> IcoEncoder<W> {
- /// Create a new encoder that writes its output to ```w```.
- pub fn new(w: W) -> IcoEncoder<W> {
- IcoEncoder { w }
- }
-
- /// Encodes the image ```image``` that has dimensions ```width``` and
- /// ```height``` and ```ColorType``` ```c```. The dimensions of the image
- /// must be between 1 and 256 (inclusive) or an error will be returned.
- ///
- /// Expects data to be big endian.
- #[deprecated = "Use `IcoEncoder::write_image` instead. Beware that `write_image` has a different endianness convention"]
- pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> ImageResult<()> {
- let mut image_data: Vec<u8> = Vec::new();
- #[allow(deprecated)]
- PngEncoder::new(&mut image_data).encode(data, width, height, color)?;
-
- let image = IcoFrame::with_encoded(&image_data, width, height, color)?;
- self.encode_images(&[image])
- }
-
- /// Takes some [`IcoFrame`]s and encodes them into an ICO.
- ///
- /// `images` is a list of images, usually ordered by dimension, which
- /// must be between 1 and 65535 (inclusive) in length.
- pub fn encode_images(mut self, images: &[IcoFrame<'_>]) -> ImageResult<()> {
- if !(1..=usize::from(u16::MAX)).contains(&images.len()) {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(format!(
- "the number of images must be `1..=u16::MAX`, instead {} images were provided",
- images.len(),
- )),
- )));
- }
- let num_images = images.len() as u16;
-
- let mut offset = ICO_ICONDIR_SIZE + (ICO_DIRENTRY_SIZE * (images.len() as u32));
- write_icondir(&mut self.w, num_images)?;
- for image in images {
- write_direntry(
- &mut self.w,
- image.width,
- image.height,
- image.color_type,
- offset,
- image.encoded_image.len() as u32,
- )?;
-
- offset += image.encoded_image.len() as u32;
- }
- for image in images {
- self.w.write_all(&image.encoded_image)?;
- }
- Ok(())
- }
-}
-
-impl<W: Write> ImageEncoder for IcoEncoder<W> {
- /// Write an ICO image with the specified width, height, and color type.
- ///
- /// For color types with 16-bit per channel or larger, the contents of `buf` should be in
- /// native endian.
- ///
- /// WARNING: In image 0.23.14 and earlier this method erroneously expected buf to be in big endian.
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- let image = IcoFrame::as_png(buf, width, height, color_type)?;
- self.encode_images(&[image])
- }
-}
-
-fn write_icondir<W: Write>(w: &mut W, num_images: u16) -> io::Result<()> {
- // Reserved field (must be zero):
- w.write_u16::<LittleEndian>(0)?;
- // Image type (ICO or CUR):
- w.write_u16::<LittleEndian>(ICO_IMAGE_TYPE)?;
- // Number of images in the file:
- w.write_u16::<LittleEndian>(num_images)?;
- Ok(())
-}
-
-fn write_direntry<W: Write>(
- w: &mut W,
- width: u8,
- height: u8,
- color: ColorType,
- data_start: u32,
- data_size: u32,
-) -> io::Result<()> {
- // Image dimensions:
- w.write_u8(width)?;
- w.write_u8(height)?;
- // Number of colors in palette (or zero for no palette):
- w.write_u8(0)?;
- // Reserved field (must be zero):
- w.write_u8(0)?;
- // Color planes:
- w.write_u16::<LittleEndian>(0)?;
- // Bits per pixel:
- w.write_u16::<LittleEndian>(color.bits_per_pixel())?;
- // Image data size, in bytes:
- w.write_u32::<LittleEndian>(data_size)?;
- // Image data offset, in bytes:
- w.write_u32::<LittleEndian>(data_start)?;
- Ok(())
-}
diff --git a/vendor/image/src/codecs/ico/mod.rs b/vendor/image/src/codecs/ico/mod.rs
deleted file mode 100644
index 11493ac..0000000
--- a/vendor/image/src/codecs/ico/mod.rs
+++ /dev/null
@@ -1,14 +0,0 @@
-//! Decoding and Encoding of ICO files
-//!
-//! A decoder and encoder for ICO (Windows Icon) image container files.
-//!
-//! # Related Links
-//! * <https://msdn.microsoft.com/en-us/library/ms997538.aspx>
-//! * <https://en.wikipedia.org/wiki/ICO_%28file_format%29>
-
-pub use self::decoder::IcoDecoder;
-#[allow(deprecated)]
-pub use self::encoder::{IcoEncoder, IcoFrame};
-
-mod decoder;
-mod encoder;
diff --git a/vendor/image/src/codecs/jpeg/decoder.rs b/vendor/image/src/codecs/jpeg/decoder.rs
deleted file mode 100644
index 9625e33..0000000
--- a/vendor/image/src/codecs/jpeg/decoder.rs
+++ /dev/null
@@ -1,1289 +0,0 @@
-use std::convert::TryFrom;
-use std::io::{self, Cursor, Read};
-use std::marker::PhantomData;
-use std::mem;
-
-use crate::color::ColorType;
-use crate::error::{
- DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{ImageDecoder, ImageFormat};
-
-/// JPEG decoder
-pub struct JpegDecoder<R> {
- decoder: jpeg::Decoder<R>,
- metadata: jpeg::ImageInfo,
-}
-
-impl<R: Read> JpegDecoder<R> {
- /// Create a new decoder that decodes from the stream ```r```
- pub fn new(r: R) -> ImageResult<JpegDecoder<R>> {
- let mut decoder = jpeg::Decoder::new(r);
-
- decoder.read_info().map_err(ImageError::from_jpeg)?;
- let mut metadata = decoder.info().ok_or_else(|| {
- ImageError::Decoding(DecodingError::from_format_hint(ImageFormat::Jpeg.into()))
- })?;
-
- // We convert CMYK data to RGB before returning it to the user.
- if metadata.pixel_format == jpeg::PixelFormat::CMYK32 {
- metadata.pixel_format = jpeg::PixelFormat::RGB24;
- }
-
- Ok(JpegDecoder { decoder, metadata })
- }
-
- /// Configure the decoder to scale the image during decoding.
- ///
- /// This efficiently scales the image by the smallest supported
- /// scale factor that produces an image larger than or equal to
- /// the requested size in at least one axis. The currently
- /// implemented scale factors are 1/8, 1/4, 1/2 and 1.
- ///
- /// To generate a thumbnail of an exact size, pass the desired
- /// size and then scale to the final size using a traditional
- /// resampling algorithm.
- ///
- /// The size of the image to be loaded, with the scale factor
- /// applied, is returned.
- pub fn scale(
- &mut self,
- requested_width: u16,
- requested_height: u16,
- ) -> ImageResult<(u16, u16)> {
- let result = self
- .decoder
- .scale(requested_width, requested_height)
- .map_err(ImageError::from_jpeg)?;
-
- self.metadata.width = result.0;
- self.metadata.height = result.1;
-
- Ok(result)
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct JpegReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for JpegReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for JpegDecoder<R> {
- type Reader = JpegReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (
- u32::from(self.metadata.width),
- u32::from(self.metadata.height),
- )
- }
-
- fn color_type(&self) -> ColorType {
- ColorType::from_jpeg(self.metadata.pixel_format)
- }
-
- fn icc_profile(&mut self) -> Option<Vec<u8>> {
- self.decoder.icc_profile()
- }
-
- fn into_reader(mut self) -> ImageResult<Self::Reader> {
- let mut data = self.decoder.decode().map_err(ImageError::from_jpeg)?;
- data = match self.decoder.info().unwrap().pixel_format {
- jpeg::PixelFormat::CMYK32 => cmyk_to_rgb(&data),
- _ => data,
- };
-
- Ok(JpegReader(Cursor::new(data), PhantomData))
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- let mut data = self.decoder.decode().map_err(ImageError::from_jpeg)?;
- data = match self.decoder.info().unwrap().pixel_format {
- jpeg::PixelFormat::CMYK32 => cmyk_to_rgb(&data),
- _ => data,
- };
-
- buf.copy_from_slice(&data);
- Ok(())
- }
-}
-
-fn cmyk_to_rgb(input: &[u8]) -> Vec<u8> {
- let count = input.len() / 4;
- let mut output = vec![0; 3 * count];
-
- let in_pixels = input[..4 * count].chunks_exact(4);
- let out_pixels = output[..3 * count].chunks_exact_mut(3);
-
- for (pixel, outp) in in_pixels.zip(out_pixels) {
- let c = 255 - u16::from(pixel[0]);
- let m = 255 - u16::from(pixel[1]);
- let y = 255 - u16::from(pixel[2]);
- let k = 255 - u16::from(pixel[3]);
- // CMY -> RGB
- let r = (k * c) / 255;
- let g = (k * m) / 255;
- let b = (k * y) / 255;
-
- outp[0] = r as u8;
- outp[1] = g as u8;
- outp[2] = b as u8;
- }
-
- output
-}
-
-impl ColorType {
- fn from_jpeg(pixel_format: jpeg::PixelFormat) -> ColorType {
- use jpeg::PixelFormat::*;
- match pixel_format {
- L8 => ColorType::L8,
- L16 => ColorType::L16,
- RGB24 => ColorType::Rgb8,
- CMYK32 => panic!(),
- }
- }
-}
-
-impl ImageError {
- fn from_jpeg(err: jpeg::Error) -> ImageError {
- use jpeg::Error::*;
- match err {
- err @ Format(_) => {
- ImageError::Decoding(DecodingError::new(ImageFormat::Jpeg.into(), err))
- }
- Unsupported(desc) => ImageError::Unsupported(UnsupportedError::from_format_and_kind(
- ImageFormat::Jpeg.into(),
- UnsupportedErrorKind::GenericFeature(format!("{:?}", desc)),
- )),
- Io(err) => ImageError::IoError(err),
- Internal(err) => {
- ImageError::Decoding(DecodingError::new(ImageFormat::Jpeg.into(), err))
- }
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- #[cfg(feature = "benchmarks")]
- extern crate test;
-
- use super::cmyk_to_rgb;
- #[cfg(feature = "benchmarks")]
- use test::Bencher;
-
- #[cfg(feature = "benchmarks")]
- const W: usize = 256;
- #[cfg(feature = "benchmarks")]
- const H: usize = 256;
-
- #[test]
- fn cmyk_to_rgb_correct() {
- for c in 0..=255 {
- for k in 0..=255 {
- // Based on R = 255 * (1-C/255) * (1-K/255)
- let r = (255.0 - f32::from(c)) * (255.0 - f32::from(k)) / 255.0;
- let r_u8 = r as u8;
- let convert_r = cmyk_to_rgb(&[c, 0, 0, k])[0];
- let convert_g = cmyk_to_rgb(&[0, c, 0, k])[1];
- let convert_b = cmyk_to_rgb(&[0, 0, c, k])[2];
-
- assert_eq!(
- convert_r, r_u8,
- "c = {}, k = {}, cymk_to_rgb[0] = {}, should be {}",
- c, k, convert_r, r_u8
- );
- assert_eq!(
- convert_g, r_u8,
- "m = {}, k = {}, cymk_to_rgb[1] = {}, should be {}",
- c, k, convert_g, r_u8
- );
- assert_eq!(
- convert_b, r_u8,
- "y = {}, k = {}, cymk_to_rgb[2] = {}, should be {}",
- c, k, convert_b, r_u8
- );
- }
- }
- }
-
- fn single_pix_correct(cmyk_pix: [u8; 4], rgb_pix_true: [u8; 3]) {
- let rgb_pix = cmyk_to_rgb(&cmyk_pix);
- assert_eq!(
- rgb_pix_true[0], rgb_pix[0],
- "With CMYK {:?} expected {:?}, got {:?}",
- cmyk_pix, rgb_pix_true, rgb_pix
- );
- assert_eq!(
- rgb_pix_true[1], rgb_pix[1],
- "With CMYK {:?} expected {:?}, got {:?}",
- cmyk_pix, rgb_pix_true, rgb_pix
- );
- assert_eq!(
- rgb_pix_true[2], rgb_pix[2],
- "With CMYK {:?} expected {:?}, got {:?}",
- cmyk_pix, rgb_pix_true, rgb_pix
- );
- }
-
- #[test]
- fn test_assorted_colors() {
- let cmyk_pixels = vec![
- [0, 51, 102, 65],
- [153, 204, 0, 65],
- [0, 0, 0, 67],
- [0, 85, 170, 69],
- [0, 0, 0, 71],
- [0, 0, 0, 73],
- [0, 17, 34, 75],
- [51, 68, 85, 75],
- [102, 119, 136, 75],
- [153, 170, 187, 75],
- [204, 221, 238, 75],
- [0, 0, 0, 77],
- [0, 0, 0, 79],
- [0, 85, 170, 81],
- [0, 0, 0, 83],
- [0, 3, 6, 85],
- [9, 12, 15, 85],
- [18, 21, 24, 85],
- [27, 30, 33, 85],
- [36, 39, 42, 85],
- [45, 48, 51, 85],
- [54, 57, 60, 85],
- [63, 66, 69, 85],
- [72, 75, 78, 85],
- [81, 84, 87, 85],
- [90, 93, 96, 85],
- [99, 102, 105, 85],
- [108, 111, 114, 85],
- [117, 120, 123, 85],
- [126, 129, 132, 85],
- [135, 138, 141, 85],
- [144, 147, 150, 85],
- [153, 156, 159, 85],
- [162, 165, 168, 85],
- [171, 174, 177, 85],
- [180, 183, 186, 85],
- [189, 192, 195, 85],
- [198, 201, 204, 85],
- [207, 210, 213, 85],
- [216, 219, 222, 85],
- [225, 228, 231, 85],
- [234, 237, 240, 85],
- [243, 246, 249, 85],
- [252, 0, 0, 85],
- [0, 85, 170, 87],
- [0, 0, 0, 89],
- [0, 0, 0, 91],
- [0, 85, 170, 93],
- [0, 51, 102, 95],
- [153, 204, 0, 95],
- [0, 0, 0, 97],
- [0, 85, 170, 99],
- [0, 0, 0, 101],
- [0, 0, 0, 103],
- [0, 17, 34, 105],
- [51, 68, 85, 105],
- [102, 119, 136, 105],
- [153, 170, 187, 105],
- [204, 221, 238, 105],
- [0, 0, 0, 107],
- [0, 0, 0, 109],
- [0, 85, 170, 111],
- [0, 0, 0, 113],
- [0, 51, 102, 115],
- [153, 204, 0, 115],
- [0, 85, 170, 117],
- [0, 15, 30, 119],
- [45, 60, 75, 119],
- [90, 105, 120, 119],
- [135, 150, 165, 119],
- [180, 195, 210, 119],
- [225, 240, 0, 119],
- [0, 0, 0, 121],
- [0, 85, 170, 123],
- [0, 51, 102, 125],
- [153, 204, 0, 125],
- [0, 0, 0, 127],
- [0, 0, 0, 128],
- [0, 85, 170, 129],
- [0, 51, 102, 130],
- [153, 204, 0, 130],
- [0, 0, 0, 131],
- [0, 85, 170, 132],
- [0, 0, 0, 133],
- [0, 0, 0, 134],
- [0, 17, 34, 135],
- [51, 68, 85, 135],
- [102, 119, 136, 135],
- [153, 170, 187, 135],
- [204, 221, 238, 135],
- [0, 15, 30, 136],
- [45, 60, 75, 136],
- [90, 105, 120, 136],
- [135, 150, 165, 136],
- [180, 195, 210, 136],
- [225, 240, 0, 136],
- [0, 0, 0, 137],
- [0, 85, 170, 138],
- [0, 0, 0, 139],
- [0, 51, 102, 140],
- [153, 204, 0, 140],
- [0, 85, 170, 141],
- [0, 0, 0, 142],
- [0, 0, 0, 143],
- [0, 85, 170, 144],
- [0, 51, 102, 145],
- [153, 204, 0, 145],
- [0, 0, 0, 146],
- [0, 85, 170, 147],
- [0, 0, 0, 148],
- [0, 0, 0, 149],
- [0, 17, 34, 150],
- [51, 68, 85, 150],
- [102, 119, 136, 150],
- [153, 170, 187, 150],
- [204, 221, 238, 150],
- [0, 0, 0, 151],
- [0, 0, 0, 152],
- [0, 5, 10, 153],
- [15, 20, 25, 153],
- [30, 35, 40, 153],
- [45, 50, 55, 153],
- [60, 65, 70, 153],
- [75, 80, 85, 153],
- [90, 95, 100, 153],
- [105, 110, 115, 153],
- [120, 125, 130, 153],
- [135, 140, 145, 153],
- [150, 155, 160, 153],
- [165, 170, 175, 153],
- [180, 185, 190, 153],
- [195, 200, 205, 153],
- [210, 215, 220, 153],
- [225, 230, 235, 153],
- [240, 245, 250, 153],
- [0, 0, 0, 154],
- [0, 51, 102, 155],
- [153, 204, 0, 155],
- [0, 85, 170, 156],
- [0, 0, 0, 157],
- [0, 0, 0, 158],
- [0, 85, 170, 159],
- [0, 51, 102, 160],
- [153, 204, 0, 160],
- [0, 0, 0, 161],
- [0, 85, 170, 162],
- [0, 0, 0, 163],
- [0, 0, 0, 164],
- [0, 17, 34, 165],
- [51, 68, 85, 165],
- [102, 119, 136, 165],
- [153, 170, 187, 165],
- [204, 221, 238, 165],
- [0, 0, 0, 166],
- [0, 0, 0, 167],
- [0, 85, 170, 168],
- [0, 0, 0, 169],
- [0, 3, 6, 170],
- [9, 12, 15, 170],
- [18, 21, 24, 170],
- [27, 30, 33, 170],
- [36, 39, 42, 170],
- [45, 48, 51, 170],
- [54, 57, 60, 170],
- [63, 66, 69, 170],
- [72, 75, 78, 170],
- [81, 84, 87, 170],
- [90, 93, 96, 170],
- [99, 102, 105, 170],
- [108, 111, 114, 170],
- [117, 120, 123, 170],
- [126, 129, 132, 170],
- [135, 138, 141, 170],
- [144, 147, 150, 170],
- [153, 156, 159, 170],
- [162, 165, 168, 170],
- [171, 174, 177, 170],
- [180, 183, 186, 170],
- [189, 192, 195, 170],
- [198, 201, 204, 170],
- [207, 210, 213, 170],
- [216, 219, 222, 170],
- [225, 228, 231, 170],
- [234, 237, 240, 170],
- [243, 246, 249, 170],
- [252, 0, 0, 170],
- [0, 85, 170, 171],
- [0, 0, 0, 172],
- [0, 0, 0, 173],
- [0, 85, 170, 174],
- [0, 51, 102, 175],
- [153, 204, 0, 175],
- [0, 0, 0, 176],
- [0, 85, 170, 177],
- [0, 0, 0, 178],
- [0, 0, 0, 179],
- [0, 17, 34, 180],
- [51, 68, 85, 180],
- [102, 119, 136, 180],
- [153, 170, 187, 180],
- [204, 221, 238, 180],
- [0, 0, 0, 181],
- [0, 0, 0, 182],
- [0, 85, 170, 183],
- [0, 0, 0, 184],
- [0, 51, 102, 185],
- [153, 204, 0, 185],
- [0, 85, 170, 186],
- [0, 15, 30, 187],
- [45, 60, 75, 187],
- [90, 105, 120, 187],
- [135, 150, 165, 187],
- [180, 195, 210, 187],
- [225, 240, 0, 187],
- [0, 0, 0, 188],
- [0, 85, 170, 189],
- [0, 51, 102, 190],
- [153, 204, 0, 190],
- [0, 0, 0, 191],
- [0, 85, 170, 192],
- [0, 0, 0, 193],
- [0, 0, 0, 194],
- [0, 17, 34, 195],
- [51, 68, 85, 195],
- [102, 119, 136, 195],
- [153, 170, 187, 195],
- [204, 221, 238, 195],
- [0, 0, 0, 196],
- [0, 0, 0, 197],
- [0, 85, 170, 198],
- [0, 0, 0, 199],
- [0, 51, 102, 200],
- [153, 204, 0, 200],
- [0, 85, 170, 201],
- [0, 0, 0, 202],
- [0, 0, 0, 203],
- [0, 5, 10, 204],
- [15, 20, 25, 204],
- [30, 35, 40, 204],
- [45, 50, 55, 204],
- [60, 65, 70, 204],
- [75, 80, 85, 204],
- [90, 95, 100, 204],
- [105, 110, 115, 204],
- [120, 125, 130, 204],
- [135, 140, 145, 204],
- [150, 155, 160, 204],
- [165, 170, 175, 204],
- [180, 185, 190, 204],
- [195, 200, 205, 204],
- [210, 215, 220, 204],
- [225, 230, 235, 204],
- [240, 245, 250, 204],
- [0, 51, 102, 205],
- [153, 204, 0, 205],
- [0, 0, 0, 206],
- [0, 85, 170, 207],
- [0, 0, 0, 208],
- [0, 0, 0, 209],
- [0, 17, 34, 210],
- [51, 68, 85, 210],
- [102, 119, 136, 210],
- [153, 170, 187, 210],
- [204, 221, 238, 210],
- [0, 0, 0, 211],
- [0, 0, 0, 212],
- [0, 85, 170, 213],
- [0, 0, 0, 214],
- [0, 51, 102, 215],
- [153, 204, 0, 215],
- [0, 85, 170, 216],
- [0, 0, 0, 217],
- [0, 0, 0, 218],
- [0, 85, 170, 219],
- [0, 51, 102, 220],
- [153, 204, 0, 220],
- [0, 15, 30, 221],
- [45, 60, 75, 221],
- [90, 105, 120, 221],
- [135, 150, 165, 221],
- [180, 195, 210, 221],
- [225, 240, 0, 221],
- [0, 85, 170, 222],
- [0, 0, 0, 223],
- [0, 0, 0, 224],
- [0, 17, 34, 225],
- [51, 68, 85, 225],
- [102, 119, 136, 225],
- [153, 170, 187, 225],
- [204, 221, 238, 225],
- [0, 0, 0, 226],
- [0, 0, 0, 227],
- [0, 85, 170, 228],
- [0, 0, 0, 229],
- [0, 51, 102, 230],
- [153, 204, 0, 230],
- [0, 85, 170, 231],
- [0, 0, 0, 232],
- [0, 0, 0, 233],
- [0, 85, 170, 234],
- [0, 51, 102, 235],
- [153, 204, 0, 235],
- [0, 0, 0, 236],
- [0, 85, 170, 237],
- [0, 15, 30, 238],
- [45, 60, 75, 238],
- [90, 105, 120, 238],
- [135, 150, 165, 238],
- [180, 195, 210, 238],
- [225, 240, 0, 238],
- [0, 0, 0, 239],
- [0, 17, 34, 240],
- [51, 68, 85, 240],
- [102, 119, 136, 240],
- [153, 170, 187, 240],
- [204, 221, 238, 240],
- [0, 0, 0, 241],
- [0, 0, 0, 242],
- [0, 85, 170, 243],
- [0, 0, 0, 244],
- [0, 51, 102, 245],
- [153, 204, 0, 245],
- [0, 85, 170, 246],
- [0, 0, 0, 247],
- [0, 0, 0, 248],
- [0, 85, 170, 249],
- [0, 51, 102, 250],
- [153, 204, 0, 250],
- [0, 0, 0, 251],
- [0, 85, 170, 252],
- [0, 0, 0, 253],
- [0, 0, 0, 254],
- [5, 15, 25, 102],
- [35, 40, 45, 102],
- [50, 55, 60, 102],
- [65, 70, 75, 102],
- [80, 85, 90, 102],
- [95, 100, 105, 102],
- [110, 115, 120, 102],
- [125, 130, 135, 102],
- [140, 145, 150, 102],
- [155, 160, 165, 102],
- [170, 175, 180, 102],
- [185, 190, 195, 102],
- [200, 205, 210, 102],
- [215, 220, 225, 102],
- [230, 235, 240, 102],
- [245, 250, 0, 102],
- [15, 45, 60, 68],
- [75, 90, 105, 68],
- [120, 135, 150, 68],
- [165, 180, 195, 68],
- [210, 225, 240, 68],
- [17, 34, 51, 45],
- [68, 85, 102, 45],
- [119, 136, 153, 45],
- [170, 187, 204, 45],
- [221, 238, 0, 45],
- [17, 51, 68, 60],
- [85, 102, 119, 60],
- [136, 153, 170, 60],
- [187, 204, 221, 60],
- [238, 0, 0, 60],
- [17, 34, 51, 90],
- [68, 85, 102, 90],
- [119, 136, 153, 90],
- [170, 187, 204, 90],
- [221, 238, 0, 90],
- [17, 34, 51, 120],
- [68, 85, 102, 120],
- [119, 136, 153, 120],
- [170, 187, 204, 120],
- [221, 238, 0, 120],
- [20, 25, 30, 51],
- [35, 40, 45, 51],
- [50, 55, 60, 51],
- [65, 70, 75, 51],
- [80, 85, 90, 51],
- [95, 100, 105, 51],
- [110, 115, 120, 51],
- [125, 130, 135, 51],
- [140, 145, 150, 51],
- [155, 160, 165, 51],
- [170, 175, 180, 51],
- [185, 190, 195, 51],
- [200, 205, 210, 51],
- [215, 220, 225, 51],
- [230, 235, 240, 51],
- [245, 250, 0, 51],
- [45, 60, 75, 17],
- [90, 105, 120, 17],
- [135, 150, 165, 17],
- [180, 195, 210, 17],
- [225, 240, 0, 17],
- [45, 75, 90, 34],
- [105, 120, 135, 34],
- [150, 165, 180, 34],
- [195, 210, 225, 34],
- [240, 0, 0, 34],
- [51, 153, 204, 20],
- [51, 102, 153, 25],
- [204, 0, 0, 25],
- [51, 85, 119, 30],
- [136, 153, 170, 30],
- [187, 204, 221, 30],
- [238, 0, 0, 30],
- [51, 102, 153, 35],
- [204, 0, 0, 35],
- [51, 102, 153, 40],
- [204, 0, 0, 40],
- [51, 102, 153, 50],
- [204, 0, 0, 50],
- [51, 102, 153, 55],
- [204, 0, 0, 55],
- [51, 102, 153, 70],
- [204, 0, 0, 70],
- [51, 102, 153, 80],
- [204, 0, 0, 80],
- [51, 102, 153, 100],
- [204, 0, 0, 100],
- [51, 102, 153, 110],
- [204, 0, 0, 110],
- [65, 67, 69, 0],
- [71, 73, 75, 0],
- [77, 79, 81, 0],
- [83, 85, 87, 0],
- [89, 91, 93, 0],
- [95, 97, 99, 0],
- [101, 103, 105, 0],
- [107, 109, 111, 0],
- [113, 115, 117, 0],
- [119, 121, 123, 0],
- [125, 127, 128, 0],
- [129, 130, 131, 0],
- [132, 133, 134, 0],
- [135, 136, 137, 0],
- [138, 139, 140, 0],
- [141, 142, 143, 0],
- [144, 145, 146, 0],
- [147, 148, 149, 0],
- [150, 151, 152, 0],
- [153, 154, 155, 0],
- [156, 157, 158, 0],
- [159, 160, 161, 0],
- [162, 163, 164, 0],
- [165, 166, 167, 0],
- [168, 169, 170, 0],
- [171, 172, 173, 0],
- [174, 175, 176, 0],
- [177, 178, 179, 0],
- [180, 181, 182, 0],
- [183, 184, 185, 0],
- [186, 187, 188, 0],
- [189, 190, 191, 0],
- [192, 193, 194, 0],
- [195, 196, 197, 0],
- [198, 199, 200, 0],
- [201, 202, 203, 0],
- [204, 205, 206, 0],
- [207, 208, 209, 0],
- [210, 211, 212, 0],
- [213, 214, 215, 0],
- [216, 217, 218, 0],
- [219, 220, 221, 0],
- [222, 223, 224, 0],
- [225, 226, 227, 0],
- [228, 229, 230, 0],
- [231, 232, 233, 0],
- [234, 235, 236, 0],
- [237, 238, 239, 0],
- [240, 241, 242, 0],
- [243, 244, 245, 0],
- [246, 247, 248, 0],
- [249, 250, 251, 0],
- [252, 253, 254, 0],
- [68, 85, 102, 15],
- [119, 136, 153, 15],
- [170, 187, 204, 15],
- [221, 238, 0, 15],
- [85, 170, 0, 3],
- [85, 170, 0, 6],
- [85, 170, 0, 9],
- [85, 170, 0, 12],
- [85, 170, 0, 18],
- [85, 170, 0, 21],
- [85, 170, 0, 24],
- [85, 170, 0, 27],
- [85, 170, 0, 33],
- [85, 170, 0, 36],
- [85, 170, 0, 39],
- [85, 170, 0, 42],
- [85, 170, 0, 48],
- [85, 170, 0, 54],
- [85, 170, 0, 57],
- [85, 170, 0, 63],
- [85, 170, 0, 66],
- [85, 170, 0, 72],
- [85, 170, 0, 78],
- [85, 170, 0, 84],
- [85, 170, 0, 96],
- [85, 170, 0, 108],
- [85, 170, 0, 114],
- [85, 170, 0, 126],
- [102, 153, 204, 5],
- [153, 204, 0, 10],
- ];
- let rgb_pixels = vec![
- [190, 152, 114],
- [76, 38, 190],
- [188, 188, 188],
- [186, 124, 62],
- [184, 184, 184],
- [182, 182, 182],
- [180, 168, 156],
- [144, 132, 120],
- [108, 96, 84],
- [72, 60, 48],
- [36, 24, 12],
- [178, 178, 178],
- [176, 176, 176],
- [174, 116, 58],
- [172, 172, 172],
- [170, 168, 166],
- [164, 162, 160],
- [158, 156, 154],
- [152, 150, 148],
- [146, 144, 142],
- [140, 138, 136],
- [134, 132, 130],
- [128, 126, 124],
- [122, 120, 118],
- [116, 114, 112],
- [110, 108, 106],
- [104, 102, 100],
- [98, 96, 94],
- [92, 90, 88],
- [86, 84, 82],
- [80, 78, 76],
- [74, 72, 70],
- [68, 66, 64],
- [62, 60, 58],
- [56, 54, 52],
- [50, 48, 46],
- [44, 42, 40],
- [38, 36, 34],
- [32, 30, 28],
- [26, 24, 22],
- [20, 18, 16],
- [14, 12, 10],
- [8, 6, 4],
- [2, 170, 170],
- [168, 112, 56],
- [166, 166, 166],
- [164, 164, 164],
- [162, 108, 54],
- [160, 128, 96],
- [64, 32, 160],
- [158, 158, 158],
- [156, 104, 52],
- [154, 154, 154],
- [152, 152, 152],
- [150, 140, 130],
- [120, 110, 100],
- [90, 80, 70],
- [60, 50, 40],
- [30, 20, 10],
- [148, 148, 148],
- [146, 146, 146],
- [144, 96, 48],
- [142, 142, 142],
- [140, 112, 84],
- [56, 28, 140],
- [138, 92, 46],
- [136, 128, 120],
- [112, 104, 96],
- [88, 80, 72],
- [64, 56, 48],
- [40, 32, 24],
- [16, 8, 136],
- [134, 134, 134],
- [132, 88, 44],
- [130, 104, 78],
- [52, 26, 130],
- [128, 128, 128],
- [127, 127, 127],
- [126, 84, 42],
- [125, 100, 75],
- [50, 25, 125],
- [124, 124, 124],
- [123, 82, 41],
- [122, 122, 122],
- [121, 121, 121],
- [120, 112, 104],
- [96, 88, 80],
- [72, 64, 56],
- [48, 40, 32],
- [24, 16, 8],
- [119, 112, 105],
- [98, 91, 84],
- [77, 70, 63],
- [56, 49, 42],
- [35, 28, 21],
- [14, 7, 119],
- [118, 118, 118],
- [117, 78, 39],
- [116, 116, 116],
- [115, 92, 69],
- [46, 23, 115],
- [114, 76, 38],
- [113, 113, 113],
- [112, 112, 112],
- [111, 74, 37],
- [110, 88, 66],
- [44, 22, 110],
- [109, 109, 109],
- [108, 72, 36],
- [107, 107, 107],
- [106, 106, 106],
- [105, 98, 91],
- [84, 77, 70],
- [63, 56, 49],
- [42, 35, 28],
- [21, 14, 7],
- [104, 104, 104],
- [103, 103, 103],
- [102, 100, 98],
- [96, 94, 92],
- [90, 88, 86],
- [84, 82, 80],
- [78, 76, 74],
- [72, 70, 68],
- [66, 64, 62],
- [60, 58, 56],
- [54, 52, 50],
- [48, 46, 44],
- [42, 40, 38],
- [36, 34, 32],
- [30, 28, 26],
- [24, 22, 20],
- [18, 16, 14],
- [12, 10, 8],
- [6, 4, 2],
- [101, 101, 101],
- [100, 80, 60],
- [40, 20, 100],
- [99, 66, 33],
- [98, 98, 98],
- [97, 97, 97],
- [96, 64, 32],
- [95, 76, 57],
- [38, 19, 95],
- [94, 94, 94],
- [93, 62, 31],
- [92, 92, 92],
- [91, 91, 91],
- [90, 84, 78],
- [72, 66, 60],
- [54, 48, 42],
- [36, 30, 24],
- [18, 12, 6],
- [89, 89, 89],
- [88, 88, 88],
- [87, 58, 29],
- [86, 86, 86],
- [85, 84, 83],
- [82, 81, 80],
- [79, 78, 77],
- [76, 75, 74],
- [73, 72, 71],
- [70, 69, 68],
- [67, 66, 65],
- [64, 63, 62],
- [61, 60, 59],
- [58, 57, 56],
- [55, 54, 53],
- [52, 51, 50],
- [49, 48, 47],
- [46, 45, 44],
- [43, 42, 41],
- [40, 39, 38],
- [37, 36, 35],
- [34, 33, 32],
- [31, 30, 29],
- [28, 27, 26],
- [25, 24, 23],
- [22, 21, 20],
- [19, 18, 17],
- [16, 15, 14],
- [13, 12, 11],
- [10, 9, 8],
- [7, 6, 5],
- [4, 3, 2],
- [1, 85, 85],
- [84, 56, 28],
- [83, 83, 83],
- [82, 82, 82],
- [81, 54, 27],
- [80, 64, 48],
- [32, 16, 80],
- [79, 79, 79],
- [78, 52, 26],
- [77, 77, 77],
- [76, 76, 76],
- [75, 70, 65],
- [60, 55, 50],
- [45, 40, 35],
- [30, 25, 20],
- [15, 10, 5],
- [74, 74, 74],
- [73, 73, 73],
- [72, 48, 24],
- [71, 71, 71],
- [70, 56, 42],
- [28, 14, 70],
- [69, 46, 23],
- [68, 64, 60],
- [56, 52, 48],
- [44, 40, 36],
- [32, 28, 24],
- [20, 16, 12],
- [8, 4, 68],
- [67, 67, 67],
- [66, 44, 22],
- [65, 52, 39],
- [26, 13, 65],
- [64, 64, 64],
- [63, 42, 21],
- [62, 62, 62],
- [61, 61, 61],
- [60, 56, 52],
- [48, 44, 40],
- [36, 32, 28],
- [24, 20, 16],
- [12, 8, 4],
- [59, 59, 59],
- [58, 58, 58],
- [57, 38, 19],
- [56, 56, 56],
- [55, 44, 33],
- [22, 11, 55],
- [54, 36, 18],
- [53, 53, 53],
- [52, 52, 52],
- [51, 50, 49],
- [48, 47, 46],
- [45, 44, 43],
- [42, 41, 40],
- [39, 38, 37],
- [36, 35, 34],
- [33, 32, 31],
- [30, 29, 28],
- [27, 26, 25],
- [24, 23, 22],
- [21, 20, 19],
- [18, 17, 16],
- [15, 14, 13],
- [12, 11, 10],
- [9, 8, 7],
- [6, 5, 4],
- [3, 2, 1],
- [50, 40, 30],
- [20, 10, 50],
- [49, 49, 49],
- [48, 32, 16],
- [47, 47, 47],
- [46, 46, 46],
- [45, 42, 39],
- [36, 33, 30],
- [27, 24, 21],
- [18, 15, 12],
- [9, 6, 3],
- [44, 44, 44],
- [43, 43, 43],
- [42, 28, 14],
- [41, 41, 41],
- [40, 32, 24],
- [16, 8, 40],
- [39, 26, 13],
- [38, 38, 38],
- [37, 37, 37],
- [36, 24, 12],
- [35, 28, 21],
- [14, 7, 35],
- [34, 32, 30],
- [28, 26, 24],
- [22, 20, 18],
- [16, 14, 12],
- [10, 8, 6],
- [4, 2, 34],
- [33, 22, 11],
- [32, 32, 32],
- [31, 31, 31],
- [30, 28, 26],
- [24, 22, 20],
- [18, 16, 14],
- [12, 10, 8],
- [6, 4, 2],
- [29, 29, 29],
- [28, 28, 28],
- [27, 18, 9],
- [26, 26, 26],
- [25, 20, 15],
- [10, 5, 25],
- [24, 16, 8],
- [23, 23, 23],
- [22, 22, 22],
- [21, 14, 7],
- [20, 16, 12],
- [8, 4, 20],
- [19, 19, 19],
- [18, 12, 6],
- [17, 16, 15],
- [14, 13, 12],
- [11, 10, 9],
- [8, 7, 6],
- [5, 4, 3],
- [2, 1, 17],
- [16, 16, 16],
- [15, 14, 13],
- [12, 11, 10],
- [9, 8, 7],
- [6, 5, 4],
- [3, 2, 1],
- [14, 14, 14],
- [13, 13, 13],
- [12, 8, 4],
- [11, 11, 11],
- [10, 8, 6],
- [4, 2, 10],
- [9, 6, 3],
- [8, 8, 8],
- [7, 7, 7],
- [6, 4, 2],
- [5, 4, 3],
- [2, 1, 5],
- [4, 4, 4],
- [3, 2, 1],
- [2, 2, 2],
- [1, 1, 1],
- [150, 144, 138],
- [132, 129, 126],
- [123, 120, 117],
- [114, 111, 108],
- [105, 102, 99],
- [96, 93, 90],
- [87, 84, 81],
- [78, 75, 72],
- [69, 66, 63],
- [60, 57, 54],
- [51, 48, 45],
- [42, 39, 36],
- [33, 30, 27],
- [24, 21, 18],
- [15, 12, 9],
- [6, 3, 153],
- [176, 154, 143],
- [132, 121, 110],
- [99, 88, 77],
- [66, 55, 44],
- [33, 22, 11],
- [196, 182, 168],
- [154, 140, 126],
- [112, 98, 84],
- [70, 56, 42],
- [28, 14, 210],
- [182, 156, 143],
- [130, 117, 104],
- [91, 78, 65],
- [52, 39, 26],
- [13, 195, 195],
- [154, 143, 132],
- [121, 110, 99],
- [88, 77, 66],
- [55, 44, 33],
- [22, 11, 165],
- [126, 117, 108],
- [99, 90, 81],
- [72, 63, 54],
- [45, 36, 27],
- [18, 9, 135],
- [188, 184, 180],
- [176, 172, 168],
- [164, 160, 156],
- [152, 148, 144],
- [140, 136, 132],
- [128, 124, 120],
- [116, 112, 108],
- [104, 100, 96],
- [92, 88, 84],
- [80, 76, 72],
- [68, 64, 60],
- [56, 52, 48],
- [44, 40, 36],
- [32, 28, 24],
- [20, 16, 12],
- [8, 4, 204],
- [196, 182, 168],
- [154, 140, 126],
- [112, 98, 84],
- [70, 56, 42],
- [28, 14, 238],
- [182, 156, 143],
- [130, 117, 104],
- [91, 78, 65],
- [52, 39, 26],
- [13, 221, 221],
- [188, 94, 47],
- [184, 138, 92],
- [46, 230, 230],
- [180, 150, 120],
- [105, 90, 75],
- [60, 45, 30],
- [15, 225, 225],
- [176, 132, 88],
- [44, 220, 220],
- [172, 129, 86],
- [43, 215, 215],
- [164, 123, 82],
- [41, 205, 205],
- [160, 120, 80],
- [40, 200, 200],
- [148, 111, 74],
- [37, 185, 185],
- [140, 105, 70],
- [35, 175, 175],
- [124, 93, 62],
- [31, 155, 155],
- [116, 87, 58],
- [29, 145, 145],
- [190, 188, 186],
- [184, 182, 180],
- [178, 176, 174],
- [172, 170, 168],
- [166, 164, 162],
- [160, 158, 156],
- [154, 152, 150],
- [148, 146, 144],
- [142, 140, 138],
- [136, 134, 132],
- [130, 128, 127],
- [126, 125, 124],
- [123, 122, 121],
- [120, 119, 118],
- [117, 116, 115],
- [114, 113, 112],
- [111, 110, 109],
- [108, 107, 106],
- [105, 104, 103],
- [102, 101, 100],
- [99, 98, 97],
- [96, 95, 94],
- [93, 92, 91],
- [90, 89, 88],
- [87, 86, 85],
- [84, 83, 82],
- [81, 80, 79],
- [78, 77, 76],
- [75, 74, 73],
- [72, 71, 70],
- [69, 68, 67],
- [66, 65, 64],
- [63, 62, 61],
- [60, 59, 58],
- [57, 56, 55],
- [54, 53, 52],
- [51, 50, 49],
- [48, 47, 46],
- [45, 44, 43],
- [42, 41, 40],
- [39, 38, 37],
- [36, 35, 34],
- [33, 32, 31],
- [30, 29, 28],
- [27, 26, 25],
- [24, 23, 22],
- [21, 20, 19],
- [18, 17, 16],
- [15, 14, 13],
- [12, 11, 10],
- [9, 8, 7],
- [6, 5, 4],
- [3, 2, 1],
- [176, 160, 144],
- [128, 112, 96],
- [80, 64, 48],
- [32, 16, 240],
- [168, 84, 252],
- [166, 83, 249],
- [164, 82, 246],
- [162, 81, 243],
- [158, 79, 237],
- [156, 78, 234],
- [154, 77, 231],
- [152, 76, 228],
- [148, 74, 222],
- [146, 73, 219],
- [144, 72, 216],
- [142, 71, 213],
- [138, 69, 207],
- [134, 67, 201],
- [132, 66, 198],
- [128, 64, 192],
- [126, 63, 189],
- [122, 61, 183],
- [118, 59, 177],
- [114, 57, 171],
- [106, 53, 159],
- [98, 49, 147],
- [94, 47, 141],
- [86, 43, 129],
- [150, 100, 50],
- [98, 49, 245],
- ];
- for (&cmyk_pixel, rgb_pixel) in cmyk_pixels.iter().zip(rgb_pixels) {
- single_pix_correct(cmyk_pixel, rgb_pixel);
- }
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_cmyk_to_rgb(b: &mut Bencher) {
- let mut v = Vec::with_capacity((W * H * 4) as usize);
- for c in 0..=255 {
- for k in 0..=255 {
- v.push(c as u8);
- v.push(0);
- v.push(0);
- v.push(k as u8);
- }
- }
-
- b.iter(|| {
- cmyk_to_rgb(&v);
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_cmyk_to_rgb_single(b: &mut Bencher) {
- b.iter(|| {
- cmyk_to_rgb(&[128, 128, 128, 128]);
- });
- }
-}
diff --git a/vendor/image/src/codecs/jpeg/encoder.rs b/vendor/image/src/codecs/jpeg/encoder.rs
deleted file mode 100644
index edb2a05..0000000
--- a/vendor/image/src/codecs/jpeg/encoder.rs
+++ /dev/null
@@ -1,1074 +0,0 @@
-#![allow(clippy::too_many_arguments)]
-
-use std::borrow::Cow;
-use std::convert::TryFrom;
-use std::io::{self, Write};
-
-use crate::error::{
- ImageError, ImageResult, ParameterError, ParameterErrorKind, UnsupportedError,
- UnsupportedErrorKind,
-};
-use crate::image::{ImageEncoder, ImageFormat};
-use crate::utils::clamp;
-use crate::{ColorType, GenericImageView, ImageBuffer, Luma, LumaA, Pixel, Rgb, Rgba};
-
-use super::entropy::build_huff_lut_const;
-use super::transform;
-use crate::traits::PixelWithColorType;
-
-// Markers
-// Baseline DCT
-static SOF0: u8 = 0xC0;
-// Huffman Tables
-static DHT: u8 = 0xC4;
-// Start of Image (standalone)
-static SOI: u8 = 0xD8;
-// End of image (standalone)
-static EOI: u8 = 0xD9;
-// Start of Scan
-static SOS: u8 = 0xDA;
-// Quantization Tables
-static DQT: u8 = 0xDB;
-// Application segments start and end
-static APP0: u8 = 0xE0;
-
-// section K.1
-// table K.1
-#[rustfmt::skip]
-static STD_LUMA_QTABLE: [u8; 64] = [
- 16, 11, 10, 16, 24, 40, 51, 61,
- 12, 12, 14, 19, 26, 58, 60, 55,
- 14, 13, 16, 24, 40, 57, 69, 56,
- 14, 17, 22, 29, 51, 87, 80, 62,
- 18, 22, 37, 56, 68, 109, 103, 77,
- 24, 35, 55, 64, 81, 104, 113, 92,
- 49, 64, 78, 87, 103, 121, 120, 101,
- 72, 92, 95, 98, 112, 100, 103, 99,
-];
-
-// table K.2
-#[rustfmt::skip]
-static STD_CHROMA_QTABLE: [u8; 64] = [
- 17, 18, 24, 47, 99, 99, 99, 99,
- 18, 21, 26, 66, 99, 99, 99, 99,
- 24, 26, 56, 99, 99, 99, 99, 99,
- 47, 66, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
-];
-
-// section K.3
-// Code lengths and values for table K.3
-static STD_LUMA_DC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-];
-
-static STD_LUMA_DC_VALUES: [u8; 12] = [
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
-];
-
-static STD_LUMA_DC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_LUMA_DC_CODE_LENGTHS, &STD_LUMA_DC_VALUES);
-
-// Code lengths and values for table K.4
-static STD_CHROMA_DC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
-];
-
-static STD_CHROMA_DC_VALUES: [u8; 12] = [
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
-];
-
-static STD_CHROMA_DC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_CHROMA_DC_CODE_LENGTHS, &STD_CHROMA_DC_VALUES);
-
-// Code lengths and values for table k.5
-static STD_LUMA_AC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D,
-];
-
-static STD_LUMA_AC_VALUES: [u8; 162] = [
- 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
- 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
- 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
- 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
- 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
- 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
- 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
- 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
- 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
- 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
- 0xF9, 0xFA,
-];
-
-static STD_LUMA_AC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_LUMA_AC_CODE_LENGTHS, &STD_LUMA_AC_VALUES);
-
-// Code lengths and values for table k.6
-static STD_CHROMA_AC_CODE_LENGTHS: [u8; 16] = [
- 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77,
-];
-static STD_CHROMA_AC_VALUES: [u8; 162] = [
- 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
- 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
- 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
- 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
- 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
- 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
- 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
- 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
- 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
- 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
- 0xF9, 0xFA,
-];
-
-static STD_CHROMA_AC_HUFF_LUT: [(u8, u16); 256] =
- build_huff_lut_const(&STD_CHROMA_AC_CODE_LENGTHS, &STD_CHROMA_AC_VALUES);
-
-static DCCLASS: u8 = 0;
-static ACCLASS: u8 = 1;
-
-static LUMADESTINATION: u8 = 0;
-static CHROMADESTINATION: u8 = 1;
-
-static LUMAID: u8 = 1;
-static CHROMABLUEID: u8 = 2;
-static CHROMAREDID: u8 = 3;
-
-/// The permutation of dct coefficients.
-#[rustfmt::skip]
-static UNZIGZAG: [u8; 64] = [
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
-];
-
-/// A representation of a JPEG component
-#[derive(Copy, Clone)]
-struct Component {
- /// The Component's identifier
- id: u8,
-
- /// Horizontal sampling factor
- h: u8,
-
- /// Vertical sampling factor
- v: u8,
-
- /// The quantization table selector
- tq: u8,
-
- /// Index to the Huffman DC Table
- dc_table: u8,
-
- /// Index to the AC Huffman Table
- ac_table: u8,
-
- /// The dc prediction of the component
- _dc_pred: i32,
-}
-
-pub(crate) struct BitWriter<W> {
- w: W,
- accumulator: u32,
- nbits: u8,
-}
-
-impl<W: Write> BitWriter<W> {
- fn new(w: W) -> Self {
- BitWriter {
- w,
- accumulator: 0,
- nbits: 0,
- }
- }
-
- fn write_bits(&mut self, bits: u16, size: u8) -> io::Result<()> {
- if size == 0 {
- return Ok(());
- }
-
- self.nbits += size;
- self.accumulator |= u32::from(bits) << (32 - self.nbits) as usize;
-
- while self.nbits >= 8 {
- let byte = self.accumulator >> 24;
- self.w.write_all(&[byte as u8])?;
-
- if byte == 0xFF {
- self.w.write_all(&[0x00])?;
- }
-
- self.nbits -= 8;
- self.accumulator <<= 8;
- }
-
- Ok(())
- }
-
- fn pad_byte(&mut self) -> io::Result<()> {
- self.write_bits(0x7F, 7)
- }
-
- fn huffman_encode(&mut self, val: u8, table: &[(u8, u16); 256]) -> io::Result<()> {
- let (size, code) = table[val as usize];
-
- if size > 16 {
- panic!("bad huffman value");
- }
-
- self.write_bits(code, size)
- }
-
- fn write_block(
- &mut self,
- block: &[i32; 64],
- prevdc: i32,
- dctable: &[(u8, u16); 256],
- actable: &[(u8, u16); 256],
- ) -> io::Result<i32> {
- // Differential DC encoding
- let dcval = block[0];
- let diff = dcval - prevdc;
- let (size, value) = encode_coefficient(diff);
-
- self.huffman_encode(size, dctable)?;
- self.write_bits(value, size)?;
-
- // Figure F.2
- let mut zero_run = 0;
-
- for &k in &UNZIGZAG[1..] {
- if block[k as usize] == 0 {
- zero_run += 1;
- } else {
- while zero_run > 15 {
- self.huffman_encode(0xF0, actable)?;
- zero_run -= 16;
- }
-
- let (size, value) = encode_coefficient(block[k as usize]);
- let symbol = (zero_run << 4) | size;
-
- self.huffman_encode(symbol, actable)?;
- self.write_bits(value, size)?;
-
- zero_run = 0;
- }
- }
-
- if block[UNZIGZAG[63] as usize] == 0 {
- self.huffman_encode(0x00, actable)?;
- }
-
- Ok(dcval)
- }
-
- fn write_marker(&mut self, marker: u8) -> io::Result<()> {
- self.w.write_all(&[0xFF, marker])
- }
-
- fn write_segment(&mut self, marker: u8, data: &[u8]) -> io::Result<()> {
- self.w.write_all(&[0xFF, marker])?;
- self.w.write_all(&(data.len() as u16 + 2).to_be_bytes())?;
- self.w.write_all(data)
- }
-}
-
-/// Represents a unit in which the density of an image is measured
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-pub enum PixelDensityUnit {
- /// Represents the absence of a unit, the values indicate only a
- /// [pixel aspect ratio](https://en.wikipedia.org/wiki/Pixel_aspect_ratio)
- PixelAspectRatio,
-
- /// Pixels per inch (2.54 cm)
- Inches,
-
- /// Pixels per centimeter
- Centimeters,
-}
-
-/// Represents the pixel density of an image
-///
-/// For example, a 300 DPI image is represented by:
-///
-/// ```rust
-/// use image::codecs::jpeg::*;
-/// let hdpi = PixelDensity::dpi(300);
-/// assert_eq!(hdpi, PixelDensity {density: (300,300), unit: PixelDensityUnit::Inches})
-/// ```
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-pub struct PixelDensity {
- /// A couple of values for (Xdensity, Ydensity)
- pub density: (u16, u16),
- /// The unit in which the density is measured
- pub unit: PixelDensityUnit,
-}
-
-impl PixelDensity {
- /// Creates the most common pixel density type:
- /// the horizontal and the vertical density are equal,
- /// and measured in pixels per inch.
- pub fn dpi(density: u16) -> Self {
- PixelDensity {
- density: (density, density),
- unit: PixelDensityUnit::Inches,
- }
- }
-}
-
-impl Default for PixelDensity {
- /// Returns a pixel density with a pixel aspect ratio of 1
- fn default() -> Self {
- PixelDensity {
- density: (1, 1),
- unit: PixelDensityUnit::PixelAspectRatio,
- }
- }
-}
-
-/// The representation of a JPEG encoder
-pub struct JpegEncoder<W> {
- writer: BitWriter<W>,
-
- components: Vec<Component>,
- tables: Vec<[u8; 64]>,
-
- luma_dctable: Cow<'static, [(u8, u16); 256]>,
- luma_actable: Cow<'static, [(u8, u16); 256]>,
- chroma_dctable: Cow<'static, [(u8, u16); 256]>,
- chroma_actable: Cow<'static, [(u8, u16); 256]>,
-
- pixel_density: PixelDensity,
-}
-
-impl<W: Write> JpegEncoder<W> {
- /// Create a new encoder that writes its output to ```w```
- pub fn new(w: W) -> JpegEncoder<W> {
- JpegEncoder::new_with_quality(w, 75)
- }
-
- /// Create a new encoder that writes its output to ```w```, and has
- /// the quality parameter ```quality``` with a value in the range 1-100
- /// where 1 is the worst and 100 is the best.
- pub fn new_with_quality(w: W, quality: u8) -> JpegEncoder<W> {
- let components = vec![
- Component {
- id: LUMAID,
- h: 1,
- v: 1,
- tq: LUMADESTINATION,
- dc_table: LUMADESTINATION,
- ac_table: LUMADESTINATION,
- _dc_pred: 0,
- },
- Component {
- id: CHROMABLUEID,
- h: 1,
- v: 1,
- tq: CHROMADESTINATION,
- dc_table: CHROMADESTINATION,
- ac_table: CHROMADESTINATION,
- _dc_pred: 0,
- },
- Component {
- id: CHROMAREDID,
- h: 1,
- v: 1,
- tq: CHROMADESTINATION,
- dc_table: CHROMADESTINATION,
- ac_table: CHROMADESTINATION,
- _dc_pred: 0,
- },
- ];
-
- // Derive our quantization table scaling value using the libjpeg algorithm
- let scale = u32::from(clamp(quality, 1, 100));
- let scale = if scale < 50 {
- 5000 / scale
- } else {
- 200 - scale * 2
- };
-
- let mut tables = vec![STD_LUMA_QTABLE, STD_CHROMA_QTABLE];
- tables.iter_mut().for_each(|t| {
- t.iter_mut().for_each(|v| {
- *v = clamp(
- (u32::from(*v) * scale + 50) / 100,
- 1,
- u32::from(u8::max_value()),
- ) as u8;
- })
- });
-
- JpegEncoder {
- writer: BitWriter::new(w),
-
- components,
- tables,
-
- luma_dctable: Cow::Borrowed(&STD_LUMA_DC_HUFF_LUT),
- luma_actable: Cow::Borrowed(&STD_LUMA_AC_HUFF_LUT),
- chroma_dctable: Cow::Borrowed(&STD_CHROMA_DC_HUFF_LUT),
- chroma_actable: Cow::Borrowed(&STD_CHROMA_AC_HUFF_LUT),
-
- pixel_density: PixelDensity::default(),
- }
- }
-
- /// Set the pixel density of the images the encoder will encode.
- /// If this method is not called, then a default pixel aspect ratio of 1x1 will be applied,
- /// and no DPI information will be stored in the image.
- pub fn set_pixel_density(&mut self, pixel_density: PixelDensity) {
- self.pixel_density = pixel_density;
- }
-
- /// Encodes the image stored in the raw byte buffer ```image```
- /// that has dimensions ```width``` and ```height```
- /// and ```ColorType``` ```c```
- ///
- /// The Image in encoded with subsampling ratio 4:2:2
- pub fn encode(
- &mut self,
- image: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- match color_type {
- ColorType::L8 => {
- let image: ImageBuffer<Luma<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- ColorType::La8 => {
- let image: ImageBuffer<LumaA<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- ColorType::Rgb8 => {
- let image: ImageBuffer<Rgb<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- ColorType::Rgba8 => {
- let image: ImageBuffer<Rgba<_>, _> =
- ImageBuffer::from_raw(width, height, image).unwrap();
- self.encode_image(&image)
- }
- _ => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Jpeg.into(),
- UnsupportedErrorKind::Color(color_type.into()),
- ),
- )),
- }
- }
-
- /// Encodes the given image.
- ///
- /// As a special feature this does not require the whole image to be present in memory at the
- /// same time such that it may be computed on the fly, which is why this method exists on this
- /// encoder but not on others. Instead the encoder will iterate over 8-by-8 blocks of pixels at
- /// a time, inspecting each pixel exactly once. You can rely on this behaviour when calling
- /// this method.
- ///
- /// The Image in encoded with subsampling ratio 4:2:2
- pub fn encode_image<I: GenericImageView>(&mut self, image: &I) -> ImageResult<()>
- where
- I::Pixel: PixelWithColorType,
- {
- let n = I::Pixel::CHANNEL_COUNT;
- let color_type = I::Pixel::COLOR_TYPE;
- let num_components = if n == 1 || n == 2 { 1 } else { 3 };
-
- self.writer.write_marker(SOI)?;
-
- let mut buf = Vec::new();
-
- build_jfif_header(&mut buf, self.pixel_density);
- self.writer.write_segment(APP0, &buf)?;
-
- build_frame_header(
- &mut buf,
- 8,
- // TODO: not idiomatic yet. Should be an EncodingError and mention jpg. Further it
- // should check dimensions prior to writing.
- u16::try_from(image.width()).map_err(|_| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })?,
- u16::try_from(image.height()).map_err(|_| {
- ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- ))
- })?,
- &self.components[..num_components],
- );
- self.writer.write_segment(SOF0, &buf)?;
-
- assert_eq!(self.tables.len(), 2);
- let numtables = if num_components == 1 { 1 } else { 2 };
-
- for (i, table) in self.tables[..numtables].iter().enumerate() {
- build_quantization_segment(&mut buf, 8, i as u8, table);
- self.writer.write_segment(DQT, &buf)?;
- }
-
- build_huffman_segment(
- &mut buf,
- DCCLASS,
- LUMADESTINATION,
- &STD_LUMA_DC_CODE_LENGTHS,
- &STD_LUMA_DC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
-
- build_huffman_segment(
- &mut buf,
- ACCLASS,
- LUMADESTINATION,
- &STD_LUMA_AC_CODE_LENGTHS,
- &STD_LUMA_AC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
-
- if num_components == 3 {
- build_huffman_segment(
- &mut buf,
- DCCLASS,
- CHROMADESTINATION,
- &STD_CHROMA_DC_CODE_LENGTHS,
- &STD_CHROMA_DC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
-
- build_huffman_segment(
- &mut buf,
- ACCLASS,
- CHROMADESTINATION,
- &STD_CHROMA_AC_CODE_LENGTHS,
- &STD_CHROMA_AC_VALUES,
- );
- self.writer.write_segment(DHT, &buf)?;
- }
-
- build_scan_header(&mut buf, &self.components[..num_components]);
- self.writer.write_segment(SOS, &buf)?;
-
- if color_type.has_color() {
- self.encode_rgb(image)
- } else {
- self.encode_gray(image)
- }?;
-
- self.writer.pad_byte()?;
- self.writer.write_marker(EOI)?;
- Ok(())
- }
-
- fn encode_gray<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> {
- let mut yblock = [0u8; 64];
- let mut y_dcprev = 0;
- let mut dct_yblock = [0i32; 64];
-
- for y in (0..image.height()).step_by(8) {
- for x in (0..image.width()).step_by(8) {
- copy_blocks_gray(image, x, y, &mut yblock);
-
- // Level shift and fdct
- // Coeffs are scaled by 8
- transform::fdct(&yblock, &mut dct_yblock);
-
- // Quantization
- for (i, dct) in dct_yblock.iter_mut().enumerate() {
- *dct = ((*dct / 8) as f32 / f32::from(self.tables[0][i])).round() as i32;
- }
-
- let la = &*self.luma_actable;
- let ld = &*self.luma_dctable;
-
- y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
- }
- }
-
- Ok(())
- }
-
- fn encode_rgb<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> {
- let mut y_dcprev = 0;
- let mut cb_dcprev = 0;
- let mut cr_dcprev = 0;
-
- let mut dct_yblock = [0i32; 64];
- let mut dct_cb_block = [0i32; 64];
- let mut dct_cr_block = [0i32; 64];
-
- let mut yblock = [0u8; 64];
- let mut cb_block = [0u8; 64];
- let mut cr_block = [0u8; 64];
-
- for y in (0..image.height()).step_by(8) {
- for x in (0..image.width()).step_by(8) {
- // RGB -> YCbCr
- copy_blocks_ycbcr(image, x, y, &mut yblock, &mut cb_block, &mut cr_block);
-
- // Level shift and fdct
- // Coeffs are scaled by 8
- transform::fdct(&yblock, &mut dct_yblock);
- transform::fdct(&cb_block, &mut dct_cb_block);
- transform::fdct(&cr_block, &mut dct_cr_block);
-
- // Quantization
- for i in 0usize..64 {
- dct_yblock[i] =
- ((dct_yblock[i] / 8) as f32 / f32::from(self.tables[0][i])).round() as i32;
- dct_cb_block[i] = ((dct_cb_block[i] / 8) as f32 / f32::from(self.tables[1][i]))
- .round() as i32;
- dct_cr_block[i] = ((dct_cr_block[i] / 8) as f32 / f32::from(self.tables[1][i]))
- .round() as i32;
- }
-
- let la = &*self.luma_actable;
- let ld = &*self.luma_dctable;
- let cd = &*self.chroma_dctable;
- let ca = &*self.chroma_actable;
-
- y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
- cb_dcprev = self.writer.write_block(&dct_cb_block, cb_dcprev, cd, ca)?;
- cr_dcprev = self.writer.write_block(&dct_cr_block, cr_dcprev, cd, ca)?;
- }
- }
-
- Ok(())
- }
-}
-
-impl<W: Write> ImageEncoder for JpegEncoder<W> {
- fn write_image(
- mut self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
-
-fn build_jfif_header(m: &mut Vec<u8>, density: PixelDensity) {
- m.clear();
- m.extend_from_slice(b"JFIF");
- m.extend_from_slice(&[
- 0,
- 0x01,
- 0x02,
- match density.unit {
- PixelDensityUnit::PixelAspectRatio => 0x00,
- PixelDensityUnit::Inches => 0x01,
- PixelDensityUnit::Centimeters => 0x02,
- },
- ]);
- m.extend_from_slice(&density.density.0.to_be_bytes());
- m.extend_from_slice(&density.density.1.to_be_bytes());
- m.extend_from_slice(&[0, 0]);
-}
-
-fn build_frame_header(
- m: &mut Vec<u8>,
- precision: u8,
- width: u16,
- height: u16,
- components: &[Component],
-) {
- m.clear();
-
- m.push(precision);
- m.extend_from_slice(&height.to_be_bytes());
- m.extend_from_slice(&width.to_be_bytes());
- m.push(components.len() as u8);
-
- for &comp in components.iter() {
- let hv = (comp.h << 4) | comp.v;
- m.extend_from_slice(&[comp.id, hv, comp.tq]);
- }
-}
-
-fn build_scan_header(m: &mut Vec<u8>, components: &[Component]) {
- m.clear();
-
- m.push(components.len() as u8);
-
- for &comp in components.iter() {
- let tables = (comp.dc_table << 4) | comp.ac_table;
- m.extend_from_slice(&[comp.id, tables]);
- }
-
- // spectral start and end, approx. high and low
- m.extend_from_slice(&[0, 63, 0]);
-}
-
-fn build_huffman_segment(
- m: &mut Vec<u8>,
- class: u8,
- destination: u8,
- numcodes: &[u8; 16],
- values: &[u8],
-) {
- m.clear();
-
- let tcth = (class << 4) | destination;
- m.push(tcth);
-
- m.extend_from_slice(numcodes);
-
- let sum: usize = numcodes.iter().map(|&x| x as usize).sum();
-
- assert_eq!(sum, values.len());
-
- m.extend_from_slice(values);
-}
-
-fn build_quantization_segment(m: &mut Vec<u8>, precision: u8, identifier: u8, qtable: &[u8; 64]) {
- m.clear();
-
- let p = if precision == 8 { 0 } else { 1 };
-
- let pqtq = (p << 4) | identifier;
- m.push(pqtq);
-
- for &i in &UNZIGZAG[..] {
- m.push(qtable[i as usize]);
- }
-}
-
-fn encode_coefficient(coefficient: i32) -> (u8, u16) {
- let mut magnitude = coefficient.unsigned_abs() as u16;
- let mut num_bits = 0u8;
-
- while magnitude > 0 {
- magnitude >>= 1;
- num_bits += 1;
- }
-
- let mask = (1 << num_bits as usize) - 1;
-
- let val = if coefficient < 0 {
- (coefficient - 1) as u16 & mask
- } else {
- coefficient as u16 & mask
- };
-
- (num_bits, val)
-}
-
-#[inline]
-fn rgb_to_ycbcr<P: Pixel>(pixel: P) -> (u8, u8, u8) {
- use crate::traits::Primitive;
- use num_traits::cast::ToPrimitive;
-
- let [r, g, b] = pixel.to_rgb().0;
- let max: f32 = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap();
- let r: f32 = r.to_f32().unwrap();
- let g: f32 = g.to_f32().unwrap();
- let b: f32 = b.to_f32().unwrap();
-
- // Coefficients from JPEG File Interchange Format (Version 1.02), multiplied for 255 maximum.
- let y = 76.245 / max * r + 149.685 / max * g + 29.07 / max * b;
- let cb = -43.0185 / max * r - 84.4815 / max * g + 127.5 / max * b + 128.;
- let cr = 127.5 / max * r - 106.7685 / max * g - 20.7315 / max * b + 128.;
-
- (y as u8, cb as u8, cr as u8)
-}
-
-/// Returns the pixel at (x,y) if (x,y) is in the image,
-/// otherwise the closest pixel in the image
-#[inline]
-fn pixel_at_or_near<I: GenericImageView>(source: &I, x: u32, y: u32) -> I::Pixel {
- if source.in_bounds(x, y) {
- source.get_pixel(x, y)
- } else {
- source.get_pixel(x.min(source.width() - 1), y.min(source.height() - 1))
- }
-}
-
-fn copy_blocks_ycbcr<I: GenericImageView>(
- source: &I,
- x0: u32,
- y0: u32,
- yb: &mut [u8; 64],
- cbb: &mut [u8; 64],
- crb: &mut [u8; 64],
-) {
- for y in 0..8 {
- for x in 0..8 {
- let pixel = pixel_at_or_near(source, x + x0, y + y0);
- let (yc, cb, cr) = rgb_to_ycbcr(pixel);
-
- yb[(y * 8 + x) as usize] = yc;
- cbb[(y * 8 + x) as usize] = cb;
- crb[(y * 8 + x) as usize] = cr;
- }
- }
-}
-
-fn copy_blocks_gray<I: GenericImageView>(source: &I, x0: u32, y0: u32, gb: &mut [u8; 64]) {
- use num_traits::cast::ToPrimitive;
- for y in 0..8 {
- for x in 0..8 {
- let pixel = pixel_at_or_near(source, x0 + x, y0 + y);
- let [luma] = pixel.to_luma().0;
- gb[(y * 8 + x) as usize] = luma.to_u8().unwrap();
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use std::io::Cursor;
-
- #[cfg(feature = "benchmarks")]
- extern crate test;
- #[cfg(feature = "benchmarks")]
- use test::Bencher;
-
- use crate::color::ColorType;
- use crate::error::ParameterErrorKind::DimensionMismatch;
- use crate::image::ImageDecoder;
- use crate::{ImageEncoder, ImageError};
-
- use super::super::JpegDecoder;
- use super::{
- build_frame_header, build_huffman_segment, build_jfif_header, build_quantization_segment,
- build_scan_header, Component, JpegEncoder, PixelDensity, DCCLASS, LUMADESTINATION,
- STD_LUMA_DC_CODE_LENGTHS, STD_LUMA_DC_VALUES,
- };
-
- fn decode(encoded: &[u8]) -> Vec<u8> {
- let decoder = JpegDecoder::new(Cursor::new(encoded)).expect("Could not decode image");
-
- let mut decoded = vec![0; decoder.total_bytes() as usize];
- decoder
- .read_image(&mut decoded)
- .expect("Could not decode image");
- decoded
- }
-
- #[test]
- fn roundtrip_sanity_check() {
- // create a 1x1 8-bit image buffer containing a single red pixel
- let img = [255u8, 0, 0];
-
- // encode it into a memory buffer
- let mut encoded_img = Vec::new();
- {
- let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100);
- encoder
- .write_image(&img, 1, 1, ColorType::Rgb8)
- .expect("Could not encode image");
- }
-
- // decode it from the memory buffer
- {
- let decoded = decode(&encoded_img);
- // note that, even with the encode quality set to 100, we do not get the same image
- // back. Therefore, we're going to assert that it's at least red-ish:
- assert_eq!(3, decoded.len());
- assert!(decoded[0] > 0x80);
- assert!(decoded[1] < 0x80);
- assert!(decoded[2] < 0x80);
- }
- }
-
- #[test]
- fn grayscale_roundtrip_sanity_check() {
- // create a 2x2 8-bit image buffer containing a white diagonal
- let img = [255u8, 0, 0, 255];
-
- // encode it into a memory buffer
- let mut encoded_img = Vec::new();
- {
- let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100);
- encoder
- .write_image(&img[..], 2, 2, ColorType::L8)
- .expect("Could not encode image");
- }
-
- // decode it from the memory buffer
- {
- let decoded = decode(&encoded_img);
- // note that, even with the encode quality set to 100, we do not get the same image
- // back. Therefore, we're going to assert that the diagonal is at least white-ish:
- assert_eq!(4, decoded.len());
- assert!(decoded[0] > 0x80);
- assert!(decoded[1] < 0x80);
- assert!(decoded[2] < 0x80);
- assert!(decoded[3] > 0x80);
- }
- }
-
- #[test]
- fn jfif_header_density_check() {
- let mut buffer = Vec::new();
- build_jfif_header(&mut buffer, PixelDensity::dpi(300));
- assert_eq!(
- buffer,
- vec![
- b'J',
- b'F',
- b'I',
- b'F',
- 0,
- 1,
- 2, // JFIF version 1.2
- 1, // density is in dpi
- 300u16.to_be_bytes()[0],
- 300u16.to_be_bytes()[1],
- 300u16.to_be_bytes()[0],
- 300u16.to_be_bytes()[1],
- 0,
- 0, // No thumbnail
- ]
- );
- }
-
- #[test]
- fn test_image_too_large() {
- // JPEG cannot encode images larger than 65,535×65,535
- // create a 65,536×1 8-bit black image buffer
- let img = [0; 65_536];
- // Try to encode an image that is too large
- let mut encoded = Vec::new();
- let encoder = JpegEncoder::new_with_quality(&mut encoded, 100);
- let result = encoder.write_image(&img, 65_536, 1, ColorType::L8);
- match result {
- Err(ImageError::Parameter(err)) => {
- assert_eq!(err.kind(), DimensionMismatch)
- }
- other => {
- assert!(
- false,
- "Encoding an image that is too large should return a DimensionError \
- it returned {:?} instead",
- other
- )
- }
- }
- }
-
- #[test]
- fn test_build_jfif_header() {
- let mut buf = vec![];
- let density = PixelDensity::dpi(100);
- build_jfif_header(&mut buf, density);
- assert_eq!(
- buf,
- [0x4A, 0x46, 0x49, 0x46, 0x00, 0x01, 0x02, 0x01, 0, 100, 0, 100, 0, 0]
- );
- }
-
- #[test]
- fn test_build_frame_header() {
- let mut buf = vec![];
- let components = vec![
- Component {
- id: 1,
- h: 1,
- v: 1,
- tq: 5,
- dc_table: 5,
- ac_table: 5,
- _dc_pred: 0,
- },
- Component {
- id: 2,
- h: 1,
- v: 1,
- tq: 4,
- dc_table: 4,
- ac_table: 4,
- _dc_pred: 0,
- },
- ];
- build_frame_header(&mut buf, 5, 100, 150, &components);
- assert_eq!(
- buf,
- [5, 0, 150, 0, 100, 2, 1, 1 << 4 | 1, 5, 2, 1 << 4 | 1, 4]
- );
- }
-
- #[test]
- fn test_build_scan_header() {
- let mut buf = vec![];
- let components = vec![
- Component {
- id: 1,
- h: 1,
- v: 1,
- tq: 5,
- dc_table: 5,
- ac_table: 5,
- _dc_pred: 0,
- },
- Component {
- id: 2,
- h: 1,
- v: 1,
- tq: 4,
- dc_table: 4,
- ac_table: 4,
- _dc_pred: 0,
- },
- ];
- build_scan_header(&mut buf, &components);
- assert_eq!(buf, [2, 1, 5 << 4 | 5, 2, 4 << 4 | 4, 0, 63, 0]);
- }
-
- #[test]
- fn test_build_huffman_segment() {
- let mut buf = vec![];
- build_huffman_segment(
- &mut buf,
- DCCLASS,
- LUMADESTINATION,
- &STD_LUMA_DC_CODE_LENGTHS,
- &STD_LUMA_DC_VALUES,
- );
- assert_eq!(
- buf,
- vec![
- 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11
- ]
- );
- }
-
- #[test]
- fn test_build_quantization_segment() {
- let mut buf = vec![];
- let qtable = [0u8; 64];
- build_quantization_segment(&mut buf, 8, 1, &qtable);
- let mut expected = vec![];
- expected.push(0 << 4 | 1);
- expected.extend_from_slice(&[0; 64]);
- assert_eq!(buf, expected)
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_jpeg_encoder_new(b: &mut Bencher) {
- b.iter(|| {
- let mut y = vec![];
- let x = JpegEncoder::new(&mut y);
- })
- }
-}
diff --git a/vendor/image/src/codecs/jpeg/entropy.rs b/vendor/image/src/codecs/jpeg/entropy.rs
deleted file mode 100644
index 5bdcef6..0000000
--- a/vendor/image/src/codecs/jpeg/entropy.rs
+++ /dev/null
@@ -1,63 +0,0 @@
-/// Given an array containing the number of codes of each code length,
-/// this function generates the huffman codes lengths and their respective
-/// code lengths as specified by the JPEG spec.
-const fn derive_codes_and_sizes(bits: &[u8; 16]) -> ([u8; 256], [u16; 256]) {
- let mut huffsize = [0u8; 256];
- let mut huffcode = [0u16; 256];
-
- let mut k = 0;
-
- // Annex C.2
- // Figure C.1
- // Generate table of individual code lengths
- let mut i = 0;
- while i < 16 {
- let mut j = 0;
- while j < bits[i as usize] {
- huffsize[k] = i + 1;
- k += 1;
- j += 1;
- }
- i += 1;
- }
-
- huffsize[k] = 0;
-
- // Annex C.2
- // Figure C.2
- // Generate table of huffman codes
- k = 0;
- let mut code = 0u16;
- let mut size = huffsize[0];
-
- while huffsize[k] != 0 {
- huffcode[k] = code;
- code += 1;
- k += 1;
-
- if huffsize[k] == size {
- continue;
- }
-
- // FIXME there is something wrong with this code
- let diff = huffsize[k].wrapping_sub(size);
- code = if diff < 16 { code << diff as usize } else { 0 };
-
- size = size.wrapping_add(diff);
- }
-
- (huffsize, huffcode)
-}
-
-pub(crate) const fn build_huff_lut_const(bits: &[u8; 16], huffval: &[u8]) -> [(u8, u16); 256] {
- let mut lut = [(17u8, 0u16); 256];
- let (huffsize, huffcode) = derive_codes_and_sizes(bits);
-
- let mut i = 0;
- while i < huffval.len() {
- lut[huffval[i] as usize] = (huffsize[i], huffcode[i]);
- i += 1;
- }
-
- lut
-}
diff --git a/vendor/image/src/codecs/jpeg/mod.rs b/vendor/image/src/codecs/jpeg/mod.rs
deleted file mode 100644
index 4242733..0000000
--- a/vendor/image/src/codecs/jpeg/mod.rs
+++ /dev/null
@@ -1,16 +0,0 @@
-//! Decoding and Encoding of JPEG Images
-//!
-//! JPEG (Joint Photographic Experts Group) is an image format that supports lossy compression.
-//! This module implements the Baseline JPEG standard.
-//!
-//! # Related Links
-//! * <http://www.w3.org/Graphics/JPEG/itu-t81.pdf> - The JPEG specification
-//!
-
-pub use self::decoder::JpegDecoder;
-pub use self::encoder::{JpegEncoder, PixelDensity, PixelDensityUnit};
-
-mod decoder;
-mod encoder;
-mod entropy;
-mod transform;
diff --git a/vendor/image/src/codecs/jpeg/transform.rs b/vendor/image/src/codecs/jpeg/transform.rs
deleted file mode 100644
index 1ca01a9..0000000
--- a/vendor/image/src/codecs/jpeg/transform.rs
+++ /dev/null
@@ -1,196 +0,0 @@
-/*
-fdct is a Rust translation of jfdctint.c from the
-Independent JPEG Group's libjpeg version 9a
-obtained from http://www.ijg.org/files/jpegsr9a.zip
-It comes with the following conditions of distribution and use:
-
- In plain English:
-
- 1. We don't promise that this software works. (But if you find any bugs,
- please let us know!)
- 2. You can use this software for whatever you want. You don't have to pay us.
- 3. You may not pretend that you wrote this software. If you use it in a
- program, you must acknowledge somewhere in your documentation that
- you've used the IJG code.
-
- In legalese:
-
- The authors make NO WARRANTY or representation, either express or implied,
- with respect to this software, its quality, accuracy, merchantability, or
- fitness for a particular purpose. This software is provided "AS IS", and you,
- its user, assume the entire risk as to its quality and accuracy.
-
- This software is copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding.
- All Rights Reserved except as specified below.
-
- Permission is hereby granted to use, copy, modify, and distribute this
- software (or portions thereof) for any purpose, without fee, subject to these
- conditions:
- (1) If any part of the source code for this software is distributed, then this
- README file must be included, with this copyright and no-warranty notice
- unaltered; and any additions, deletions, or changes to the original files
- must be clearly indicated in accompanying documentation.
- (2) If only executable code is distributed, then the accompanying
- documentation must state that "this software is based in part on the work of
- the Independent JPEG Group".
- (3) Permission for use of this software is granted only if the user accepts
- full responsibility for any undesirable consequences; the authors accept
- NO LIABILITY for damages of any kind.
-
- These conditions apply to any software derived from or based on the IJG code,
- not just to the unmodified library. If you use our work, you ought to
- acknowledge us.
-
- Permission is NOT granted for the use of any IJG author's name or company name
- in advertising or publicity relating to this software or products derived from
- it. This software may be referred to only as "the Independent JPEG Group's
- software".
-
- We specifically permit and encourage the use of this software as the basis of
- commercial products, provided that all warranty or liability claims are
- assumed by the product vendor.
-*/
-
-static CONST_BITS: i32 = 13;
-static PASS1_BITS: i32 = 2;
-
-static FIX_0_298631336: i32 = 2446;
-static FIX_0_390180644: i32 = 3196;
-static FIX_0_541196100: i32 = 4433;
-static FIX_0_765366865: i32 = 6270;
-static FIX_0_899976223: i32 = 7373;
-static FIX_1_175875602: i32 = 9633;
-static FIX_1_501321110: i32 = 12_299;
-static FIX_1_847759065: i32 = 15_137;
-static FIX_1_961570560: i32 = 16_069;
-static FIX_2_053119869: i32 = 16_819;
-static FIX_2_562915447: i32 = 20_995;
-static FIX_3_072711026: i32 = 25_172;
-
-pub(crate) fn fdct(samples: &[u8; 64], coeffs: &mut [i32; 64]) {
- // Pass 1: process rows.
- // Results are scaled by sqrt(8) compared to a true DCT
- // furthermore we scale the results by 2**PASS1_BITS
- for y in 0usize..8 {
- let y0 = y * 8;
-
- // Even part
- let t0 = i32::from(samples[y0]) + i32::from(samples[y0 + 7]);
- let t1 = i32::from(samples[y0 + 1]) + i32::from(samples[y0 + 6]);
- let t2 = i32::from(samples[y0 + 2]) + i32::from(samples[y0 + 5]);
- let t3 = i32::from(samples[y0 + 3]) + i32::from(samples[y0 + 4]);
-
- let t10 = t0 + t3;
- let t12 = t0 - t3;
- let t11 = t1 + t2;
- let t13 = t1 - t2;
-
- let t0 = i32::from(samples[y0]) - i32::from(samples[y0 + 7]);
- let t1 = i32::from(samples[y0 + 1]) - i32::from(samples[y0 + 6]);
- let t2 = i32::from(samples[y0 + 2]) - i32::from(samples[y0 + 5]);
- let t3 = i32::from(samples[y0 + 3]) - i32::from(samples[y0 + 4]);
-
- // Apply unsigned -> signed conversion
- coeffs[y0] = (t10 + t11 - 8 * 128) << PASS1_BITS as usize;
- coeffs[y0 + 4] = (t10 - t11) << PASS1_BITS as usize;
-
- let mut z1 = (t12 + t13) * FIX_0_541196100;
- // Add fudge factor here for final descale
- z1 += 1 << (CONST_BITS - PASS1_BITS - 1) as usize;
-
- coeffs[y0 + 2] = (z1 + t12 * FIX_0_765366865) >> (CONST_BITS - PASS1_BITS) as usize;
- coeffs[y0 + 6] = (z1 - t13 * FIX_1_847759065) >> (CONST_BITS - PASS1_BITS) as usize;
-
- // Odd part
- let t12 = t0 + t2;
- let t13 = t1 + t3;
-
- let mut z1 = (t12 + t13) * FIX_1_175875602;
- // Add fudge factor here for final descale
- z1 += 1 << (CONST_BITS - PASS1_BITS - 1) as usize;
-
- let mut t12 = t12 * (-FIX_0_390180644);
- let mut t13 = t13 * (-FIX_1_961570560);
- t12 += z1;
- t13 += z1;
-
- let z1 = (t0 + t3) * (-FIX_0_899976223);
- let mut t0 = t0 * FIX_1_501321110;
- let mut t3 = t3 * FIX_0_298631336;
- t0 += z1 + t12;
- t3 += z1 + t13;
-
- let z1 = (t1 + t2) * (-FIX_2_562915447);
- let mut t1 = t1 * FIX_3_072711026;
- let mut t2 = t2 * FIX_2_053119869;
- t1 += z1 + t13;
- t2 += z1 + t12;
-
- coeffs[y0 + 1] = t0 >> (CONST_BITS - PASS1_BITS) as usize;
- coeffs[y0 + 3] = t1 >> (CONST_BITS - PASS1_BITS) as usize;
- coeffs[y0 + 5] = t2 >> (CONST_BITS - PASS1_BITS) as usize;
- coeffs[y0 + 7] = t3 >> (CONST_BITS - PASS1_BITS) as usize;
- }
-
- // Pass 2: process columns
- // We remove the PASS1_BITS scaling but leave the results scaled up an
- // overall factor of 8
- for x in (0usize..8).rev() {
- // Even part
- let t0 = coeffs[x] + coeffs[x + 8 * 7];
- let t1 = coeffs[x + 8] + coeffs[x + 8 * 6];
- let t2 = coeffs[x + 8 * 2] + coeffs[x + 8 * 5];
- let t3 = coeffs[x + 8 * 3] + coeffs[x + 8 * 4];
-
- // Add fudge factor here for final descale
- let t10 = t0 + t3 + (1 << (PASS1_BITS - 1) as usize);
- let t12 = t0 - t3;
- let t11 = t1 + t2;
- let t13 = t1 - t2;
-
- let t0 = coeffs[x] - coeffs[x + 8 * 7];
- let t1 = coeffs[x + 8] - coeffs[x + 8 * 6];
- let t2 = coeffs[x + 8 * 2] - coeffs[x + 8 * 5];
- let t3 = coeffs[x + 8 * 3] - coeffs[x + 8 * 4];
-
- coeffs[x] = (t10 + t11) >> PASS1_BITS as usize;
- coeffs[x + 8 * 4] = (t10 - t11) >> PASS1_BITS as usize;
-
- let mut z1 = (t12 + t13) * FIX_0_541196100;
- // Add fudge factor here for final descale
- z1 += 1 << (CONST_BITS + PASS1_BITS - 1) as usize;
-
- coeffs[x + 8 * 2] = (z1 + t12 * FIX_0_765366865) >> (CONST_BITS + PASS1_BITS) as usize;
- coeffs[x + 8 * 6] = (z1 - t13 * FIX_1_847759065) >> (CONST_BITS + PASS1_BITS) as usize;
-
- // Odd part
- let t12 = t0 + t2;
- let t13 = t1 + t3;
-
- let mut z1 = (t12 + t13) * FIX_1_175875602;
- // Add fudge factor here for final descale
- z1 += 1 << (CONST_BITS - PASS1_BITS - 1) as usize;
-
- let mut t12 = t12 * (-FIX_0_390180644);
- let mut t13 = t13 * (-FIX_1_961570560);
- t12 += z1;
- t13 += z1;
-
- let z1 = (t0 + t3) * (-FIX_0_899976223);
- let mut t0 = t0 * FIX_1_501321110;
- let mut t3 = t3 * FIX_0_298631336;
- t0 += z1 + t12;
- t3 += z1 + t13;
-
- let z1 = (t1 + t2) * (-FIX_2_562915447);
- let mut t1 = t1 * FIX_3_072711026;
- let mut t2 = t2 * FIX_2_053119869;
- t1 += z1 + t13;
- t2 += z1 + t12;
-
- coeffs[x + 8] = t0 >> (CONST_BITS + PASS1_BITS) as usize;
- coeffs[x + 8 * 3] = t1 >> (CONST_BITS + PASS1_BITS) as usize;
- coeffs[x + 8 * 5] = t2 >> (CONST_BITS + PASS1_BITS) as usize;
- coeffs[x + 8 * 7] = t3 >> (CONST_BITS + PASS1_BITS) as usize;
- }
-}
diff --git a/vendor/image/src/codecs/openexr.rs b/vendor/image/src/codecs/openexr.rs
deleted file mode 100644
index 52d6ba9..0000000
--- a/vendor/image/src/codecs/openexr.rs
+++ /dev/null
@@ -1,592 +0,0 @@
-//! Decoding of OpenEXR (.exr) Images
-//!
-//! OpenEXR is an image format that is widely used, especially in VFX,
-//! because it supports lossless and lossy compression for float data.
-//!
-//! This decoder only supports RGB and RGBA images.
-//! If an image does not contain alpha information,
-//! it is defaulted to `1.0` (no transparency).
-//!
-//! # Related Links
-//! * <https://www.openexr.com/documentation.html> - The OpenEXR reference.
-//!
-//!
-//! Current limitations (July 2021):
-//! - only pixel type `Rgba32F` and `Rgba16F` are supported
-//! - only non-deep rgb/rgba files supported, no conversion from/to YCbCr or similar
-//! - only the first non-deep rgb layer is used
-//! - only the largest mip map level is used
-//! - pixels outside display window are lost
-//! - meta data is lost
-//! - dwaa/dwab compressed images not supported yet by the exr library
-//! - (chroma) subsampling not supported yet by the exr library
-use exr::prelude::*;
-
-use crate::error::{DecodingError, EncodingError, ImageFormatHint};
-use crate::image::decoder_to_vec;
-use crate::{
- ColorType, ExtendedColorType, ImageDecoder, ImageEncoder, ImageError, ImageFormat, ImageResult,
- Progress,
-};
-use std::convert::TryInto;
-use std::io::{Cursor, Read, Seek, Write};
-
-/// An OpenEXR decoder. Immediately reads the meta data from the file.
-#[derive(Debug)]
-pub struct OpenExrDecoder<R> {
- exr_reader: exr::block::reader::Reader<R>,
-
- // select a header that is rgb and not deep
- header_index: usize,
-
- // decode either rgb or rgba.
- // can be specified to include or discard alpha channels.
- // if none, the alpha channel will only be allocated where the file contains data for it.
- alpha_preference: Option<bool>,
-
- alpha_present_in_file: bool,
-}
-
-impl<R: Read + Seek> OpenExrDecoder<R> {
- /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
- /// Assumes the reader is buffered. In most cases,
- /// you should wrap your reader in a `BufReader` for best performance.
- /// Loads an alpha channel if the file has alpha samples.
- /// Use `with_alpha_preference` if you want to load or not load alpha unconditionally.
- pub fn new(source: R) -> ImageResult<Self> {
- Self::with_alpha_preference(source, None)
- }
-
- /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
- /// Assumes the reader is buffered. In most cases,
- /// you should wrap your reader in a `BufReader` for best performance.
- /// If alpha preference is specified, an alpha channel will
- /// always be present or always be not present in the returned image.
- /// If alpha preference is none, the alpha channel will only be returned if it is found in the file.
- pub fn with_alpha_preference(source: R, alpha_preference: Option<bool>) -> ImageResult<Self> {
- // read meta data, then wait for further instructions, keeping the file open and ready
- let exr_reader = exr::block::read(source, false).map_err(to_image_err)?;
-
- let header_index = exr_reader
- .headers()
- .iter()
- .position(|header| {
- // check if r/g/b exists in the channels
- let has_rgb = ["R", "G", "B"]
- .iter()
- .all(|&required| // alpha will be optional
- header.channels.find_index_of_channel(&Text::from(required)).is_some());
-
- // we currently dont support deep images, or images with other color spaces than rgb
- !header.deep && has_rgb
- })
- .ok_or_else(|| {
- ImageError::Decoding(DecodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- "image does not contain non-deep rgb channels",
- ))
- })?;
-
- let has_alpha = exr_reader.headers()[header_index]
- .channels
- .find_index_of_channel(&Text::from("A"))
- .is_some();
-
- Ok(Self {
- alpha_preference,
- exr_reader,
- header_index,
- alpha_present_in_file: has_alpha,
- })
- }
-
- // does not leak exrs-specific meta data into public api, just does it for this module
- fn selected_exr_header(&self) -> &exr::meta::header::Header {
- &self.exr_reader.meta_data().headers[self.header_index]
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for OpenExrDecoder<R> {
- type Reader = Cursor<Vec<u8>>;
-
- fn dimensions(&self) -> (u32, u32) {
- let size = self
- .selected_exr_header()
- .shared_attributes
- .display_window
- .size;
- (size.width() as u32, size.height() as u32)
- }
-
- fn color_type(&self) -> ColorType {
- let returns_alpha = self.alpha_preference.unwrap_or(self.alpha_present_in_file);
- if returns_alpha {
- ColorType::Rgba32F
- } else {
- ColorType::Rgb32F
- }
- }
-
- fn original_color_type(&self) -> ExtendedColorType {
- if self.alpha_present_in_file {
- ExtendedColorType::Rgba32F
- } else {
- ExtendedColorType::Rgb32F
- }
- }
-
- /// Use `read_image` instead if possible,
- /// as this method creates a whole new buffer just to contain the entire image.
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(Cursor::new(decoder_to_vec(self)?))
- }
-
- fn scanline_bytes(&self) -> u64 {
- // we cannot always read individual scan lines for every file,
- // as the tiles or lines in the file could be in random or reversed order.
- // therefore we currently read all lines at once
- // Todo: optimize for specific exr.line_order?
- self.total_bytes()
- }
-
- // reads with or without alpha, depending on `self.alpha_preference` and `self.alpha_present_in_file`
- fn read_image_with_progress<F: Fn(Progress)>(
- self,
- unaligned_bytes: &mut [u8],
- progress_callback: F,
- ) -> ImageResult<()> {
- let blocks_in_header = self.selected_exr_header().chunk_count as u64;
- let channel_count = self.color_type().channel_count() as usize;
-
- let display_window = self.selected_exr_header().shared_attributes.display_window;
- let data_window_offset =
- self.selected_exr_header().own_attributes.layer_position - display_window.position;
-
- {
- // check whether the buffer is large enough for the dimensions of the file
- let (width, height) = self.dimensions();
- let bytes_per_pixel = self.color_type().bytes_per_pixel() as usize;
- let expected_byte_count = (width as usize)
- .checked_mul(height as usize)
- .and_then(|size| size.checked_mul(bytes_per_pixel));
-
- // if the width and height does not match the length of the bytes, the arguments are invalid
- let has_invalid_size_or_overflowed = expected_byte_count
- .map(|expected_byte_count| unaligned_bytes.len() != expected_byte_count)
- // otherwise, size calculation overflowed, is bigger than memory,
- // therefore data is too small, so it is invalid.
- .unwrap_or(true);
-
- if has_invalid_size_or_overflowed {
- panic!("byte buffer not large enough for the specified dimensions and f32 pixels");
- }
- }
-
- let result = read()
- .no_deep_data()
- .largest_resolution_level()
- .rgba_channels(
- move |_size, _channels| vec![0_f32; display_window.size.area() * channel_count],
- move |buffer, index_in_data_window, (r, g, b, a_or_1): (f32, f32, f32, f32)| {
- let index_in_display_window =
- index_in_data_window.to_i32() + data_window_offset;
-
- // only keep pixels inside the data window
- // TODO filter chunks based on this
- if index_in_display_window.x() >= 0
- && index_in_display_window.y() >= 0
- && index_in_display_window.x() < display_window.size.width() as i32
- && index_in_display_window.y() < display_window.size.height() as i32
- {
- let index_in_display_window =
- index_in_display_window.to_usize("index bug").unwrap();
- let first_f32_index =
- index_in_display_window.flat_index_for_size(display_window.size);
-
- buffer[first_f32_index * channel_count
- ..(first_f32_index + 1) * channel_count]
- .copy_from_slice(&[r, g, b, a_or_1][0..channel_count]);
-
- // TODO white point chromaticities + srgb/linear conversion?
- }
- },
- )
- .first_valid_layer() // TODO select exact layer by self.header_index?
- .all_attributes()
- .on_progress(|progress| {
- progress_callback(
- Progress::new(
- (progress * blocks_in_header as f64) as u64,
- blocks_in_header,
- ), // TODO precision errors?
- );
- })
- .from_chunks(self.exr_reader)
- .map_err(to_image_err)?;
-
- // TODO this copy is strictly not necessary, but the exr api is a little too simple for reading into a borrowed target slice
-
- // this cast is safe and works with any alignment, as bytes are copied, and not f32 values.
- // note: buffer slice length is checked in the beginning of this function and will be correct at this point
- unaligned_bytes.copy_from_slice(bytemuck::cast_slice(
- result.layer_data.channel_data.pixels.as_slice(),
- ));
- Ok(())
- }
-}
-
-/// Write a raw byte buffer of pixels,
-/// returning an Error if it has an invalid length.
-///
-/// Assumes the writer is buffered. In most cases,
-/// you should wrap your writer in a `BufWriter` for best performance.
-// private. access via `OpenExrEncoder`
-fn write_buffer(
- mut buffered_write: impl Write + Seek,
- unaligned_bytes: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
-) -> ImageResult<()> {
- let width = width as usize;
- let height = height as usize;
-
- {
- // check whether the buffer is large enough for the specified dimensions
- let expected_byte_count = width
- .checked_mul(height)
- .and_then(|size| size.checked_mul(color_type.bytes_per_pixel() as usize));
-
- // if the width and height does not match the length of the bytes, the arguments are invalid
- let has_invalid_size_or_overflowed = expected_byte_count
- .map(|expected_byte_count| unaligned_bytes.len() < expected_byte_count)
- // otherwise, size calculation overflowed, is bigger than memory,
- // therefore data is too small, so it is invalid.
- .unwrap_or(true);
-
- if has_invalid_size_or_overflowed {
- return Err(ImageError::Encoding(EncodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- "byte buffer not large enough for the specified dimensions and f32 pixels",
- )));
- }
- }
-
- // bytes might be unaligned so we cannot cast the whole thing, instead lookup each f32 individually
- let lookup_f32 = move |f32_index: usize| {
- let unaligned_f32_bytes_slice = &unaligned_bytes[f32_index * 4..(f32_index + 1) * 4];
- let f32_bytes_array = unaligned_f32_bytes_slice
- .try_into()
- .expect("indexing error");
- f32::from_ne_bytes(f32_bytes_array)
- };
-
- match color_type {
- ColorType::Rgb32F => {
- exr::prelude::Image // TODO compression method zip??
- ::from_channels(
- (width, height),
- SpecificChannels::rgb(|pixel: Vec2<usize>| {
- let pixel_index = 3 * pixel.flat_index_for_size(Vec2(width, height));
- (
- lookup_f32(pixel_index),
- lookup_f32(pixel_index + 1),
- lookup_f32(pixel_index + 2),
- )
- }),
- )
- .write()
- // .on_progress(|progress| todo!())
- .to_buffered(&mut buffered_write)
- .map_err(to_image_err)?;
- }
-
- ColorType::Rgba32F => {
- exr::prelude::Image // TODO compression method zip??
- ::from_channels(
- (width, height),
- SpecificChannels::rgba(|pixel: Vec2<usize>| {
- let pixel_index = 4 * pixel.flat_index_for_size(Vec2(width, height));
- (
- lookup_f32(pixel_index),
- lookup_f32(pixel_index + 1),
- lookup_f32(pixel_index + 2),
- lookup_f32(pixel_index + 3),
- )
- }),
- )
- .write()
- // .on_progress(|progress| todo!())
- .to_buffered(&mut buffered_write)
- .map_err(to_image_err)?;
- }
-
- // TODO other color types and channel types
- unsupported_color_type => {
- return Err(ImageError::Encoding(EncodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- format!(
- "writing color type {:?} not yet supported",
- unsupported_color_type
- ),
- )))
- }
- }
-
- Ok(())
-}
-
-// TODO is this struct and trait actually used anywhere?
-/// A thin wrapper that implements `ImageEncoder` for OpenEXR images. Will behave like `image::codecs::openexr::write_buffer`.
-#[derive(Debug)]
-pub struct OpenExrEncoder<W>(W);
-
-impl<W> OpenExrEncoder<W> {
- /// Create an `ImageEncoder`. Does not write anything yet. Writing later will behave like `image::codecs::openexr::write_buffer`.
- // use constructor, not public field, for future backwards-compatibility
- pub fn new(write: W) -> Self {
- Self(write)
- }
-}
-
-impl<W> ImageEncoder for OpenExrEncoder<W>
-where
- W: Write + Seek,
-{
- /// Writes the complete image.
- ///
- /// Returns an Error if it has an invalid length.
- /// Assumes the writer is buffered. In most cases,
- /// you should wrap your writer in a `BufWriter` for best performance.
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- write_buffer(self.0, buf, width, height, color_type)
- }
-}
-
-fn to_image_err(exr_error: Error) -> ImageError {
- ImageError::Decoding(DecodingError::new(
- ImageFormatHint::Exact(ImageFormat::OpenExr),
- exr_error.to_string(),
- ))
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- use std::io::BufReader;
- use std::path::{Path, PathBuf};
-
- use crate::buffer_::{Rgb32FImage, Rgba32FImage};
- use crate::error::{LimitError, LimitErrorKind};
- use crate::{ImageBuffer, Rgb, Rgba};
-
- const BASE_PATH: &[&str] = &[".", "tests", "images", "exr"];
-
- /// Write an `Rgb32FImage`.
- /// Assumes the writer is buffered. In most cases,
- /// you should wrap your writer in a `BufWriter` for best performance.
- fn write_rgb_image(write: impl Write + Seek, image: &Rgb32FImage) -> ImageResult<()> {
- write_buffer(
- write,
- bytemuck::cast_slice(image.as_raw().as_slice()),
- image.width(),
- image.height(),
- ColorType::Rgb32F,
- )
- }
-
- /// Write an `Rgba32FImage`.
- /// Assumes the writer is buffered. In most cases,
- /// you should wrap your writer in a `BufWriter` for best performance.
- fn write_rgba_image(write: impl Write + Seek, image: &Rgba32FImage) -> ImageResult<()> {
- write_buffer(
- write,
- bytemuck::cast_slice(image.as_raw().as_slice()),
- image.width(),
- image.height(),
- ColorType::Rgba32F,
- )
- }
-
- /// Read the file from the specified path into an `Rgba32FImage`.
- fn read_as_rgba_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgba32FImage> {
- read_as_rgba_image(BufReader::new(std::fs::File::open(path)?))
- }
-
- /// Read the file from the specified path into an `Rgb32FImage`.
- fn read_as_rgb_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgb32FImage> {
- read_as_rgb_image(BufReader::new(std::fs::File::open(path)?))
- }
-
- /// Read the file from the specified path into an `Rgb32FImage`.
- fn read_as_rgb_image(read: impl Read + Seek) -> ImageResult<Rgb32FImage> {
- let decoder = OpenExrDecoder::with_alpha_preference(read, Some(false))?;
- let (width, height) = decoder.dimensions();
- let buffer: Vec<f32> = decoder_to_vec(decoder)?;
-
- ImageBuffer::from_raw(width, height, buffer)
- // this should be the only reason for the "from raw" call to fail,
- // even though such a large allocation would probably cause an error much earlier
- .ok_or_else(|| {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- })
- }
-
- /// Read the file from the specified path into an `Rgba32FImage`.
- fn read_as_rgba_image(read: impl Read + Seek) -> ImageResult<Rgba32FImage> {
- let decoder = OpenExrDecoder::with_alpha_preference(read, Some(true))?;
- let (width, height) = decoder.dimensions();
- let buffer: Vec<f32> = decoder_to_vec(decoder)?;
-
- ImageBuffer::from_raw(width, height, buffer)
- // this should be the only reason for the "from raw" call to fail,
- // even though such a large allocation would probably cause an error much earlier
- .ok_or_else(|| {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- })
- }
-
- #[test]
- fn compare_exr_hdr() {
- if cfg!(not(feature = "hdr")) {
- eprintln!("warning: to run all the openexr tests, activate the hdr feature flag");
- }
-
- #[cfg(feature = "hdr")]
- {
- let folder = BASE_PATH.iter().collect::<PathBuf>();
- let reference_path = folder.clone().join("overexposed gradient.hdr");
- let exr_path = folder
- .clone()
- .join("overexposed gradient - data window equals display window.exr");
-
- let hdr: Vec<Rgb<f32>> = crate::codecs::hdr::HdrDecoder::new(std::io::BufReader::new(
- std::fs::File::open(&reference_path).unwrap(),
- ))
- .unwrap()
- .read_image_hdr()
- .unwrap();
-
- let exr_pixels: Rgb32FImage = read_as_rgb_image_from_file(exr_path).unwrap();
- assert_eq!(
- exr_pixels.dimensions().0 * exr_pixels.dimensions().1,
- hdr.len() as u32
- );
-
- for (expected, found) in hdr.iter().zip(exr_pixels.pixels()) {
- for (expected, found) in expected.0.iter().zip(found.0.iter()) {
- // the large tolerance seems to be caused by
- // the RGBE u8x4 pixel quantization of the hdr image format
- assert!(
- (expected - found).abs() < 0.1,
- "expected {}, found {}",
- expected,
- found
- );
- }
- }
- }
- }
-
- #[test]
- fn roundtrip_rgba() {
- let mut next_random = vec![1.0, 0.0, -1.0, -3.14, 27.0, 11.0, 31.0]
- .into_iter()
- .cycle();
- let mut next_random = move || next_random.next().unwrap();
-
- let generated_image: Rgba32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
- Rgba([next_random(), next_random(), next_random(), next_random()])
- });
-
- let mut bytes = vec![];
- write_rgba_image(Cursor::new(&mut bytes), &generated_image).unwrap();
- let decoded_image = read_as_rgba_image(Cursor::new(bytes)).unwrap();
-
- debug_assert_eq!(generated_image, decoded_image);
- }
-
- #[test]
- fn roundtrip_rgb() {
- let mut next_random = vec![1.0, 0.0, -1.0, -3.14, 27.0, 11.0, 31.0]
- .into_iter()
- .cycle();
- let mut next_random = move || next_random.next().unwrap();
-
- let generated_image: Rgb32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
- Rgb([next_random(), next_random(), next_random()])
- });
-
- let mut bytes = vec![];
- write_rgb_image(Cursor::new(&mut bytes), &generated_image).unwrap();
- let decoded_image = read_as_rgb_image(Cursor::new(bytes)).unwrap();
-
- debug_assert_eq!(generated_image, decoded_image);
- }
-
- #[test]
- fn compare_rgba_rgb() {
- let exr_path = BASE_PATH
- .iter()
- .collect::<PathBuf>()
- .join("overexposed gradient - data window equals display window.exr");
-
- let rgb: Rgb32FImage = read_as_rgb_image_from_file(&exr_path).unwrap();
- let rgba: Rgba32FImage = read_as_rgba_image_from_file(&exr_path).unwrap();
-
- assert_eq!(rgba.dimensions(), rgb.dimensions());
-
- for (Rgb(rgb), Rgba(rgba)) in rgb.pixels().zip(rgba.pixels()) {
- assert_eq!(rgb, &rgba[..3]);
- }
- }
-
- #[test]
- fn compare_cropped() {
- // like in photoshop, exr images may have layers placed anywhere in a canvas.
- // we don't want to load the pixels from the layer, but we want to load the pixels from the canvas.
- // a layer might be smaller than the canvas, in that case the canvas should be transparent black
- // where no layer was covering it. a layer might also be larger than the canvas,
- // these pixels should be discarded.
- //
- // in this test we want to make sure that an
- // auto-cropped image will be reproduced to the original.
-
- let exr_path = BASE_PATH.iter().collect::<PathBuf>();
- let original = exr_path.clone().join("cropping - uncropped original.exr");
- let cropped = exr_path
- .clone()
- .join("cropping - data window differs display window.exr");
-
- // smoke-check that the exr files are actually not the same
- {
- let original_exr = read_first_flat_layer_from_file(&original).unwrap();
- let cropped_exr = read_first_flat_layer_from_file(&cropped).unwrap();
- assert_eq!(
- original_exr.attributes.display_window,
- cropped_exr.attributes.display_window
- );
- assert_ne!(
- original_exr.layer_data.attributes.layer_position,
- cropped_exr.layer_data.attributes.layer_position
- );
- assert_ne!(original_exr.layer_data.size, cropped_exr.layer_data.size);
- }
-
- // check that they result in the same image
- let original: Rgba32FImage = read_as_rgba_image_from_file(&original).unwrap();
- let cropped: Rgba32FImage = read_as_rgba_image_from_file(&cropped).unwrap();
- assert_eq!(original.dimensions(), cropped.dimensions());
-
- // the following is not a simple assert_eq, as in case of an error,
- // the whole image would be printed to the console, which takes forever
- assert!(original.pixels().zip(cropped.pixels()).all(|(a, b)| a == b));
- }
-}
diff --git a/vendor/image/src/codecs/png.rs b/vendor/image/src/codecs/png.rs
deleted file mode 100644
index b9f98ce..0000000
--- a/vendor/image/src/codecs/png.rs
+++ /dev/null
@@ -1,778 +0,0 @@
-//! Decoding and Encoding of PNG Images
-//!
-//! PNG (Portable Network Graphics) is an image format that supports lossless compression.
-//!
-//! # Related Links
-//! * <http://www.w3.org/TR/PNG/> - The PNG Specification
-//!
-
-use std::convert::TryFrom;
-use std::fmt;
-use std::io::{self, Read, Write};
-
-use num_rational::Ratio;
-use png::{BlendOp, DisposeOp};
-
-use crate::animation::{Delay, Frame, Frames};
-use crate::color::{Blend, ColorType, ExtendedColorType};
-use crate::error::{
- DecodingError, EncodingError, ImageError, ImageResult, LimitError, LimitErrorKind,
- ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{AnimationDecoder, ImageDecoder, ImageEncoder, ImageFormat};
-use crate::io::Limits;
-use crate::{DynamicImage, GenericImage, ImageBuffer, Luma, LumaA, Rgb, Rgba, RgbaImage};
-
-// http://www.w3.org/TR/PNG-Structure.html
-// The first eight bytes of a PNG file always contain the following (decimal) values:
-pub(crate) const PNG_SIGNATURE: [u8; 8] = [137, 80, 78, 71, 13, 10, 26, 10];
-
-/// Png Reader
-///
-/// This reader will try to read the png one row at a time,
-/// however for interlaced png files this is not possible and
-/// these are therefore read at once.
-pub struct PngReader<R: Read> {
- reader: png::Reader<R>,
- buffer: Vec<u8>,
- index: usize,
-}
-
-impl<R: Read> PngReader<R> {
- fn new(mut reader: png::Reader<R>) -> ImageResult<PngReader<R>> {
- let len = reader.output_buffer_size();
- // Since interlaced images do not come in
- // scanline order it is almost impossible to
- // read them in a streaming fashion, however
- // this shouldn't be a too big of a problem
- // as most interlaced images should fit in memory.
- let buffer = if reader.info().interlaced {
- let mut buffer = vec![0; len];
- reader
- .next_frame(&mut buffer)
- .map_err(ImageError::from_png)?;
- buffer
- } else {
- Vec::new()
- };
-
- Ok(PngReader {
- reader,
- buffer,
- index: 0,
- })
- }
-}
-
-impl<R: Read> Read for PngReader<R> {
- fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
- // io::Write::write for slice cannot fail
- let readed = buf.write(&self.buffer[self.index..]).unwrap();
-
- let mut bytes = readed;
- self.index += readed;
-
- while self.index >= self.buffer.len() {
- match self.reader.next_row()? {
- Some(row) => {
- // Faster to copy directly to external buffer
- let readed = buf.write(row.data()).unwrap();
- bytes += readed;
-
- self.buffer = row.data()[readed..].to_owned();
- self.index = 0;
- }
- None => return Ok(bytes),
- }
- }
-
- Ok(bytes)
- }
-
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- let mut bytes = self.buffer.len();
- if buf.is_empty() {
- std::mem::swap(&mut self.buffer, buf);
- } else {
- buf.extend_from_slice(&self.buffer);
- self.buffer.clear();
- }
-
- self.index = 0;
-
- while let Some(row) = self.reader.next_row()? {
- buf.extend_from_slice(row.data());
- bytes += row.data().len();
- }
-
- Ok(bytes)
- }
-}
-
-/// PNG decoder
-pub struct PngDecoder<R: Read> {
- color_type: ColorType,
- reader: png::Reader<R>,
-}
-
-impl<R: Read> PngDecoder<R> {
- /// Creates a new decoder that decodes from the stream ```r```
- pub fn new(r: R) -> ImageResult<PngDecoder<R>> {
- Self::with_limits(r, Limits::default())
- }
-
- /// Creates a new decoder that decodes from the stream ```r``` with the given limits.
- pub fn with_limits(r: R, limits: Limits) -> ImageResult<PngDecoder<R>> {
- limits.check_support(&crate::io::LimitSupport::default())?;
-
- let max_bytes = usize::try_from(limits.max_alloc.unwrap_or(u64::MAX)).unwrap_or(usize::MAX);
- let mut decoder = png::Decoder::new_with_limits(r, png::Limits { bytes: max_bytes });
-
- let info = decoder.read_header_info().map_err(ImageError::from_png)?;
- limits.check_dimensions(info.width, info.height)?;
-
- // By default the PNG decoder will scale 16 bpc to 8 bpc, so custom
- // transformations must be set. EXPAND preserves the default behavior
- // expanding bpc < 8 to 8 bpc.
- decoder.set_transformations(png::Transformations::EXPAND);
- let reader = decoder.read_info().map_err(ImageError::from_png)?;
- let (color_type, bits) = reader.output_color_type();
- let color_type = match (color_type, bits) {
- (png::ColorType::Grayscale, png::BitDepth::Eight) => ColorType::L8,
- (png::ColorType::Grayscale, png::BitDepth::Sixteen) => ColorType::L16,
- (png::ColorType::GrayscaleAlpha, png::BitDepth::Eight) => ColorType::La8,
- (png::ColorType::GrayscaleAlpha, png::BitDepth::Sixteen) => ColorType::La16,
- (png::ColorType::Rgb, png::BitDepth::Eight) => ColorType::Rgb8,
- (png::ColorType::Rgb, png::BitDepth::Sixteen) => ColorType::Rgb16,
- (png::ColorType::Rgba, png::BitDepth::Eight) => ColorType::Rgba8,
- (png::ColorType::Rgba, png::BitDepth::Sixteen) => ColorType::Rgba16,
-
- (png::ColorType::Grayscale, png::BitDepth::One) => {
- return Err(unsupported_color(ExtendedColorType::L1))
- }
- (png::ColorType::GrayscaleAlpha, png::BitDepth::One) => {
- return Err(unsupported_color(ExtendedColorType::La1))
- }
- (png::ColorType::Rgb, png::BitDepth::One) => {
- return Err(unsupported_color(ExtendedColorType::Rgb1))
- }
- (png::ColorType::Rgba, png::BitDepth::One) => {
- return Err(unsupported_color(ExtendedColorType::Rgba1))
- }
-
- (png::ColorType::Grayscale, png::BitDepth::Two) => {
- return Err(unsupported_color(ExtendedColorType::L2))
- }
- (png::ColorType::GrayscaleAlpha, png::BitDepth::Two) => {
- return Err(unsupported_color(ExtendedColorType::La2))
- }
- (png::ColorType::Rgb, png::BitDepth::Two) => {
- return Err(unsupported_color(ExtendedColorType::Rgb2))
- }
- (png::ColorType::Rgba, png::BitDepth::Two) => {
- return Err(unsupported_color(ExtendedColorType::Rgba2))
- }
-
- (png::ColorType::Grayscale, png::BitDepth::Four) => {
- return Err(unsupported_color(ExtendedColorType::L4))
- }
- (png::ColorType::GrayscaleAlpha, png::BitDepth::Four) => {
- return Err(unsupported_color(ExtendedColorType::La4))
- }
- (png::ColorType::Rgb, png::BitDepth::Four) => {
- return Err(unsupported_color(ExtendedColorType::Rgb4))
- }
- (png::ColorType::Rgba, png::BitDepth::Four) => {
- return Err(unsupported_color(ExtendedColorType::Rgba4))
- }
-
- (png::ColorType::Indexed, bits) => {
- return Err(unsupported_color(ExtendedColorType::Unknown(bits as u8)))
- }
- };
-
- Ok(PngDecoder { color_type, reader })
- }
-
- /// Turn this into an iterator over the animation frames.
- ///
- /// Reading the complete animation requires more memory than reading the data from the IDAT
- /// frame–multiple frame buffers need to be reserved at the same time. We further do not
- /// support compositing 16-bit colors. In any case this would be lossy as the interface of
- /// animation decoders does not support 16-bit colors.
- ///
- /// If something is not supported or a limit is violated then the decoding step that requires
- /// them will fail and an error will be returned instead of the frame. No further frames will
- /// be returned.
- pub fn apng(self) -> ApngDecoder<R> {
- ApngDecoder::new(self)
- }
-
- /// Returns if the image contains an animation.
- ///
- /// Note that the file itself decides if the default image is considered to be part of the
- /// animation. When it is not the common interpretation is to use it as a thumbnail.
- ///
- /// If a non-animated image is converted into an `ApngDecoder` then its iterator is empty.
- pub fn is_apng(&self) -> bool {
- self.reader.info().animation_control.is_some()
- }
-}
-
-fn unsupported_color(ect: ExtendedColorType) -> ImageError {
- ImageError::Unsupported(UnsupportedError::from_format_and_kind(
- ImageFormat::Png.into(),
- UnsupportedErrorKind::Color(ect),
- ))
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for PngDecoder<R> {
- type Reader = PngReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- self.reader.info().size()
- }
-
- fn color_type(&self) -> ColorType {
- self.color_type
- }
-
- fn icc_profile(&mut self) -> Option<Vec<u8>> {
- self.reader.info().icc_profile.as_ref().map(|x| x.to_vec())
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- PngReader::new(self.reader)
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- use byteorder::{BigEndian, ByteOrder, NativeEndian};
-
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
- self.reader.next_frame(buf).map_err(ImageError::from_png)?;
- // PNG images are big endian. For 16 bit per channel and larger types,
- // the buffer may need to be reordered to native endianness per the
- // contract of `read_image`.
- // TODO: assumes equal channel bit depth.
- let bpc = self.color_type().bytes_per_pixel() / self.color_type().channel_count();
-
- match bpc {
- 1 => (), // No reodering necessary for u8
- 2 => buf.chunks_mut(2).for_each(|c| {
- let v = BigEndian::read_u16(c);
- NativeEndian::write_u16(c, v)
- }),
- _ => unreachable!(),
- }
- Ok(())
- }
-
- fn scanline_bytes(&self) -> u64 {
- let width = self.reader.info().width;
- self.reader.output_line_size(width) as u64
- }
-}
-
-/// An [`AnimationDecoder`] adapter of [`PngDecoder`].
-///
-/// See [`PngDecoder::apng`] for more information.
-///
-/// [`AnimationDecoder`]: ../trait.AnimationDecoder.html
-/// [`PngDecoder`]: struct.PngDecoder.html
-/// [`PngDecoder::apng`]: struct.PngDecoder.html#method.apng
-pub struct ApngDecoder<R: Read> {
- inner: PngDecoder<R>,
- /// The current output buffer.
- current: RgbaImage,
- /// The previous output buffer, used for dispose op previous.
- previous: RgbaImage,
- /// The dispose op of the current frame.
- dispose: DisposeOp,
- /// The number of image still expected to be able to load.
- remaining: u32,
- /// The next (first) image is the thumbnail.
- has_thumbnail: bool,
-}
-
-impl<R: Read> ApngDecoder<R> {
- fn new(inner: PngDecoder<R>) -> Self {
- let (width, height) = inner.dimensions();
- let info = inner.reader.info();
- let remaining = match info.animation_control() {
- // The expected number of fcTL in the remaining image.
- Some(actl) => actl.num_frames,
- None => 0,
- };
- // If the IDAT has no fcTL then it is not part of the animation counted by
- // num_frames. All following fdAT chunks must be preceded by an fcTL
- let has_thumbnail = info.frame_control.is_none();
- ApngDecoder {
- inner,
- // TODO: should we delay this allocation? At least if we support limits we should.
- current: RgbaImage::new(width, height),
- previous: RgbaImage::new(width, height),
- dispose: DisposeOp::Background,
- remaining,
- has_thumbnail,
- }
- }
-
- // TODO: thumbnail(&mut self) -> Option<impl ImageDecoder<'_>>
-
- /// Decode one subframe and overlay it on the canvas.
- fn mix_next_frame(&mut self) -> Result<Option<&RgbaImage>, ImageError> {
- // Remove this image from remaining.
- self.remaining = match self.remaining.checked_sub(1) {
- None => return Ok(None),
- Some(next) => next,
- };
-
- // Shorten ourselves to 0 in case of error.
- let remaining = self.remaining;
- self.remaining = 0;
-
- // Skip the thumbnail that is not part of the animation.
- if self.has_thumbnail {
- self.has_thumbnail = false;
- let mut buffer = vec![0; self.inner.reader.output_buffer_size()];
- self.inner
- .reader
- .next_frame(&mut buffer)
- .map_err(ImageError::from_png)?;
- }
-
- self.animatable_color_type()?;
-
- // Dispose of the previous frame.
- match self.dispose {
- DisposeOp::None => {
- self.previous.clone_from(&self.current);
- }
- DisposeOp::Background => {
- self.previous.clone_from(&self.current);
- self.current
- .pixels_mut()
- .for_each(|pixel| *pixel = Rgba([0, 0, 0, 0]));
- }
- DisposeOp::Previous => {
- self.current.clone_from(&self.previous);
- }
- }
-
- // Read next frame data.
- let mut buffer = vec![0; self.inner.reader.output_buffer_size()];
- self.inner
- .reader
- .next_frame(&mut buffer)
- .map_err(ImageError::from_png)?;
- let info = self.inner.reader.info();
-
- // Find out how to interpret the decoded frame.
- let (width, height, px, py, blend);
- match info.frame_control() {
- None => {
- width = info.width;
- height = info.height;
- px = 0;
- py = 0;
- blend = BlendOp::Source;
- }
- Some(fc) => {
- width = fc.width;
- height = fc.height;
- px = fc.x_offset;
- py = fc.y_offset;
- blend = fc.blend_op;
- self.dispose = fc.dispose_op;
- }
- };
-
- // Turn the data into an rgba image proper.
- let source = match self.inner.color_type {
- ColorType::L8 => {
- let image = ImageBuffer::<Luma<_>, _>::from_raw(width, height, buffer).unwrap();
- DynamicImage::ImageLuma8(image).into_rgba8()
- }
- ColorType::La8 => {
- let image = ImageBuffer::<LumaA<_>, _>::from_raw(width, height, buffer).unwrap();
- DynamicImage::ImageLumaA8(image).into_rgba8()
- }
- ColorType::Rgb8 => {
- let image = ImageBuffer::<Rgb<_>, _>::from_raw(width, height, buffer).unwrap();
- DynamicImage::ImageRgb8(image).into_rgba8()
- }
- ColorType::Rgba8 => ImageBuffer::<Rgba<_>, _>::from_raw(width, height, buffer).unwrap(),
- ColorType::L16 | ColorType::Rgb16 | ColorType::La16 | ColorType::Rgba16 => {
- // TODO: to enable remove restriction in `animatable_color_type` method.
- unreachable!("16-bit apng not yet support")
- }
- _ => unreachable!("Invalid png color"),
- };
-
- match blend {
- BlendOp::Source => {
- self.current
- .copy_from(&source, px, py)
- .expect("Invalid png image not detected in png");
- }
- BlendOp::Over => {
- // TODO: investigate speed, speed-ups, and bounds-checks.
- for (x, y, p) in source.enumerate_pixels() {
- self.current.get_pixel_mut(x + px, y + py).blend(p);
- }
- }
- }
-
- // Ok, we can proceed with actually remaining images.
- self.remaining = remaining;
- // Return composited output buffer.
- Ok(Some(&self.current))
- }
-
- fn animatable_color_type(&self) -> Result<(), ImageError> {
- match self.inner.color_type {
- ColorType::L8 | ColorType::Rgb8 | ColorType::La8 | ColorType::Rgba8 => Ok(()),
- // TODO: do not handle multi-byte colors. Remember to implement it in `mix_next_frame`.
- ColorType::L16 | ColorType::Rgb16 | ColorType::La16 | ColorType::Rgba16 => {
- Err(unsupported_color(self.inner.color_type.into()))
- }
- _ => unreachable!("{:?} not a valid png color", self.inner.color_type),
- }
- }
-}
-
-impl<'a, R: Read + 'a> AnimationDecoder<'a> for ApngDecoder<R> {
- fn into_frames(self) -> Frames<'a> {
- struct FrameIterator<R: Read>(ApngDecoder<R>);
-
- impl<R: Read> Iterator for FrameIterator<R> {
- type Item = ImageResult<Frame>;
-
- fn next(&mut self) -> Option<Self::Item> {
- let image = match self.0.mix_next_frame() {
- Ok(Some(image)) => image.clone(),
- Ok(None) => return None,
- Err(err) => return Some(Err(err)),
- };
-
- let info = self.0.inner.reader.info();
- let fc = info.frame_control().unwrap();
- // PNG delays are rations in seconds.
- let num = u32::from(fc.delay_num) * 1_000u32;
- let denom = match fc.delay_den {
- // The standard dictates to replace by 100 when the denominator is 0.
- 0 => 100,
- d => u32::from(d),
- };
- let delay = Delay::from_ratio(Ratio::new(num, denom));
- Some(Ok(Frame::from_parts(image, 0, 0, delay)))
- }
- }
-
- Frames::new(Box::new(FrameIterator(self)))
- }
-}
-
-/// PNG encoder
-pub struct PngEncoder<W: Write> {
- w: W,
- compression: CompressionType,
- filter: FilterType,
-}
-
-/// Compression level of a PNG encoder. The default setting is `Fast`.
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-#[non_exhaustive]
-pub enum CompressionType {
- /// Default compression level
- Default,
- /// Fast, minimal compression
- Fast,
- /// High compression level
- Best,
- /// Huffman coding compression
- #[deprecated(note = "use one of the other compression levels instead, such as 'Fast'")]
- Huffman,
- /// Run-length encoding compression
- #[deprecated(note = "use one of the other compression levels instead, such as 'Fast'")]
- Rle,
-}
-
-/// Filter algorithms used to process image data to improve compression.
-///
-/// The default filter is `Adaptive`.
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-#[non_exhaustive]
-pub enum FilterType {
- /// No processing done, best used for low bit depth grayscale or data with a
- /// low color count
- NoFilter,
- /// Filters based on previous pixel in the same scanline
- Sub,
- /// Filters based on the scanline above
- Up,
- /// Filters based on the average of left and right neighbor pixels
- Avg,
- /// Algorithm that takes into account the left, upper left, and above pixels
- Paeth,
- /// Uses a heuristic to select one of the preceding filters for each
- /// scanline rather than one filter for the entire image
- Adaptive,
-}
-
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-#[non_exhaustive]
-enum BadPngRepresentation {
- ColorType(ColorType),
-}
-
-impl<W: Write> PngEncoder<W> {
- /// Create a new encoder that writes its output to ```w```
- pub fn new(w: W) -> PngEncoder<W> {
- PngEncoder {
- w,
- compression: CompressionType::default(),
- filter: FilterType::default(),
- }
- }
-
- /// Create a new encoder that writes its output to `w` with `CompressionType` `compression` and
- /// `FilterType` `filter`.
- ///
- /// It is best to view the options as a _hint_ to the implementation on the smallest or fastest
- /// option for encoding a particular image. That is, using options that map directly to a PNG
- /// image parameter will use this parameter where possible. But variants that have no direct
- /// mapping may be interpreted differently in minor versions. The exact output is expressly
- /// __not__ part the SemVer stability guarantee.
- ///
- /// Note that it is not optimal to use a single filter type, so an adaptive
- /// filter type is selected as the default. The filter which best minimizes
- /// file size may change with the type of compression used.
- pub fn new_with_quality(
- w: W,
- compression: CompressionType,
- filter: FilterType,
- ) -> PngEncoder<W> {
- PngEncoder {
- w,
- compression,
- filter,
- }
- }
-
- /// Encodes the image `data` that has dimensions `width` and `height` and `ColorType` `c`.
- ///
- /// Expects data in big endian.
- #[deprecated = "Use `PngEncoder::write_image` instead. Beware that `write_image` has a different endianness convention"]
- pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> ImageResult<()> {
- self.encode_inner(data, width, height, color)
- }
-
- fn encode_inner(
- self,
- data: &[u8],
- width: u32,
- height: u32,
- color: ColorType,
- ) -> ImageResult<()> {
- let (ct, bits) = match color {
- ColorType::L8 => (png::ColorType::Grayscale, png::BitDepth::Eight),
- ColorType::L16 => (png::ColorType::Grayscale, png::BitDepth::Sixteen),
- ColorType::La8 => (png::ColorType::GrayscaleAlpha, png::BitDepth::Eight),
- ColorType::La16 => (png::ColorType::GrayscaleAlpha, png::BitDepth::Sixteen),
- ColorType::Rgb8 => (png::ColorType::Rgb, png::BitDepth::Eight),
- ColorType::Rgb16 => (png::ColorType::Rgb, png::BitDepth::Sixteen),
- ColorType::Rgba8 => (png::ColorType::Rgba, png::BitDepth::Eight),
- ColorType::Rgba16 => (png::ColorType::Rgba, png::BitDepth::Sixteen),
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Png.into(),
- UnsupportedErrorKind::Color(color.into()),
- ),
- ))
- }
- };
- let comp = match self.compression {
- CompressionType::Default => png::Compression::Default,
- CompressionType::Best => png::Compression::Best,
- _ => png::Compression::Fast,
- };
- let (filter, adaptive_filter) = match self.filter {
- FilterType::NoFilter => (
- png::FilterType::NoFilter,
- png::AdaptiveFilterType::NonAdaptive,
- ),
- FilterType::Sub => (png::FilterType::Sub, png::AdaptiveFilterType::NonAdaptive),
- FilterType::Up => (png::FilterType::Up, png::AdaptiveFilterType::NonAdaptive),
- FilterType::Avg => (png::FilterType::Avg, png::AdaptiveFilterType::NonAdaptive),
- FilterType::Paeth => (png::FilterType::Paeth, png::AdaptiveFilterType::NonAdaptive),
- FilterType::Adaptive => (png::FilterType::Sub, png::AdaptiveFilterType::Adaptive),
- };
-
- let mut encoder = png::Encoder::new(self.w, width, height);
- encoder.set_color(ct);
- encoder.set_depth(bits);
- encoder.set_compression(comp);
- encoder.set_filter(filter);
- encoder.set_adaptive_filter(adaptive_filter);
- let mut writer = encoder
- .write_header()
- .map_err(|e| ImageError::IoError(e.into()))?;
- writer
- .write_image_data(data)
- .map_err(|e| ImageError::IoError(e.into()))
- }
-}
-
-impl<W: Write> ImageEncoder for PngEncoder<W> {
- /// Write a PNG image with the specified width, height, and color type.
- ///
- /// For color types with 16-bit per channel or larger, the contents of `buf` should be in
- /// native endian. PngEncoder will automatically convert to big endian as required by the
- /// underlying PNG format.
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- use byteorder::{BigEndian, ByteOrder, NativeEndian};
- use ColorType::*;
-
- // PNG images are big endian. For 16 bit per channel and larger types,
- // the buffer may need to be reordered to big endian per the
- // contract of `write_image`.
- // TODO: assumes equal channel bit depth.
- match color_type {
- L8 | La8 | Rgb8 | Rgba8 => {
- // No reodering necessary for u8
- self.encode_inner(buf, width, height, color_type)
- }
- L16 | La16 | Rgb16 | Rgba16 => {
- // Because the buffer is immutable and the PNG encoder does not
- // yet take Write/Read traits, create a temporary buffer for
- // big endian reordering.
- let mut reordered = vec![0; buf.len()];
- buf.chunks(2)
- .zip(reordered.chunks_mut(2))
- .for_each(|(b, r)| BigEndian::write_u16(r, NativeEndian::read_u16(b)));
- self.encode_inner(&reordered, width, height, color_type)
- }
- _ => Err(ImageError::Encoding(EncodingError::new(
- ImageFormat::Png.into(),
- BadPngRepresentation::ColorType(color_type),
- ))),
- }
- }
-}
-
-impl ImageError {
- fn from_png(err: png::DecodingError) -> ImageError {
- use png::DecodingError::*;
- match err {
- IoError(err) => ImageError::IoError(err),
- // The input image was not a valid PNG.
- err @ Format(_) => {
- ImageError::Decoding(DecodingError::new(ImageFormat::Png.into(), err))
- }
- // Other is used when:
- // - The decoder is polled for more animation frames despite being done (or not being animated
- // in the first place).
- // - The output buffer does not have the required size.
- err @ Parameter(_) => ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(err.to_string()),
- )),
- LimitsExceeded => {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- }
- }
- }
-}
-
-impl Default for CompressionType {
- fn default() -> Self {
- CompressionType::Fast
- }
-}
-
-impl Default for FilterType {
- fn default() -> Self {
- FilterType::Adaptive
- }
-}
-
-impl fmt::Display for BadPngRepresentation {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- match self {
- Self::ColorType(color_type) => write!(
- f,
- "The color {:?} can not be represented in PNG.",
- color_type
- ),
- }
- }
-}
-
-impl std::error::Error for BadPngRepresentation {}
-
-#[cfg(test)]
-mod tests {
- use super::*;
- use crate::image::ImageDecoder;
- use crate::ImageOutputFormat;
-
- use std::io::{Cursor, Read};
-
- #[test]
- fn ensure_no_decoder_off_by_one() {
- let dec = PngDecoder::new(
- std::fs::File::open("tests/images/png/bugfixes/debug_triangle_corners_widescreen.png")
- .unwrap(),
- )
- .expect("Unable to read PNG file (does it exist?)");
-
- assert_eq![(2000, 1000), dec.dimensions()];
-
- assert_eq![
- ColorType::Rgb8,
- dec.color_type(),
- "Image MUST have the Rgb8 format"
- ];
-
- let correct_bytes = dec
- .into_reader()
- .expect("Unable to read file")
- .bytes()
- .map(|x| x.expect("Unable to read byte"))
- .collect::<Vec<u8>>();
-
- assert_eq![6_000_000, correct_bytes.len()];
- }
-
- #[test]
- fn underlying_error() {
- use std::error::Error;
-
- let mut not_png =
- std::fs::read("tests/images/png/bugfixes/debug_triangle_corners_widescreen.png")
- .unwrap();
- not_png[0] = 0;
-
- let error = PngDecoder::new(&not_png[..]).err().unwrap();
- let _ = error
- .source()
- .unwrap()
- .downcast_ref::<png::DecodingError>()
- .expect("Caused by a png error");
- }
-
- #[test]
- fn encode_bad_color_type() {
- // regression test for issue #1663
- let image = DynamicImage::new_rgb32f(1, 1);
- let mut target = Cursor::new(vec![]);
- let _ = image.write_to(&mut target, ImageOutputFormat::Png);
- }
-}
diff --git a/vendor/image/src/codecs/pnm/autobreak.rs b/vendor/image/src/codecs/pnm/autobreak.rs
deleted file mode 100644
index cea2cd8..0000000
--- a/vendor/image/src/codecs/pnm/autobreak.rs
+++ /dev/null
@@ -1,124 +0,0 @@
-//! Insert line breaks between written buffers when they would overflow the line length.
-use std::io;
-
-// The pnm standard says to insert line breaks after 70 characters. Assumes that no line breaks
-// are actually written. We have to be careful to fully commit buffers or not commit them at all,
-// otherwise we might insert a newline in the middle of a token.
-pub(crate) struct AutoBreak<W: io::Write> {
- wrapped: W,
- line_capacity: usize,
- line: Vec<u8>,
- has_newline: bool,
- panicked: bool, // see https://github.com/rust-lang/rust/issues/30888
-}
-
-impl<W: io::Write> AutoBreak<W> {
- pub(crate) fn new(writer: W, line_capacity: usize) -> Self {
- AutoBreak {
- wrapped: writer,
- line_capacity,
- line: Vec::with_capacity(line_capacity + 1),
- has_newline: false,
- panicked: false,
- }
- }
-
- fn flush_buf(&mut self) -> io::Result<()> {
- // from BufWriter
- let mut written = 0;
- let len = self.line.len();
- let mut ret = Ok(());
- while written < len {
- self.panicked = true;
- let r = self.wrapped.write(&self.line[written..]);
- self.panicked = false;
- match r {
- Ok(0) => {
- ret = Err(io::Error::new(
- io::ErrorKind::WriteZero,
- "failed to write the buffered data",
- ));
- break;
- }
- Ok(n) => written += n,
- Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
- Err(e) => {
- ret = Err(e);
- break;
- }
- }
- }
- if written > 0 {
- self.line.drain(..written);
- }
- ret
- }
-}
-
-impl<W: io::Write> io::Write for AutoBreak<W> {
- fn write(&mut self, buffer: &[u8]) -> io::Result<usize> {
- if self.has_newline {
- self.flush()?;
- self.has_newline = false;
- }
-
- if !self.line.is_empty() && self.line.len() + buffer.len() > self.line_capacity {
- self.line.push(b'\n');
- self.has_newline = true;
- self.flush()?;
- self.has_newline = false;
- }
-
- self.line.extend_from_slice(buffer);
- Ok(buffer.len())
- }
-
- fn flush(&mut self) -> io::Result<()> {
- self.flush_buf()?;
- self.wrapped.flush()
- }
-}
-
-impl<W: io::Write> Drop for AutoBreak<W> {
- fn drop(&mut self) {
- if !self.panicked {
- let _r = self.flush_buf();
- // internal writer flushed automatically by Drop
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
- use std::io::Write;
-
- #[test]
- fn test_aligned_writes() {
- let mut output = Vec::new();
-
- {
- let mut writer = AutoBreak::new(&mut output, 10);
- writer.write_all(b"0123456789").unwrap();
- writer.write_all(b"0123456789").unwrap();
- }
-
- assert_eq!(output.as_slice(), b"0123456789\n0123456789");
- }
-
- #[test]
- fn test_greater_writes() {
- let mut output = Vec::new();
-
- {
- let mut writer = AutoBreak::new(&mut output, 10);
- writer.write_all(b"012").unwrap();
- writer.write_all(b"345").unwrap();
- writer.write_all(b"0123456789").unwrap();
- writer.write_all(b"012345678910").unwrap();
- writer.write_all(b"_").unwrap();
- }
-
- assert_eq!(output.as_slice(), b"012345\n0123456789\n012345678910\n_");
- }
-}
diff --git a/vendor/image/src/codecs/pnm/decoder.rs b/vendor/image/src/codecs/pnm/decoder.rs
deleted file mode 100644
index a495871..0000000
--- a/vendor/image/src/codecs/pnm/decoder.rs
+++ /dev/null
@@ -1,1272 +0,0 @@
-use std::convert::TryFrom;
-use std::convert::TryInto;
-use std::error;
-use std::fmt::{self, Display};
-use std::io::{self, BufRead, Cursor, Read};
-use std::marker::PhantomData;
-use std::mem;
-use std::num::ParseIntError;
-use std::str::{self, FromStr};
-
-use super::{ArbitraryHeader, ArbitraryTuplType, BitmapHeader, GraymapHeader, PixmapHeader};
-use super::{HeaderRecord, PnmHeader, PnmSubtype, SampleEncoding};
-use crate::color::{ColorType, ExtendedColorType};
-use crate::error::{
- DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{self, ImageDecoder, ImageFormat};
-use crate::utils;
-
-use byteorder::{BigEndian, ByteOrder, NativeEndian};
-
-/// All errors that can occur when attempting to parse a PNM
-#[derive(Debug, Clone)]
-enum DecoderError {
- /// PNM's "P[123456]" signature wrong or missing
- PnmMagicInvalid([u8; 2]),
- /// Couldn't parse the specified string as an integer from the specified source
- UnparsableValue(ErrorDataSource, String, ParseIntError),
-
- /// More than the exactly one allowed plane specified by the format
- NonAsciiByteInHeader(u8),
- /// The PAM header contained a non-ASCII byte
- NonAsciiLineInPamHeader,
- /// A sample string contained a non-ASCII byte
- NonAsciiSample,
-
- /// The byte after the P7 magic was not 0x0A NEWLINE
- NotNewlineAfterP7Magic(u8),
- /// The PNM header had too few lines
- UnexpectedPnmHeaderEnd,
-
- /// The specified line was specified twice
- HeaderLineDuplicated(PnmHeaderLine),
- /// The line with the specified ID was not understood
- HeaderLineUnknown(String),
- /// At least one of the required lines were missing from the header (are `None` here)
- ///
- /// Same names as [`PnmHeaderLine`](enum.PnmHeaderLine.html)
- #[allow(missing_docs)]
- HeaderLineMissing {
- height: Option<u32>,
- width: Option<u32>,
- depth: Option<u32>,
- maxval: Option<u32>,
- },
-
- /// Not enough data was provided to the Decoder to decode the image
- InputTooShort,
- /// Sample raster contained unexpected byte
- UnexpectedByteInRaster(u8),
- /// Specified sample was out of bounds (e.g. >1 in B&W)
- SampleOutOfBounds(u8),
- /// The image's maxval exceeds 0xFFFF
- MaxvalTooBig(u32),
-
- /// The specified tuple type supports restricted depths and maxvals, those restrictions were not met
- InvalidDepthOrMaxval {
- tuple_type: ArbitraryTuplType,
- depth: u32,
- maxval: u32,
- },
- /// The specified tuple type supports restricted depths, those restrictions were not met
- InvalidDepth {
- tuple_type: ArbitraryTuplType,
- depth: u32,
- },
- /// The tuple type was not recognised by the parser
- TupleTypeUnrecognised,
-
- /// Overflowed the specified value when parsing
- Overflow,
-}
-
-impl Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::PnmMagicInvalid(magic) => f.write_fmt(format_args!(
- "Expected magic constant for PNM: P1..P7, got [{:#04X?}, {:#04X?}]",
- magic[0], magic[1]
- )),
- DecoderError::UnparsableValue(src, data, err) => {
- f.write_fmt(format_args!("Error parsing {:?} as {}: {}", data, src, err))
- }
-
- DecoderError::NonAsciiByteInHeader(c) => {
- f.write_fmt(format_args!("Non-ASCII character {:#04X?} in header", c))
- }
- DecoderError::NonAsciiLineInPamHeader => f.write_str("Non-ASCII line in PAM header"),
- DecoderError::NonAsciiSample => {
- f.write_str("Non-ASCII character where sample value was expected")
- }
-
- DecoderError::NotNewlineAfterP7Magic(c) => f.write_fmt(format_args!(
- "Expected newline after P7 magic, got {:#04X?}",
- c
- )),
- DecoderError::UnexpectedPnmHeaderEnd => f.write_str("Unexpected end of PNM header"),
-
- DecoderError::HeaderLineDuplicated(line) => {
- f.write_fmt(format_args!("Duplicate {} line", line))
- }
- DecoderError::HeaderLineUnknown(identifier) => f.write_fmt(format_args!(
- "Unknown header line with identifier {:?}",
- identifier
- )),
- DecoderError::HeaderLineMissing {
- height,
- width,
- depth,
- maxval,
- } => f.write_fmt(format_args!(
- "Missing header line: have height={:?}, width={:?}, depth={:?}, maxval={:?}",
- height, width, depth, maxval
- )),
-
- DecoderError::InputTooShort => {
- f.write_str("Not enough data was provided to the Decoder to decode the image")
- }
- DecoderError::UnexpectedByteInRaster(c) => f.write_fmt(format_args!(
- "Unexpected character {:#04X?} within sample raster",
- c
- )),
- DecoderError::SampleOutOfBounds(val) => {
- f.write_fmt(format_args!("Sample value {} outside of bounds", val))
- }
- DecoderError::MaxvalTooBig(maxval) => {
- f.write_fmt(format_args!("Image MAXVAL exceeds {}: {}", 0xFFFF, maxval))
- }
-
- DecoderError::InvalidDepthOrMaxval {
- tuple_type,
- depth,
- maxval,
- } => f.write_fmt(format_args!(
- "Invalid depth ({}) or maxval ({}) for tuple type {}",
- depth,
- maxval,
- tuple_type.name()
- )),
- DecoderError::InvalidDepth { tuple_type, depth } => f.write_fmt(format_args!(
- "Invalid depth ({}) for tuple type {}",
- depth,
- tuple_type.name()
- )),
- DecoderError::TupleTypeUnrecognised => f.write_str("Tuple type not recognized"),
- DecoderError::Overflow => f.write_str("Overflow when parsing value"),
- }
- }
-}
-
-/// Note: should `pnm` be extracted into a separate crate,
-/// this will need to be hidden until that crate hits version `1.0`.
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Pnm.into(), e))
- }
-}
-
-impl error::Error for DecoderError {
- fn source(&self) -> Option<&(dyn error::Error + 'static)> {
- match self {
- DecoderError::UnparsableValue(_, _, err) => Some(err),
- _ => None,
- }
- }
-}
-
-/// Single-value lines in a PNM header
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum PnmHeaderLine {
- /// "HEIGHT"
- Height,
- /// "WIDTH"
- Width,
- /// "DEPTH"
- Depth,
- /// "MAXVAL", a.k.a. `maxwhite`
- Maxval,
-}
-
-impl Display for PnmHeaderLine {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.write_str(match self {
- PnmHeaderLine::Height => "HEIGHT",
- PnmHeaderLine::Width => "WIDTH",
- PnmHeaderLine::Depth => "DEPTH",
- PnmHeaderLine::Maxval => "MAXVAL",
- })
- }
-}
-
-/// Single-value lines in a PNM header
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum ErrorDataSource {
- /// One of the header lines
- Line(PnmHeaderLine),
- /// Value in the preamble
- Preamble,
- /// Sample/pixel data
- Sample,
-}
-
-impl Display for ErrorDataSource {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- ErrorDataSource::Line(l) => l.fmt(f),
- ErrorDataSource::Preamble => f.write_str("number in preamble"),
- ErrorDataSource::Sample => f.write_str("sample"),
- }
- }
-}
-
-/// Dynamic representation, represents all decodable (sample, depth) combinations.
-#[derive(Clone, Copy)]
-enum TupleType {
- PbmBit,
- BWBit,
- GrayU8,
- GrayU16,
- RGBU8,
- RGBU16,
-}
-
-trait Sample {
- fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult<usize>;
- fn from_bytes(bytes: &[u8], row_size: usize, output_buf: &mut [u8]) -> ImageResult<()>;
- fn from_ascii(reader: &mut dyn Read, output_buf: &mut [u8]) -> ImageResult<()>;
-}
-
-struct U8;
-struct U16;
-struct PbmBit;
-struct BWBit;
-
-trait DecodableImageHeader {
- fn tuple_type(&self) -> ImageResult<TupleType>;
-}
-
-/// PNM decoder
-pub struct PnmDecoder<R> {
- reader: R,
- header: PnmHeader,
- tuple: TupleType,
-}
-
-impl<R: BufRead> PnmDecoder<R> {
- /// Create a new decoder that decodes from the stream ```read```
- pub fn new(mut buffered_read: R) -> ImageResult<PnmDecoder<R>> {
- let magic = buffered_read.read_magic_constant()?;
-
- let subtype = match magic {
- [b'P', b'1'] => PnmSubtype::Bitmap(SampleEncoding::Ascii),
- [b'P', b'2'] => PnmSubtype::Graymap(SampleEncoding::Ascii),
- [b'P', b'3'] => PnmSubtype::Pixmap(SampleEncoding::Ascii),
- [b'P', b'4'] => PnmSubtype::Bitmap(SampleEncoding::Binary),
- [b'P', b'5'] => PnmSubtype::Graymap(SampleEncoding::Binary),
- [b'P', b'6'] => PnmSubtype::Pixmap(SampleEncoding::Binary),
- [b'P', b'7'] => PnmSubtype::ArbitraryMap,
- _ => return Err(DecoderError::PnmMagicInvalid(magic).into()),
- };
-
- let decoder = match subtype {
- PnmSubtype::Bitmap(enc) => PnmDecoder::read_bitmap_header(buffered_read, enc),
- PnmSubtype::Graymap(enc) => PnmDecoder::read_graymap_header(buffered_read, enc),
- PnmSubtype::Pixmap(enc) => PnmDecoder::read_pixmap_header(buffered_read, enc),
- PnmSubtype::ArbitraryMap => PnmDecoder::read_arbitrary_header(buffered_read),
- }?;
-
- if utils::check_dimension_overflow(
- decoder.dimensions().0,
- decoder.dimensions().1,
- decoder.color_type().bytes_per_pixel(),
- ) {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Image dimensions ({}x{}) are too large",
- decoder.dimensions().0,
- decoder.dimensions().1
- )),
- ),
- ));
- }
-
- Ok(decoder)
- }
-
- /// Extract the reader and header after an image has been read.
- pub fn into_inner(self) -> (R, PnmHeader) {
- (self.reader, self.header)
- }
-
- fn read_bitmap_header(mut reader: R, encoding: SampleEncoding) -> ImageResult<PnmDecoder<R>> {
- let header = reader.read_bitmap_header(encoding)?;
- Ok(PnmDecoder {
- reader,
- tuple: TupleType::PbmBit,
- header: PnmHeader {
- decoded: HeaderRecord::Bitmap(header),
- encoded: None,
- },
- })
- }
-
- fn read_graymap_header(mut reader: R, encoding: SampleEncoding) -> ImageResult<PnmDecoder<R>> {
- let header = reader.read_graymap_header(encoding)?;
- let tuple_type = header.tuple_type()?;
- Ok(PnmDecoder {
- reader,
- tuple: tuple_type,
- header: PnmHeader {
- decoded: HeaderRecord::Graymap(header),
- encoded: None,
- },
- })
- }
-
- fn read_pixmap_header(mut reader: R, encoding: SampleEncoding) -> ImageResult<PnmDecoder<R>> {
- let header = reader.read_pixmap_header(encoding)?;
- let tuple_type = header.tuple_type()?;
- Ok(PnmDecoder {
- reader,
- tuple: tuple_type,
- header: PnmHeader {
- decoded: HeaderRecord::Pixmap(header),
- encoded: None,
- },
- })
- }
-
- fn read_arbitrary_header(mut reader: R) -> ImageResult<PnmDecoder<R>> {
- let header = reader.read_arbitrary_header()?;
- let tuple_type = header.tuple_type()?;
- Ok(PnmDecoder {
- reader,
- tuple: tuple_type,
- header: PnmHeader {
- decoded: HeaderRecord::Arbitrary(header),
- encoded: None,
- },
- })
- }
-}
-
-trait HeaderReader: BufRead {
- /// Reads the two magic constant bytes
- fn read_magic_constant(&mut self) -> ImageResult<[u8; 2]> {
- let mut magic: [u8; 2] = [0, 0];
- self.read_exact(&mut magic)?;
- Ok(magic)
- }
-
- /// Reads a string as well as a single whitespace after it, ignoring comments
- fn read_next_string(&mut self) -> ImageResult<String> {
- let mut bytes = Vec::new();
-
- // pair input bytes with a bool mask to remove comments
- let mark_comments = self.bytes().scan(true, |partof, read| {
- let byte = match read {
- Err(err) => return Some((*partof, Err(err))),
- Ok(byte) => byte,
- };
- let cur_enabled = *partof && byte != b'#';
- let next_enabled = cur_enabled || (byte == b'\r' || byte == b'\n');
- *partof = next_enabled;
- Some((cur_enabled, Ok(byte)))
- });
-
- for (_, byte) in mark_comments.filter(|e| e.0) {
- match byte {
- Ok(b'\t') | Ok(b'\n') | Ok(b'\x0b') | Ok(b'\x0c') | Ok(b'\r') | Ok(b' ') => {
- if !bytes.is_empty() {
- break; // We're done as we already have some content
- }
- }
- Ok(byte) if !byte.is_ascii() => {
- return Err(DecoderError::NonAsciiByteInHeader(byte).into())
- }
- Ok(byte) => {
- bytes.push(byte);
- }
- Err(_) => break,
- }
- }
-
- if bytes.is_empty() {
- return Err(ImageError::IoError(io::ErrorKind::UnexpectedEof.into()));
- }
-
- if !bytes.as_slice().is_ascii() {
- // We have only filled the buffer with characters for which `byte.is_ascii()` holds.
- unreachable!("Non-ASCII character should have returned sooner")
- }
-
- let string = String::from_utf8(bytes)
- // We checked the precondition ourselves a few lines before, `bytes.as_slice().is_ascii()`.
- .unwrap_or_else(|_| unreachable!("Only ASCII characters should be decoded"));
-
- Ok(string)
- }
-
- /// Read the next line
- fn read_next_line(&mut self) -> ImageResult<String> {
- let mut buffer = String::new();
- self.read_line(&mut buffer)?;
- Ok(buffer)
- }
-
- fn read_next_u32(&mut self) -> ImageResult<u32> {
- let s = self.read_next_string()?;
- s.parse::<u32>()
- .map_err(|err| DecoderError::UnparsableValue(ErrorDataSource::Preamble, s, err).into())
- }
-
- fn read_bitmap_header(&mut self, encoding: SampleEncoding) -> ImageResult<BitmapHeader> {
- let width = self.read_next_u32()?;
- let height = self.read_next_u32()?;
- Ok(BitmapHeader {
- encoding,
- width,
- height,
- })
- }
-
- fn read_graymap_header(&mut self, encoding: SampleEncoding) -> ImageResult<GraymapHeader> {
- self.read_pixmap_header(encoding).map(
- |PixmapHeader {
- encoding,
- width,
- height,
- maxval,
- }| GraymapHeader {
- encoding,
- width,
- height,
- maxwhite: maxval,
- },
- )
- }
-
- fn read_pixmap_header(&mut self, encoding: SampleEncoding) -> ImageResult<PixmapHeader> {
- let width = self.read_next_u32()?;
- let height = self.read_next_u32()?;
- let maxval = self.read_next_u32()?;
- Ok(PixmapHeader {
- encoding,
- width,
- height,
- maxval,
- })
- }
-
- fn read_arbitrary_header(&mut self) -> ImageResult<ArbitraryHeader> {
- fn parse_single_value_line(
- line_val: &mut Option<u32>,
- rest: &str,
- line: PnmHeaderLine,
- ) -> ImageResult<()> {
- if line_val.is_some() {
- Err(DecoderError::HeaderLineDuplicated(line).into())
- } else {
- let v = rest.trim().parse().map_err(|err| {
- DecoderError::UnparsableValue(ErrorDataSource::Line(line), rest.to_owned(), err)
- })?;
- *line_val = Some(v);
- Ok(())
- }
- }
-
- match self.bytes().next() {
- None => return Err(ImageError::IoError(io::ErrorKind::UnexpectedEof.into())),
- Some(Err(io)) => return Err(ImageError::IoError(io)),
- Some(Ok(b'\n')) => (),
- Some(Ok(c)) => return Err(DecoderError::NotNewlineAfterP7Magic(c).into()),
- }
-
- let mut line = String::new();
- let mut height: Option<u32> = None;
- let mut width: Option<u32> = None;
- let mut depth: Option<u32> = None;
- let mut maxval: Option<u32> = None;
- let mut tupltype: Option<String> = None;
- loop {
- line.truncate(0);
- let len = self.read_line(&mut line)?;
- if len == 0 {
- return Err(DecoderError::UnexpectedPnmHeaderEnd.into());
- }
- if line.as_bytes()[0] == b'#' {
- continue;
- }
- if !line.is_ascii() {
- return Err(DecoderError::NonAsciiLineInPamHeader.into());
- }
- #[allow(deprecated)]
- let (identifier, rest) = line
- .trim_left()
- .split_at(line.find(char::is_whitespace).unwrap_or(line.len()));
- match identifier {
- "ENDHDR" => break,
- "HEIGHT" => parse_single_value_line(&mut height, rest, PnmHeaderLine::Height)?,
- "WIDTH" => parse_single_value_line(&mut width, rest, PnmHeaderLine::Width)?,
- "DEPTH" => parse_single_value_line(&mut depth, rest, PnmHeaderLine::Depth)?,
- "MAXVAL" => parse_single_value_line(&mut maxval, rest, PnmHeaderLine::Maxval)?,
- "TUPLTYPE" => {
- let identifier = rest.trim();
- if tupltype.is_some() {
- let appended = tupltype.take().map(|mut v| {
- v.push(' ');
- v.push_str(identifier);
- v
- });
- tupltype = appended;
- } else {
- tupltype = Some(identifier.to_string());
- }
- }
- _ => return Err(DecoderError::HeaderLineUnknown(identifier.to_string()).into()),
- }
- }
-
- let (h, w, d, m) = match (height, width, depth, maxval) {
- (Some(h), Some(w), Some(d), Some(m)) => (h, w, d, m),
- _ => {
- return Err(DecoderError::HeaderLineMissing {
- height,
- width,
- depth,
- maxval,
- }
- .into())
- }
- };
-
- let tupltype = match tupltype {
- None => None,
- Some(ref t) if t == "BLACKANDWHITE" => Some(ArbitraryTuplType::BlackAndWhite),
- Some(ref t) if t == "BLACKANDWHITE_ALPHA" => {
- Some(ArbitraryTuplType::BlackAndWhiteAlpha)
- }
- Some(ref t) if t == "GRAYSCALE" => Some(ArbitraryTuplType::Grayscale),
- Some(ref t) if t == "GRAYSCALE_ALPHA" => Some(ArbitraryTuplType::GrayscaleAlpha),
- Some(ref t) if t == "RGB" => Some(ArbitraryTuplType::RGB),
- Some(ref t) if t == "RGB_ALPHA" => Some(ArbitraryTuplType::RGBAlpha),
- Some(other) => Some(ArbitraryTuplType::Custom(other)),
- };
-
- Ok(ArbitraryHeader {
- height: h,
- width: w,
- depth: d,
- maxval: m,
- tupltype,
- })
- }
-}
-
-impl<R> HeaderReader for R where R: BufRead {}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct PnmReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for PnmReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for PnmDecoder<R> {
- type Reader = PnmReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.header.width(), self.header.height())
- }
-
- fn color_type(&self) -> ColorType {
- match self.tuple {
- TupleType::PbmBit => ColorType::L8,
- TupleType::BWBit => ColorType::L8,
- TupleType::GrayU8 => ColorType::L8,
- TupleType::GrayU16 => ColorType::L16,
- TupleType::RGBU8 => ColorType::Rgb8,
- TupleType::RGBU16 => ColorType::Rgb16,
- }
- }
-
- fn original_color_type(&self) -> ExtendedColorType {
- match self.tuple {
- TupleType::PbmBit => ExtendedColorType::L1,
- TupleType::BWBit => ExtendedColorType::L1,
- TupleType::GrayU8 => ExtendedColorType::L8,
- TupleType::GrayU16 => ExtendedColorType::L16,
- TupleType::RGBU8 => ExtendedColorType::Rgb8,
- TupleType::RGBU16 => ExtendedColorType::Rgb16,
- }
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(PnmReader(
- Cursor::new(image::decoder_to_vec(self)?),
- PhantomData,
- ))
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
- match self.tuple {
- TupleType::PbmBit => self.read_samples::<PbmBit>(1, buf),
- TupleType::BWBit => self.read_samples::<BWBit>(1, buf),
- TupleType::RGBU8 => self.read_samples::<U8>(3, buf),
- TupleType::RGBU16 => self.read_samples::<U16>(3, buf),
- TupleType::GrayU8 => self.read_samples::<U8>(1, buf),
- TupleType::GrayU16 => self.read_samples::<U16>(1, buf),
- }
- }
-}
-
-impl<R: Read> PnmDecoder<R> {
- fn read_samples<S: Sample>(&mut self, components: u32, buf: &mut [u8]) -> ImageResult<()> {
- match self.subtype().sample_encoding() {
- SampleEncoding::Binary => {
- let width = self.header.width();
- let height = self.header.height();
- let bytecount = S::bytelen(width, height, components)?;
-
- let mut bytes = vec![];
- self.reader
- .by_ref()
- // This conversion is potentially lossy but unlikely and in that case we error
- // later anyways.
- .take(bytecount as u64)
- .read_to_end(&mut bytes)?;
- if bytes.len() != bytecount {
- return Err(DecoderError::InputTooShort.into());
- }
-
- let width: usize = width.try_into().map_err(|_| DecoderError::Overflow)?;
- let components: usize =
- components.try_into().map_err(|_| DecoderError::Overflow)?;
- let row_size = width
- .checked_mul(components)
- .ok_or(DecoderError::Overflow)?;
-
- S::from_bytes(&bytes, row_size, buf)
- }
- SampleEncoding::Ascii => self.read_ascii::<S>(buf),
- }
- }
-
- fn read_ascii<Basic: Sample>(&mut self, output_buf: &mut [u8]) -> ImageResult<()> {
- Basic::from_ascii(&mut self.reader, output_buf)
- }
-
- /// Get the pnm subtype, depending on the magic constant contained in the header
- pub fn subtype(&self) -> PnmSubtype {
- self.header.subtype()
- }
-}
-
-fn read_separated_ascii<T: FromStr<Err = ParseIntError>>(reader: &mut dyn Read) -> ImageResult<T>
-where
- T::Err: Display,
-{
- let is_separator = |v: &u8| matches! { *v, b'\t' | b'\n' | b'\x0b' | b'\x0c' | b'\r' | b' ' };
-
- let token = reader
- .bytes()
- .skip_while(|v| v.as_ref().ok().map(is_separator).unwrap_or(false))
- .take_while(|v| v.as_ref().ok().map(|c| !is_separator(c)).unwrap_or(false))
- .collect::<Result<Vec<u8>, _>>()?;
-
- if !token.is_ascii() {
- return Err(DecoderError::NonAsciiSample.into());
- }
-
- let string = str::from_utf8(&token)
- // We checked the precondition ourselves a few lines before with `token.is_ascii()`.
- .unwrap_or_else(|_| unreachable!("Only ASCII characters should be decoded"));
-
- string.parse().map_err(|err| {
- DecoderError::UnparsableValue(ErrorDataSource::Sample, string.to_owned(), err).into()
- })
-}
-
-impl Sample for U8 {
- fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult<usize> {
- Ok((width * height * samples) as usize)
- }
-
- fn from_bytes(bytes: &[u8], _row_size: usize, output_buf: &mut [u8]) -> ImageResult<()> {
- output_buf.copy_from_slice(bytes);
- Ok(())
- }
-
- fn from_ascii(reader: &mut dyn Read, output_buf: &mut [u8]) -> ImageResult<()> {
- for b in output_buf {
- *b = read_separated_ascii(reader)?;
- }
- Ok(())
- }
-}
-
-impl Sample for U16 {
- fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult<usize> {
- Ok((width * height * samples * 2) as usize)
- }
-
- fn from_bytes(bytes: &[u8], _row_size: usize, output_buf: &mut [u8]) -> ImageResult<()> {
- output_buf.copy_from_slice(bytes);
- for chunk in output_buf.chunks_exact_mut(2) {
- let v = BigEndian::read_u16(chunk);
- NativeEndian::write_u16(chunk, v);
- }
- Ok(())
- }
-
- fn from_ascii(reader: &mut dyn Read, output_buf: &mut [u8]) -> ImageResult<()> {
- for chunk in output_buf.chunks_exact_mut(2) {
- let v = read_separated_ascii::<u16>(reader)?;
- NativeEndian::write_u16(chunk, v);
- }
- Ok(())
- }
-}
-
-// The image is encoded in rows of bits, high order bits first. Any bits beyond the row bits should
-// be ignored. Also, contrary to rgb, black pixels are encoded as a 1 while white is 0. This will
-// need to be reversed for the grayscale output.
-impl Sample for PbmBit {
- fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult<usize> {
- let count = width * samples;
- let linelen = (count / 8) + ((count % 8) != 0) as u32;
- Ok((linelen * height) as usize)
- }
-
- fn from_bytes(bytes: &[u8], row_size: usize, output_buf: &mut [u8]) -> ImageResult<()> {
- let mut expanded = utils::expand_bits(1, row_size.try_into().unwrap(), bytes);
- for b in expanded.iter_mut() {
- *b = !*b;
- }
- output_buf.copy_from_slice(&expanded);
- Ok(())
- }
-
- fn from_ascii(reader: &mut dyn Read, output_buf: &mut [u8]) -> ImageResult<()> {
- let mut bytes = reader.bytes();
- for b in output_buf {
- loop {
- let byte = bytes
- .next()
- .ok_or_else::<ImageError, _>(|| DecoderError::InputTooShort.into())??;
- match byte {
- b'\t' | b'\n' | b'\x0b' | b'\x0c' | b'\r' | b' ' => continue,
- b'0' => *b = 255,
- b'1' => *b = 0,
- c => return Err(DecoderError::UnexpectedByteInRaster(c).into()),
- }
- break;
- }
- }
-
- Ok(())
- }
-}
-
-// Encoded just like a normal U8 but we check the values.
-impl Sample for BWBit {
- fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult<usize> {
- U8::bytelen(width, height, samples)
- }
-
- fn from_bytes(bytes: &[u8], row_size: usize, output_buf: &mut [u8]) -> ImageResult<()> {
- U8::from_bytes(bytes, row_size, output_buf)?;
- if let Some(val) = output_buf.iter().find(|&val| *val > 1) {
- return Err(DecoderError::SampleOutOfBounds(*val).into());
- }
- Ok(())
- }
-
- fn from_ascii(_reader: &mut dyn Read, _output_buf: &mut [u8]) -> ImageResult<()> {
- unreachable!("BW bits from anymaps are never encoded as ASCII")
- }
-}
-
-impl DecodableImageHeader for BitmapHeader {
- fn tuple_type(&self) -> ImageResult<TupleType> {
- Ok(TupleType::PbmBit)
- }
-}
-
-impl DecodableImageHeader for GraymapHeader {
- fn tuple_type(&self) -> ImageResult<TupleType> {
- match self.maxwhite {
- v if v <= 0xFF => Ok(TupleType::GrayU8),
- v if v <= 0xFFFF => Ok(TupleType::GrayU16),
- _ => Err(DecoderError::MaxvalTooBig(self.maxwhite).into()),
- }
- }
-}
-
-impl DecodableImageHeader for PixmapHeader {
- fn tuple_type(&self) -> ImageResult<TupleType> {
- match self.maxval {
- v if v <= 0xFF => Ok(TupleType::RGBU8),
- v if v <= 0xFFFF => Ok(TupleType::RGBU16),
- _ => Err(DecoderError::MaxvalTooBig(self.maxval).into()),
- }
- }
-}
-
-impl DecodableImageHeader for ArbitraryHeader {
- fn tuple_type(&self) -> ImageResult<TupleType> {
- match self.tupltype {
- None if self.depth == 1 => Ok(TupleType::GrayU8),
- None if self.depth == 2 => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::La8),
- ),
- )),
- None if self.depth == 3 => Ok(TupleType::RGBU8),
- None if self.depth == 4 => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::Rgba8),
- ),
- )),
-
- Some(ArbitraryTuplType::BlackAndWhite) if self.maxval == 1 && self.depth == 1 => {
- Ok(TupleType::BWBit)
- }
- Some(ArbitraryTuplType::BlackAndWhite) => Err(DecoderError::InvalidDepthOrMaxval {
- tuple_type: ArbitraryTuplType::BlackAndWhite,
- maxval: self.maxval,
- depth: self.depth,
- }
- .into()),
-
- Some(ArbitraryTuplType::Grayscale) if self.depth == 1 && self.maxval <= 0xFF => {
- Ok(TupleType::GrayU8)
- }
- Some(ArbitraryTuplType::Grayscale) if self.depth <= 1 && self.maxval <= 0xFFFF => {
- Ok(TupleType::GrayU16)
- }
- Some(ArbitraryTuplType::Grayscale) => Err(DecoderError::InvalidDepthOrMaxval {
- tuple_type: ArbitraryTuplType::Grayscale,
- maxval: self.maxval,
- depth: self.depth,
- }
- .into()),
-
- Some(ArbitraryTuplType::RGB) if self.depth == 3 && self.maxval <= 0xFF => {
- Ok(TupleType::RGBU8)
- }
- Some(ArbitraryTuplType::RGB) if self.depth == 3 && self.maxval <= 0xFFFF => {
- Ok(TupleType::RGBU16)
- }
- Some(ArbitraryTuplType::RGB) => Err(DecoderError::InvalidDepth {
- tuple_type: ArbitraryTuplType::RGB,
- depth: self.depth,
- }
- .into()),
-
- Some(ArbitraryTuplType::BlackAndWhiteAlpha) => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Color type {}",
- ArbitraryTuplType::BlackAndWhiteAlpha.name()
- )),
- ),
- )),
- Some(ArbitraryTuplType::GrayscaleAlpha) => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::La8),
- ),
- )),
- Some(ArbitraryTuplType::RGBAlpha) => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::Rgba8),
- ),
- )),
- Some(ArbitraryTuplType::Custom(ref custom)) => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::GenericFeature(format!("Tuple type {:?}", custom)),
- ),
- )),
- None => Err(DecoderError::TupleTypeUnrecognised.into()),
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
- /// Tests reading of a valid blackandwhite pam
- #[test]
- fn pam_blackandwhite() {
- let pamdata = b"P7
-WIDTH 4
-HEIGHT 4
-DEPTH 1
-MAXVAL 1
-TUPLTYPE BLACKANDWHITE
-# Comment line
-ENDHDR
-\x01\x00\x00\x01\x01\x00\x00\x01\x01\x00\x00\x01\x01\x00\x00\x01";
- let decoder = PnmDecoder::new(&pamdata[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.original_color_type(), ExtendedColorType::L1);
- assert_eq!(decoder.dimensions(), (4, 4));
- assert_eq!(decoder.subtype(), PnmSubtype::ArbitraryMap);
-
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(
- image,
- vec![
- 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00,
- 0x00, 0x01
- ]
- );
- match PnmDecoder::new(&pamdata[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Arbitrary(ArbitraryHeader {
- width: 4,
- height: 4,
- maxval: 1,
- depth: 1,
- tupltype: Some(ArbitraryTuplType::BlackAndWhite),
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- /// Tests reading of a valid grayscale pam
- #[test]
- fn pam_grayscale() {
- let pamdata = b"P7
-WIDTH 4
-HEIGHT 4
-DEPTH 1
-MAXVAL 255
-TUPLTYPE GRAYSCALE
-# Comment line
-ENDHDR
-\xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef";
- let decoder = PnmDecoder::new(&pamdata[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.dimensions(), (4, 4));
- assert_eq!(decoder.subtype(), PnmSubtype::ArbitraryMap);
-
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(
- image,
- vec![
- 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad,
- 0xbe, 0xef
- ]
- );
- match PnmDecoder::new(&pamdata[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Arbitrary(ArbitraryHeader {
- width: 4,
- height: 4,
- depth: 1,
- maxval: 255,
- tupltype: Some(ArbitraryTuplType::Grayscale),
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- /// Tests reading of a valid rgb pam
- #[test]
- fn pam_rgb() {
- let pamdata = b"P7
-# Comment line
-MAXVAL 255
-TUPLTYPE RGB
-DEPTH 3
-WIDTH 2
-HEIGHT 2
-ENDHDR
-\xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef";
- let decoder = PnmDecoder::new(&pamdata[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::Rgb8);
- assert_eq!(decoder.dimensions(), (2, 2));
- assert_eq!(decoder.subtype(), PnmSubtype::ArbitraryMap);
-
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(
- image,
- vec![0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef]
- );
- match PnmDecoder::new(&pamdata[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Arbitrary(ArbitraryHeader {
- maxval: 255,
- tupltype: Some(ArbitraryTuplType::RGB),
- depth: 3,
- width: 2,
- height: 2,
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- #[test]
- fn pbm_binary() {
- // The data contains two rows of the image (each line is padded to the full byte). For
- // comments on its format, see documentation of `impl SampleType for PbmBit`.
- let pbmbinary = [&b"P4 6 2\n"[..], &[0b01101100 as u8, 0b10110111]].concat();
- let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.original_color_type(), ExtendedColorType::L1);
- assert_eq!(decoder.dimensions(), (6, 2));
- assert_eq!(
- decoder.subtype(),
- PnmSubtype::Bitmap(SampleEncoding::Binary)
- );
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(image, vec![255, 0, 0, 255, 0, 0, 0, 255, 0, 0, 255, 0]);
- match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Bitmap(BitmapHeader {
- encoding: SampleEncoding::Binary,
- width: 6,
- height: 2,
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- /// A previous infinite loop.
- #[test]
- fn pbm_binary_ascii_termination() {
- use std::io::{BufReader, Cursor, Error, ErrorKind, Read, Result};
- struct FailRead(Cursor<&'static [u8]>);
-
- impl Read for FailRead {
- fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
- match self.0.read(buf) {
- Ok(n) if n > 0 => Ok(n),
- _ => Err(Error::new(
- ErrorKind::BrokenPipe,
- "Simulated broken pipe error",
- )),
- }
- }
- }
-
- let pbmbinary = BufReader::new(FailRead(Cursor::new(b"P1 1 1\n")));
-
- let decoder = PnmDecoder::new(pbmbinary).unwrap();
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder
- .read_image(&mut image)
- .expect_err("Image is malformed");
- }
-
- #[test]
- fn pbm_ascii() {
- // The data contains two rows of the image (each line is padded to the full byte). For
- // comments on its format, see documentation of `impl SampleType for PbmBit`. Tests all
- // whitespace characters that should be allowed (the 6 characters according to POSIX).
- let pbmbinary = b"P1 6 2\n 0 1 1 0 1 1\n1 0 1 1 0\t\n\x0b\x0c\r1";
- let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.original_color_type(), ExtendedColorType::L1);
- assert_eq!(decoder.dimensions(), (6, 2));
- assert_eq!(decoder.subtype(), PnmSubtype::Bitmap(SampleEncoding::Ascii));
-
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(image, vec![255, 0, 0, 255, 0, 0, 0, 255, 0, 0, 255, 0]);
- match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Bitmap(BitmapHeader {
- encoding: SampleEncoding::Ascii,
- width: 6,
- height: 2,
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- #[test]
- fn pbm_ascii_nospace() {
- // The data contains two rows of the image (each line is padded to the full byte). Notably,
- // it is completely within specification for the ascii data not to contain separating
- // whitespace for the pbm format or any mix.
- let pbmbinary = b"P1 6 2\n011011101101";
- let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.original_color_type(), ExtendedColorType::L1);
- assert_eq!(decoder.dimensions(), (6, 2));
- assert_eq!(decoder.subtype(), PnmSubtype::Bitmap(SampleEncoding::Ascii));
-
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(image, vec![255, 0, 0, 255, 0, 0, 0, 255, 0, 0, 255, 0]);
- match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Bitmap(BitmapHeader {
- encoding: SampleEncoding::Ascii,
- width: 6,
- height: 2,
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- #[test]
- fn pgm_binary() {
- // The data contains two rows of the image (each line is padded to the full byte). For
- // comments on its format, see documentation of `impl SampleType for PbmBit`.
- let elements = (0..16).collect::<Vec<_>>();
- let pbmbinary = [&b"P5 4 4 255\n"[..], &elements].concat();
- let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.dimensions(), (4, 4));
- assert_eq!(
- decoder.subtype(),
- PnmSubtype::Graymap(SampleEncoding::Binary)
- );
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(image, elements);
- match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Graymap(GraymapHeader {
- encoding: SampleEncoding::Binary,
- width: 4,
- height: 4,
- maxwhite: 255,
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- #[test]
- fn pgm_ascii() {
- // The data contains two rows of the image (each line is padded to the full byte). For
- // comments on its format, see documentation of `impl SampleType for PbmBit`.
- let pbmbinary = b"P2 4 4 255\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15";
- let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap();
- assert_eq!(decoder.color_type(), ColorType::L8);
- assert_eq!(decoder.dimensions(), (4, 4));
- assert_eq!(
- decoder.subtype(),
- PnmSubtype::Graymap(SampleEncoding::Ascii)
- );
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut image).unwrap();
- assert_eq!(image, (0..16).collect::<Vec<_>>());
- match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() {
- (
- _,
- PnmHeader {
- decoded:
- HeaderRecord::Graymap(GraymapHeader {
- encoding: SampleEncoding::Ascii,
- width: 4,
- height: 4,
- maxwhite: 255,
- }),
- encoded: _,
- },
- ) => (),
- _ => panic!("Decoded header is incorrect"),
- }
- }
-
- #[test]
- fn dimension_overflow() {
- let pamdata = b"P7
-# Comment line
-MAXVAL 255
-TUPLTYPE RGB
-DEPTH 3
-WIDTH 4294967295
-HEIGHT 4294967295
-ENDHDR
-\xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef";
-
- assert!(PnmDecoder::new(&pamdata[..]).is_err());
- }
-
- #[test]
- fn issue_1508() {
- let _ = crate::load_from_memory(b"P391919 16999 1 1 9 919 16999 1 9999 999* 99999 N");
- }
-
- #[test]
- fn issue_1616_overflow() {
- let data = vec![
- 80, 54, 10, 52, 50, 57, 52, 56, 50, 57, 52, 56, 35, 56, 10, 52, 10, 48, 10, 12, 12, 56,
- ];
- // Validate: we have a header. Note: we might already calculate that this will fail but
- // then we could not return information about the header to the caller.
- let decoder = PnmDecoder::new(&data[..]).unwrap();
- let mut image = vec![0; decoder.total_bytes() as usize];
- let _ = decoder.read_image(&mut image);
- }
-}
diff --git a/vendor/image/src/codecs/pnm/encoder.rs b/vendor/image/src/codecs/pnm/encoder.rs
deleted file mode 100644
index 9f823d0..0000000
--- a/vendor/image/src/codecs/pnm/encoder.rs
+++ /dev/null
@@ -1,673 +0,0 @@
-//! Encoding of PNM Images
-use std::fmt;
-use std::io;
-
-use std::io::Write;
-
-use super::AutoBreak;
-use super::{ArbitraryHeader, ArbitraryTuplType, BitmapHeader, GraymapHeader, PixmapHeader};
-use super::{HeaderRecord, PnmHeader, PnmSubtype, SampleEncoding};
-use crate::color::{ColorType, ExtendedColorType};
-use crate::error::{
- ImageError, ImageResult, ParameterError, ParameterErrorKind, UnsupportedError,
- UnsupportedErrorKind,
-};
-use crate::image::{ImageEncoder, ImageFormat};
-
-use byteorder::{BigEndian, WriteBytesExt};
-
-enum HeaderStrategy {
- Dynamic,
- Subtype(PnmSubtype),
- Chosen(PnmHeader),
-}
-
-#[derive(Clone, Copy)]
-pub enum FlatSamples<'a> {
- U8(&'a [u8]),
- U16(&'a [u16]),
-}
-
-/// Encodes images to any of the `pnm` image formats.
-pub struct PnmEncoder<W: Write> {
- writer: W,
- header: HeaderStrategy,
-}
-
-/// Encapsulate the checking system in the type system. Non of the fields are actually accessed
-/// but requiring them forces us to validly construct the struct anyways.
-struct CheckedImageBuffer<'a> {
- _image: FlatSamples<'a>,
- _width: u32,
- _height: u32,
- _color: ExtendedColorType,
-}
-
-// Check the header against the buffer. Each struct produces the next after a check.
-struct UncheckedHeader<'a> {
- header: &'a PnmHeader,
-}
-
-struct CheckedDimensions<'a> {
- unchecked: UncheckedHeader<'a>,
- width: u32,
- height: u32,
-}
-
-struct CheckedHeaderColor<'a> {
- dimensions: CheckedDimensions<'a>,
- color: ExtendedColorType,
-}
-
-struct CheckedHeader<'a> {
- color: CheckedHeaderColor<'a>,
- encoding: TupleEncoding<'a>,
- _image: CheckedImageBuffer<'a>,
-}
-
-enum TupleEncoding<'a> {
- PbmBits {
- samples: FlatSamples<'a>,
- width: u32,
- },
- Ascii {
- samples: FlatSamples<'a>,
- },
- Bytes {
- samples: FlatSamples<'a>,
- },
-}
-
-impl<W: Write> PnmEncoder<W> {
- /// Create new PnmEncoder from the `writer`.
- ///
- /// The encoded images will have some `pnm` format. If more control over the image type is
- /// required, use either one of `with_subtype` or `with_header`. For more information on the
- /// behaviour, see `with_dynamic_header`.
- pub fn new(writer: W) -> Self {
- PnmEncoder {
- writer,
- header: HeaderStrategy::Dynamic,
- }
- }
-
- /// Encode a specific pnm subtype image.
- ///
- /// The magic number and encoding type will be chosen as provided while the rest of the header
- /// data will be generated dynamically. Trying to encode incompatible images (e.g. encoding an
- /// RGB image as Graymap) will result in an error.
- ///
- /// This will overwrite the effect of earlier calls to `with_header` and `with_dynamic_header`.
- pub fn with_subtype(self, subtype: PnmSubtype) -> Self {
- PnmEncoder {
- writer: self.writer,
- header: HeaderStrategy::Subtype(subtype),
- }
- }
-
- /// Enforce the use of a chosen header.
- ///
- /// While this option gives the most control over the actual written data, the encoding process
- /// will error in case the header data and image parameters do not agree. It is the users
- /// obligation to ensure that the width and height are set accordingly, for example.
- ///
- /// Choose this option if you want a lossless decoding/encoding round trip.
- ///
- /// This will overwrite the effect of earlier calls to `with_subtype` and `with_dynamic_header`.
- pub fn with_header(self, header: PnmHeader) -> Self {
- PnmEncoder {
- writer: self.writer,
- header: HeaderStrategy::Chosen(header),
- }
- }
-
- /// Create the header dynamically for each image.
- ///
- /// This is the default option upon creation of the encoder. With this, most images should be
- /// encodable but the specific format chosen is out of the users control. The pnm subtype is
- /// chosen arbitrarily by the library.
- ///
- /// This will overwrite the effect of earlier calls to `with_subtype` and `with_header`.
- pub fn with_dynamic_header(self) -> Self {
- PnmEncoder {
- writer: self.writer,
- header: HeaderStrategy::Dynamic,
- }
- }
-
- /// Encode an image whose samples are represented as `u8`.
- ///
- /// Some `pnm` subtypes are incompatible with some color options, a chosen header most
- /// certainly with any deviation from the original decoded image.
- pub fn encode<'s, S>(
- &mut self,
- image: S,
- width: u32,
- height: u32,
- color: ColorType,
- ) -> ImageResult<()>
- where
- S: Into<FlatSamples<'s>>,
- {
- let image = image.into();
- match self.header {
- HeaderStrategy::Dynamic => {
- self.write_dynamic_header(image, width, height, color.into())
- }
- HeaderStrategy::Subtype(subtype) => {
- self.write_subtyped_header(subtype, image, width, height, color.into())
- }
- HeaderStrategy::Chosen(ref header) => Self::write_with_header(
- &mut self.writer,
- header,
- image,
- width,
- height,
- color.into(),
- ),
- }
- }
-
- /// Choose any valid pnm format that the image can be expressed in and write its header.
- ///
- /// Returns how the body should be written if successful.
- fn write_dynamic_header(
- &mut self,
- image: FlatSamples,
- width: u32,
- height: u32,
- color: ExtendedColorType,
- ) -> ImageResult<()> {
- let depth = u32::from(color.channel_count());
- let (maxval, tupltype) = match color {
- ExtendedColorType::L1 => (1, ArbitraryTuplType::BlackAndWhite),
- ExtendedColorType::L8 => (0xff, ArbitraryTuplType::Grayscale),
- ExtendedColorType::L16 => (0xffff, ArbitraryTuplType::Grayscale),
- ExtendedColorType::La1 => (1, ArbitraryTuplType::BlackAndWhiteAlpha),
- ExtendedColorType::La8 => (0xff, ArbitraryTuplType::GrayscaleAlpha),
- ExtendedColorType::La16 => (0xffff, ArbitraryTuplType::GrayscaleAlpha),
- ExtendedColorType::Rgb8 => (0xff, ArbitraryTuplType::RGB),
- ExtendedColorType::Rgb16 => (0xffff, ArbitraryTuplType::RGB),
- ExtendedColorType::Rgba8 => (0xff, ArbitraryTuplType::RGBAlpha),
- ExtendedColorType::Rgba16 => (0xffff, ArbitraryTuplType::RGBAlpha),
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::Color(color),
- ),
- ))
- }
- };
-
- let header = PnmHeader {
- decoded: HeaderRecord::Arbitrary(ArbitraryHeader {
- width,
- height,
- depth,
- maxval,
- tupltype: Some(tupltype),
- }),
- encoded: None,
- };
-
- Self::write_with_header(&mut self.writer, &header, image, width, height, color)
- }
-
- /// Try to encode the image with the chosen format, give its corresponding pixel encoding type.
- fn write_subtyped_header(
- &mut self,
- subtype: PnmSubtype,
- image: FlatSamples,
- width: u32,
- height: u32,
- color: ExtendedColorType,
- ) -> ImageResult<()> {
- let header = match (subtype, color) {
- (PnmSubtype::ArbitraryMap, color) => {
- return self.write_dynamic_header(image, width, height, color)
- }
- (PnmSubtype::Pixmap(encoding), ExtendedColorType::Rgb8) => PnmHeader {
- decoded: HeaderRecord::Pixmap(PixmapHeader {
- encoding,
- width,
- height,
- maxval: 255,
- }),
- encoded: None,
- },
- (PnmSubtype::Graymap(encoding), ExtendedColorType::L8) => PnmHeader {
- decoded: HeaderRecord::Graymap(GraymapHeader {
- encoding,
- width,
- height,
- maxwhite: 255,
- }),
- encoded: None,
- },
- (PnmSubtype::Bitmap(encoding), ExtendedColorType::L8)
- | (PnmSubtype::Bitmap(encoding), ExtendedColorType::L1) => PnmHeader {
- decoded: HeaderRecord::Bitmap(BitmapHeader {
- encoding,
- width,
- height,
- }),
- encoded: None,
- },
- (_, _) => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "Color type can not be represented in the chosen format".to_owned(),
- ),
- )));
- }
- };
-
- Self::write_with_header(&mut self.writer, &header, image, width, height, color)
- }
-
- /// Try to encode the image with the chosen header, checking if values are correct.
- ///
- /// Returns how the body should be written if successful.
- fn write_with_header(
- writer: &mut dyn Write,
- header: &PnmHeader,
- image: FlatSamples,
- width: u32,
- height: u32,
- color: ExtendedColorType,
- ) -> ImageResult<()> {
- let unchecked = UncheckedHeader { header };
-
- unchecked
- .check_header_dimensions(width, height)?
- .check_header_color(color)?
- .check_sample_values(image)?
- .write_header(writer)?
- .write_image(writer)
- }
-}
-
-impl<W: Write> ImageEncoder for PnmEncoder<W> {
- fn write_image(
- mut self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
-
-impl<'a> CheckedImageBuffer<'a> {
- fn check(
- image: FlatSamples<'a>,
- width: u32,
- height: u32,
- color: ExtendedColorType,
- ) -> ImageResult<CheckedImageBuffer<'a>> {
- let components = color.channel_count() as usize;
- let uwidth = width as usize;
- let uheight = height as usize;
- let expected_len = components
- .checked_mul(uwidth)
- .and_then(|v| v.checked_mul(uheight));
- if Some(image.len()) != expected_len {
- // Image buffer does not correspond to size and colour.
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
- Ok(CheckedImageBuffer {
- _image: image,
- _width: width,
- _height: height,
- _color: color,
- })
- }
-}
-
-impl<'a> UncheckedHeader<'a> {
- fn check_header_dimensions(
- self,
- width: u32,
- height: u32,
- ) -> ImageResult<CheckedDimensions<'a>> {
- if self.header.width() != width || self.header.height() != height {
- // Chosen header does not match Image dimensions.
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- Ok(CheckedDimensions {
- unchecked: self,
- width,
- height,
- })
- }
-}
-
-impl<'a> CheckedDimensions<'a> {
- // Check color compatibility with the header. This will only error when we are certain that
- // the combination is bogus (e.g. combining Pixmap and Palette) but allows uncertain
- // combinations (basically a ArbitraryTuplType::Custom with any color of fitting depth).
- fn check_header_color(self, color: ExtendedColorType) -> ImageResult<CheckedHeaderColor<'a>> {
- let components = u32::from(color.channel_count());
-
- match *self.unchecked.header {
- PnmHeader {
- decoded: HeaderRecord::Bitmap(_),
- ..
- } => match color {
- ExtendedColorType::L1 | ExtendedColorType::L8 | ExtendedColorType::L16 => (),
- _ => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "PBM format only support luma color types".to_owned(),
- ),
- )))
- }
- },
- PnmHeader {
- decoded: HeaderRecord::Graymap(_),
- ..
- } => match color {
- ExtendedColorType::L1 | ExtendedColorType::L8 | ExtendedColorType::L16 => (),
- _ => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "PGM format only support luma color types".to_owned(),
- ),
- )))
- }
- },
- PnmHeader {
- decoded: HeaderRecord::Pixmap(_),
- ..
- } => match color {
- ExtendedColorType::Rgb8 => (),
- _ => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "PPM format only support ExtendedColorType::Rgb8".to_owned(),
- ),
- )))
- }
- },
- PnmHeader {
- decoded:
- HeaderRecord::Arbitrary(ArbitraryHeader {
- depth,
- ref tupltype,
- ..
- }),
- ..
- } => match (tupltype, color) {
- (&Some(ArbitraryTuplType::BlackAndWhite), ExtendedColorType::L1) => (),
- (&Some(ArbitraryTuplType::BlackAndWhiteAlpha), ExtendedColorType::La8) => (),
-
- (&Some(ArbitraryTuplType::Grayscale), ExtendedColorType::L1) => (),
- (&Some(ArbitraryTuplType::Grayscale), ExtendedColorType::L8) => (),
- (&Some(ArbitraryTuplType::Grayscale), ExtendedColorType::L16) => (),
- (&Some(ArbitraryTuplType::GrayscaleAlpha), ExtendedColorType::La8) => (),
-
- (&Some(ArbitraryTuplType::RGB), ExtendedColorType::Rgb8) => (),
- (&Some(ArbitraryTuplType::RGBAlpha), ExtendedColorType::Rgba8) => (),
-
- (&None, _) if depth == components => (),
- (&Some(ArbitraryTuplType::Custom(_)), _) if depth == components => (),
- _ if depth != components => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(format!(
- "Depth mismatch: header {} vs. color {}",
- depth, components
- )),
- )))
- }
- _ => {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "Invalid color type for selected PAM color type".to_owned(),
- ),
- )))
- }
- },
- }
-
- Ok(CheckedHeaderColor {
- dimensions: self,
- color,
- })
- }
-}
-
-impl<'a> CheckedHeaderColor<'a> {
- fn check_sample_values(self, image: FlatSamples<'a>) -> ImageResult<CheckedHeader<'a>> {
- let header_maxval = match self.dimensions.unchecked.header.decoded {
- HeaderRecord::Bitmap(_) => 1,
- HeaderRecord::Graymap(GraymapHeader { maxwhite, .. }) => maxwhite,
- HeaderRecord::Pixmap(PixmapHeader { maxval, .. }) => maxval,
- HeaderRecord::Arbitrary(ArbitraryHeader { maxval, .. }) => maxval,
- };
-
- // We trust the image color bit count to be correct at least.
- let max_sample = match self.color {
- ExtendedColorType::Unknown(n) if n <= 16 => (1 << n) - 1,
- ExtendedColorType::L1 => 1,
- ExtendedColorType::L8
- | ExtendedColorType::La8
- | ExtendedColorType::Rgb8
- | ExtendedColorType::Rgba8
- | ExtendedColorType::Bgr8
- | ExtendedColorType::Bgra8 => 0xff,
- ExtendedColorType::L16
- | ExtendedColorType::La16
- | ExtendedColorType::Rgb16
- | ExtendedColorType::Rgba16 => 0xffff,
- _ => {
- // Unsupported target color type.
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::Color(self.color),
- ),
- ));
- }
- };
-
- // Avoid the performance heavy check if possible, e.g. if the header has been chosen by us.
- if header_maxval < max_sample && !image.all_smaller(header_maxval) {
- // Sample value greater than allowed for chosen header.
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Pnm.into(),
- UnsupportedErrorKind::GenericFeature(
- "Sample value greater than allowed for chosen header".to_owned(),
- ),
- ),
- ));
- }
-
- let encoding = image.encoding_for(&self.dimensions.unchecked.header.decoded);
-
- let image = CheckedImageBuffer::check(
- image,
- self.dimensions.width,
- self.dimensions.height,
- self.color,
- )?;
-
- Ok(CheckedHeader {
- color: self,
- encoding,
- _image: image,
- })
- }
-}
-
-impl<'a> CheckedHeader<'a> {
- fn write_header(self, writer: &mut dyn Write) -> ImageResult<TupleEncoding<'a>> {
- self.header().write(writer)?;
- Ok(self.encoding)
- }
-
- fn header(&self) -> &PnmHeader {
- self.color.dimensions.unchecked.header
- }
-}
-
-struct SampleWriter<'a>(&'a mut dyn Write);
-
-impl<'a> SampleWriter<'a> {
- fn write_samples_ascii<V>(self, samples: V) -> io::Result<()>
- where
- V: Iterator,
- V::Item: fmt::Display,
- {
- let mut auto_break_writer = AutoBreak::new(self.0, 70);
- for value in samples {
- write!(auto_break_writer, "{} ", value)?;
- }
- auto_break_writer.flush()
- }
-
- fn write_pbm_bits<V>(self, samples: &[V], width: u32) -> io::Result<()>
- /* Default gives 0 for all primitives. TODO: replace this with `Zeroable` once it hits stable */
- where
- V: Default + Eq + Copy,
- {
- // The length of an encoded scanline
- let line_width = (width - 1) / 8 + 1;
-
- // We'll be writing single bytes, so buffer
- let mut line_buffer = Vec::with_capacity(line_width as usize);
-
- for line in samples.chunks(width as usize) {
- for byte_bits in line.chunks(8) {
- let mut byte = 0u8;
- for i in 0..8 {
- // Black pixels are encoded as 1s
- if let Some(&v) = byte_bits.get(i) {
- if v == V::default() {
- byte |= 1u8 << (7 - i)
- }
- }
- }
- line_buffer.push(byte)
- }
- self.0.write_all(line_buffer.as_slice())?;
- line_buffer.clear();
- }
-
- self.0.flush()
- }
-}
-
-impl<'a> FlatSamples<'a> {
- fn len(&self) -> usize {
- match *self {
- FlatSamples::U8(arr) => arr.len(),
- FlatSamples::U16(arr) => arr.len(),
- }
- }
-
- fn all_smaller(&self, max_val: u32) -> bool {
- match *self {
- FlatSamples::U8(arr) => arr.iter().any(|&val| u32::from(val) > max_val),
- FlatSamples::U16(arr) => arr.iter().any(|&val| u32::from(val) > max_val),
- }
- }
-
- fn encoding_for(&self, header: &HeaderRecord) -> TupleEncoding<'a> {
- match *header {
- HeaderRecord::Bitmap(BitmapHeader {
- encoding: SampleEncoding::Binary,
- width,
- ..
- }) => TupleEncoding::PbmBits {
- samples: *self,
- width,
- },
-
- HeaderRecord::Bitmap(BitmapHeader {
- encoding: SampleEncoding::Ascii,
- ..
- }) => TupleEncoding::Ascii { samples: *self },
-
- HeaderRecord::Arbitrary(_) => TupleEncoding::Bytes { samples: *self },
-
- HeaderRecord::Graymap(GraymapHeader {
- encoding: SampleEncoding::Ascii,
- ..
- })
- | HeaderRecord::Pixmap(PixmapHeader {
- encoding: SampleEncoding::Ascii,
- ..
- }) => TupleEncoding::Ascii { samples: *self },
-
- HeaderRecord::Graymap(GraymapHeader {
- encoding: SampleEncoding::Binary,
- ..
- })
- | HeaderRecord::Pixmap(PixmapHeader {
- encoding: SampleEncoding::Binary,
- ..
- }) => TupleEncoding::Bytes { samples: *self },
- }
- }
-}
-
-impl<'a> From<&'a [u8]> for FlatSamples<'a> {
- fn from(samples: &'a [u8]) -> Self {
- FlatSamples::U8(samples)
- }
-}
-
-impl<'a> From<&'a [u16]> for FlatSamples<'a> {
- fn from(samples: &'a [u16]) -> Self {
- FlatSamples::U16(samples)
- }
-}
-
-impl<'a> TupleEncoding<'a> {
- fn write_image(&self, writer: &mut dyn Write) -> ImageResult<()> {
- match *self {
- TupleEncoding::PbmBits {
- samples: FlatSamples::U8(samples),
- width,
- } => SampleWriter(writer)
- .write_pbm_bits(samples, width)
- .map_err(ImageError::IoError),
- TupleEncoding::PbmBits {
- samples: FlatSamples::U16(samples),
- width,
- } => SampleWriter(writer)
- .write_pbm_bits(samples, width)
- .map_err(ImageError::IoError),
-
- TupleEncoding::Bytes {
- samples: FlatSamples::U8(samples),
- } => writer.write_all(samples).map_err(ImageError::IoError),
- TupleEncoding::Bytes {
- samples: FlatSamples::U16(samples),
- } => samples.iter().try_for_each(|&sample| {
- writer
- .write_u16::<BigEndian>(sample)
- .map_err(ImageError::IoError)
- }),
-
- TupleEncoding::Ascii {
- samples: FlatSamples::U8(samples),
- } => SampleWriter(writer)
- .write_samples_ascii(samples.iter())
- .map_err(ImageError::IoError),
- TupleEncoding::Ascii {
- samples: FlatSamples::U16(samples),
- } => SampleWriter(writer)
- .write_samples_ascii(samples.iter())
- .map_err(ImageError::IoError),
- }
- }
-}
diff --git a/vendor/image/src/codecs/pnm/header.rs b/vendor/image/src/codecs/pnm/header.rs
deleted file mode 100644
index 443a701..0000000
--- a/vendor/image/src/codecs/pnm/header.rs
+++ /dev/null
@@ -1,354 +0,0 @@
-use std::{fmt, io};
-
-/// The kind of encoding used to store sample values
-#[derive(Clone, Copy, PartialEq, Eq, Debug)]
-pub enum SampleEncoding {
- /// Samples are unsigned binary integers in big endian
- Binary,
-
- /// Samples are encoded as decimal ascii strings separated by whitespace
- Ascii,
-}
-
-/// Denotes the category of the magic number
-#[derive(Clone, Copy, PartialEq, Eq, Debug)]
-pub enum PnmSubtype {
- /// Magic numbers P1 and P4
- Bitmap(SampleEncoding),
-
- /// Magic numbers P2 and P5
- Graymap(SampleEncoding),
-
- /// Magic numbers P3 and P6
- Pixmap(SampleEncoding),
-
- /// Magic number P7
- ArbitraryMap,
-}
-
-/// Stores the complete header data of a file.
-///
-/// Internally, provides mechanisms for lossless reencoding. After reading a file with the decoder
-/// it is possible to recover the header and construct an encoder. Using the encoder on the just
-/// loaded image should result in a byte copy of the original file (for single image pnms without
-/// additional trailing data).
-pub struct PnmHeader {
- pub(crate) decoded: HeaderRecord,
- pub(crate) encoded: Option<Vec<u8>>,
-}
-
-pub(crate) enum HeaderRecord {
- Bitmap(BitmapHeader),
- Graymap(GraymapHeader),
- Pixmap(PixmapHeader),
- Arbitrary(ArbitraryHeader),
-}
-
-/// Header produced by a `pbm` file ("Portable Bit Map")
-#[derive(Clone, Copy, Debug)]
-pub struct BitmapHeader {
- /// Binary or Ascii encoded file
- pub encoding: SampleEncoding,
-
- /// Height of the image file
- pub height: u32,
-
- /// Width of the image file
- pub width: u32,
-}
-
-/// Header produced by a `pgm` file ("Portable Gray Map")
-#[derive(Clone, Copy, Debug)]
-pub struct GraymapHeader {
- /// Binary or Ascii encoded file
- pub encoding: SampleEncoding,
-
- /// Height of the image file
- pub height: u32,
-
- /// Width of the image file
- pub width: u32,
-
- /// Maximum sample value within the image
- pub maxwhite: u32,
-}
-
-/// Header produced by a `ppm` file ("Portable Pixel Map")
-#[derive(Clone, Copy, Debug)]
-pub struct PixmapHeader {
- /// Binary or Ascii encoded file
- pub encoding: SampleEncoding,
-
- /// Height of the image file
- pub height: u32,
-
- /// Width of the image file
- pub width: u32,
-
- /// Maximum sample value within the image
- pub maxval: u32,
-}
-
-/// Header produced by a `pam` file ("Portable Arbitrary Map")
-#[derive(Clone, Debug)]
-pub struct ArbitraryHeader {
- /// Height of the image file
- pub height: u32,
-
- /// Width of the image file
- pub width: u32,
-
- /// Number of color channels
- pub depth: u32,
-
- /// Maximum sample value within the image
- pub maxval: u32,
-
- /// Color interpretation of image pixels
- pub tupltype: Option<ArbitraryTuplType>,
-}
-
-/// Standardized tuple type specifiers in the header of a `pam`.
-#[derive(Clone, Debug)]
-pub enum ArbitraryTuplType {
- /// Pixels are either black (0) or white (1)
- BlackAndWhite,
-
- /// Pixels are either black (0) or white (1) and a second alpha channel
- BlackAndWhiteAlpha,
-
- /// Pixels represent the amount of white
- Grayscale,
-
- /// Grayscale with an additional alpha channel
- GrayscaleAlpha,
-
- /// Three channels: Red, Green, Blue
- RGB,
-
- /// Four channels: Red, Green, Blue, Alpha
- RGBAlpha,
-
- /// An image format which is not standardized
- Custom(String),
-}
-
-impl ArbitraryTuplType {
- pub(crate) fn name(&self) -> &str {
- match self {
- ArbitraryTuplType::BlackAndWhite => "BLACKANDWHITE",
- ArbitraryTuplType::BlackAndWhiteAlpha => "BLACKANDWHITE_ALPHA",
- ArbitraryTuplType::Grayscale => "GRAYSCALE",
- ArbitraryTuplType::GrayscaleAlpha => "GRAYSCALE_ALPHA",
- ArbitraryTuplType::RGB => "RGB",
- ArbitraryTuplType::RGBAlpha => "RGB_ALPHA",
- ArbitraryTuplType::Custom(custom) => custom,
- }
- }
-}
-
-impl PnmSubtype {
- /// Get the two magic constant bytes corresponding to this format subtype.
- pub fn magic_constant(self) -> &'static [u8; 2] {
- match self {
- PnmSubtype::Bitmap(SampleEncoding::Ascii) => b"P1",
- PnmSubtype::Graymap(SampleEncoding::Ascii) => b"P2",
- PnmSubtype::Pixmap(SampleEncoding::Ascii) => b"P3",
- PnmSubtype::Bitmap(SampleEncoding::Binary) => b"P4",
- PnmSubtype::Graymap(SampleEncoding::Binary) => b"P5",
- PnmSubtype::Pixmap(SampleEncoding::Binary) => b"P6",
- PnmSubtype::ArbitraryMap => b"P7",
- }
- }
-
- /// Whether samples are stored as binary or as decimal ascii
- pub fn sample_encoding(self) -> SampleEncoding {
- match self {
- PnmSubtype::ArbitraryMap => SampleEncoding::Binary,
- PnmSubtype::Bitmap(enc) => enc,
- PnmSubtype::Graymap(enc) => enc,
- PnmSubtype::Pixmap(enc) => enc,
- }
- }
-}
-
-impl PnmHeader {
- /// Retrieve the format subtype from which the header was created.
- pub fn subtype(&self) -> PnmSubtype {
- match self.decoded {
- HeaderRecord::Bitmap(BitmapHeader { encoding, .. }) => PnmSubtype::Bitmap(encoding),
- HeaderRecord::Graymap(GraymapHeader { encoding, .. }) => PnmSubtype::Graymap(encoding),
- HeaderRecord::Pixmap(PixmapHeader { encoding, .. }) => PnmSubtype::Pixmap(encoding),
- HeaderRecord::Arbitrary(ArbitraryHeader { .. }) => PnmSubtype::ArbitraryMap,
- }
- }
-
- /// The width of the image this header is for.
- pub fn width(&self) -> u32 {
- match self.decoded {
- HeaderRecord::Bitmap(BitmapHeader { width, .. }) => width,
- HeaderRecord::Graymap(GraymapHeader { width, .. }) => width,
- HeaderRecord::Pixmap(PixmapHeader { width, .. }) => width,
- HeaderRecord::Arbitrary(ArbitraryHeader { width, .. }) => width,
- }
- }
-
- /// The height of the image this header is for.
- pub fn height(&self) -> u32 {
- match self.decoded {
- HeaderRecord::Bitmap(BitmapHeader { height, .. }) => height,
- HeaderRecord::Graymap(GraymapHeader { height, .. }) => height,
- HeaderRecord::Pixmap(PixmapHeader { height, .. }) => height,
- HeaderRecord::Arbitrary(ArbitraryHeader { height, .. }) => height,
- }
- }
-
- /// The biggest value a sample can have. In other words, the colour resolution.
- pub fn maximal_sample(&self) -> u32 {
- match self.decoded {
- HeaderRecord::Bitmap(BitmapHeader { .. }) => 1,
- HeaderRecord::Graymap(GraymapHeader { maxwhite, .. }) => maxwhite,
- HeaderRecord::Pixmap(PixmapHeader { maxval, .. }) => maxval,
- HeaderRecord::Arbitrary(ArbitraryHeader { maxval, .. }) => maxval,
- }
- }
-
- /// Retrieve the underlying bitmap header if any
- pub fn as_bitmap(&self) -> Option<&BitmapHeader> {
- match self.decoded {
- HeaderRecord::Bitmap(ref bitmap) => Some(bitmap),
- _ => None,
- }
- }
-
- /// Retrieve the underlying graymap header if any
- pub fn as_graymap(&self) -> Option<&GraymapHeader> {
- match self.decoded {
- HeaderRecord::Graymap(ref graymap) => Some(graymap),
- _ => None,
- }
- }
-
- /// Retrieve the underlying pixmap header if any
- pub fn as_pixmap(&self) -> Option<&PixmapHeader> {
- match self.decoded {
- HeaderRecord::Pixmap(ref pixmap) => Some(pixmap),
- _ => None,
- }
- }
-
- /// Retrieve the underlying arbitrary header if any
- pub fn as_arbitrary(&self) -> Option<&ArbitraryHeader> {
- match self.decoded {
- HeaderRecord::Arbitrary(ref arbitrary) => Some(arbitrary),
- _ => None,
- }
- }
-
- /// Write the header back into a binary stream
- pub fn write(&self, writer: &mut dyn io::Write) -> io::Result<()> {
- writer.write_all(self.subtype().magic_constant())?;
- match *self {
- PnmHeader {
- encoded: Some(ref content),
- ..
- } => writer.write_all(content),
- PnmHeader {
- decoded:
- HeaderRecord::Bitmap(BitmapHeader {
- encoding: _encoding,
- width,
- height,
- }),
- ..
- } => writeln!(writer, "\n{} {}", width, height),
- PnmHeader {
- decoded:
- HeaderRecord::Graymap(GraymapHeader {
- encoding: _encoding,
- width,
- height,
- maxwhite,
- }),
- ..
- } => writeln!(writer, "\n{} {} {}", width, height, maxwhite),
- PnmHeader {
- decoded:
- HeaderRecord::Pixmap(PixmapHeader {
- encoding: _encoding,
- width,
- height,
- maxval,
- }),
- ..
- } => writeln!(writer, "\n{} {} {}", width, height, maxval),
- PnmHeader {
- decoded:
- HeaderRecord::Arbitrary(ArbitraryHeader {
- width,
- height,
- depth,
- maxval,
- ref tupltype,
- }),
- ..
- } => {
- struct TupltypeWriter<'a>(&'a Option<ArbitraryTuplType>);
- impl<'a> fmt::Display for TupltypeWriter<'a> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self.0 {
- Some(tt) => writeln!(f, "TUPLTYPE {}", tt.name()),
- None => Ok(()),
- }
- }
- }
-
- writeln!(
- writer,
- "\nWIDTH {}\nHEIGHT {}\nDEPTH {}\nMAXVAL {}\n{}ENDHDR",
- width,
- height,
- depth,
- maxval,
- TupltypeWriter(tupltype)
- )
- }
- }
- }
-}
-
-impl From<BitmapHeader> for PnmHeader {
- fn from(header: BitmapHeader) -> Self {
- PnmHeader {
- decoded: HeaderRecord::Bitmap(header),
- encoded: None,
- }
- }
-}
-
-impl From<GraymapHeader> for PnmHeader {
- fn from(header: GraymapHeader) -> Self {
- PnmHeader {
- decoded: HeaderRecord::Graymap(header),
- encoded: None,
- }
- }
-}
-
-impl From<PixmapHeader> for PnmHeader {
- fn from(header: PixmapHeader) -> Self {
- PnmHeader {
- decoded: HeaderRecord::Pixmap(header),
- encoded: None,
- }
- }
-}
-
-impl From<ArbitraryHeader> for PnmHeader {
- fn from(header: ArbitraryHeader) -> Self {
- PnmHeader {
- decoded: HeaderRecord::Arbitrary(header),
- encoded: None,
- }
- }
-}
diff --git a/vendor/image/src/codecs/pnm/mod.rs b/vendor/image/src/codecs/pnm/mod.rs
deleted file mode 100644
index de8612d..0000000
--- a/vendor/image/src/codecs/pnm/mod.rs
+++ /dev/null
@@ -1,184 +0,0 @@
-//! Decoding of netpbm image formats (pbm, pgm, ppm and pam).
-//!
-//! The formats pbm, pgm and ppm are fully supported. The pam decoder recognizes the tuple types
-//! `BLACKANDWHITE`, `GRAYSCALE` and `RGB` and explicitly recognizes but rejects their `_ALPHA`
-//! variants for now as alpha color types are unsupported.
-use self::autobreak::AutoBreak;
-pub use self::decoder::PnmDecoder;
-pub use self::encoder::PnmEncoder;
-use self::header::HeaderRecord;
-pub use self::header::{
- ArbitraryHeader, ArbitraryTuplType, BitmapHeader, GraymapHeader, PixmapHeader,
-};
-pub use self::header::{PnmHeader, PnmSubtype, SampleEncoding};
-
-mod autobreak;
-mod decoder;
-mod encoder;
-mod header;
-
-#[cfg(test)]
-mod tests {
- use super::*;
- use crate::color::ColorType;
- use crate::image::ImageDecoder;
- use byteorder::{ByteOrder, NativeEndian};
-
- fn execute_roundtrip_default(buffer: &[u8], width: u32, height: u32, color: ColorType) {
- let mut encoded_buffer = Vec::new();
-
- {
- let mut encoder = PnmEncoder::new(&mut encoded_buffer);
- encoder
- .encode(buffer, width, height, color)
- .expect("Failed to encode the image buffer");
- }
-
- let (header, loaded_color, loaded_image) = {
- let decoder = PnmDecoder::new(&encoded_buffer[..]).unwrap();
- let color_type = decoder.color_type();
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder
- .read_image(&mut image)
- .expect("Failed to decode the image");
- let (_, header) = PnmDecoder::new(&encoded_buffer[..]).unwrap().into_inner();
- (header, color_type, image)
- };
-
- assert_eq!(header.width(), width);
- assert_eq!(header.height(), height);
- assert_eq!(loaded_color, color);
- assert_eq!(loaded_image.as_slice(), buffer);
- }
-
- fn execute_roundtrip_with_subtype(
- buffer: &[u8],
- width: u32,
- height: u32,
- color: ColorType,
- subtype: PnmSubtype,
- ) {
- let mut encoded_buffer = Vec::new();
-
- {
- let mut encoder = PnmEncoder::new(&mut encoded_buffer).with_subtype(subtype);
- encoder
- .encode(buffer, width, height, color)
- .expect("Failed to encode the image buffer");
- }
-
- let (header, loaded_color, loaded_image) = {
- let decoder = PnmDecoder::new(&encoded_buffer[..]).unwrap();
- let color_type = decoder.color_type();
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder
- .read_image(&mut image)
- .expect("Failed to decode the image");
- let (_, header) = PnmDecoder::new(&encoded_buffer[..]).unwrap().into_inner();
- (header, color_type, image)
- };
-
- assert_eq!(header.width(), width);
- assert_eq!(header.height(), height);
- assert_eq!(header.subtype(), subtype);
- assert_eq!(loaded_color, color);
- assert_eq!(loaded_image.as_slice(), buffer);
- }
-
- fn execute_roundtrip_u16(buffer: &[u16], width: u32, height: u32, color: ColorType) {
- let mut encoded_buffer = Vec::new();
-
- {
- let mut encoder = PnmEncoder::new(&mut encoded_buffer);
- encoder
- .encode(buffer, width, height, color)
- .expect("Failed to encode the image buffer");
- }
-
- let (header, loaded_color, loaded_image) = {
- let decoder = PnmDecoder::new(&encoded_buffer[..]).unwrap();
- let color_type = decoder.color_type();
- let mut image = vec![0; decoder.total_bytes() as usize];
- decoder
- .read_image(&mut image)
- .expect("Failed to decode the image");
- let (_, header) = PnmDecoder::new(&encoded_buffer[..]).unwrap().into_inner();
- (header, color_type, image)
- };
-
- let mut buffer_u8 = vec![0; buffer.len() * 2];
- NativeEndian::write_u16_into(buffer, &mut buffer_u8[..]);
-
- assert_eq!(header.width(), width);
- assert_eq!(header.height(), height);
- assert_eq!(loaded_color, color);
- assert_eq!(loaded_image, buffer_u8);
- }
-
- #[test]
- fn roundtrip_gray() {
- #[rustfmt::skip]
- let buf: [u8; 16] = [
- 0, 0, 0, 255,
- 255, 255, 255, 255,
- 255, 0, 255, 0,
- 255, 0, 0, 0,
- ];
-
- execute_roundtrip_default(&buf, 4, 4, ColorType::L8);
- execute_roundtrip_with_subtype(&buf, 4, 4, ColorType::L8, PnmSubtype::ArbitraryMap);
- execute_roundtrip_with_subtype(
- &buf,
- 4,
- 4,
- ColorType::L8,
- PnmSubtype::Graymap(SampleEncoding::Ascii),
- );
- execute_roundtrip_with_subtype(
- &buf,
- 4,
- 4,
- ColorType::L8,
- PnmSubtype::Graymap(SampleEncoding::Binary),
- );
- }
-
- #[test]
- fn roundtrip_rgb() {
- #[rustfmt::skip]
- let buf: [u8; 27] = [
- 0, 0, 0,
- 0, 0, 255,
- 0, 255, 0,
- 0, 255, 255,
- 255, 0, 0,
- 255, 0, 255,
- 255, 255, 0,
- 255, 255, 255,
- 255, 255, 255,
- ];
- execute_roundtrip_default(&buf, 3, 3, ColorType::Rgb8);
- execute_roundtrip_with_subtype(&buf, 3, 3, ColorType::Rgb8, PnmSubtype::ArbitraryMap);
- execute_roundtrip_with_subtype(
- &buf,
- 3,
- 3,
- ColorType::Rgb8,
- PnmSubtype::Pixmap(SampleEncoding::Binary),
- );
- execute_roundtrip_with_subtype(
- &buf,
- 3,
- 3,
- ColorType::Rgb8,
- PnmSubtype::Pixmap(SampleEncoding::Ascii),
- );
- }
-
- #[test]
- fn roundtrip_u16() {
- let buf: [u16; 6] = [0, 1, 0xFFFF, 0x1234, 0x3412, 0xBEAF];
-
- execute_roundtrip_u16(&buf, 6, 1, ColorType::L16);
- }
-}
diff --git a/vendor/image/src/codecs/qoi.rs b/vendor/image/src/codecs/qoi.rs
deleted file mode 100644
index 214e99b..0000000
--- a/vendor/image/src/codecs/qoi.rs
+++ /dev/null
@@ -1,104 +0,0 @@
-//! Decoding and encoding of QOI images
-
-use crate::{
- error::{DecodingError, EncodingError},
- ColorType, ImageDecoder, ImageEncoder, ImageError, ImageFormat, ImageResult,
-};
-use std::io::{Cursor, Read, Write};
-
-/// QOI decoder
-pub struct QoiDecoder<R> {
- decoder: qoi::Decoder<R>,
-}
-
-impl<R> QoiDecoder<R>
-where
- R: Read,
-{
- /// Creates a new decoder that decodes from the stream ```reader```
- pub fn new(reader: R) -> ImageResult<Self> {
- let decoder = qoi::Decoder::from_stream(reader).map_err(decoding_error)?;
- Ok(Self { decoder })
- }
-}
-
-impl<'a, R: Read + 'a> ImageDecoder<'a> for QoiDecoder<R> {
- type Reader = Cursor<Vec<u8>>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.decoder.header().width, self.decoder.header().height)
- }
-
- fn color_type(&self) -> ColorType {
- match self.decoder.header().channels {
- qoi::Channels::Rgb => ColorType::Rgb8,
- qoi::Channels::Rgba => ColorType::Rgba8,
- }
- }
-
- fn into_reader(mut self) -> ImageResult<Self::Reader> {
- let buffer = self.decoder.decode_to_vec().map_err(decoding_error)?;
- Ok(Cursor::new(buffer))
- }
-}
-
-fn decoding_error(error: qoi::Error) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::Qoi.into(), error))
-}
-
-fn encoding_error(error: qoi::Error) -> ImageError {
- ImageError::Encoding(EncodingError::new(ImageFormat::Qoi.into(), error))
-}
-
-/// QOI encoder
-pub struct QoiEncoder<W> {
- writer: W,
-}
-
-impl<W: Write> QoiEncoder<W> {
- /// Creates a new encoder that writes its output to ```writer```
- pub fn new(writer: W) -> Self {
- Self { writer }
- }
-}
-
-impl<W: Write> ImageEncoder for QoiEncoder<W> {
- fn write_image(
- mut self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- if !matches!(color_type, ColorType::Rgba8 | ColorType::Rgb8) {
- return Err(ImageError::Encoding(EncodingError::new(
- ImageFormat::Qoi.into(),
- format!("unsupported color type {color_type:?}. Supported are Rgba8 and Rgb8."),
- )));
- }
-
- // Encode data in QOI
- let data = qoi::encode_to_vec(buf, width, height).map_err(encoding_error)?;
-
- // Write data to buffer
- self.writer.write_all(&data[..])?;
- self.writer.flush()?;
-
- Ok(())
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
- use std::fs::File;
-
- #[test]
- fn decode_test_image() {
- let decoder = QoiDecoder::new(File::open("tests/images/qoi/basic-test.qoi").unwrap())
- .expect("Unable to read QOI file");
-
- assert_eq!((5, 5), decoder.dimensions());
- assert_eq!(ColorType::Rgba8, decoder.color_type());
- }
-}
diff --git a/vendor/image/src/codecs/tga/decoder.rs b/vendor/image/src/codecs/tga/decoder.rs
deleted file mode 100644
index 16243ce..0000000
--- a/vendor/image/src/codecs/tga/decoder.rs
+++ /dev/null
@@ -1,502 +0,0 @@
-use super::header::{Header, ImageType, ALPHA_BIT_MASK, SCREEN_ORIGIN_BIT_MASK};
-use crate::{
- color::{ColorType, ExtendedColorType},
- error::{
- ImageError, ImageResult, LimitError, LimitErrorKind, UnsupportedError, UnsupportedErrorKind,
- },
- image::{ImageDecoder, ImageFormat, ImageReadBuffer},
-};
-use byteorder::ReadBytesExt;
-use std::{
- convert::TryFrom,
- io::{self, Read, Seek},
- mem,
-};
-
-struct ColorMap {
- /// sizes in bytes
- start_offset: usize,
- entry_size: usize,
- bytes: Vec<u8>,
-}
-
-impl ColorMap {
- pub(crate) fn from_reader(
- r: &mut dyn Read,
- start_offset: u16,
- num_entries: u16,
- bits_per_entry: u8,
- ) -> ImageResult<ColorMap> {
- let bytes_per_entry = (bits_per_entry as usize + 7) / 8;
-
- let mut bytes = vec![0; bytes_per_entry * num_entries as usize];
- r.read_exact(&mut bytes)?;
-
- Ok(ColorMap {
- entry_size: bytes_per_entry,
- start_offset: start_offset as usize,
- bytes,
- })
- }
-
- /// Get one entry from the color map
- pub(crate) fn get(&self, index: usize) -> Option<&[u8]> {
- let entry = self.start_offset + self.entry_size * index;
- self.bytes.get(entry..entry + self.entry_size)
- }
-}
-
-/// The representation of a TGA decoder
-pub struct TgaDecoder<R> {
- r: R,
-
- width: usize,
- height: usize,
- bytes_per_pixel: usize,
- has_loaded_metadata: bool,
-
- image_type: ImageType,
- color_type: ColorType,
- original_color_type: Option<ExtendedColorType>,
-
- header: Header,
- color_map: Option<ColorMap>,
-
- // Used in read_scanline
- line_read: Option<usize>,
- line_remain_buff: Vec<u8>,
-}
-
-impl<R: Read + Seek> TgaDecoder<R> {
- /// Create a new decoder that decodes from the stream `r`
- pub fn new(r: R) -> ImageResult<TgaDecoder<R>> {
- let mut decoder = TgaDecoder {
- r,
-
- width: 0,
- height: 0,
- bytes_per_pixel: 0,
- has_loaded_metadata: false,
-
- image_type: ImageType::Unknown,
- color_type: ColorType::L8,
- original_color_type: None,
-
- header: Header::default(),
- color_map: None,
-
- line_read: None,
- line_remain_buff: Vec::new(),
- };
- decoder.read_metadata()?;
- Ok(decoder)
- }
-
- fn read_header(&mut self) -> ImageResult<()> {
- self.header = Header::from_reader(&mut self.r)?;
- self.image_type = ImageType::new(self.header.image_type);
- self.width = self.header.image_width as usize;
- self.height = self.header.image_height as usize;
- self.bytes_per_pixel = (self.header.pixel_depth as usize + 7) / 8;
- Ok(())
- }
-
- fn read_metadata(&mut self) -> ImageResult<()> {
- if !self.has_loaded_metadata {
- self.read_header()?;
- self.read_image_id()?;
- self.read_color_map()?;
- self.read_color_information()?;
- self.has_loaded_metadata = true;
- }
- Ok(())
- }
-
- /// Loads the color information for the decoder
- ///
- /// To keep things simple, we won't handle bit depths that aren't divisible
- /// by 8 and are larger than 32.
- fn read_color_information(&mut self) -> ImageResult<()> {
- if self.header.pixel_depth % 8 != 0 || self.header.pixel_depth > 32 {
- // Bit depth must be divisible by 8, and must be less than or equal
- // to 32.
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Tga.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::Unknown(
- self.header.pixel_depth,
- )),
- ),
- ));
- }
-
- let num_alpha_bits = self.header.image_desc & ALPHA_BIT_MASK;
-
- let other_channel_bits = if self.header.map_type != 0 {
- self.header.map_entry_size
- } else {
- if num_alpha_bits > self.header.pixel_depth {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Tga.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::Unknown(
- self.header.pixel_depth,
- )),
- ),
- ));
- }
-
- self.header.pixel_depth - num_alpha_bits
- };
- let color = self.image_type.is_color();
-
- match (num_alpha_bits, other_channel_bits, color) {
- // really, the encoding is BGR and BGRA, this is fixed
- // up with `TgaDecoder::reverse_encoding`.
- (0, 32, true) => self.color_type = ColorType::Rgba8,
- (8, 24, true) => self.color_type = ColorType::Rgba8,
- (0, 24, true) => self.color_type = ColorType::Rgb8,
- (8, 8, false) => self.color_type = ColorType::La8,
- (0, 8, false) => self.color_type = ColorType::L8,
- (8, 0, false) => {
- // alpha-only image is treated as L8
- self.color_type = ColorType::L8;
- self.original_color_type = Some(ExtendedColorType::A8);
- }
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Tga.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::Unknown(
- self.header.pixel_depth,
- )),
- ),
- ))
- }
- }
- Ok(())
- }
-
- /// Read the image id field
- ///
- /// We're not interested in this field, so this function skips it if it
- /// is present
- fn read_image_id(&mut self) -> ImageResult<()> {
- self.r
- .seek(io::SeekFrom::Current(i64::from(self.header.id_length)))?;
- Ok(())
- }
-
- fn read_color_map(&mut self) -> ImageResult<()> {
- if self.header.map_type == 1 {
- // FIXME: we could reverse the map entries, which avoids having to reverse all pixels
- // in the final output individually.
- self.color_map = Some(ColorMap::from_reader(
- &mut self.r,
- self.header.map_origin,
- self.header.map_length,
- self.header.map_entry_size,
- )?);
- }
- Ok(())
- }
-
- /// Expands indices into its mapped color
- fn expand_color_map(&self, pixel_data: &[u8]) -> io::Result<Vec<u8>> {
- #[inline]
- fn bytes_to_index(bytes: &[u8]) -> usize {
- let mut result = 0usize;
- for byte in bytes.iter() {
- result = result << 8 | *byte as usize;
- }
- result
- }
-
- let bytes_per_entry = (self.header.map_entry_size as usize + 7) / 8;
- let mut result = Vec::with_capacity(self.width * self.height * bytes_per_entry);
-
- if self.bytes_per_pixel == 0 {
- return Err(io::ErrorKind::Other.into());
- }
-
- let color_map = self
- .color_map
- .as_ref()
- .ok_or_else(|| io::Error::from(io::ErrorKind::Other))?;
-
- for chunk in pixel_data.chunks(self.bytes_per_pixel) {
- let index = bytes_to_index(chunk);
- if let Some(color) = color_map.get(index) {
- result.extend_from_slice(color);
- } else {
- return Err(io::ErrorKind::Other.into());
- }
- }
-
- Ok(result)
- }
-
- /// Reads a run length encoded data for given number of bytes
- fn read_encoded_data(&mut self, num_bytes: usize) -> io::Result<Vec<u8>> {
- let mut pixel_data = Vec::with_capacity(num_bytes);
- let mut repeat_buf = Vec::with_capacity(self.bytes_per_pixel);
-
- while pixel_data.len() < num_bytes {
- let run_packet = self.r.read_u8()?;
- // If the highest bit in `run_packet` is set, then we repeat pixels
- //
- // Note: the TGA format adds 1 to both counts because having a count
- // of 0 would be pointless.
- if (run_packet & 0x80) != 0 {
- // high bit set, so we will repeat the data
- let repeat_count = ((run_packet & !0x80) + 1) as usize;
- self.r
- .by_ref()
- .take(self.bytes_per_pixel as u64)
- .read_to_end(&mut repeat_buf)?;
-
- // get the repeating pixels from the bytes of the pixel stored in `repeat_buf`
- let data = repeat_buf
- .iter()
- .cycle()
- .take(repeat_count * self.bytes_per_pixel);
- pixel_data.extend(data);
- repeat_buf.clear();
- } else {
- // not set, so `run_packet+1` is the number of non-encoded pixels
- let num_raw_bytes = (run_packet + 1) as usize * self.bytes_per_pixel;
- self.r
- .by_ref()
- .take(num_raw_bytes as u64)
- .read_to_end(&mut pixel_data)?;
- }
- }
-
- if pixel_data.len() > num_bytes {
- // FIXME: the last packet contained more data than we asked for!
- // This is at least a warning. We truncate the data since some methods rely on the
- // length to be accurate in the success case.
- pixel_data.truncate(num_bytes);
- }
-
- Ok(pixel_data)
- }
-
- /// Reads a run length encoded packet
- fn read_all_encoded_data(&mut self) -> ImageResult<Vec<u8>> {
- let num_bytes = self.width * self.height * self.bytes_per_pixel;
-
- Ok(self.read_encoded_data(num_bytes)?)
- }
-
- /// Reads a run length encoded line
- fn read_encoded_line(&mut self) -> io::Result<Vec<u8>> {
- let line_num_bytes = self.width * self.bytes_per_pixel;
- let remain_len = self.line_remain_buff.len();
-
- if remain_len >= line_num_bytes {
- // `Vec::split_to` if std had it
- let bytes = {
- let bytes_after = self.line_remain_buff.split_off(line_num_bytes);
- mem::replace(&mut self.line_remain_buff, bytes_after)
- };
-
- return Ok(bytes);
- }
-
- let num_bytes = line_num_bytes - remain_len;
-
- let line_data = self.read_encoded_data(num_bytes)?;
-
- let mut pixel_data = Vec::with_capacity(line_num_bytes);
- pixel_data.append(&mut self.line_remain_buff);
- pixel_data.extend_from_slice(&line_data[..num_bytes]);
-
- // put the remain data to line_remain_buff.
- // expects `self.line_remain_buff` to be empty from
- // the above `pixel_data.append` call
- debug_assert!(self.line_remain_buff.is_empty());
- self.line_remain_buff
- .extend_from_slice(&line_data[num_bytes..]);
-
- Ok(pixel_data)
- }
-
- /// Reverse from BGR encoding to RGB encoding
- ///
- /// TGA files are stored in the BGRA encoding. This function swaps
- /// the blue and red bytes in the `pixels` array.
- fn reverse_encoding_in_output(&mut self, pixels: &mut [u8]) {
- // We only need to reverse the encoding of color images
- match self.color_type {
- ColorType::Rgb8 | ColorType::Rgba8 => {
- for chunk in pixels.chunks_mut(self.color_type.bytes_per_pixel().into()) {
- chunk.swap(0, 2);
- }
- }
- _ => {}
- }
- }
-
- /// Flip the image vertically depending on the screen origin bit
- ///
- /// The bit in position 5 of the image descriptor byte is the screen origin bit.
- /// If it's 1, the origin is in the top left corner.
- /// If it's 0, the origin is in the bottom left corner.
- /// This function checks the bit, and if it's 0, flips the image vertically.
- fn flip_vertically(&mut self, pixels: &mut [u8]) {
- if self.is_flipped_vertically() {
- if self.height == 0 {
- return;
- }
-
- let num_bytes = pixels.len();
-
- let width_bytes = num_bytes / self.height;
-
- // Flip the image vertically.
- for vertical_index in 0..(self.height / 2) {
- let vertical_target = (self.height - vertical_index) * width_bytes - width_bytes;
-
- for horizontal_index in 0..width_bytes {
- let source = vertical_index * width_bytes + horizontal_index;
- let target = vertical_target + horizontal_index;
-
- pixels.swap(target, source);
- }
- }
- }
- }
-
- /// Check whether the image is vertically flipped
- ///
- /// The bit in position 5 of the image descriptor byte is the screen origin bit.
- /// If it's 1, the origin is in the top left corner.
- /// If it's 0, the origin is in the bottom left corner.
- /// This function checks the bit, and if it's 0, flips the image vertically.
- fn is_flipped_vertically(&self) -> bool {
- let screen_origin_bit = SCREEN_ORIGIN_BIT_MASK & self.header.image_desc != 0;
- !screen_origin_bit
- }
-
- fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- if let Some(line_read) = self.line_read {
- if line_read == self.height {
- return Ok(0);
- }
- }
-
- // read the pixels from the data region
- let mut pixel_data = if self.image_type.is_encoded() {
- self.read_encoded_line()?
- } else {
- let num_raw_bytes = self.width * self.bytes_per_pixel;
- let mut buf = vec![0; num_raw_bytes];
- self.r.by_ref().read_exact(&mut buf)?;
- buf
- };
-
- // expand the indices using the color map if necessary
- if self.image_type.is_color_mapped() {
- pixel_data = self.expand_color_map(&pixel_data)?;
- }
- self.reverse_encoding_in_output(&mut pixel_data);
-
- // copy to the output buffer
- buf[..pixel_data.len()].copy_from_slice(&pixel_data);
-
- self.line_read = Some(self.line_read.unwrap_or(0) + 1);
-
- Ok(pixel_data.len())
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for TgaDecoder<R> {
- type Reader = TGAReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- (self.width as u32, self.height as u32)
- }
-
- fn color_type(&self) -> ColorType {
- self.color_type
- }
-
- fn original_color_type(&self) -> ExtendedColorType {
- self.original_color_type
- .unwrap_or_else(|| self.color_type().into())
- }
-
- fn scanline_bytes(&self) -> u64 {
- // This cannot overflow because TGA has a maximum width of u16::MAX_VALUE and
- // `bytes_per_pixel` is a u8.
- u64::from(self.color_type.bytes_per_pixel()) * self.width as u64
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- Ok(TGAReader {
- buffer: ImageReadBuffer::new(self.scanline_bytes(), self.total_bytes()),
- decoder: self,
- })
- }
-
- fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- // In indexed images, we might need more bytes than pixels to read them. That's nonsensical
- // to encode but we'll not want to crash.
- let mut fallback_buf = vec![];
- // read the pixels from the data region
- let rawbuf = if self.image_type.is_encoded() {
- let pixel_data = self.read_all_encoded_data()?;
- if self.bytes_per_pixel <= usize::from(self.color_type.bytes_per_pixel()) {
- buf[..pixel_data.len()].copy_from_slice(&pixel_data);
- &buf[..pixel_data.len()]
- } else {
- fallback_buf = pixel_data;
- &fallback_buf[..]
- }
- } else {
- let num_raw_bytes = self.width * self.height * self.bytes_per_pixel;
- if self.bytes_per_pixel <= usize::from(self.color_type.bytes_per_pixel()) {
- self.r.by_ref().read_exact(&mut buf[..num_raw_bytes])?;
- &buf[..num_raw_bytes]
- } else {
- fallback_buf.resize(num_raw_bytes, 0u8);
- self.r
- .by_ref()
- .read_exact(&mut fallback_buf[..num_raw_bytes])?;
- &fallback_buf[..num_raw_bytes]
- }
- };
-
- // expand the indices using the color map if necessary
- if self.image_type.is_color_mapped() {
- let pixel_data = self.expand_color_map(rawbuf)?;
- // not enough data to fill the buffer, or would overflow the buffer
- if pixel_data.len() != buf.len() {
- return Err(ImageError::Limits(LimitError::from_kind(
- LimitErrorKind::DimensionError,
- )));
- }
- buf.copy_from_slice(&pixel_data);
- }
-
- self.reverse_encoding_in_output(buf);
-
- self.flip_vertically(buf);
-
- Ok(())
- }
-}
-
-pub struct TGAReader<R> {
- buffer: ImageReadBuffer,
- decoder: TgaDecoder<R>,
-}
-impl<R: Read + Seek> Read for TGAReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- let decoder = &mut self.decoder;
- self.buffer.read(buf, |buf| decoder.read_scanline(buf))
- }
-}
diff --git a/vendor/image/src/codecs/tga/encoder.rs b/vendor/image/src/codecs/tga/encoder.rs
deleted file mode 100644
index cf34984..0000000
--- a/vendor/image/src/codecs/tga/encoder.rs
+++ /dev/null
@@ -1,215 +0,0 @@
-use super::header::Header;
-use crate::{error::EncodingError, ColorType, ImageEncoder, ImageError, ImageFormat, ImageResult};
-use std::{convert::TryFrom, error, fmt, io::Write};
-
-/// Errors that can occur during encoding and saving of a TGA image.
-#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
-enum EncoderError {
- /// Invalid TGA width.
- WidthInvalid(u32),
-
- /// Invalid TGA height.
- HeightInvalid(u32),
-}
-
-impl fmt::Display for EncoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- EncoderError::WidthInvalid(s) => f.write_fmt(format_args!("Invalid TGA width: {}", s)),
- EncoderError::HeightInvalid(s) => {
- f.write_fmt(format_args!("Invalid TGA height: {}", s))
- }
- }
- }
-}
-
-impl From<EncoderError> for ImageError {
- fn from(e: EncoderError) -> ImageError {
- ImageError::Encoding(EncodingError::new(ImageFormat::Tga.into(), e))
- }
-}
-
-impl error::Error for EncoderError {}
-
-/// TGA encoder.
-pub struct TgaEncoder<W: Write> {
- writer: W,
-}
-
-impl<W: Write> TgaEncoder<W> {
- /// Create a new encoder that writes its output to ```w```.
- pub fn new(w: W) -> TgaEncoder<W> {
- TgaEncoder { writer: w }
- }
-
- /// Encodes the image ```buf``` that has dimensions ```width```
- /// and ```height``` and ```ColorType``` ```color_type```.
- ///
- /// The dimensions of the image must be between 0 and 65535 (inclusive) or
- /// an error will be returned.
- pub fn encode(
- mut self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- // Validate dimensions.
- let width = u16::try_from(width)
- .map_err(|_| ImageError::from(EncoderError::WidthInvalid(width)))?;
-
- let height = u16::try_from(height)
- .map_err(|_| ImageError::from(EncoderError::HeightInvalid(height)))?;
-
- // Write out TGA header.
- let header = Header::from_pixel_info(color_type, width, height)?;
- header.write_to(&mut self.writer)?;
-
- // Write out Bgr(a)8 or L(a)8 image data.
- match color_type {
- ColorType::Rgb8 | ColorType::Rgba8 => {
- let mut image = Vec::from(buf);
-
- for chunk in image.chunks_mut(usize::from(color_type.bytes_per_pixel())) {
- chunk.swap(0, 2);
- }
-
- self.writer.write_all(&image)?;
- }
- _ => {
- self.writer.write_all(buf)?;
- }
- }
-
- Ok(())
- }
-}
-
-impl<W: Write> ImageEncoder for TgaEncoder<W> {
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::{EncoderError, TgaEncoder};
- use crate::{codecs::tga::TgaDecoder, ColorType, ImageDecoder, ImageError};
- use std::{error::Error, io::Cursor};
-
- fn round_trip_image(image: &[u8], width: u32, height: u32, c: ColorType) -> Vec<u8> {
- let mut encoded_data = Vec::new();
- {
- let encoder = TgaEncoder::new(&mut encoded_data);
- encoder
- .encode(&image, width, height, c)
- .expect("could not encode image");
- }
-
- let decoder = TgaDecoder::new(Cursor::new(&encoded_data)).expect("failed to decode");
-
- let mut buf = vec![0; decoder.total_bytes() as usize];
- decoder.read_image(&mut buf).expect("failed to decode");
- buf
- }
-
- #[test]
- fn test_image_width_too_large() {
- // TGA cannot encode images larger than 65,535×65,535
- // create a 65,536×1 8-bit black image buffer
- let size = usize::from(u16::MAX) + 1;
- let dimension = size as u32;
- let img = vec![0u8; size];
- // Try to encode an image that is too large
- let mut encoded = Vec::new();
- let encoder = TgaEncoder::new(&mut encoded);
- let result = encoder.encode(&img, dimension, 1, ColorType::L8);
- match result {
- Err(ImageError::Encoding(err)) => {
- let err = err
- .source()
- .unwrap()
- .downcast_ref::<EncoderError>()
- .unwrap();
- assert_eq!(*err, EncoderError::WidthInvalid(dimension));
- }
- other => panic!(
- "Encoding an image that is too wide should return a InvalidWidth \
- it returned {:?} instead",
- other
- ),
- }
- }
-
- #[test]
- fn test_image_height_too_large() {
- // TGA cannot encode images larger than 65,535×65,535
- // create a 65,536×1 8-bit black image buffer
- let size = usize::from(u16::MAX) + 1;
- let dimension = size as u32;
- let img = vec![0u8; size];
- // Try to encode an image that is too large
- let mut encoded = Vec::new();
- let encoder = TgaEncoder::new(&mut encoded);
- let result = encoder.encode(&img, 1, dimension, ColorType::L8);
- match result {
- Err(ImageError::Encoding(err)) => {
- let err = err
- .source()
- .unwrap()
- .downcast_ref::<EncoderError>()
- .unwrap();
- assert_eq!(*err, EncoderError::HeightInvalid(dimension));
- }
- other => panic!(
- "Encoding an image that is too tall should return a InvalidHeight \
- it returned {:?} instead",
- other
- ),
- }
- }
-
- #[test]
- fn round_trip_single_pixel_rgb() {
- let image = [0, 1, 2];
- let decoded = round_trip_image(&image, 1, 1, ColorType::Rgb8);
- assert_eq!(decoded.len(), image.len());
- assert_eq!(decoded.as_slice(), image);
- }
-
- #[test]
- fn round_trip_single_pixel_rgba() {
- let image = [0, 1, 2, 3];
- let decoded = round_trip_image(&image, 1, 1, ColorType::Rgba8);
- assert_eq!(decoded.len(), image.len());
- assert_eq!(decoded.as_slice(), image);
- }
-
- #[test]
- fn round_trip_gray() {
- let image = [0, 1, 2];
- let decoded = round_trip_image(&image, 3, 1, ColorType::L8);
- assert_eq!(decoded.len(), image.len());
- assert_eq!(decoded.as_slice(), image);
- }
-
- #[test]
- fn round_trip_graya() {
- let image = [0, 1, 2, 3, 4, 5];
- let decoded = round_trip_image(&image, 1, 3, ColorType::La8);
- assert_eq!(decoded.len(), image.len());
- assert_eq!(decoded.as_slice(), image);
- }
-
- #[test]
- fn round_trip_3px_rgb() {
- let image = [0; 3 * 3 * 3]; // 3x3 pixels, 3 bytes per pixel
- let _decoded = round_trip_image(&image, 3, 3, ColorType::Rgb8);
- }
-}
diff --git a/vendor/image/src/codecs/tga/header.rs b/vendor/image/src/codecs/tga/header.rs
deleted file mode 100644
index 83ba7a3..0000000
--- a/vendor/image/src/codecs/tga/header.rs
+++ /dev/null
@@ -1,150 +0,0 @@
-use crate::{
- error::{UnsupportedError, UnsupportedErrorKind},
- ColorType, ImageError, ImageFormat, ImageResult,
-};
-use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
-use std::io::{Read, Write};
-
-pub(crate) const ALPHA_BIT_MASK: u8 = 0b1111;
-pub(crate) const SCREEN_ORIGIN_BIT_MASK: u8 = 0b10_0000;
-
-pub(crate) enum ImageType {
- NoImageData = 0,
- /// Uncompressed images.
- RawColorMap = 1,
- RawTrueColor = 2,
- RawGrayScale = 3,
- /// Run length encoded images.
- RunColorMap = 9,
- RunTrueColor = 10,
- RunGrayScale = 11,
- Unknown,
-}
-
-impl ImageType {
- /// Create a new image type from a u8.
- pub(crate) fn new(img_type: u8) -> ImageType {
- match img_type {
- 0 => ImageType::NoImageData,
-
- 1 => ImageType::RawColorMap,
- 2 => ImageType::RawTrueColor,
- 3 => ImageType::RawGrayScale,
-
- 9 => ImageType::RunColorMap,
- 10 => ImageType::RunTrueColor,
- 11 => ImageType::RunGrayScale,
-
- _ => ImageType::Unknown,
- }
- }
-
- /// Check if the image format uses colors as opposed to gray scale.
- pub(crate) fn is_color(&self) -> bool {
- matches! { *self,
- ImageType::RawColorMap
- | ImageType::RawTrueColor
- | ImageType::RunTrueColor
- | ImageType::RunColorMap
- }
- }
-
- /// Does the image use a color map.
- pub(crate) fn is_color_mapped(&self) -> bool {
- matches! { *self, ImageType::RawColorMap | ImageType::RunColorMap }
- }
-
- /// Is the image run length encoded.
- pub(crate) fn is_encoded(&self) -> bool {
- matches! {*self, ImageType::RunColorMap | ImageType::RunTrueColor | ImageType::RunGrayScale }
- }
-}
-
-/// Header used by TGA image files.
-#[derive(Debug, Default)]
-pub(crate) struct Header {
- pub(crate) id_length: u8, // length of ID string
- pub(crate) map_type: u8, // color map type
- pub(crate) image_type: u8, // image type code
- pub(crate) map_origin: u16, // starting index of map
- pub(crate) map_length: u16, // length of map
- pub(crate) map_entry_size: u8, // size of map entries in bits
- pub(crate) x_origin: u16, // x-origin of image
- pub(crate) y_origin: u16, // y-origin of image
- pub(crate) image_width: u16, // width of image
- pub(crate) image_height: u16, // height of image
- pub(crate) pixel_depth: u8, // bits per pixel
- pub(crate) image_desc: u8, // image descriptor
-}
-
-impl Header {
- /// Load the header with values from pixel information.
- pub(crate) fn from_pixel_info(
- color_type: ColorType,
- width: u16,
- height: u16,
- ) -> ImageResult<Self> {
- let mut header = Self::default();
-
- if width > 0 && height > 0 {
- let (num_alpha_bits, other_channel_bits, image_type) = match color_type {
- ColorType::Rgba8 => (8, 24, ImageType::RawTrueColor),
- ColorType::Rgb8 => (0, 24, ImageType::RawTrueColor),
- ColorType::La8 => (8, 8, ImageType::RawGrayScale),
- ColorType::L8 => (0, 8, ImageType::RawGrayScale),
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Tga.into(),
- UnsupportedErrorKind::Color(color_type.into()),
- ),
- ))
- }
- };
-
- header.image_type = image_type as u8;
- header.image_width = width;
- header.image_height = height;
- header.pixel_depth = num_alpha_bits + other_channel_bits;
- header.image_desc = num_alpha_bits & ALPHA_BIT_MASK;
- header.image_desc |= SCREEN_ORIGIN_BIT_MASK; // Upper left origin.
- }
-
- Ok(header)
- }
-
- /// Load the header with values from the reader.
- pub(crate) fn from_reader(r: &mut dyn Read) -> ImageResult<Self> {
- Ok(Self {
- id_length: r.read_u8()?,
- map_type: r.read_u8()?,
- image_type: r.read_u8()?,
- map_origin: r.read_u16::<LittleEndian>()?,
- map_length: r.read_u16::<LittleEndian>()?,
- map_entry_size: r.read_u8()?,
- x_origin: r.read_u16::<LittleEndian>()?,
- y_origin: r.read_u16::<LittleEndian>()?,
- image_width: r.read_u16::<LittleEndian>()?,
- image_height: r.read_u16::<LittleEndian>()?,
- pixel_depth: r.read_u8()?,
- image_desc: r.read_u8()?,
- })
- }
-
- /// Write out the header values.
- pub(crate) fn write_to(&self, w: &mut dyn Write) -> ImageResult<()> {
- w.write_u8(self.id_length)?;
- w.write_u8(self.map_type)?;
- w.write_u8(self.image_type)?;
- w.write_u16::<LittleEndian>(self.map_origin)?;
- w.write_u16::<LittleEndian>(self.map_length)?;
- w.write_u8(self.map_entry_size)?;
- w.write_u16::<LittleEndian>(self.x_origin)?;
- w.write_u16::<LittleEndian>(self.y_origin)?;
- w.write_u16::<LittleEndian>(self.image_width)?;
- w.write_u16::<LittleEndian>(self.image_height)?;
- w.write_u8(self.pixel_depth)?;
- w.write_u8(self.image_desc)?;
- Ok(())
- }
-}
diff --git a/vendor/image/src/codecs/tga/mod.rs b/vendor/image/src/codecs/tga/mod.rs
deleted file mode 100644
index fdc2f0c..0000000
--- a/vendor/image/src/codecs/tga/mod.rs
+++ /dev/null
@@ -1,17 +0,0 @@
-//! Decoding of TGA Images
-//!
-//! # Related Links
-//! <http://googlesites.inequation.org/tgautilities>
-
-/// A decoder for TGA images
-///
-/// Currently this decoder does not support 8, 15 and 16 bit color images.
-pub use self::decoder::TgaDecoder;
-
-//TODO add 8, 15, 16 bit color support
-
-pub use self::encoder::TgaEncoder;
-
-mod decoder;
-mod encoder;
-mod header;
diff --git a/vendor/image/src/codecs/tiff.rs b/vendor/image/src/codecs/tiff.rs
deleted file mode 100644
index 7c33412..0000000
--- a/vendor/image/src/codecs/tiff.rs
+++ /dev/null
@@ -1,353 +0,0 @@
-//! Decoding and Encoding of TIFF Images
-//!
-//! TIFF (Tagged Image File Format) is a versatile image format that supports
-//! lossless and lossy compression.
-//!
-//! # Related Links
-//! * <http://partners.adobe.com/public/developer/tiff/index.html> - The TIFF specification
-
-extern crate tiff;
-
-use std::convert::TryFrom;
-use std::io::{self, Cursor, Read, Seek, Write};
-use std::marker::PhantomData;
-use std::mem;
-
-use crate::color::{ColorType, ExtendedColorType};
-use crate::error::{
- DecodingError, EncodingError, ImageError, ImageResult, LimitError, LimitErrorKind,
- ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::{ImageDecoder, ImageEncoder, ImageFormat};
-use crate::utils;
-
-/// Decoder for TIFF images.
-pub struct TiffDecoder<R>
-where
- R: Read + Seek,
-{
- dimensions: (u32, u32),
- color_type: ColorType,
-
- // We only use an Option here so we can call with_limits on the decoder without moving.
- inner: Option<tiff::decoder::Decoder<R>>,
-}
-
-impl<R> TiffDecoder<R>
-where
- R: Read + Seek,
-{
- /// Create a new TiffDecoder.
- pub fn new(r: R) -> Result<TiffDecoder<R>, ImageError> {
- let mut inner = tiff::decoder::Decoder::new(r).map_err(ImageError::from_tiff_decode)?;
-
- let dimensions = inner.dimensions().map_err(ImageError::from_tiff_decode)?;
- let color_type = inner.colortype().map_err(ImageError::from_tiff_decode)?;
- match inner.find_tag_unsigned_vec::<u16>(tiff::tags::Tag::SampleFormat) {
- Ok(Some(sample_formats)) => {
- for format in sample_formats {
- check_sample_format(format)?;
- }
- }
- Ok(None) => { /* assume UInt format */ }
- Err(other) => return Err(ImageError::from_tiff_decode(other)),
- };
-
- let color_type = match color_type {
- tiff::ColorType::Gray(8) => ColorType::L8,
- tiff::ColorType::Gray(16) => ColorType::L16,
- tiff::ColorType::GrayA(8) => ColorType::La8,
- tiff::ColorType::GrayA(16) => ColorType::La16,
- tiff::ColorType::RGB(8) => ColorType::Rgb8,
- tiff::ColorType::RGB(16) => ColorType::Rgb16,
- tiff::ColorType::RGBA(8) => ColorType::Rgba8,
- tiff::ColorType::RGBA(16) => ColorType::Rgba16,
-
- tiff::ColorType::Palette(n) | tiff::ColorType::Gray(n) => {
- return Err(err_unknown_color_type(n))
- }
- tiff::ColorType::GrayA(n) => return Err(err_unknown_color_type(n.saturating_mul(2))),
- tiff::ColorType::RGB(n) => return Err(err_unknown_color_type(n.saturating_mul(3))),
- tiff::ColorType::YCbCr(n) => return Err(err_unknown_color_type(n.saturating_mul(3))),
- tiff::ColorType::RGBA(n) | tiff::ColorType::CMYK(n) => {
- return Err(err_unknown_color_type(n.saturating_mul(4)))
- }
- };
-
- Ok(TiffDecoder {
- dimensions,
- color_type,
- inner: Some(inner),
- })
- }
-}
-
-fn check_sample_format(sample_format: u16) -> Result<(), ImageError> {
- match tiff::tags::SampleFormat::from_u16(sample_format) {
- Some(tiff::tags::SampleFormat::Uint) => Ok(()),
- Some(other) => Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Tiff.into(),
- UnsupportedErrorKind::GenericFeature(format!(
- "Unhandled TIFF sample format {:?}",
- other
- )),
- ),
- )),
- None => Err(ImageError::Decoding(DecodingError::from_format_hint(
- ImageFormat::Tiff.into(),
- ))),
- }
-}
-
-fn err_unknown_color_type(value: u8) -> ImageError {
- ImageError::Unsupported(UnsupportedError::from_format_and_kind(
- ImageFormat::Tiff.into(),
- UnsupportedErrorKind::Color(ExtendedColorType::Unknown(value)),
- ))
-}
-
-impl ImageError {
- fn from_tiff_decode(err: tiff::TiffError) -> ImageError {
- match err {
- tiff::TiffError::IoError(err) => ImageError::IoError(err),
- err @ tiff::TiffError::FormatError(_)
- | err @ tiff::TiffError::IntSizeError
- | err @ tiff::TiffError::UsageError(_) => {
- ImageError::Decoding(DecodingError::new(ImageFormat::Tiff.into(), err))
- }
- tiff::TiffError::UnsupportedError(desc) => {
- ImageError::Unsupported(UnsupportedError::from_format_and_kind(
- ImageFormat::Tiff.into(),
- UnsupportedErrorKind::GenericFeature(desc.to_string()),
- ))
- }
- tiff::TiffError::LimitsExceeded => {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- }
- }
- }
-
- fn from_tiff_encode(err: tiff::TiffError) -> ImageError {
- match err {
- tiff::TiffError::IoError(err) => ImageError::IoError(err),
- err @ tiff::TiffError::FormatError(_)
- | err @ tiff::TiffError::IntSizeError
- | err @ tiff::TiffError::UsageError(_) => {
- ImageError::Encoding(EncodingError::new(ImageFormat::Tiff.into(), err))
- }
- tiff::TiffError::UnsupportedError(desc) => {
- ImageError::Unsupported(UnsupportedError::from_format_and_kind(
- ImageFormat::Tiff.into(),
- UnsupportedErrorKind::GenericFeature(desc.to_string()),
- ))
- }
- tiff::TiffError::LimitsExceeded => {
- ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
- }
- }
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct TiffReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for TiffReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for TiffDecoder<R> {
- type Reader = TiffReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- self.dimensions
- }
-
- fn color_type(&self) -> ColorType {
- self.color_type
- }
-
- fn icc_profile(&mut self) -> Option<Vec<u8>> {
- if let Some(decoder) = &mut self.inner {
- decoder.get_tag_u8_vec(tiff::tags::Tag::Unknown(34675)).ok()
- } else {
- None
- }
- }
-
- fn set_limits(&mut self, limits: crate::io::Limits) -> ImageResult<()> {
- limits.check_support(&crate::io::LimitSupport::default())?;
-
- let (width, height) = self.dimensions();
- limits.check_dimensions(width, height)?;
-
- let max_alloc = limits.max_alloc.unwrap_or(u64::MAX);
- let max_intermediate_alloc = max_alloc.saturating_sub(self.total_bytes());
-
- let mut tiff_limits: tiff::decoder::Limits = Default::default();
- tiff_limits.decoding_buffer_size =
- usize::try_from(max_alloc - max_intermediate_alloc).unwrap_or(usize::MAX);
- tiff_limits.intermediate_buffer_size =
- usize::try_from(max_intermediate_alloc).unwrap_or(usize::MAX);
- tiff_limits.ifd_value_size = tiff_limits.intermediate_buffer_size;
- self.inner = Some(self.inner.take().unwrap().with_limits(tiff_limits));
-
- Ok(())
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- let buf = match self
- .inner
- .unwrap()
- .read_image()
- .map_err(ImageError::from_tiff_decode)?
- {
- tiff::decoder::DecodingResult::U8(v) => v,
- tiff::decoder::DecodingResult::U16(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::U32(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::U64(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::I8(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::I16(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::I32(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::I64(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::F32(v) => utils::vec_copy_to_u8(&v),
- tiff::decoder::DecodingResult::F64(v) => utils::vec_copy_to_u8(&v),
- };
-
- Ok(TiffReader(Cursor::new(buf), PhantomData))
- }
-
- fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
- match self
- .inner
- .unwrap()
- .read_image()
- .map_err(ImageError::from_tiff_decode)?
- {
- tiff::decoder::DecodingResult::U8(v) => {
- buf.copy_from_slice(&v);
- }
- tiff::decoder::DecodingResult::U16(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::U32(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::U64(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::I8(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::I16(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::I32(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::I64(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::F32(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- tiff::decoder::DecodingResult::F64(v) => {
- buf.copy_from_slice(bytemuck::cast_slice(&v));
- }
- }
- Ok(())
- }
-}
-
-/// Encoder for tiff images
-pub struct TiffEncoder<W> {
- w: W,
-}
-
-// Utility to simplify and deduplicate error handling during 16-bit encoding.
-fn u8_slice_as_u16(buf: &[u8]) -> ImageResult<&[u16]> {
- bytemuck::try_cast_slice(buf).map_err(|err| {
- // If the buffer is not aligned or the correct length for a u16 slice, err.
- //
- // `bytemuck::PodCastError` of bytemuck-1.2.0 does not implement
- // `Error` and `Display` trait.
- // See <https://github.com/Lokathor/bytemuck/issues/22>.
- ImageError::Parameter(ParameterError::from_kind(ParameterErrorKind::Generic(
- format!("{:?}", err),
- )))
- })
-}
-
-impl<W: Write + Seek> TiffEncoder<W> {
- /// Create a new encoder that writes its output to `w`
- pub fn new(w: W) -> TiffEncoder<W> {
- TiffEncoder { w }
- }
-
- /// Encodes the image `image` that has dimensions `width` and `height` and `ColorType` `c`.
- ///
- /// 16-bit types assume the buffer is native endian.
- pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> ImageResult<()> {
- let mut encoder =
- tiff::encoder::TiffEncoder::new(self.w).map_err(ImageError::from_tiff_encode)?;
- match color {
- ColorType::L8 => {
- encoder.write_image::<tiff::encoder::colortype::Gray8>(width, height, data)
- }
- ColorType::Rgb8 => {
- encoder.write_image::<tiff::encoder::colortype::RGB8>(width, height, data)
- }
- ColorType::Rgba8 => {
- encoder.write_image::<tiff::encoder::colortype::RGBA8>(width, height, data)
- }
- ColorType::L16 => encoder.write_image::<tiff::encoder::colortype::Gray16>(
- width,
- height,
- u8_slice_as_u16(data)?,
- ),
- ColorType::Rgb16 => encoder.write_image::<tiff::encoder::colortype::RGB16>(
- width,
- height,
- u8_slice_as_u16(data)?,
- ),
- ColorType::Rgba16 => encoder.write_image::<tiff::encoder::colortype::RGBA16>(
- width,
- height,
- u8_slice_as_u16(data)?,
- ),
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::Tiff.into(),
- UnsupportedErrorKind::Color(color.into()),
- ),
- ))
- }
- }
- .map_err(ImageError::from_tiff_encode)?;
-
- Ok(())
- }
-}
-
-impl<W: Write + Seek> ImageEncoder for TiffEncoder<W> {
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
diff --git a/vendor/image/src/codecs/webp/decoder.rs b/vendor/image/src/codecs/webp/decoder.rs
deleted file mode 100644
index 9120290..0000000
--- a/vendor/image/src/codecs/webp/decoder.rs
+++ /dev/null
@@ -1,399 +0,0 @@
-use byteorder::{LittleEndian, ReadBytesExt};
-use std::convert::TryFrom;
-use std::io::{self, Cursor, Error, Read};
-use std::marker::PhantomData;
-use std::{error, fmt, mem};
-
-use crate::error::{DecodingError, ImageError, ImageResult, ParameterError, ParameterErrorKind};
-use crate::image::{ImageDecoder, ImageFormat};
-use crate::{color, AnimationDecoder, Frames, Rgba};
-
-use super::lossless::{LosslessDecoder, LosslessFrame};
-use super::vp8::{Frame as VP8Frame, Vp8Decoder};
-
-use super::extended::{read_extended_header, ExtendedImage};
-
-/// All errors that can occur when attempting to parse a WEBP container
-#[derive(Debug, Clone, Copy)]
-pub(crate) enum DecoderError {
- /// RIFF's "RIFF" signature not found or invalid
- RiffSignatureInvalid([u8; 4]),
- /// WebP's "WEBP" signature not found or invalid
- WebpSignatureInvalid([u8; 4]),
- /// Chunk Header was incorrect or invalid in its usage
- ChunkHeaderInvalid([u8; 4]),
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- struct SignatureWriter([u8; 4]);
- impl fmt::Display for SignatureWriter {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- write!(
- f,
- "[{:#04X?}, {:#04X?}, {:#04X?}, {:#04X?}]",
- self.0[0], self.0[1], self.0[2], self.0[3]
- )
- }
- }
-
- match self {
- DecoderError::RiffSignatureInvalid(riff) => f.write_fmt(format_args!(
- "Invalid RIFF signature: {}",
- SignatureWriter(*riff)
- )),
- DecoderError::WebpSignatureInvalid(webp) => f.write_fmt(format_args!(
- "Invalid WebP signature: {}",
- SignatureWriter(*webp)
- )),
- DecoderError::ChunkHeaderInvalid(header) => f.write_fmt(format_args!(
- "Invalid Chunk header: {}",
- SignatureWriter(*header)
- )),
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::WebP.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-/// All possible RIFF chunks in a WebP image file
-#[allow(clippy::upper_case_acronyms)]
-#[derive(Debug, Clone, Copy, PartialEq)]
-pub(crate) enum WebPRiffChunk {
- RIFF,
- WEBP,
- VP8,
- VP8L,
- VP8X,
- ANIM,
- ANMF,
- ALPH,
- ICCP,
- EXIF,
- XMP,
-}
-
-impl WebPRiffChunk {
- pub(crate) fn from_fourcc(chunk_fourcc: [u8; 4]) -> ImageResult<Self> {
- match &chunk_fourcc {
- b"RIFF" => Ok(Self::RIFF),
- b"WEBP" => Ok(Self::WEBP),
- b"VP8 " => Ok(Self::VP8),
- b"VP8L" => Ok(Self::VP8L),
- b"VP8X" => Ok(Self::VP8X),
- b"ANIM" => Ok(Self::ANIM),
- b"ANMF" => Ok(Self::ANMF),
- b"ALPH" => Ok(Self::ALPH),
- b"ICCP" => Ok(Self::ICCP),
- b"EXIF" => Ok(Self::EXIF),
- b"XMP " => Ok(Self::XMP),
- _ => Err(DecoderError::ChunkHeaderInvalid(chunk_fourcc).into()),
- }
- }
-
- pub(crate) fn to_fourcc(&self) -> [u8; 4] {
- match self {
- Self::RIFF => *b"RIFF",
- Self::WEBP => *b"WEBP",
- Self::VP8 => *b"VP8 ",
- Self::VP8L => *b"VP8L",
- Self::VP8X => *b"VP8X",
- Self::ANIM => *b"ANIM",
- Self::ANMF => *b"ANMF",
- Self::ALPH => *b"ALPH",
- Self::ICCP => *b"ICCP",
- Self::EXIF => *b"EXIF",
- Self::XMP => *b"XMP ",
- }
- }
-}
-
-enum WebPImage {
- Lossy(VP8Frame),
- Lossless(LosslessFrame),
- Extended(ExtendedImage),
-}
-
-/// WebP Image format decoder. Currently only supports lossy RGB images or lossless RGBA images.
-pub struct WebPDecoder<R> {
- r: R,
- image: WebPImage,
-}
-
-impl<R: Read> WebPDecoder<R> {
- /// Create a new WebPDecoder from the Reader ```r```.
- /// This function takes ownership of the Reader.
- pub fn new(r: R) -> ImageResult<WebPDecoder<R>> {
- let image = WebPImage::Lossy(Default::default());
-
- let mut decoder = WebPDecoder { r, image };
- decoder.read_data()?;
- Ok(decoder)
- }
-
- //reads the 12 bytes of the WebP file header
- fn read_riff_header(&mut self) -> ImageResult<u32> {
- let mut riff = [0; 4];
- self.r.read_exact(&mut riff)?;
- if &riff != b"RIFF" {
- return Err(DecoderError::RiffSignatureInvalid(riff).into());
- }
-
- let size = self.r.read_u32::<LittleEndian>()?;
-
- let mut webp = [0; 4];
- self.r.read_exact(&mut webp)?;
- if &webp != b"WEBP" {
- return Err(DecoderError::WebpSignatureInvalid(webp).into());
- }
-
- Ok(size)
- }
-
- //reads the chunk header, decodes the frame and returns the inner decoder
- fn read_frame(&mut self) -> ImageResult<WebPImage> {
- let chunk = read_chunk(&mut self.r)?;
-
- match chunk {
- Some((cursor, WebPRiffChunk::VP8)) => {
- let mut vp8_decoder = Vp8Decoder::new(cursor);
- let frame = vp8_decoder.decode_frame()?;
-
- Ok(WebPImage::Lossy(frame.clone()))
- }
- Some((cursor, WebPRiffChunk::VP8L)) => {
- let mut lossless_decoder = LosslessDecoder::new(cursor);
- let frame = lossless_decoder.decode_frame()?;
-
- Ok(WebPImage::Lossless(frame.clone()))
- }
- Some((mut cursor, WebPRiffChunk::VP8X)) => {
- let info = read_extended_header(&mut cursor)?;
-
- let image = ExtendedImage::read_extended_chunks(&mut self.r, info)?;
-
- Ok(WebPImage::Extended(image))
- }
- None => Err(ImageError::IoError(Error::from(
- io::ErrorKind::UnexpectedEof,
- ))),
- Some((_, chunk)) => Err(DecoderError::ChunkHeaderInvalid(chunk.to_fourcc()).into()),
- }
- }
-
- fn read_data(&mut self) -> ImageResult<()> {
- let _size = self.read_riff_header()?;
-
- let image = self.read_frame()?;
-
- self.image = image;
-
- Ok(())
- }
-
- /// Returns true if the image as described by the bitstream is animated.
- pub fn has_animation(&self) -> bool {
- match &self.image {
- WebPImage::Lossy(_) => false,
- WebPImage::Lossless(_) => false,
- WebPImage::Extended(extended) => extended.has_animation(),
- }
- }
-
- /// Sets the background color if the image is an extended and animated webp.
- pub fn set_background_color(&mut self, color: Rgba<u8>) -> ImageResult<()> {
- match &mut self.image {
- WebPImage::Extended(image) => image.set_background_color(color),
- _ => Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "Background color can only be set on animated webp".to_owned(),
- ),
- ))),
- }
- }
-}
-
-pub(crate) fn read_len_cursor<R>(r: &mut R) -> ImageResult<Cursor<Vec<u8>>>
-where
- R: Read,
-{
- let unpadded_len = u64::from(r.read_u32::<LittleEndian>()?);
-
- // RIFF chunks containing an uneven number of bytes append
- // an extra 0x00 at the end of the chunk
- //
- // The addition cannot overflow since we have a u64 that was created from a u32
- let len = unpadded_len + (unpadded_len % 2);
-
- let mut framedata = Vec::new();
- r.by_ref().take(len).read_to_end(&mut framedata)?;
-
- //remove padding byte
- if unpadded_len % 2 == 1 {
- framedata.pop();
- }
-
- Ok(io::Cursor::new(framedata))
-}
-
-/// Reads a chunk header FourCC
-/// Returns None if and only if we hit end of file reading the four character code of the chunk
-/// The inner error is `Err` if and only if the chunk header FourCC is present but unknown
-pub(crate) fn read_fourcc<R: Read>(r: &mut R) -> ImageResult<Option<ImageResult<WebPRiffChunk>>> {
- let mut chunk_fourcc = [0; 4];
- let result = r.read_exact(&mut chunk_fourcc);
-
- match result {
- Ok(()) => {}
- Err(err) => {
- if err.kind() == io::ErrorKind::UnexpectedEof {
- return Ok(None);
- } else {
- return Err(err.into());
- }
- }
- }
-
- let chunk = WebPRiffChunk::from_fourcc(chunk_fourcc);
- Ok(Some(chunk))
-}
-
-/// Reads a chunk
-/// Returns an error if the chunk header is not a valid webp header or some other reading error
-/// Returns None if and only if we hit end of file reading the four character code of the chunk
-pub(crate) fn read_chunk<R>(r: &mut R) -> ImageResult<Option<(Cursor<Vec<u8>>, WebPRiffChunk)>>
-where
- R: Read,
-{
- if let Some(chunk) = read_fourcc(r)? {
- let chunk = chunk?;
- let cursor = read_len_cursor(r)?;
- Ok(Some((cursor, chunk)))
- } else {
- Ok(None)
- }
-}
-
-/// Wrapper struct around a `Cursor<Vec<u8>>`
-pub struct WebpReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
-impl<R> Read for WebpReader<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- self.0.read(buf)
- }
- fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
- if self.0.position() == 0 && buf.is_empty() {
- mem::swap(buf, self.0.get_mut());
- Ok(buf.len())
- } else {
- self.0.read_to_end(buf)
- }
- }
-}
-
-impl<'a, R: 'a + Read> ImageDecoder<'a> for WebPDecoder<R> {
- type Reader = WebpReader<R>;
-
- fn dimensions(&self) -> (u32, u32) {
- match &self.image {
- WebPImage::Lossy(vp8_frame) => {
- (u32::from(vp8_frame.width), u32::from(vp8_frame.height))
- }
- WebPImage::Lossless(lossless_frame) => (
- u32::from(lossless_frame.width),
- u32::from(lossless_frame.height),
- ),
- WebPImage::Extended(extended) => extended.dimensions(),
- }
- }
-
- fn color_type(&self) -> color::ColorType {
- match &self.image {
- WebPImage::Lossy(_) => color::ColorType::Rgb8,
- WebPImage::Lossless(_) => color::ColorType::Rgba8,
- WebPImage::Extended(extended) => extended.color_type(),
- }
- }
-
- fn into_reader(self) -> ImageResult<Self::Reader> {
- match &self.image {
- WebPImage::Lossy(vp8_frame) => {
- let mut data = vec![0; vp8_frame.get_buf_size()];
- vp8_frame.fill_rgb(data.as_mut_slice());
- Ok(WebpReader(Cursor::new(data), PhantomData))
- }
- WebPImage::Lossless(lossless_frame) => {
- let mut data = vec![0; lossless_frame.get_buf_size()];
- lossless_frame.fill_rgba(data.as_mut_slice());
- Ok(WebpReader(Cursor::new(data), PhantomData))
- }
- WebPImage::Extended(extended) => {
- let mut data = vec![0; extended.get_buf_size()];
- extended.fill_buf(data.as_mut_slice());
- Ok(WebpReader(Cursor::new(data), PhantomData))
- }
- }
- }
-
- fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
- assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
-
- match &self.image {
- WebPImage::Lossy(vp8_frame) => {
- vp8_frame.fill_rgb(buf);
- }
- WebPImage::Lossless(lossless_frame) => {
- lossless_frame.fill_rgba(buf);
- }
- WebPImage::Extended(extended) => {
- extended.fill_buf(buf);
- }
- }
- Ok(())
- }
-
- fn icc_profile(&mut self) -> Option<Vec<u8>> {
- if let WebPImage::Extended(extended) = &self.image {
- extended.icc_profile()
- } else {
- None
- }
- }
-}
-
-impl<'a, R: 'a + Read> AnimationDecoder<'a> for WebPDecoder<R> {
- fn into_frames(self) -> Frames<'a> {
- match self.image {
- WebPImage::Lossy(_) | WebPImage::Lossless(_) => {
- Frames::new(Box::new(std::iter::empty()))
- }
- WebPImage::Extended(extended_image) => extended_image.into_frames(),
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn add_with_overflow_size() {
- let bytes = vec![
- 0x52, 0x49, 0x46, 0x46, 0xaf, 0x37, 0x80, 0x47, 0x57, 0x45, 0x42, 0x50, 0x6c, 0x64,
- 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xfb, 0x7e, 0x73, 0x00, 0x06, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65,
- 0x40, 0xfb, 0xff, 0xff, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65,
- 0x00, 0x00, 0x00, 0x00, 0x62, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x49,
- 0x49, 0x54, 0x55, 0x50, 0x4c, 0x54, 0x59, 0x50, 0x45, 0x33, 0x37, 0x44, 0x4d, 0x46,
- ];
-
- let data = std::io::Cursor::new(bytes);
-
- let _ = WebPDecoder::new(data);
- }
-}
diff --git a/vendor/image/src/codecs/webp/encoder.rs b/vendor/image/src/codecs/webp/encoder.rs
deleted file mode 100644
index 0383046..0000000
--- a/vendor/image/src/codecs/webp/encoder.rs
+++ /dev/null
@@ -1,242 +0,0 @@
-//! Encoding of WebP images.
-///
-/// Uses the simple encoding API from the [libwebp] library.
-///
-/// [libwebp]: https://developers.google.com/speed/webp/docs/api#simple_encoding_api
-use std::io::Write;
-
-use libwebp::{Encoder, PixelLayout, WebPMemory};
-
-use crate::error::{
- EncodingError, ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::flat::SampleLayout;
-use crate::{ColorType, ImageEncoder, ImageError, ImageFormat, ImageResult};
-
-/// WebP Encoder.
-pub struct WebPEncoder<W> {
- inner: W,
- quality: WebPQuality,
-}
-
-/// WebP encoder quality.
-#[derive(Debug, Copy, Clone)]
-pub struct WebPQuality(Quality);
-
-#[derive(Debug, Copy, Clone)]
-enum Quality {
- Lossless,
- Lossy(u8),
-}
-
-impl WebPQuality {
- /// Minimum lossy quality value (0).
- pub const MIN: u8 = 0;
- /// Maximum lossy quality value (100).
- pub const MAX: u8 = 100;
- /// Default lossy quality (80), providing a balance of quality and file size.
- pub const DEFAULT: u8 = 80;
-
- /// Lossless encoding.
- pub fn lossless() -> Self {
- Self(Quality::Lossless)
- }
-
- /// Lossy encoding. 0 = low quality, small size; 100 = high quality, large size.
- ///
- /// Values are clamped from 0 to 100.
- pub fn lossy(quality: u8) -> Self {
- Self(Quality::Lossy(quality.clamp(Self::MIN, Self::MAX)))
- }
-}
-
-impl Default for WebPQuality {
- fn default() -> Self {
- Self::lossy(WebPQuality::DEFAULT)
- }
-}
-
-impl<W: Write> WebPEncoder<W> {
- /// Create a new encoder that writes its output to `w`.
- ///
- /// Defaults to lossy encoding, see [`WebPQuality::DEFAULT`].
- pub fn new(w: W) -> Self {
- WebPEncoder::new_with_quality(w, WebPQuality::default())
- }
-
- /// Create a new encoder with the specified quality, that writes its output to `w`.
- pub fn new_with_quality(w: W, quality: WebPQuality) -> Self {
- Self { inner: w, quality }
- }
-
- /// Encode image data with the indicated color type.
- ///
- /// The encoder requires image data be Rgb8 or Rgba8.
- pub fn encode(
- mut self,
- data: &[u8],
- width: u32,
- height: u32,
- color: ColorType,
- ) -> ImageResult<()> {
- // TODO: convert color types internally?
- let layout = match color {
- ColorType::Rgb8 => PixelLayout::Rgb,
- ColorType::Rgba8 => PixelLayout::Rgba,
- _ => {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::WebP.into(),
- UnsupportedErrorKind::Color(color.into()),
- ),
- ))
- }
- };
-
- // Validate dimensions upfront to avoid panics.
- if width == 0
- || height == 0
- || !SampleLayout::row_major_packed(color.channel_count(), width, height)
- .fits(data.len())
- {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- // Call the native libwebp library to encode the image.
- let encoder = Encoder::new(data, layout, width, height);
- let encoded: WebPMemory = match self.quality.0 {
- Quality::Lossless => encoder.encode_lossless(),
- Quality::Lossy(quality) => encoder.encode(quality as f32),
- };
-
- // The simple encoding API in libwebp does not return errors.
- if encoded.is_empty() {
- return Err(ImageError::Encoding(EncodingError::new(
- ImageFormat::WebP.into(),
- "encoding failed, output empty",
- )));
- }
-
- self.inner.write_all(&encoded)?;
- Ok(())
- }
-}
-
-impl<W: Write> ImageEncoder for WebPEncoder<W> {
- fn write_image(
- self,
- buf: &[u8],
- width: u32,
- height: u32,
- color_type: ColorType,
- ) -> ImageResult<()> {
- self.encode(buf, width, height, color_type)
- }
-}
-
-#[cfg(test)]
-mod tests {
- use crate::codecs::webp::{WebPEncoder, WebPQuality};
- use crate::{ColorType, ImageEncoder};
-
- #[test]
- fn webp_lossless_deterministic() {
- // 1x1 8-bit image buffer containing a single red pixel.
- let rgb: &[u8] = &[255, 0, 0];
- let rgba: &[u8] = &[255, 0, 0, 128];
- for (color, img, expected) in [
- (
- ColorType::Rgb8,
- rgb,
- [
- 82, 73, 70, 70, 28, 0, 0, 0, 87, 69, 66, 80, 86, 80, 56, 76, 15, 0, 0, 0, 47,
- 0, 0, 0, 0, 7, 16, 253, 143, 254, 7, 34, 162, 255, 1, 0,
- ],
- ),
- (
- ColorType::Rgba8,
- rgba,
- [
- 82, 73, 70, 70, 28, 0, 0, 0, 87, 69, 66, 80, 86, 80, 56, 76, 15, 0, 0, 0, 47,
- 0, 0, 0, 16, 7, 16, 253, 143, 2, 6, 34, 162, 255, 1, 0,
- ],
- ),
- ] {
- // Encode it into a memory buffer.
- let mut encoded_img = Vec::new();
- {
- let encoder =
- WebPEncoder::new_with_quality(&mut encoded_img, WebPQuality::lossless());
- encoder
- .write_image(&img, 1, 1, color)
- .expect("image encoding failed");
- }
-
- // WebP encoding should be deterministic.
- assert_eq!(encoded_img, expected);
- }
- }
-
- #[derive(Debug, Clone)]
- struct MockImage {
- width: u32,
- height: u32,
- color: ColorType,
- data: Vec<u8>,
- }
-
- impl quickcheck::Arbitrary for MockImage {
- fn arbitrary(g: &mut quickcheck::Gen) -> Self {
- // Limit to small, non-empty images <= 512x512.
- let width = u32::arbitrary(g) % 512 + 1;
- let height = u32::arbitrary(g) % 512 + 1;
- let (color, stride) = if bool::arbitrary(g) {
- (ColorType::Rgb8, 3)
- } else {
- (ColorType::Rgba8, 4)
- };
- let size = width * height * stride;
- let data: Vec<u8> = (0..size).map(|_| u8::arbitrary(g)).collect();
- MockImage {
- width,
- height,
- color,
- data,
- }
- }
- }
-
- quickcheck! {
- fn fuzz_webp_valid_image(image: MockImage, quality: u8) -> bool {
- // Check valid images do not panic.
- let mut buffer = Vec::<u8>::new();
- for webp_quality in [WebPQuality::lossless(), WebPQuality::lossy(quality)] {
- buffer.clear();
- let encoder = WebPEncoder::new_with_quality(&mut buffer, webp_quality);
- if !encoder
- .write_image(&image.data, image.width, image.height, image.color)
- .is_ok() {
- return false;
- }
- }
- true
- }
-
- fn fuzz_webp_no_panic(data: Vec<u8>, width: u8, height: u8, quality: u8) -> bool {
- // Check random (usually invalid) parameters do not panic.
- let mut buffer = Vec::<u8>::new();
- for color in [ColorType::Rgb8, ColorType::Rgba8] {
- for webp_quality in [WebPQuality::lossless(), WebPQuality::lossy(quality)] {
- buffer.clear();
- let encoder = WebPEncoder::new_with_quality(&mut buffer, webp_quality);
- // Ignore errors.
- let _ = encoder
- .write_image(&data, width as u32, height as u32, color);
- }
- }
- true
- }
- }
-}
diff --git a/vendor/image/src/codecs/webp/extended.rs b/vendor/image/src/codecs/webp/extended.rs
deleted file mode 100644
index 3dc6b34..0000000
--- a/vendor/image/src/codecs/webp/extended.rs
+++ /dev/null
@@ -1,839 +0,0 @@
-use std::convert::TryInto;
-use std::io::{self, Cursor, Error, Read};
-use std::{error, fmt};
-
-use super::decoder::{
- read_chunk, read_fourcc, read_len_cursor, DecoderError::ChunkHeaderInvalid, WebPRiffChunk,
-};
-use super::lossless::{LosslessDecoder, LosslessFrame};
-use super::vp8::{Frame as VP8Frame, Vp8Decoder};
-use crate::error::{DecodingError, ParameterError, ParameterErrorKind};
-use crate::image::ImageFormat;
-use crate::{
- ColorType, Delay, Frame, Frames, ImageError, ImageResult, Rgb, RgbImage, Rgba, RgbaImage,
-};
-use byteorder::{LittleEndian, ReadBytesExt};
-
-//all errors that can occur while parsing extended chunks in a WebP file
-#[derive(Debug, Clone, Copy)]
-enum DecoderError {
- // Some bits were invalid
- InfoBitsInvalid { name: &'static str, value: u32 },
- // Alpha chunk doesn't match the frame's size
- AlphaChunkSizeMismatch,
- // Image is too large, either for the platform's pointer size or generally
- ImageTooLarge,
- // Frame would go out of the canvas
- FrameOutsideImage,
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::InfoBitsInvalid { name, value } => f.write_fmt(format_args!(
- "Info bits `{}` invalid, received value: {}",
- name, value
- )),
- DecoderError::AlphaChunkSizeMismatch => {
- f.write_str("Alpha chunk doesn't match the size of the frame")
- }
- DecoderError::ImageTooLarge => f.write_str("Image is too large to be decoded"),
- DecoderError::FrameOutsideImage => {
- f.write_str("Frame is too large and would go outside the image")
- }
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::WebP.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-#[derive(Debug, Clone)]
-pub(crate) struct WebPExtendedInfo {
- _icc_profile: bool,
- _alpha: bool,
- _exif_metadata: bool,
- _xmp_metadata: bool,
- _animation: bool,
- canvas_width: u32,
- canvas_height: u32,
- icc_profile: Option<Vec<u8>>,
-}
-
-#[derive(Debug)]
-enum ExtendedImageData {
- Animation {
- frames: Vec<AnimatedFrame>,
- anim_info: WebPAnimatedInfo,
- },
- Static(WebPStatic),
-}
-
-#[derive(Debug)]
-pub(crate) struct ExtendedImage {
- info: WebPExtendedInfo,
- image: ExtendedImageData,
-}
-
-impl ExtendedImage {
- pub(crate) fn dimensions(&self) -> (u32, u32) {
- (self.info.canvas_width, self.info.canvas_height)
- }
-
- pub(crate) fn has_animation(&self) -> bool {
- self.info._animation
- }
-
- pub(crate) fn icc_profile(&self) -> Option<Vec<u8>> {
- self.info.icc_profile.clone()
- }
-
- pub(crate) fn color_type(&self) -> ColorType {
- match &self.image {
- ExtendedImageData::Animation { frames, .. } => &frames[0].image,
- ExtendedImageData::Static(image) => image,
- }
- .color_type()
- }
-
- pub(crate) fn into_frames<'a>(self) -> Frames<'a> {
- struct FrameIterator {
- image: ExtendedImage,
- index: usize,
- canvas: RgbaImage,
- }
-
- impl Iterator for FrameIterator {
- type Item = ImageResult<Frame>;
-
- fn next(&mut self) -> Option<Self::Item> {
- if let ExtendedImageData::Animation { frames, anim_info } = &self.image.image {
- let frame = frames.get(self.index);
- match frame {
- Some(anim_image) => {
- self.index += 1;
- ExtendedImage::draw_subimage(
- &mut self.canvas,
- anim_image,
- anim_info.background_color,
- )
- }
- None => None,
- }
- } else {
- None
- }
- }
- }
-
- let width = self.info.canvas_width;
- let height = self.info.canvas_height;
- let background_color =
- if let ExtendedImageData::Animation { ref anim_info, .. } = self.image {
- anim_info.background_color
- } else {
- Rgba([0, 0, 0, 0])
- };
-
- let frame_iter = FrameIterator {
- image: self,
- index: 0,
- canvas: RgbaImage::from_pixel(width, height, background_color),
- };
-
- Frames::new(Box::new(frame_iter))
- }
-
- pub(crate) fn read_extended_chunks<R: Read>(
- reader: &mut R,
- mut info: WebPExtendedInfo,
- ) -> ImageResult<ExtendedImage> {
- let mut anim_info: Option<WebPAnimatedInfo> = None;
- let mut anim_frames: Vec<AnimatedFrame> = Vec::new();
- let mut static_frame: Option<WebPStatic> = None;
- //go until end of file and while chunk headers are valid
- while let Some((mut cursor, chunk)) = read_extended_chunk(reader)? {
- match chunk {
- WebPRiffChunk::EXIF | WebPRiffChunk::XMP => {
- //ignore these chunks
- }
- WebPRiffChunk::ANIM => {
- if anim_info.is_none() {
- anim_info = Some(Self::read_anim_info(&mut cursor)?);
- }
- }
- WebPRiffChunk::ANMF => {
- let frame = read_anim_frame(cursor, info.canvas_width, info.canvas_height)?;
- anim_frames.push(frame);
- }
- WebPRiffChunk::ALPH => {
- if static_frame.is_none() {
- let alpha_chunk =
- read_alpha_chunk(&mut cursor, info.canvas_width, info.canvas_height)?;
-
- let vp8_frame = read_lossy_with_chunk(reader)?;
-
- let img = WebPStatic::from_alpha_lossy(alpha_chunk, vp8_frame)?;
-
- static_frame = Some(img);
- }
- }
- WebPRiffChunk::ICCP => {
- let mut icc_profile = Vec::new();
- cursor.read_to_end(&mut icc_profile)?;
- info.icc_profile = Some(icc_profile);
- }
- WebPRiffChunk::VP8 => {
- if static_frame.is_none() {
- let vp8_frame = read_lossy(cursor)?;
-
- let img = WebPStatic::from_lossy(vp8_frame)?;
-
- static_frame = Some(img);
- }
- }
- WebPRiffChunk::VP8L => {
- if static_frame.is_none() {
- let mut lossless_decoder = LosslessDecoder::new(cursor);
- let frame = lossless_decoder.decode_frame()?;
- let image = WebPStatic::Lossless(frame.clone());
-
- static_frame = Some(image);
- }
- }
- _ => return Err(ChunkHeaderInvalid(chunk.to_fourcc()).into()),
- }
- }
-
- let image = if let Some(info) = anim_info {
- if anim_frames.is_empty() {
- return Err(ImageError::IoError(Error::from(
- io::ErrorKind::UnexpectedEof,
- )));
- }
- ExtendedImageData::Animation {
- frames: anim_frames,
- anim_info: info,
- }
- } else if let Some(frame) = static_frame {
- ExtendedImageData::Static(frame)
- } else {
- //reached end of file too early before image data was reached
- return Err(ImageError::IoError(Error::from(
- io::ErrorKind::UnexpectedEof,
- )));
- };
-
- let image = ExtendedImage { image, info };
-
- Ok(image)
- }
-
- fn read_anim_info<R: Read>(reader: &mut R) -> ImageResult<WebPAnimatedInfo> {
- let mut colors: [u8; 4] = [0; 4];
- reader.read_exact(&mut colors)?;
-
- //background color is [blue, green, red, alpha]
- let background_color = Rgba([colors[2], colors[1], colors[0], colors[3]]);
-
- let loop_count = reader.read_u16::<LittleEndian>()?;
-
- let info = WebPAnimatedInfo {
- background_color,
- _loop_count: loop_count,
- };
-
- Ok(info)
- }
-
- fn draw_subimage(
- canvas: &mut RgbaImage,
- anim_image: &AnimatedFrame,
- background_color: Rgba<u8>,
- ) -> Option<ImageResult<Frame>> {
- let mut buffer = vec![0; anim_image.image.get_buf_size()];
- anim_image.image.fill_buf(&mut buffer);
- let has_alpha = anim_image.image.has_alpha();
- let pixel_len: u32 = anim_image.image.color_type().bytes_per_pixel().into();
-
- 'x: for x in 0..anim_image.width {
- for y in 0..anim_image.height {
- let canvas_index: (u32, u32) = (x + anim_image.offset_x, y + anim_image.offset_y);
- // Negative offsets are not possible due to unsigned ints
- // If we go out of bounds by height, still continue by x
- if canvas_index.1 >= canvas.height() {
- continue 'x;
- }
- // If we go out of bounds by width, it doesn't make sense to continue at all
- if canvas_index.0 >= canvas.width() {
- break 'x;
- }
- let index: usize = ((y * anim_image.width + x) * pixel_len).try_into().unwrap();
- canvas[canvas_index] = if anim_image.use_alpha_blending && has_alpha {
- let buffer: [u8; 4] = buffer[index..][..4].try_into().unwrap();
- ExtendedImage::do_alpha_blending(buffer, canvas[canvas_index])
- } else {
- Rgba([
- buffer[index],
- buffer[index + 1],
- buffer[index + 2],
- if has_alpha { buffer[index + 3] } else { 255 },
- ])
- };
- }
- }
-
- let delay = Delay::from_numer_denom_ms(anim_image.duration, 1);
- let img = canvas.clone();
- let frame = Frame::from_parts(img, 0, 0, delay);
-
- if anim_image.dispose {
- for x in 0..anim_image.width {
- for y in 0..anim_image.height {
- let canvas_index = (x + anim_image.offset_x, y + anim_image.offset_y);
- canvas[canvas_index] = background_color;
- }
- }
- }
-
- Some(Ok(frame))
- }
-
- fn do_alpha_blending(buffer: [u8; 4], canvas: Rgba<u8>) -> Rgba<u8> {
- let canvas_alpha = f64::from(canvas[3]);
- let buffer_alpha = f64::from(buffer[3]);
- let blend_alpha_f64 = buffer_alpha + canvas_alpha * (1.0 - buffer_alpha / 255.0);
- //value should be between 0 and 255, this truncates the fractional part
- let blend_alpha: u8 = blend_alpha_f64 as u8;
-
- let blend_rgb: [u8; 3] = if blend_alpha == 0 {
- [0, 0, 0]
- } else {
- let mut rgb = [0u8; 3];
- for i in 0..3 {
- let canvas_f64 = f64::from(canvas[i]);
- let buffer_f64 = f64::from(buffer[i]);
-
- let val = (buffer_f64 * buffer_alpha
- + canvas_f64 * canvas_alpha * (1.0 - buffer_alpha / 255.0))
- / blend_alpha_f64;
- //value should be between 0 and 255, this truncates the fractional part
- rgb[i] = val as u8;
- }
-
- rgb
- };
-
- Rgba([blend_rgb[0], blend_rgb[1], blend_rgb[2], blend_alpha])
- }
-
- pub(crate) fn fill_buf(&self, buf: &mut [u8]) {
- match &self.image {
- // will always have at least one frame
- ExtendedImageData::Animation { frames, anim_info } => {
- let first_frame = &frames[0];
- let (canvas_width, canvas_height) = self.dimensions();
- if canvas_width == first_frame.width && canvas_height == first_frame.height {
- first_frame.image.fill_buf(buf);
- } else {
- let bg_color = match &self.info._alpha {
- true => Rgba::from([0, 0, 0, 0]),
- false => anim_info.background_color,
- };
- let mut canvas = RgbaImage::from_pixel(canvas_width, canvas_height, bg_color);
- let _ = ExtendedImage::draw_subimage(&mut canvas, first_frame, bg_color)
- .unwrap()
- .unwrap();
- buf.copy_from_slice(canvas.into_raw().as_slice());
- }
- }
- ExtendedImageData::Static(image) => {
- image.fill_buf(buf);
- }
- }
- }
-
- pub(crate) fn get_buf_size(&self) -> usize {
- match &self.image {
- // will always have at least one frame
- ExtendedImageData::Animation { frames, .. } => &frames[0].image,
- ExtendedImageData::Static(image) => image,
- }
- .get_buf_size()
- }
-
- pub(crate) fn set_background_color(&mut self, color: Rgba<u8>) -> ImageResult<()> {
- match &mut self.image {
- ExtendedImageData::Animation { anim_info, .. } => {
- anim_info.background_color = color;
- Ok(())
- }
- _ => Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::Generic(
- "Background color can only be set on animated webp".to_owned(),
- ),
- ))),
- }
- }
-}
-
-#[derive(Debug)]
-enum WebPStatic {
- LossyWithAlpha(RgbaImage),
- LossyWithoutAlpha(RgbImage),
- Lossless(LosslessFrame),
-}
-
-impl WebPStatic {
- pub(crate) fn from_alpha_lossy(
- alpha: AlphaChunk,
- vp8_frame: VP8Frame,
- ) -> ImageResult<WebPStatic> {
- if alpha.data.len() != usize::from(vp8_frame.width) * usize::from(vp8_frame.height) {
- return Err(DecoderError::AlphaChunkSizeMismatch.into());
- }
-
- let size = usize::from(vp8_frame.width).checked_mul(usize::from(vp8_frame.height) * 4);
- let mut image_vec = match size {
- Some(size) => vec![0u8; size],
- None => return Err(DecoderError::ImageTooLarge.into()),
- };
-
- vp8_frame.fill_rgba(&mut image_vec);
-
- for y in 0..vp8_frame.height {
- for x in 0..vp8_frame.width {
- let predictor: u8 = WebPStatic::get_predictor(
- x.into(),
- y.into(),
- vp8_frame.width.into(),
- alpha.filtering_method,
- &image_vec,
- );
- let predictor = u16::from(predictor);
-
- let alpha_index = usize::from(y) * usize::from(vp8_frame.width) + usize::from(x);
- let alpha_val = alpha.data[alpha_index];
- let alpha: u8 = ((predictor + u16::from(alpha_val)) % 256)
- .try_into()
- .unwrap();
-
- let alpha_index = alpha_index * 4 + 3;
- image_vec[alpha_index] = alpha;
- }
- }
-
- let image = RgbaImage::from_vec(vp8_frame.width.into(), vp8_frame.height.into(), image_vec)
- .unwrap();
-
- Ok(WebPStatic::LossyWithAlpha(image))
- }
-
- fn get_predictor(
- x: usize,
- y: usize,
- width: usize,
- filtering_method: FilteringMethod,
- image_slice: &[u8],
- ) -> u8 {
- match filtering_method {
- FilteringMethod::None => 0,
- FilteringMethod::Horizontal => {
- if x == 0 && y == 0 {
- 0
- } else if x == 0 {
- let index = (y - 1) * width + x;
- image_slice[index * 4 + 3]
- } else {
- let index = y * width + x - 1;
- image_slice[index * 4 + 3]
- }
- }
- FilteringMethod::Vertical => {
- if x == 0 && y == 0 {
- 0
- } else if y == 0 {
- let index = y * width + x - 1;
- image_slice[index * 4 + 3]
- } else {
- let index = (y - 1) * width + x;
- image_slice[index * 4 + 3]
- }
- }
- FilteringMethod::Gradient => {
- let (left, top, top_left) = match (x, y) {
- (0, 0) => (0, 0, 0),
- (0, y) => {
- let above_index = (y - 1) * width + x;
- let val = image_slice[above_index * 4 + 3];
- (val, val, val)
- }
- (x, 0) => {
- let before_index = y * width + x - 1;
- let val = image_slice[before_index * 4 + 3];
- (val, val, val)
- }
- (x, y) => {
- let left_index = y * width + x - 1;
- let left = image_slice[left_index * 4 + 3];
- let top_index = (y - 1) * width + x;
- let top = image_slice[top_index * 4 + 3];
- let top_left_index = (y - 1) * width + x - 1;
- let top_left = image_slice[top_left_index * 4 + 3];
-
- (left, top, top_left)
- }
- };
-
- let combination = i16::from(left) + i16::from(top) - i16::from(top_left);
- i16::clamp(combination, 0, 255).try_into().unwrap()
- }
- }
- }
-
- pub(crate) fn from_lossy(vp8_frame: VP8Frame) -> ImageResult<WebPStatic> {
- let mut image = RgbImage::from_pixel(
- vp8_frame.width.into(),
- vp8_frame.height.into(),
- Rgb([0, 0, 0]),
- );
-
- vp8_frame.fill_rgb(&mut image);
-
- Ok(WebPStatic::LossyWithoutAlpha(image))
- }
-
- pub(crate) fn fill_buf(&self, buf: &mut [u8]) {
- match self {
- WebPStatic::LossyWithAlpha(image) => {
- buf.copy_from_slice(image);
- }
- WebPStatic::LossyWithoutAlpha(image) => {
- buf.copy_from_slice(image);
- }
- WebPStatic::Lossless(lossless) => {
- lossless.fill_rgba(buf);
- }
- }
- }
-
- pub(crate) fn get_buf_size(&self) -> usize {
- match self {
- WebPStatic::LossyWithAlpha(rgb_image) => rgb_image.len(),
- WebPStatic::LossyWithoutAlpha(rgba_image) => rgba_image.len(),
- WebPStatic::Lossless(lossless) => lossless.get_buf_size(),
- }
- }
-
- pub(crate) fn color_type(&self) -> ColorType {
- if self.has_alpha() {
- ColorType::Rgba8
- } else {
- ColorType::Rgb8
- }
- }
-
- pub(crate) fn has_alpha(&self) -> bool {
- match self {
- Self::LossyWithAlpha(..) | Self::Lossless(..) => true,
- Self::LossyWithoutAlpha(..) => false,
- }
- }
-}
-
-#[derive(Debug)]
-struct WebPAnimatedInfo {
- background_color: Rgba<u8>,
- _loop_count: u16,
-}
-
-#[derive(Debug)]
-struct AnimatedFrame {
- offset_x: u32,
- offset_y: u32,
- width: u32,
- height: u32,
- duration: u32,
- use_alpha_blending: bool,
- dispose: bool,
- image: WebPStatic,
-}
-
-/// Reads a chunk, but silently ignores unknown chunks at the end of a file
-fn read_extended_chunk<R>(r: &mut R) -> ImageResult<Option<(Cursor<Vec<u8>>, WebPRiffChunk)>>
-where
- R: Read,
-{
- let mut unknown_chunk = Ok(());
-
- while let Some(chunk) = read_fourcc(r)? {
- let cursor = read_len_cursor(r)?;
- match chunk {
- Ok(chunk) => return unknown_chunk.and(Ok(Some((cursor, chunk)))),
- Err(err) => unknown_chunk = unknown_chunk.and(Err(err)),
- }
- }
-
- Ok(None)
-}
-
-pub(crate) fn read_extended_header<R: Read>(reader: &mut R) -> ImageResult<WebPExtendedInfo> {
- let chunk_flags = reader.read_u8()?;
-
- let reserved_first = chunk_flags & 0b11000000;
- let icc_profile = chunk_flags & 0b00100000 != 0;
- let alpha = chunk_flags & 0b00010000 != 0;
- let exif_metadata = chunk_flags & 0b00001000 != 0;
- let xmp_metadata = chunk_flags & 0b00000100 != 0;
- let animation = chunk_flags & 0b00000010 != 0;
- let reserved_second = chunk_flags & 0b00000001;
-
- let reserved_third = read_3_bytes(reader)?;
-
- if reserved_first != 0 || reserved_second != 0 || reserved_third != 0 {
- let value: u32 = if reserved_first != 0 {
- reserved_first.into()
- } else if reserved_second != 0 {
- reserved_second.into()
- } else {
- reserved_third
- };
- return Err(DecoderError::InfoBitsInvalid {
- name: "reserved",
- value,
- }
- .into());
- }
-
- let canvas_width = read_3_bytes(reader)? + 1;
- let canvas_height = read_3_bytes(reader)? + 1;
-
- //product of canvas dimensions cannot be larger than u32 max
- if u32::checked_mul(canvas_width, canvas_height).is_none() {
- return Err(DecoderError::ImageTooLarge.into());
- }
-
- let info = WebPExtendedInfo {
- _icc_profile: icc_profile,
- _alpha: alpha,
- _exif_metadata: exif_metadata,
- _xmp_metadata: xmp_metadata,
- _animation: animation,
- canvas_width,
- canvas_height,
- icc_profile: None,
- };
-
- Ok(info)
-}
-
-fn read_anim_frame<R: Read>(
- mut reader: R,
- canvas_width: u32,
- canvas_height: u32,
-) -> ImageResult<AnimatedFrame> {
- //offsets for the frames are twice the values
- let frame_x = read_3_bytes(&mut reader)? * 2;
- let frame_y = read_3_bytes(&mut reader)? * 2;
-
- let frame_width = read_3_bytes(&mut reader)? + 1;
- let frame_height = read_3_bytes(&mut reader)? + 1;
-
- if frame_x + frame_width > canvas_width || frame_y + frame_height > canvas_height {
- return Err(DecoderError::FrameOutsideImage.into());
- }
-
- let duration = read_3_bytes(&mut reader)?;
-
- let frame_info = reader.read_u8()?;
- let reserved = frame_info & 0b11111100;
- if reserved != 0 {
- return Err(DecoderError::InfoBitsInvalid {
- name: "reserved",
- value: reserved.into(),
- }
- .into());
- }
- let use_alpha_blending = frame_info & 0b00000010 == 0;
- let dispose = frame_info & 0b00000001 != 0;
-
- //read normal bitstream now
- let static_image = read_image(&mut reader, frame_width, frame_height)?;
-
- let frame = AnimatedFrame {
- offset_x: frame_x,
- offset_y: frame_y,
- width: frame_width,
- height: frame_height,
- duration,
- use_alpha_blending,
- dispose,
- image: static_image,
- };
-
- Ok(frame)
-}
-
-fn read_3_bytes<R: Read>(reader: &mut R) -> ImageResult<u32> {
- let mut buffer: [u8; 3] = [0; 3];
- reader.read_exact(&mut buffer)?;
- let value: u32 =
- (u32::from(buffer[2]) << 16) | (u32::from(buffer[1]) << 8) | u32::from(buffer[0]);
- Ok(value)
-}
-
-fn read_lossy_with_chunk<R: Read>(reader: &mut R) -> ImageResult<VP8Frame> {
- let (cursor, chunk) =
- read_chunk(reader)?.ok_or_else(|| Error::from(io::ErrorKind::UnexpectedEof))?;
-
- if chunk != WebPRiffChunk::VP8 {
- return Err(ChunkHeaderInvalid(chunk.to_fourcc()).into());
- }
-
- read_lossy(cursor)
-}
-
-fn read_lossy(cursor: Cursor<Vec<u8>>) -> ImageResult<VP8Frame> {
- let mut vp8_decoder = Vp8Decoder::new(cursor);
- let frame = vp8_decoder.decode_frame()?;
-
- Ok(frame.clone())
-}
-
-fn read_image<R: Read>(reader: &mut R, width: u32, height: u32) -> ImageResult<WebPStatic> {
- let chunk = read_chunk(reader)?;
-
- match chunk {
- Some((cursor, WebPRiffChunk::VP8)) => {
- let mut vp8_decoder = Vp8Decoder::new(cursor);
- let frame = vp8_decoder.decode_frame()?;
-
- let img = WebPStatic::from_lossy(frame.clone())?;
-
- Ok(img)
- }
- Some((cursor, WebPRiffChunk::VP8L)) => {
- let mut lossless_decoder = LosslessDecoder::new(cursor);
- let frame = lossless_decoder.decode_frame()?;
-
- let img = WebPStatic::Lossless(frame.clone());
-
- Ok(img)
- }
- Some((mut cursor, WebPRiffChunk::ALPH)) => {
- let alpha_chunk = read_alpha_chunk(&mut cursor, width, height)?;
-
- let vp8_frame = read_lossy_with_chunk(reader)?;
-
- let img = WebPStatic::from_alpha_lossy(alpha_chunk, vp8_frame)?;
-
- Ok(img)
- }
- None => Err(ImageError::IoError(Error::from(
- io::ErrorKind::UnexpectedEof,
- ))),
- Some((_, chunk)) => Err(ChunkHeaderInvalid(chunk.to_fourcc()).into()),
- }
-}
-
-#[derive(Debug)]
-struct AlphaChunk {
- _preprocessing: bool,
- filtering_method: FilteringMethod,
- data: Vec<u8>,
-}
-
-#[derive(Debug, Copy, Clone)]
-enum FilteringMethod {
- None,
- Horizontal,
- Vertical,
- Gradient,
-}
-
-fn read_alpha_chunk<R: Read>(reader: &mut R, width: u32, height: u32) -> ImageResult<AlphaChunk> {
- let info_byte = reader.read_u8()?;
-
- let reserved = info_byte & 0b11000000;
- let preprocessing = (info_byte & 0b00110000) >> 4;
- let filtering = (info_byte & 0b00001100) >> 2;
- let compression = info_byte & 0b00000011;
-
- if reserved != 0 {
- return Err(DecoderError::InfoBitsInvalid {
- name: "reserved",
- value: reserved.into(),
- }
- .into());
- }
-
- let preprocessing = match preprocessing {
- 0 => false,
- 1 => true,
- _ => {
- return Err(DecoderError::InfoBitsInvalid {
- name: "reserved",
- value: preprocessing.into(),
- }
- .into())
- }
- };
-
- let filtering_method = match filtering {
- 0 => FilteringMethod::None,
- 1 => FilteringMethod::Horizontal,
- 2 => FilteringMethod::Vertical,
- 3 => FilteringMethod::Gradient,
- _ => unreachable!(),
- };
-
- let lossless_compression = match compression {
- 0 => false,
- 1 => true,
- _ => {
- return Err(DecoderError::InfoBitsInvalid {
- name: "lossless compression",
- value: compression.into(),
- }
- .into())
- }
- };
-
- let mut framedata = Vec::new();
- reader.read_to_end(&mut framedata)?;
-
- let data = if lossless_compression {
- let cursor = io::Cursor::new(framedata);
-
- let mut decoder = LosslessDecoder::new(cursor);
- //this is a potential problem for large images; would require rewriting lossless decoder to use u32 for width and height
- let width: u16 = width
- .try_into()
- .map_err(|_| ImageError::from(DecoderError::ImageTooLarge))?;
- let height: u16 = height
- .try_into()
- .map_err(|_| ImageError::from(DecoderError::ImageTooLarge))?;
- let frame = decoder.decode_frame_implicit_dims(width, height)?;
-
- let mut data = vec![0u8; usize::from(width) * usize::from(height)];
-
- frame.fill_green(&mut data);
-
- data
- } else {
- framedata
- };
-
- let chunk = AlphaChunk {
- _preprocessing: preprocessing,
- filtering_method,
- data,
- };
-
- Ok(chunk)
-}
diff --git a/vendor/image/src/codecs/webp/huffman.rs b/vendor/image/src/codecs/webp/huffman.rs
deleted file mode 100644
index 986eee6..0000000
--- a/vendor/image/src/codecs/webp/huffman.rs
+++ /dev/null
@@ -1,202 +0,0 @@
-use std::convert::TryInto;
-
-use super::lossless::BitReader;
-use super::lossless::DecoderError;
-use crate::ImageResult;
-
-/// Rudimentary utility for reading Canonical Huffman Codes.
-/// Based off https://github.com/webmproject/libwebp/blob/7f8472a610b61ec780ef0a8873cd954ac512a505/src/utils/huffman.c
-///
-
-const MAX_ALLOWED_CODE_LENGTH: usize = 15;
-
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-enum HuffmanTreeNode {
- Branch(usize), //offset in vector to children
- Leaf(u16), //symbol stored in leaf
- Empty,
-}
-
-/// Huffman tree
-#[derive(Clone, Debug, Default)]
-pub(crate) struct HuffmanTree {
- tree: Vec<HuffmanTreeNode>,
- max_nodes: usize,
- num_nodes: usize,
-}
-
-impl HuffmanTree {
- fn is_full(&self) -> bool {
- self.num_nodes == self.max_nodes
- }
-
- /// Turns a node from empty into a branch and assigns its children
- fn assign_children(&mut self, node_index: usize) -> usize {
- let offset_index = self.num_nodes - node_index;
- self.tree[node_index] = HuffmanTreeNode::Branch(offset_index);
- self.num_nodes += 2;
-
- offset_index
- }
-
- /// Init a huffman tree
- fn init(num_leaves: usize) -> ImageResult<HuffmanTree> {
- if num_leaves == 0 {
- return Err(DecoderError::HuffmanError.into());
- }
-
- let max_nodes = 2 * num_leaves - 1;
- let tree = vec![HuffmanTreeNode::Empty; max_nodes];
- let num_nodes = 1;
-
- let tree = HuffmanTree {
- tree,
- max_nodes,
- num_nodes,
- };
-
- Ok(tree)
- }
-
- /// Converts code lengths to codes
- fn code_lengths_to_codes(code_lengths: &[u16]) -> ImageResult<Vec<Option<u16>>> {
- let max_code_length = *code_lengths
- .iter()
- .reduce(|a, b| if a >= b { a } else { b })
- .unwrap();
-
- if max_code_length > MAX_ALLOWED_CODE_LENGTH.try_into().unwrap() {
- return Err(DecoderError::HuffmanError.into());
- }
-
- let mut code_length_hist = vec![0; MAX_ALLOWED_CODE_LENGTH + 1];
-
- for &length in code_lengths.iter() {
- code_length_hist[usize::from(length)] += 1;
- }
-
- code_length_hist[0] = 0;
-
- let mut curr_code = 0;
- let mut next_codes = vec![None; MAX_ALLOWED_CODE_LENGTH + 1];
-
- for code_len in 1..=usize::from(max_code_length) {
- curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
- next_codes[code_len] = Some(curr_code);
- }
-
- let mut huff_codes = vec![None; code_lengths.len()];
-
- for (symbol, &length) in code_lengths.iter().enumerate() {
- let length = usize::from(length);
- if length > 0 {
- huff_codes[symbol] = next_codes[length];
- if let Some(value) = next_codes[length].as_mut() {
- *value += 1;
- }
- } else {
- huff_codes[symbol] = None;
- }
- }
-
- Ok(huff_codes)
- }
-
- /// Adds a symbol to a huffman tree
- fn add_symbol(&mut self, symbol: u16, code: u16, code_length: u16) -> ImageResult<()> {
- let mut node_index = 0;
- let code = usize::from(code);
-
- for length in (0..code_length).rev() {
- if node_index >= self.max_nodes {
- return Err(DecoderError::HuffmanError.into());
- }
-
- let node = self.tree[node_index];
-
- let offset = match node {
- HuffmanTreeNode::Empty => {
- if self.is_full() {
- return Err(DecoderError::HuffmanError.into());
- }
- self.assign_children(node_index)
- }
- HuffmanTreeNode::Leaf(_) => return Err(DecoderError::HuffmanError.into()),
- HuffmanTreeNode::Branch(offset) => offset,
- };
-
- node_index += offset + ((code >> length) & 1);
- }
-
- match self.tree[node_index] {
- HuffmanTreeNode::Empty => self.tree[node_index] = HuffmanTreeNode::Leaf(symbol),
- HuffmanTreeNode::Leaf(_) => return Err(DecoderError::HuffmanError.into()),
- HuffmanTreeNode::Branch(_offset) => return Err(DecoderError::HuffmanError.into()),
- }
-
- Ok(())
- }
-
- /// Builds a tree implicitly, just from code lengths
- pub(crate) fn build_implicit(code_lengths: Vec<u16>) -> ImageResult<HuffmanTree> {
- let mut num_symbols = 0;
- let mut root_symbol = 0;
-
- for (symbol, length) in code_lengths.iter().enumerate() {
- if *length > 0 {
- num_symbols += 1;
- root_symbol = symbol.try_into().unwrap();
- }
- }
-
- let mut tree = HuffmanTree::init(num_symbols)?;
-
- if num_symbols == 1 {
- tree.add_symbol(root_symbol, 0, 0)?;
- } else {
- let codes = HuffmanTree::code_lengths_to_codes(&code_lengths)?;
-
- for (symbol, &length) in code_lengths.iter().enumerate() {
- if length > 0 && codes[symbol].is_some() {
- tree.add_symbol(symbol.try_into().unwrap(), codes[symbol].unwrap(), length)?;
- }
- }
- }
-
- Ok(tree)
- }
-
- /// Builds a tree explicitly from lengths, codes and symbols
- pub(crate) fn build_explicit(
- code_lengths: Vec<u16>,
- codes: Vec<u16>,
- symbols: Vec<u16>,
- ) -> ImageResult<HuffmanTree> {
- let mut tree = HuffmanTree::init(symbols.len())?;
-
- for i in 0..symbols.len() {
- tree.add_symbol(symbols[i], codes[i], code_lengths[i])?;
- }
-
- Ok(tree)
- }
-
- /// Reads a symbol using the bitstream
- pub(crate) fn read_symbol(&self, bit_reader: &mut BitReader) -> ImageResult<u16> {
- let mut index = 0;
- let mut node = self.tree[index];
-
- while let HuffmanTreeNode::Branch(children_offset) = node {
- index += children_offset + bit_reader.read_bits::<usize>(1)?;
- node = self.tree[index];
- }
-
- let symbol = match node {
- HuffmanTreeNode::Branch(_) => unreachable!(),
- HuffmanTreeNode::Empty => return Err(DecoderError::HuffmanError.into()),
- HuffmanTreeNode::Leaf(symbol) => symbol,
- };
-
- Ok(symbol)
- }
-}
diff --git a/vendor/image/src/codecs/webp/loop_filter.rs b/vendor/image/src/codecs/webp/loop_filter.rs
deleted file mode 100644
index 312059f..0000000
--- a/vendor/image/src/codecs/webp/loop_filter.rs
+++ /dev/null
@@ -1,147 +0,0 @@
-//! Does loop filtering on webp lossy images
-
-use crate::utils::clamp;
-
-#[inline]
-fn c(val: i32) -> i32 {
- clamp(val, -128, 127)
-}
-
-//unsigned to signed
-#[inline]
-fn u2s(val: u8) -> i32 {
- i32::from(val) - 128
-}
-
-//signed to unsigned
-#[inline]
-fn s2u(val: i32) -> u8 {
- (c(val) + 128) as u8
-}
-
-#[inline]
-fn diff(val1: u8, val2: u8) -> u8 {
- if val1 > val2 {
- val1 - val2
- } else {
- val2 - val1
- }
-}
-
-//15.2
-fn common_adjust(use_outer_taps: bool, pixels: &mut [u8], point: usize, stride: usize) -> i32 {
- let p1 = u2s(pixels[point - 2 * stride]);
- let p0 = u2s(pixels[point - stride]);
- let q0 = u2s(pixels[point]);
- let q1 = u2s(pixels[point + stride]);
-
- //value for the outer 2 pixels
- let outer = if use_outer_taps { c(p1 - q1) } else { 0 };
-
- let mut a = c(outer + 3 * (q0 - p0));
-
- let b = (c(a + 3)) >> 3;
-
- a = (c(a + 4)) >> 3;
-
- pixels[point] = s2u(q0 - a);
- pixels[point - stride] = s2u(p0 + b);
-
- a
-}
-
-fn simple_threshold(filter_limit: i32, pixels: &[u8], point: usize, stride: usize) -> bool {
- i32::from(diff(pixels[point - stride], pixels[point])) * 2
- + i32::from(diff(pixels[point - 2 * stride], pixels[point + stride])) / 2
- <= filter_limit
-}
-
-fn should_filter(
- interior_limit: u8,
- edge_limit: u8,
- pixels: &[u8],
- point: usize,
- stride: usize,
-) -> bool {
- simple_threshold(i32::from(edge_limit), pixels, point, stride)
- && diff(pixels[point - 4 * stride], pixels[point - 3 * stride]) <= interior_limit
- && diff(pixels[point - 3 * stride], pixels[point - 2 * stride]) <= interior_limit
- && diff(pixels[point - 2 * stride], pixels[point - stride]) <= interior_limit
- && diff(pixels[point + 3 * stride], pixels[point + 2 * stride]) <= interior_limit
- && diff(pixels[point + 2 * stride], pixels[point + stride]) <= interior_limit
- && diff(pixels[point + stride], pixels[point]) <= interior_limit
-}
-
-fn high_edge_variance(threshold: u8, pixels: &[u8], point: usize, stride: usize) -> bool {
- diff(pixels[point - 2 * stride], pixels[point - stride]) > threshold
- || diff(pixels[point + stride], pixels[point]) > threshold
-}
-
-//simple filter
-//effects 4 pixels on an edge(2 each side)
-pub(crate) fn simple_segment(edge_limit: u8, pixels: &mut [u8], point: usize, stride: usize) {
- if simple_threshold(i32::from(edge_limit), pixels, point, stride) {
- common_adjust(true, pixels, point, stride);
- }
-}
-
-//normal filter
-//works on the 8 pixels on the edges between subblocks inside a macroblock
-pub(crate) fn subblock_filter(
- hev_threshold: u8,
- interior_limit: u8,
- edge_limit: u8,
- pixels: &mut [u8],
- point: usize,
- stride: usize,
-) {
- if should_filter(interior_limit, edge_limit, pixels, point, stride) {
- let hv = high_edge_variance(hev_threshold, pixels, point, stride);
-
- let a = (common_adjust(hv, pixels, point, stride) + 1) >> 1;
-
- if !hv {
- pixels[point + stride] = s2u(u2s(pixels[point + stride]) - a);
- pixels[point - 2 * stride] = s2u(u2s(pixels[point - 2 * stride]) - a);
- }
- }
-}
-
-//normal filter
-//works on the 8 pixels on the edges between macroblocks
-pub(crate) fn macroblock_filter(
- hev_threshold: u8,
- interior_limit: u8,
- edge_limit: u8,
- pixels: &mut [u8],
- point: usize,
- stride: usize,
-) {
- let mut spixels = [0i32; 8];
- for i in 0..8 {
- spixels[i] = u2s(pixels[point + i * stride - 4 * stride]);
- }
-
- if should_filter(interior_limit, edge_limit, pixels, point, stride) {
- if !high_edge_variance(hev_threshold, pixels, point, stride) {
- let w = c(c(spixels[2] - spixels[5]) + 3 * (spixels[4] - spixels[3]));
-
- let mut a = c((27 * w + 63) >> 7);
-
- pixels[point] = s2u(spixels[4] - a);
- pixels[point - stride] = s2u(spixels[3] + a);
-
- a = c((18 * w + 63) >> 7);
-
- pixels[point + stride] = s2u(spixels[5] - a);
- pixels[point - 2 * stride] = s2u(spixels[2] + a);
-
- a = c((9 * w + 63) >> 7);
-
- pixels[point + 2 * stride] = s2u(spixels[6] - a);
- pixels[point - 3 * stride] = s2u(spixels[1] + a);
- } else {
- common_adjust(true, pixels, point, stride);
- }
- }
-}
diff --git a/vendor/image/src/codecs/webp/lossless.rs b/vendor/image/src/codecs/webp/lossless.rs
deleted file mode 100644
index 7271eda..0000000
--- a/vendor/image/src/codecs/webp/lossless.rs
+++ /dev/null
@@ -1,783 +0,0 @@
-//! Decoding of lossless WebP images
-//!
-//! [Lossless spec](https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification)
-//!
-
-use std::{
- convert::TryFrom,
- convert::TryInto,
- error, fmt,
- io::Read,
- ops::{AddAssign, Shl},
-};
-
-use byteorder::ReadBytesExt;
-
-use crate::{error::DecodingError, ImageError, ImageFormat, ImageResult};
-
-use super::huffman::HuffmanTree;
-use super::lossless_transform::{add_pixels, TransformType};
-
-const CODE_LENGTH_CODES: usize = 19;
-const CODE_LENGTH_CODE_ORDER: [usize; CODE_LENGTH_CODES] = [
- 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
-];
-
-#[rustfmt::skip]
-const DISTANCE_MAP: [(i8, i8); 120] = [
- (0, 1), (1, 0), (1, 1), (-1, 1), (0, 2), (2, 0), (1, 2), (-1, 2),
- (2, 1), (-2, 1), (2, 2), (-2, 2), (0, 3), (3, 0), (1, 3), (-1, 3),
- (3, 1), (-3, 1), (2, 3), (-2, 3), (3, 2), (-3, 2), (0, 4), (4, 0),
- (1, 4), (-1, 4), (4, 1), (-4, 1), (3, 3), (-3, 3), (2, 4), (-2, 4),
- (4, 2), (-4, 2), (0, 5), (3, 4), (-3, 4), (4, 3), (-4, 3), (5, 0),
- (1, 5), (-1, 5), (5, 1), (-5, 1), (2, 5), (-2, 5), (5, 2), (-5, 2),
- (4, 4), (-4, 4), (3, 5), (-3, 5), (5, 3), (-5, 3), (0, 6), (6, 0),
- (1, 6), (-1, 6), (6, 1), (-6, 1), (2, 6), (-2, 6), (6, 2), (-6, 2),
- (4, 5), (-4, 5), (5, 4), (-5, 4), (3, 6), (-3, 6), (6, 3), (-6, 3),
- (0, 7), (7, 0), (1, 7), (-1, 7), (5, 5), (-5, 5), (7, 1), (-7, 1),
- (4, 6), (-4, 6), (6, 4), (-6, 4), (2, 7), (-2, 7), (7, 2), (-7, 2),
- (3, 7), (-3, 7), (7, 3), (-7, 3), (5, 6), (-5, 6), (6, 5), (-6, 5),
- (8, 0), (4, 7), (-4, 7), (7, 4), (-7, 4), (8, 1), (8, 2), (6, 6),
- (-6, 6), (8, 3), (5, 7), (-5, 7), (7, 5), (-7, 5), (8, 4), (6, 7),
- (-6, 7), (7, 6), (-7, 6), (8, 5), (7, 7), (-7, 7), (8, 6), (8, 7)
-];
-
-const GREEN: usize = 0;
-const RED: usize = 1;
-const BLUE: usize = 2;
-const ALPHA: usize = 3;
-const DIST: usize = 4;
-
-const HUFFMAN_CODES_PER_META_CODE: usize = 5;
-
-type HuffmanCodeGroup = [HuffmanTree; HUFFMAN_CODES_PER_META_CODE];
-
-const ALPHABET_SIZE: [u16; HUFFMAN_CODES_PER_META_CODE] = [256 + 24, 256, 256, 256, 40];
-
-#[inline]
-pub(crate) fn subsample_size(size: u16, bits: u8) -> u16 {
- ((u32::from(size) + (1u32 << bits) - 1) >> bits)
- .try_into()
- .unwrap()
-}
-
-#[derive(Debug, Clone, Copy)]
-pub(crate) enum DecoderError {
- /// Signature of 0x2f not found
- LosslessSignatureInvalid(u8),
- /// Version Number must be 0
- VersionNumberInvalid(u8),
-
- ///
- InvalidColorCacheBits(u8),
-
- HuffmanError,
-
- BitStreamError,
-
- TransformError,
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::LosslessSignatureInvalid(sig) => {
- f.write_fmt(format_args!("Invalid lossless signature: {}", sig))
- }
- DecoderError::VersionNumberInvalid(num) => {
- f.write_fmt(format_args!("Invalid version number: {}", num))
- }
- DecoderError::InvalidColorCacheBits(num) => f.write_fmt(format_args!(
- "Invalid color cache(must be between 1-11): {}",
- num
- )),
- DecoderError::HuffmanError => f.write_fmt(format_args!("Error building Huffman Tree")),
- DecoderError::BitStreamError => {
- f.write_fmt(format_args!("Error while reading bitstream"))
- }
- DecoderError::TransformError => {
- f.write_fmt(format_args!("Error while reading or writing transforms"))
- }
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::WebP.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-const NUM_TRANSFORM_TYPES: usize = 4;
-
-//Decodes lossless WebP images
-#[derive(Debug)]
-pub(crate) struct LosslessDecoder<R> {
- r: R,
- bit_reader: BitReader,
- frame: LosslessFrame,
- transforms: [Option<TransformType>; NUM_TRANSFORM_TYPES],
- transform_order: Vec<u8>,
-}
-
-impl<R: Read> LosslessDecoder<R> {
- /// Create a new decoder
- pub(crate) fn new(r: R) -> LosslessDecoder<R> {
- LosslessDecoder {
- r,
- bit_reader: BitReader::new(),
- frame: Default::default(),
- transforms: [None, None, None, None],
- transform_order: Vec::new(),
- }
- }
-
- /// Reads the frame
- pub(crate) fn decode_frame(&mut self) -> ImageResult<&LosslessFrame> {
- let signature = self.r.read_u8()?;
-
- if signature != 0x2f {
- return Err(DecoderError::LosslessSignatureInvalid(signature).into());
- }
-
- let mut buf = Vec::new();
- self.r.read_to_end(&mut buf)?;
- self.bit_reader.init(buf);
-
- self.frame.width = self.bit_reader.read_bits::<u16>(14)? + 1;
- self.frame.height = self.bit_reader.read_bits::<u16>(14)? + 1;
-
- let _alpha_used = self.bit_reader.read_bits::<u8>(1)?;
-
- let version_num = self.bit_reader.read_bits::<u8>(3)?;
-
- if version_num != 0 {
- return Err(DecoderError::VersionNumberInvalid(version_num).into());
- }
-
- let mut data = self.decode_image_stream(self.frame.width, self.frame.height, true)?;
-
- for &trans_index in self.transform_order.iter().rev() {
- let trans = self.transforms[usize::from(trans_index)].as_ref().unwrap();
- trans.apply_transform(&mut data, self.frame.width, self.frame.height)?;
- }
-
- self.frame.buf = data;
- Ok(&self.frame)
- }
-
- //used for alpha data in extended decoding
- pub(crate) fn decode_frame_implicit_dims(
- &mut self,
- width: u16,
- height: u16,
- ) -> ImageResult<&LosslessFrame> {
- let mut buf = Vec::new();
- self.r.read_to_end(&mut buf)?;
- self.bit_reader.init(buf);
-
- self.frame.width = width;
- self.frame.height = height;
-
- let mut data = self.decode_image_stream(self.frame.width, self.frame.height, true)?;
-
- //transform_order is vector of indices(0-3) into transforms in order decoded
- for &trans_index in self.transform_order.iter().rev() {
- let trans = self.transforms[usize::from(trans_index)].as_ref().unwrap();
- trans.apply_transform(&mut data, self.frame.width, self.frame.height)?;
- }
-
- self.frame.buf = data;
- Ok(&self.frame)
- }
-
- /// Reads Image data from the bitstream
- /// Can be in any of the 5 roles described in the Specification
- /// ARGB Image role has different behaviour to the other 4
- /// xsize and ysize describe the size of the blocks where each block has its own entropy code
- fn decode_image_stream(
- &mut self,
- xsize: u16,
- ysize: u16,
- is_argb_img: bool,
- ) -> ImageResult<Vec<u32>> {
- let trans_xsize = if is_argb_img {
- self.read_transforms()?
- } else {
- xsize
- };
-
- let color_cache_bits = self.read_color_cache()?;
-
- let color_cache = color_cache_bits.map(|bits| {
- let size = 1 << bits;
- let cache = vec![0u32; size];
- ColorCache {
- color_cache_bits: bits,
- color_cache: cache,
- }
- });
-
- let huffman_info = self.read_huffman_codes(is_argb_img, trans_xsize, ysize, color_cache)?;
-
- //decode data
- let data = self.decode_image_data(trans_xsize, ysize, huffman_info)?;
-
- Ok(data)
- }
-
- /// Reads transforms and their data from the bitstream
- fn read_transforms(&mut self) -> ImageResult<u16> {
- let mut xsize = self.frame.width;
-
- while self.bit_reader.read_bits::<u8>(1)? == 1 {
- let transform_type_val = self.bit_reader.read_bits::<u8>(2)?;
-
- if self.transforms[usize::from(transform_type_val)].is_some() {
- //can only have one of each transform, error
- return Err(DecoderError::TransformError.into());
- }
-
- self.transform_order.push(transform_type_val);
-
- let transform_type = match transform_type_val {
- 0 => {
- //predictor
-
- let size_bits = self.bit_reader.read_bits::<u8>(3)? + 2;
-
- let block_xsize = subsample_size(xsize, size_bits);
- let block_ysize = subsample_size(self.frame.height, size_bits);
-
- let data = self.decode_image_stream(block_xsize, block_ysize, false)?;
-
- TransformType::PredictorTransform {
- size_bits,
- predictor_data: data,
- }
- }
- 1 => {
- //color transform
-
- let size_bits = self.bit_reader.read_bits::<u8>(3)? + 2;
-
- let block_xsize = subsample_size(xsize, size_bits);
- let block_ysize = subsample_size(self.frame.height, size_bits);
-
- let data = self.decode_image_stream(block_xsize, block_ysize, false)?;
-
- TransformType::ColorTransform {
- size_bits,
- transform_data: data,
- }
- }
- 2 => {
- //subtract green
-
- TransformType::SubtractGreen
- }
- 3 => {
- let color_table_size = self.bit_reader.read_bits::<u16>(8)? + 1;
-
- let mut color_map = self.decode_image_stream(color_table_size, 1, false)?;
-
- let bits = if color_table_size <= 2 {
- 3
- } else if color_table_size <= 4 {
- 2
- } else if color_table_size <= 16 {
- 1
- } else {
- 0
- };
- xsize = subsample_size(xsize, bits);
-
- Self::adjust_color_map(&mut color_map);
-
- TransformType::ColorIndexingTransform {
- table_size: color_table_size,
- table_data: color_map,
- }
- }
- _ => unreachable!(),
- };
-
- self.transforms[usize::from(transform_type_val)] = Some(transform_type);
- }
-
- Ok(xsize)
- }
-
- /// Adjusts the color map since it's subtraction coded
- fn adjust_color_map(color_map: &mut Vec<u32>) {
- for i in 1..color_map.len() {
- color_map[i] = add_pixels(color_map[i], color_map[i - 1]);
- }
- }
-
- /// Reads huffman codes associated with an image
- fn read_huffman_codes(
- &mut self,
- read_meta: bool,
- xsize: u16,
- ysize: u16,
- color_cache: Option<ColorCache>,
- ) -> ImageResult<HuffmanInfo> {
- let mut num_huff_groups = 1;
-
- let mut huffman_bits = 0;
- let mut huffman_xsize = 1;
- let mut huffman_ysize = 1;
- let mut entropy_image = Vec::new();
-
- if read_meta && self.bit_reader.read_bits::<u8>(1)? == 1 {
- //meta huffman codes
- huffman_bits = self.bit_reader.read_bits::<u8>(3)? + 2;
- huffman_xsize = subsample_size(xsize, huffman_bits);
- huffman_ysize = subsample_size(ysize, huffman_bits);
-
- entropy_image = self.decode_image_stream(huffman_xsize, huffman_ysize, false)?;
-
- for pixel in entropy_image.iter_mut() {
- let meta_huff_code = (*pixel >> 8) & 0xffff;
-
- *pixel = meta_huff_code;
-
- if meta_huff_code >= num_huff_groups {
- num_huff_groups = meta_huff_code + 1;
- }
- }
- }
-
- let mut hufftree_groups = Vec::new();
-
- for _i in 0..num_huff_groups {
- let mut group: HuffmanCodeGroup = Default::default();
- for j in 0..HUFFMAN_CODES_PER_META_CODE {
- let mut alphabet_size = ALPHABET_SIZE[j];
- if j == 0 {
- if let Some(color_cache) = color_cache.as_ref() {
- alphabet_size += 1 << color_cache.color_cache_bits;
- }
- }
-
- let tree = self.read_huffman_code(alphabet_size)?;
- group[j] = tree;
- }
- hufftree_groups.push(group);
- }
-
- let huffman_mask = if huffman_bits == 0 {
- !0
- } else {
- (1 << huffman_bits) - 1
- };
-
- let info = HuffmanInfo {
- xsize: huffman_xsize,
- _ysize: huffman_ysize,
- color_cache,
- image: entropy_image,
- bits: huffman_bits,
- mask: huffman_mask,
- huffman_code_groups: hufftree_groups,
- };
-
- Ok(info)
- }
-
- /// Decodes and returns a single huffman tree
- fn read_huffman_code(&mut self, alphabet_size: u16) -> ImageResult<HuffmanTree> {
- let simple = self.bit_reader.read_bits::<u8>(1)? == 1;
-
- if simple {
- let num_symbols = self.bit_reader.read_bits::<u8>(1)? + 1;
-
- let mut code_lengths = vec![u16::from(num_symbols - 1)];
- let mut codes = vec![0];
- let mut symbols = Vec::new();
-
- let is_first_8bits = self.bit_reader.read_bits::<u8>(1)?;
- symbols.push(self.bit_reader.read_bits::<u16>(1 + 7 * is_first_8bits)?);
-
- if num_symbols == 2 {
- symbols.push(self.bit_reader.read_bits::<u16>(8)?);
- code_lengths.push(1);
- codes.push(1);
- }
-
- HuffmanTree::build_explicit(code_lengths, codes, symbols)
- } else {
- let mut code_length_code_lengths = vec![0; CODE_LENGTH_CODES];
-
- let num_code_lengths = 4 + self.bit_reader.read_bits::<usize>(4)?;
- for i in 0..num_code_lengths {
- code_length_code_lengths[CODE_LENGTH_CODE_ORDER[i]] =
- self.bit_reader.read_bits(3)?;
- }
-
- let new_code_lengths =
- self.read_huffman_code_lengths(code_length_code_lengths, alphabet_size)?;
-
- HuffmanTree::build_implicit(new_code_lengths)
- }
- }
-
- /// Reads huffman code lengths
- fn read_huffman_code_lengths(
- &mut self,
- code_length_code_lengths: Vec<u16>,
- num_symbols: u16,
- ) -> ImageResult<Vec<u16>> {
- let table = HuffmanTree::build_implicit(code_length_code_lengths)?;
-
- let mut max_symbol = if self.bit_reader.read_bits::<u8>(1)? == 1 {
- let length_nbits = 2 + 2 * self.bit_reader.read_bits::<u8>(3)?;
- 2 + self.bit_reader.read_bits::<u16>(length_nbits)?
- } else {
- num_symbols
- };
-
- let mut code_lengths = vec![0; usize::from(num_symbols)];
- let mut prev_code_len = 8; //default code length
-
- let mut symbol = 0;
- while symbol < num_symbols {
- if max_symbol == 0 {
- break;
- }
- max_symbol -= 1;
-
- let code_len = table.read_symbol(&mut self.bit_reader)?;
-
- if code_len < 16 {
- code_lengths[usize::from(symbol)] = code_len;
- symbol += 1;
- if code_len != 0 {
- prev_code_len = code_len;
- }
- } else {
- let use_prev = code_len == 16;
- let slot = code_len - 16;
- let extra_bits = match slot {
- 0 => 2,
- 1 => 3,
- 2 => 7,
- _ => return Err(DecoderError::BitStreamError.into()),
- };
- let repeat_offset = match slot {
- 0 | 1 => 3,
- 2 => 11,
- _ => return Err(DecoderError::BitStreamError.into()),
- };
-
- let mut repeat = self.bit_reader.read_bits::<u16>(extra_bits)? + repeat_offset;
-
- if symbol + repeat > num_symbols {
- return Err(DecoderError::BitStreamError.into());
- } else {
- let length = if use_prev { prev_code_len } else { 0 };
- while repeat > 0 {
- repeat -= 1;
- code_lengths[usize::from(symbol)] = length;
- symbol += 1;
- }
- }
- }
- }
-
- Ok(code_lengths)
- }
-
- /// Decodes the image data using the huffman trees and either of the 3 methods of decoding
- fn decode_image_data(
- &mut self,
- width: u16,
- height: u16,
- mut huffman_info: HuffmanInfo,
- ) -> ImageResult<Vec<u32>> {
- let num_values = usize::from(width) * usize::from(height);
- let mut data = vec![0; num_values];
-
- let huff_index = huffman_info.get_huff_index(0, 0);
- let mut tree = &huffman_info.huffman_code_groups[huff_index];
- let mut last_cached = 0;
- let mut index = 0;
- let mut x = 0;
- let mut y = 0;
- while index < num_values {
- if (x & huffman_info.mask) == 0 {
- let index = huffman_info.get_huff_index(x, y);
- tree = &huffman_info.huffman_code_groups[index];
- }
-
- let code = tree[GREEN].read_symbol(&mut self.bit_reader)?;
-
- //check code
- if code < 256 {
- //literal, so just use huffman codes and read as argb
- let red = tree[RED].read_symbol(&mut self.bit_reader)?;
- let blue = tree[BLUE].read_symbol(&mut self.bit_reader)?;
- let alpha = tree[ALPHA].read_symbol(&mut self.bit_reader)?;
-
- data[index] = (u32::from(alpha) << 24)
- + (u32::from(red) << 16)
- + (u32::from(code) << 8)
- + u32::from(blue);
-
- index += 1;
- x += 1;
- if x >= width {
- x = 0;
- y += 1;
- }
- } else if code < 256 + 24 {
- //backward reference, so go back and use that to add image data
- let length_symbol = code - 256;
- let length = Self::get_copy_distance(&mut self.bit_reader, length_symbol)?;
-
- let dist_symbol = tree[DIST].read_symbol(&mut self.bit_reader)?;
- let dist_code = Self::get_copy_distance(&mut self.bit_reader, dist_symbol)?;
- let dist = Self::plane_code_to_distance(width, dist_code);
-
- if index < dist || num_values - index < length {
- return Err(DecoderError::BitStreamError.into());
- }
-
- for i in 0..length {
- data[index + i] = data[index + i - dist];
- }
- index += length;
- x += u16::try_from(length).unwrap();
- while x >= width {
- x -= width;
- y += 1;
- }
- if index < num_values {
- let index = huffman_info.get_huff_index(x, y);
- tree = &huffman_info.huffman_code_groups[index];
- }
- } else {
- //color cache, so use previously stored pixels to get this pixel
- let key = code - 256 - 24;
-
- if let Some(color_cache) = huffman_info.color_cache.as_mut() {
- //cache old colors
- while last_cached < index {
- color_cache.insert(data[last_cached]);
- last_cached += 1;
- }
- data[index] = color_cache.lookup(key.into())?;
- } else {
- return Err(DecoderError::BitStreamError.into());
- }
- index += 1;
- x += 1;
- if x >= width {
- x = 0;
- y += 1;
- }
- }
- }
-
- Ok(data)
- }
-
- /// Reads color cache data from the bitstream
- fn read_color_cache(&mut self) -> ImageResult<Option<u8>> {
- if self.bit_reader.read_bits::<u8>(1)? == 1 {
- let code_bits = self.bit_reader.read_bits::<u8>(4)?;
-
- if !(1..=11).contains(&code_bits) {
- return Err(DecoderError::InvalidColorCacheBits(code_bits).into());
- }
-
- Ok(Some(code_bits))
- } else {
- Ok(None)
- }
- }
-
- /// Gets the copy distance from the prefix code and bitstream
- fn get_copy_distance(bit_reader: &mut BitReader, prefix_code: u16) -> ImageResult<usize> {
- if prefix_code < 4 {
- return Ok(usize::from(prefix_code + 1));
- }
- let extra_bits: u8 = ((prefix_code - 2) >> 1).try_into().unwrap();
- let offset = (2 + (usize::from(prefix_code) & 1)) << extra_bits;
-
- Ok(offset + bit_reader.read_bits::<usize>(extra_bits)? + 1)
- }
-
- /// Gets distance to pixel
- fn plane_code_to_distance(xsize: u16, plane_code: usize) -> usize {
- if plane_code > 120 {
- plane_code - 120
- } else {
- let (xoffset, yoffset) = DISTANCE_MAP[plane_code - 1];
-
- let dist = i32::from(xoffset) + i32::from(yoffset) * i32::from(xsize);
- if dist < 1 {
- return 1;
- }
- dist.try_into().unwrap()
- }
- }
-}
-
-#[derive(Debug, Clone)]
-struct HuffmanInfo {
- xsize: u16,
- _ysize: u16,
- color_cache: Option<ColorCache>,
- image: Vec<u32>,
- bits: u8,
- mask: u16,
- huffman_code_groups: Vec<HuffmanCodeGroup>,
-}
-
-impl HuffmanInfo {
- fn get_huff_index(&self, x: u16, y: u16) -> usize {
- if self.bits == 0 {
- return 0;
- }
- let position = usize::from((y >> self.bits) * self.xsize + (x >> self.bits));
- let meta_huff_code: usize = self.image[position].try_into().unwrap();
- meta_huff_code
- }
-}
-
-#[derive(Debug, Clone)]
-struct ColorCache {
- color_cache_bits: u8,
- color_cache: Vec<u32>,
-}
-
-impl ColorCache {
- fn insert(&mut self, color: u32) {
- let index = (0x1e35a7bdu32.overflowing_mul(color).0) >> (32 - self.color_cache_bits);
- self.color_cache[index as usize] = color;
- }
-
- fn lookup(&self, index: usize) -> ImageResult<u32> {
- match self.color_cache.get(index) {
- Some(&value) => Ok(value),
- None => Err(DecoderError::BitStreamError.into()),
- }
- }
-}
-
-#[derive(Debug, Clone)]
-pub(crate) struct BitReader {
- buf: Vec<u8>,
- index: usize,
- bit_count: u8,
-}
-
-impl BitReader {
- fn new() -> BitReader {
- BitReader {
- buf: Vec::new(),
- index: 0,
- bit_count: 0,
- }
- }
-
- fn init(&mut self, buf: Vec<u8>) {
- self.buf = buf;
- }
-
- pub(crate) fn read_bits<T>(&mut self, num: u8) -> ImageResult<T>
- where
- T: num_traits::Unsigned + Shl<u8, Output = T> + AddAssign<T> + From<bool>,
- {
- let mut value: T = T::zero();
-
- for i in 0..num {
- if self.buf.len() <= self.index {
- return Err(DecoderError::BitStreamError.into());
- }
- let bit_true = self.buf[self.index] & (1 << self.bit_count) != 0;
- value += T::from(bit_true) << i;
- self.bit_count = if self.bit_count == 7 {
- self.index += 1;
- 0
- } else {
- self.bit_count + 1
- };
- }
-
- Ok(value)
- }
-}
-
-#[derive(Debug, Clone, Default)]
-pub(crate) struct LosslessFrame {
- pub(crate) width: u16,
- pub(crate) height: u16,
-
- pub(crate) buf: Vec<u32>,
-}
-
-impl LosslessFrame {
- /// Fills a buffer by converting from argb to rgba
- pub(crate) fn fill_rgba(&self, buf: &mut [u8]) {
- for (&argb_val, chunk) in self.buf.iter().zip(buf.chunks_exact_mut(4)) {
- chunk[0] = ((argb_val >> 16) & 0xff).try_into().unwrap();
- chunk[1] = ((argb_val >> 8) & 0xff).try_into().unwrap();
- chunk[2] = (argb_val & 0xff).try_into().unwrap();
- chunk[3] = ((argb_val >> 24) & 0xff).try_into().unwrap();
- }
- }
-
- /// Get buffer size from the image
- pub(crate) fn get_buf_size(&self) -> usize {
- usize::from(self.width) * usize::from(self.height) * 4
- }
-
- /// Fills a buffer with just the green values from the lossless decoding
- /// Used in extended alpha decoding
- pub(crate) fn fill_green(&self, buf: &mut [u8]) {
- for (&argb_val, buf_value) in self.buf.iter().zip(buf.iter_mut()) {
- *buf_value = ((argb_val >> 8) & 0xff).try_into().unwrap();
- }
- }
-}
-
-#[cfg(test)]
-mod test {
-
- use super::BitReader;
-
- #[test]
- fn bit_read_test() {
- let mut bit_reader = BitReader::new();
-
- //10011100 01000001 11100001
- let buf = vec![0x9C, 0x41, 0xE1];
-
- bit_reader.init(buf);
-
- assert_eq!(bit_reader.read_bits::<u8>(3).unwrap(), 4); //100
- assert_eq!(bit_reader.read_bits::<u8>(2).unwrap(), 3); //11
- assert_eq!(bit_reader.read_bits::<u8>(6).unwrap(), 12); //001100
- assert_eq!(bit_reader.read_bits::<u16>(10).unwrap(), 40); //0000101000
- assert_eq!(bit_reader.read_bits::<u8>(3).unwrap(), 7); //111
- }
-
- #[test]
- fn bit_read_error_test() {
- let mut bit_reader = BitReader::new();
-
- //01101010
- let buf = vec![0x6A];
-
- bit_reader.init(buf);
-
- assert_eq!(bit_reader.read_bits::<u8>(3).unwrap(), 2); //010
- assert_eq!(bit_reader.read_bits::<u8>(5).unwrap(), 13); //01101
- assert!(bit_reader.read_bits::<u8>(4).is_err()); //error
- }
-}
diff --git a/vendor/image/src/codecs/webp/lossless_transform.rs b/vendor/image/src/codecs/webp/lossless_transform.rs
deleted file mode 100644
index f9a82c1..0000000
--- a/vendor/image/src/codecs/webp/lossless_transform.rs
+++ /dev/null
@@ -1,464 +0,0 @@
-use std::convert::TryFrom;
-use std::convert::TryInto;
-
-use super::lossless::subsample_size;
-use super::lossless::DecoderError;
-
-#[derive(Debug, Clone)]
-pub(crate) enum TransformType {
- PredictorTransform {
- size_bits: u8,
- predictor_data: Vec<u32>,
- },
- ColorTransform {
- size_bits: u8,
- transform_data: Vec<u32>,
- },
- SubtractGreen,
- ColorIndexingTransform {
- table_size: u16,
- table_data: Vec<u32>,
- },
-}
-
-impl TransformType {
- /// Applies a transform to the image data
- pub(crate) fn apply_transform(
- &self,
- image_data: &mut Vec<u32>,
- width: u16,
- height: u16,
- ) -> Result<(), DecoderError> {
- match self {
- TransformType::PredictorTransform {
- size_bits,
- predictor_data,
- } => {
- let block_xsize = usize::from(subsample_size(width, *size_bits));
- let width = usize::from(width);
- let height = usize::from(height);
-
- if image_data.len() < width * height {
- return Err(DecoderError::TransformError);
- }
-
- //handle top and left borders specially
- //this involves ignoring mode and just setting prediction values like this
- image_data[0] = add_pixels(image_data[0], 0xff000000);
-
- for x in 1..width {
- image_data[x] = add_pixels(image_data[x], get_left(image_data, x, 0, width));
- }
-
- for y in 1..height {
- image_data[y * width] =
- add_pixels(image_data[y * width], get_top(image_data, 0, y, width));
- }
-
- for y in 1..height {
- for x in 1..width {
- let block_index = (y >> size_bits) * block_xsize + (x >> size_bits);
-
- let index = y * width + x;
-
- let green = (predictor_data[block_index] >> 8) & 0xff;
-
- match green {
- 0 => image_data[index] = add_pixels(image_data[index], 0xff000000),
- 1 => {
- image_data[index] =
- add_pixels(image_data[index], get_left(image_data, x, y, width))
- }
- 2 => {
- image_data[index] =
- add_pixels(image_data[index], get_top(image_data, x, y, width))
- }
- 3 => {
- image_data[index] = add_pixels(
- image_data[index],
- get_top_right(image_data, x, y, width),
- )
- }
- 4 => {
- image_data[index] = add_pixels(
- image_data[index],
- get_top_left(image_data, x, y, width),
- )
- }
- 5 => {
- image_data[index] = add_pixels(image_data[index], {
- let first = average2(
- get_left(image_data, x, y, width),
- get_top_right(image_data, x, y, width),
- );
- average2(first, get_top(image_data, x, y, width))
- })
- }
- 6 => {
- image_data[index] = add_pixels(
- image_data[index],
- average2(
- get_left(image_data, x, y, width),
- get_top_left(image_data, x, y, width),
- ),
- )
- }
- 7 => {
- image_data[index] = add_pixels(
- image_data[index],
- average2(
- get_left(image_data, x, y, width),
- get_top(image_data, x, y, width),
- ),
- )
- }
- 8 => {
- image_data[index] = add_pixels(
- image_data[index],
- average2(
- get_top_left(image_data, x, y, width),
- get_top(image_data, x, y, width),
- ),
- )
- }
- 9 => {
- image_data[index] = add_pixels(
- image_data[index],
- average2(
- get_top(image_data, x, y, width),
- get_top_right(image_data, x, y, width),
- ),
- )
- }
- 10 => {
- image_data[index] = add_pixels(image_data[index], {
- let first = average2(
- get_left(image_data, x, y, width),
- get_top_left(image_data, x, y, width),
- );
- let second = average2(
- get_top(image_data, x, y, width),
- get_top_right(image_data, x, y, width),
- );
- average2(first, second)
- })
- }
- 11 => {
- image_data[index] = add_pixels(
- image_data[index],
- select(
- get_left(image_data, x, y, width),
- get_top(image_data, x, y, width),
- get_top_left(image_data, x, y, width),
- ),
- )
- }
- 12 => {
- image_data[index] = add_pixels(
- image_data[index],
- clamp_add_subtract_full(
- get_left(image_data, x, y, width),
- get_top(image_data, x, y, width),
- get_top_left(image_data, x, y, width),
- ),
- )
- }
- 13 => {
- image_data[index] = add_pixels(image_data[index], {
- let first = average2(
- get_left(image_data, x, y, width),
- get_top(image_data, x, y, width),
- );
- clamp_add_subtract_half(
- first,
- get_top_left(image_data, x, y, width),
- )
- })
- }
- _ => {}
- }
- }
- }
- }
- TransformType::ColorTransform {
- size_bits,
- transform_data,
- } => {
- let block_xsize = usize::from(subsample_size(width, *size_bits));
- let width = usize::from(width);
- let height = usize::from(height);
-
- for y in 0..height {
- for x in 0..width {
- let block_index = (y >> size_bits) * block_xsize + (x >> size_bits);
-
- let index = y * width + x;
-
- let multiplier =
- ColorTransformElement::from_color_code(transform_data[block_index]);
-
- image_data[index] = transform_color(&multiplier, image_data[index]);
- }
- }
- }
- TransformType::SubtractGreen => {
- let width = usize::from(width);
- for y in 0..usize::from(height) {
- for x in 0..width {
- image_data[y * width + x] = add_green(image_data[y * width + x]);
- }
- }
- }
- TransformType::ColorIndexingTransform {
- table_size,
- table_data,
- } => {
- let mut new_image_data =
- Vec::with_capacity(usize::from(width) * usize::from(height));
-
- let table_size = *table_size;
- let width_bits: u8 = if table_size <= 2 {
- 3
- } else if table_size <= 4 {
- 2
- } else if table_size <= 16 {
- 1
- } else {
- 0
- };
-
- let bits_per_pixel = 8 >> width_bits;
- let mask = (1 << bits_per_pixel) - 1;
-
- let mut src = 0;
- let width = usize::from(width);
-
- let pixels_per_byte = 1 << width_bits;
- let count_mask = pixels_per_byte - 1;
- let mut packed_pixels = 0;
-
- for _y in 0..usize::from(height) {
- for x in 0..width {
- if (x & count_mask) == 0 {
- packed_pixels = (image_data[src] >> 8) & 0xff;
- src += 1;
- }
-
- let pixels: usize = (packed_pixels & mask).try_into().unwrap();
- let new_val = if pixels >= table_size.into() {
- 0x00000000
- } else {
- table_data[pixels]
- };
-
- new_image_data.push(new_val);
-
- packed_pixels >>= bits_per_pixel;
- }
- }
-
- *image_data = new_image_data;
- }
- }
-
- Ok(())
- }
-}
-
-//predictor functions
-
-/// Adds 2 pixels mod 256 for each pixel
-pub(crate) fn add_pixels(a: u32, b: u32) -> u32 {
- let new_alpha = ((a >> 24) + (b >> 24)) & 0xff;
- let new_red = (((a >> 16) & 0xff) + ((b >> 16) & 0xff)) & 0xff;
- let new_green = (((a >> 8) & 0xff) + ((b >> 8) & 0xff)) & 0xff;
- let new_blue = ((a & 0xff) + (b & 0xff)) & 0xff;
-
- (new_alpha << 24) + (new_red << 16) + (new_green << 8) + new_blue
-}
-
-/// Get left pixel
-fn get_left(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
- data[y * width + x - 1]
-}
-
-/// Get top pixel
-fn get_top(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
- data[(y - 1) * width + x]
-}
-
-/// Get pixel to top right
-fn get_top_right(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
- // if x == width - 1 this gets the left most pixel of the current row
- // as described in the specification
- data[(y - 1) * width + x + 1]
-}
-
-/// Get pixel to top left
-fn get_top_left(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
- data[(y - 1) * width + x - 1]
-}
-
-/// Get average of 2 pixels
-fn average2(a: u32, b: u32) -> u32 {
- let mut avg = 0u32;
- for i in 0..4 {
- let sub_a: u8 = ((a >> (i * 8)) & 0xff).try_into().unwrap();
- let sub_b: u8 = ((b >> (i * 8)) & 0xff).try_into().unwrap();
- avg |= u32::from(sub_average2(sub_a, sub_b)) << (i * 8);
- }
- avg
-}
-
-/// Get average of 2 bytes
-fn sub_average2(a: u8, b: u8) -> u8 {
- ((u16::from(a) + u16::from(b)) / 2).try_into().unwrap()
-}
-
-/// Get a specific byte from argb pixel
-fn get_byte(val: u32, byte: u8) -> u8 {
- ((val >> (byte * 8)) & 0xff).try_into().unwrap()
-}
-
-/// Get byte as i32 for convenience
-fn get_byte_i32(val: u32, byte: u8) -> i32 {
- i32::from(get_byte(val, byte))
-}
-
-/// Select left or top byte
-fn select(left: u32, top: u32, top_left: u32) -> u32 {
- let predict_alpha = get_byte_i32(left, 3) + get_byte_i32(top, 3) - get_byte_i32(top_left, 3);
- let predict_red = get_byte_i32(left, 2) + get_byte_i32(top, 2) - get_byte_i32(top_left, 2);
- let predict_green = get_byte_i32(left, 1) + get_byte_i32(top, 1) - get_byte_i32(top_left, 1);
- let predict_blue = get_byte_i32(left, 0) + get_byte_i32(top, 0) - get_byte_i32(top_left, 0);
-
- let predict_left = i32::abs(predict_alpha - get_byte_i32(left, 3))
- + i32::abs(predict_red - get_byte_i32(left, 2))
- + i32::abs(predict_green - get_byte_i32(left, 1))
- + i32::abs(predict_blue - get_byte_i32(left, 0));
- let predict_top = i32::abs(predict_alpha - get_byte_i32(top, 3))
- + i32::abs(predict_red - get_byte_i32(top, 2))
- + i32::abs(predict_green - get_byte_i32(top, 1))
- + i32::abs(predict_blue - get_byte_i32(top, 0));
-
- if predict_left < predict_top {
- left
- } else {
- top
- }
-}
-
-/// Clamp a to [0, 255]
-fn clamp(a: i32) -> i32 {
- if a < 0 {
- 0
- } else if a > 255 {
- 255
- } else {
- a
- }
-}
-
-/// Clamp add subtract full on one part
-fn clamp_add_subtract_full_sub(a: i32, b: i32, c: i32) -> i32 {
- clamp(a + b - c)
-}
-
-/// Clamp add subtract half on one part
-fn clamp_add_subtract_half_sub(a: i32, b: i32) -> i32 {
- clamp(a + (a - b) / 2)
-}
-
-/// Clamp add subtract full on 3 pixels
-fn clamp_add_subtract_full(a: u32, b: u32, c: u32) -> u32 {
- let mut value: u32 = 0;
- for i in 0..4u8 {
- let sub_a: i32 = ((a >> (i * 8)) & 0xff).try_into().unwrap();
- let sub_b: i32 = ((b >> (i * 8)) & 0xff).try_into().unwrap();
- let sub_c: i32 = ((c >> (i * 8)) & 0xff).try_into().unwrap();
- value |=
- u32::try_from(clamp_add_subtract_full_sub(sub_a, sub_b, sub_c)).unwrap() << (i * 8);
- }
- value
-}
-
-/// Clamp add subtract half on 2 pixels
-fn clamp_add_subtract_half(a: u32, b: u32) -> u32 {
- let mut value = 0;
- for i in 0..4u8 {
- let sub_a: i32 = ((a >> (i * 8)) & 0xff).try_into().unwrap();
- let sub_b: i32 = ((b >> (i * 8)) & 0xff).try_into().unwrap();
- value |= u32::try_from(clamp_add_subtract_half_sub(sub_a, sub_b)).unwrap() << (i * 8);
- }
-
- value
-}
-
-//color transform
-
-#[derive(Debug, Clone, Copy)]
-struct ColorTransformElement {
- green_to_red: u8,
- green_to_blue: u8,
- red_to_blue: u8,
-}
-
-impl ColorTransformElement {
- fn from_color_code(color_code: u32) -> ColorTransformElement {
- ColorTransformElement {
- green_to_red: (color_code & 0xff).try_into().unwrap(),
- green_to_blue: ((color_code >> 8) & 0xff).try_into().unwrap(),
- red_to_blue: ((color_code >> 16) & 0xff).try_into().unwrap(),
- }
- }
-}
-
-/// Does color transform on red and blue transformed by green
-fn color_transform(red: u8, blue: u8, green: u8, trans: &ColorTransformElement) -> (u8, u8) {
- let mut temp_red = u32::from(red);
- let mut temp_blue = u32::from(blue);
-
- //as does the conversion from u8 to signed two's complement i8 required
- temp_red += color_transform_delta(trans.green_to_red as i8, green as i8);
- temp_blue += color_transform_delta(trans.green_to_blue as i8, green as i8);
- temp_blue += color_transform_delta(trans.red_to_blue as i8, temp_red as i8);
-
- (
- (temp_red & 0xff).try_into().unwrap(),
- (temp_blue & 0xff).try_into().unwrap(),
- )
-}
-
-/// Does color transform on 2 numbers
-fn color_transform_delta(t: i8, c: i8) -> u32 {
- ((i16::from(t) * i16::from(c)) as u32) >> 5
-}
-
-// Does color transform on a pixel with a color transform element
-fn transform_color(multiplier: &ColorTransformElement, color_value: u32) -> u32 {
- let alpha = get_byte(color_value, 3);
- let red = get_byte(color_value, 2);
- let green = get_byte(color_value, 1);
- let blue = get_byte(color_value, 0);
-
- let (new_red, new_blue) = color_transform(red, blue, green, multiplier);
-
- (u32::from(alpha) << 24)
- + (u32::from(new_red) << 16)
- + (u32::from(green) << 8)
- + u32::from(new_blue)
-}
-
-//subtract green function
-
-/// Adds green to red and blue of a pixel
-fn add_green(argb: u32) -> u32 {
- let red = (argb >> 16) & 0xff;
- let green = (argb >> 8) & 0xff;
- let blue = argb & 0xff;
-
- let new_red = (red + green) & 0xff;
- let new_blue = (blue + green) & 0xff;
-
- (argb & 0xff00ff00) | (new_red << 16) | (new_blue)
-}
diff --git a/vendor/image/src/codecs/webp/mod.rs b/vendor/image/src/codecs/webp/mod.rs
deleted file mode 100644
index b38faed..0000000
--- a/vendor/image/src/codecs/webp/mod.rs
+++ /dev/null
@@ -1,28 +0,0 @@
-//! Decoding and Encoding of WebP Images
-
-#[cfg(feature = "webp-encoder")]
-pub use self::encoder::{WebPEncoder, WebPQuality};
-
-#[cfg(feature = "webp-encoder")]
-mod encoder;
-
-#[cfg(feature = "webp")]
-pub use self::decoder::WebPDecoder;
-
-#[cfg(feature = "webp")]
-mod decoder;
-#[cfg(feature = "webp")]
-mod extended;
-#[cfg(feature = "webp")]
-mod huffman;
-#[cfg(feature = "webp")]
-mod loop_filter;
-#[cfg(feature = "webp")]
-mod lossless;
-#[cfg(feature = "webp")]
-mod lossless_transform;
-#[cfg(feature = "webp")]
-mod transform;
-
-#[cfg(feature = "webp")]
-pub mod vp8;
diff --git a/vendor/image/src/codecs/webp/transform.rs b/vendor/image/src/codecs/webp/transform.rs
deleted file mode 100644
index 3b3ef5a..0000000
--- a/vendor/image/src/codecs/webp/transform.rs
+++ /dev/null
@@ -1,77 +0,0 @@
-static CONST1: i64 = 20091;
-static CONST2: i64 = 35468;
-
-pub(crate) fn idct4x4(block: &mut [i32]) {
- // The intermediate results may overflow the types, so we stretch the type.
- fn fetch(block: &mut [i32], idx: usize) -> i64 {
- i64::from(block[idx])
- }
-
- for i in 0usize..4 {
- let a1 = fetch(block, i) + fetch(block, 8 + i);
- let b1 = fetch(block, i) - fetch(block, 8 + i);
-
- let t1 = (fetch(block, 4 + i) * CONST2) >> 16;
- let t2 = fetch(block, 12 + i) + ((fetch(block, 12 + i) * CONST1) >> 16);
- let c1 = t1 - t2;
-
- let t1 = fetch(block, 4 + i) + ((fetch(block, 4 + i) * CONST1) >> 16);
- let t2 = (fetch(block, 12 + i) * CONST2) >> 16;
- let d1 = t1 + t2;
-
- block[i] = (a1 + d1) as i32;
- block[4 + i] = (b1 + c1) as i32;
- block[4 * 3 + i] = (a1 - d1) as i32;
- block[4 * 2 + i] = (b1 - c1) as i32;
- }
-
- for i in 0usize..4 {
- let a1 = fetch(block, 4 * i) + fetch(block, 4 * i + 2);
- let b1 = fetch(block, 4 * i) - fetch(block, 4 * i + 2);
-
- let t1 = (fetch(block, 4 * i + 1) * CONST2) >> 16;
- let t2 = fetch(block, 4 * i + 3) + ((fetch(block, 4 * i + 3) * CONST1) >> 16);
- let c1 = t1 - t2;
-
- let t1 = fetch(block, 4 * i + 1) + ((fetch(block, 4 * i + 1) * CONST1) >> 16);
- let t2 = (fetch(block, 4 * i + 3) * CONST2) >> 16;
- let d1 = t1 + t2;
-
- block[4 * i] = ((a1 + d1 + 4) >> 3) as i32;
- block[4 * i + 3] = ((a1 - d1 + 4) >> 3) as i32;
- block[4 * i + 1] = ((b1 + c1 + 4) >> 3) as i32;
- block[4 * i + 2] = ((b1 - c1 + 4) >> 3) as i32;
- }
-}
-
-// 14.3
-pub(crate) fn iwht4x4(block: &mut [i32]) {
- for i in 0usize..4 {
- let a1 = block[i] + block[12 + i];
- let b1 = block[4 + i] + block[8 + i];
- let c1 = block[4 + i] - block[8 + i];
- let d1 = block[i] - block[12 + i];
-
- block[i] = a1 + b1;
- block[4 + i] = c1 + d1;
- block[8 + i] = a1 - b1;
- block[12 + i] = d1 - c1;
- }
-
- for i in 0usize..4 {
- let a1 = block[4 * i] + block[4 * i + 3];
- let b1 = block[4 * i + 1] + block[4 * i + 2];
- let c1 = block[4 * i + 1] - block[4 * i + 2];
- let d1 = block[4 * i] - block[4 * i + 3];
-
- let a2 = a1 + b1;
- let b2 = c1 + d1;
- let c2 = a1 - b1;
- let d2 = d1 - c1;
-
- block[4 * i] = (a2 + 3) >> 3;
- block[4 * i + 1] = (b2 + 3) >> 3;
- block[4 * i + 2] = (c2 + 3) >> 3;
- block[4 * i + 3] = (d2 + 3) >> 3;
- }
-}
diff --git a/vendor/image/src/codecs/webp/vp8.rs b/vendor/image/src/codecs/webp/vp8.rs
deleted file mode 100644
index 67b8820..0000000
--- a/vendor/image/src/codecs/webp/vp8.rs
+++ /dev/null
@@ -1,2932 +0,0 @@
-//! An implementation of the VP8 Video Codec
-//!
-//! This module contains a partial implementation of the
-//! VP8 video format as defined in RFC-6386.
-//!
-//! It decodes Keyframes only.
-//! VP8 is the underpinning of the WebP image format
-//!
-//! # Related Links
-//! * [rfc-6386](http://tools.ietf.org/html/rfc6386) - The VP8 Data Format and Decoding Guide
-//! * [VP8.pdf](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37073.pdf) - An overview of
-//! of the VP8 format
-//!
-
-use byteorder::{LittleEndian, ReadBytesExt};
-use std::convert::TryInto;
-use std::default::Default;
-use std::io::Read;
-use std::{cmp, error, fmt};
-
-use super::loop_filter;
-use super::transform;
-use crate::error::{
- DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
-};
-use crate::image::ImageFormat;
-
-use crate::utils::clamp;
-
-const MAX_SEGMENTS: usize = 4;
-const NUM_DCT_TOKENS: usize = 12;
-
-// Prediction modes
-const DC_PRED: i8 = 0;
-const V_PRED: i8 = 1;
-const H_PRED: i8 = 2;
-const TM_PRED: i8 = 3;
-const B_PRED: i8 = 4;
-
-const B_DC_PRED: i8 = 0;
-const B_TM_PRED: i8 = 1;
-const B_VE_PRED: i8 = 2;
-const B_HE_PRED: i8 = 3;
-const B_LD_PRED: i8 = 4;
-const B_RD_PRED: i8 = 5;
-const B_VR_PRED: i8 = 6;
-const B_VL_PRED: i8 = 7;
-const B_HD_PRED: i8 = 8;
-const B_HU_PRED: i8 = 9;
-
-// Prediction mode enum
-#[repr(i8)]
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-enum LumaMode {
- /// Predict DC using row above and column to the left.
- DC = DC_PRED,
-
- /// Predict rows using row above.
- V = V_PRED,
-
- /// Predict columns using column to the left.
- H = H_PRED,
-
- /// Propagate second differences.
- TM = TM_PRED,
-
- /// Each Y subblock is independently predicted.
- B = B_PRED,
-}
-
-#[repr(i8)]
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-enum ChromaMode {
- /// Predict DC using row above and column to the left.
- DC = DC_PRED,
-
- /// Predict rows using row above.
- V = V_PRED,
-
- /// Predict columns using column to the left.
- H = H_PRED,
-
- /// Propagate second differences.
- TM = TM_PRED,
-}
-
-#[repr(i8)]
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-enum IntraMode {
- DC = B_DC_PRED,
- TM = B_TM_PRED,
- VE = B_VE_PRED,
- HE = B_HE_PRED,
- LD = B_LD_PRED,
- RD = B_RD_PRED,
- VR = B_VR_PRED,
- VL = B_VL_PRED,
- HD = B_HD_PRED,
- HU = B_HU_PRED,
-}
-
-type Prob = u8;
-
-static SEGMENT_ID_TREE: [i8; 6] = [2, 4, -0, -1, -2, -3];
-
-// Section 11.2
-// Tree for determining the keyframe luma intra prediction modes:
-static KEYFRAME_YMODE_TREE: [i8; 8] = [-B_PRED, 2, 4, 6, -DC_PRED, -V_PRED, -H_PRED, -TM_PRED];
-
-// Default probabilities for decoding the keyframe luma modes
-static KEYFRAME_YMODE_PROBS: [Prob; 4] = [145, 156, 163, 128];
-
-// Tree for determining the keyframe B_PRED mode:
-static KEYFRAME_BPRED_MODE_TREE: [i8; 18] = [
- -B_DC_PRED, 2, -B_TM_PRED, 4, -B_VE_PRED, 6, 8, 12, -B_HE_PRED, 10, -B_RD_PRED, -B_VR_PRED,
- -B_LD_PRED, 14, -B_VL_PRED, 16, -B_HD_PRED, -B_HU_PRED,
-];
-
-// Probabilities for the BPRED_MODE_TREE
-static KEYFRAME_BPRED_MODE_PROBS: [[[u8; 9]; 10]; 10] = [
- [
- [231, 120, 48, 89, 115, 113, 120, 152, 112],
- [152, 179, 64, 126, 170, 118, 46, 70, 95],
- [175, 69, 143, 80, 85, 82, 72, 155, 103],
- [56, 58, 10, 171, 218, 189, 17, 13, 152],
- [144, 71, 10, 38, 171, 213, 144, 34, 26],
- [114, 26, 17, 163, 44, 195, 21, 10, 173],
- [121, 24, 80, 195, 26, 62, 44, 64, 85],
- [170, 46, 55, 19, 136, 160, 33, 206, 71],
- [63, 20, 8, 114, 114, 208, 12, 9, 226],
- [81, 40, 11, 96, 182, 84, 29, 16, 36],
- ],
- [
- [134, 183, 89, 137, 98, 101, 106, 165, 148],
- [72, 187, 100, 130, 157, 111, 32, 75, 80],
- [66, 102, 167, 99, 74, 62, 40, 234, 128],
- [41, 53, 9, 178, 241, 141, 26, 8, 107],
- [104, 79, 12, 27, 217, 255, 87, 17, 7],
- [74, 43, 26, 146, 73, 166, 49, 23, 157],
- [65, 38, 105, 160, 51, 52, 31, 115, 128],
- [87, 68, 71, 44, 114, 51, 15, 186, 23],
- [47, 41, 14, 110, 182, 183, 21, 17, 194],
- [66, 45, 25, 102, 197, 189, 23, 18, 22],
- ],
- [
- [88, 88, 147, 150, 42, 46, 45, 196, 205],
- [43, 97, 183, 117, 85, 38, 35, 179, 61],
- [39, 53, 200, 87, 26, 21, 43, 232, 171],
- [56, 34, 51, 104, 114, 102, 29, 93, 77],
- [107, 54, 32, 26, 51, 1, 81, 43, 31],
- [39, 28, 85, 171, 58, 165, 90, 98, 64],
- [34, 22, 116, 206, 23, 34, 43, 166, 73],
- [68, 25, 106, 22, 64, 171, 36, 225, 114],
- [34, 19, 21, 102, 132, 188, 16, 76, 124],
- [62, 18, 78, 95, 85, 57, 50, 48, 51],
- ],
- [
- [193, 101, 35, 159, 215, 111, 89, 46, 111],
- [60, 148, 31, 172, 219, 228, 21, 18, 111],
- [112, 113, 77, 85, 179, 255, 38, 120, 114],
- [40, 42, 1, 196, 245, 209, 10, 25, 109],
- [100, 80, 8, 43, 154, 1, 51, 26, 71],
- [88, 43, 29, 140, 166, 213, 37, 43, 154],
- [61, 63, 30, 155, 67, 45, 68, 1, 209],
- [142, 78, 78, 16, 255, 128, 34, 197, 171],
- [41, 40, 5, 102, 211, 183, 4, 1, 221],
- [51, 50, 17, 168, 209, 192, 23, 25, 82],
- ],
- [
- [125, 98, 42, 88, 104, 85, 117, 175, 82],
- [95, 84, 53, 89, 128, 100, 113, 101, 45],
- [75, 79, 123, 47, 51, 128, 81, 171, 1],
- [57, 17, 5, 71, 102, 57, 53, 41, 49],
- [115, 21, 2, 10, 102, 255, 166, 23, 6],
- [38, 33, 13, 121, 57, 73, 26, 1, 85],
- [41, 10, 67, 138, 77, 110, 90, 47, 114],
- [101, 29, 16, 10, 85, 128, 101, 196, 26],
- [57, 18, 10, 102, 102, 213, 34, 20, 43],
- [117, 20, 15, 36, 163, 128, 68, 1, 26],
- ],
- [
- [138, 31, 36, 171, 27, 166, 38, 44, 229],
- [67, 87, 58, 169, 82, 115, 26, 59, 179],
- [63, 59, 90, 180, 59, 166, 93, 73, 154],
- [40, 40, 21, 116, 143, 209, 34, 39, 175],
- [57, 46, 22, 24, 128, 1, 54, 17, 37],
- [47, 15, 16, 183, 34, 223, 49, 45, 183],
- [46, 17, 33, 183, 6, 98, 15, 32, 183],
- [65, 32, 73, 115, 28, 128, 23, 128, 205],
- [40, 3, 9, 115, 51, 192, 18, 6, 223],
- [87, 37, 9, 115, 59, 77, 64, 21, 47],
- ],
- [
- [104, 55, 44, 218, 9, 54, 53, 130, 226],
- [64, 90, 70, 205, 40, 41, 23, 26, 57],
- [54, 57, 112, 184, 5, 41, 38, 166, 213],
- [30, 34, 26, 133, 152, 116, 10, 32, 134],
- [75, 32, 12, 51, 192, 255, 160, 43, 51],
- [39, 19, 53, 221, 26, 114, 32, 73, 255],
- [31, 9, 65, 234, 2, 15, 1, 118, 73],
- [88, 31, 35, 67, 102, 85, 55, 186, 85],
- [56, 21, 23, 111, 59, 205, 45, 37, 192],
- [55, 38, 70, 124, 73, 102, 1, 34, 98],
- ],
- [
- [102, 61, 71, 37, 34, 53, 31, 243, 192],
- [69, 60, 71, 38, 73, 119, 28, 222, 37],
- [68, 45, 128, 34, 1, 47, 11, 245, 171],
- [62, 17, 19, 70, 146, 85, 55, 62, 70],
- [75, 15, 9, 9, 64, 255, 184, 119, 16],
- [37, 43, 37, 154, 100, 163, 85, 160, 1],
- [63, 9, 92, 136, 28, 64, 32, 201, 85],
- [86, 6, 28, 5, 64, 255, 25, 248, 1],
- [56, 8, 17, 132, 137, 255, 55, 116, 128],
- [58, 15, 20, 82, 135, 57, 26, 121, 40],
- ],
- [
- [164, 50, 31, 137, 154, 133, 25, 35, 218],
- [51, 103, 44, 131, 131, 123, 31, 6, 158],
- [86, 40, 64, 135, 148, 224, 45, 183, 128],
- [22, 26, 17, 131, 240, 154, 14, 1, 209],
- [83, 12, 13, 54, 192, 255, 68, 47, 28],
- [45, 16, 21, 91, 64, 222, 7, 1, 197],
- [56, 21, 39, 155, 60, 138, 23, 102, 213],
- [85, 26, 85, 85, 128, 128, 32, 146, 171],
- [18, 11, 7, 63, 144, 171, 4, 4, 246],
- [35, 27, 10, 146, 174, 171, 12, 26, 128],
- ],
- [
- [190, 80, 35, 99, 180, 80, 126, 54, 45],
- [85, 126, 47, 87, 176, 51, 41, 20, 32],
- [101, 75, 128, 139, 118, 146, 116, 128, 85],
- [56, 41, 15, 176, 236, 85, 37, 9, 62],
- [146, 36, 19, 30, 171, 255, 97, 27, 20],
- [71, 30, 17, 119, 118, 255, 17, 18, 138],
- [101, 38, 60, 138, 55, 70, 43, 26, 142],
- [138, 45, 61, 62, 219, 1, 81, 188, 64],
- [32, 41, 20, 117, 151, 142, 20, 21, 163],
- [112, 19, 12, 61, 195, 128, 48, 4, 24],
- ],
-];
-
-// Section 11.4 Tree for determining macroblock the chroma mode
-static KEYFRAME_UV_MODE_TREE: [i8; 6] = [-DC_PRED, 2, -V_PRED, 4, -H_PRED, -TM_PRED];
-
-// Probabilities for determining macroblock mode
-static KEYFRAME_UV_MODE_PROBS: [Prob; 3] = [142, 114, 183];
-
-// Section 13.4
-type TokenProbTables = [[[[Prob; NUM_DCT_TOKENS - 1]; 3]; 8]; 4];
-
-// Probabilities that a token's probability will be updated
-static COEFF_UPDATE_PROBS: TokenProbTables = [
- [
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255],
- [249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255],
- [234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255],
- [250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255],
- [254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- ],
- [
- [
- [217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255],
- [234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255],
- ],
- [
- [255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- [250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- ],
- [
- [
- [186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255],
- [234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255],
- [251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255],
- ],
- [
- [255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- ],
- [
- [
- [248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255],
- [248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- [246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- [252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255],
- [248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- [253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- [252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255],
- [250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- [
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
- ],
- ],
-];
-
-// Section 13.5
-// Default Probabilities for tokens
-static COEFF_PROBS: TokenProbTables = [
- [
- [
- [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- [
- [253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128],
- [189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128],
- [106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128],
- ],
- [
- [1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128],
- [181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128],
- [78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128],
- ],
- [
- [1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128],
- [184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128],
- [77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128],
- ],
- [
- [1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128],
- [170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128],
- [37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128],
- ],
- [
- [1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128],
- [207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128],
- [102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128],
- ],
- [
- [1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128],
- [177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128],
- [80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128],
- ],
- [
- [1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- [246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- [255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- ],
- [
- [
- [198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62],
- [131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1],
- [68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128],
- ],
- [
- [1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128],
- [184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128],
- [81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128],
- ],
- [
- [1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128],
- [99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128],
- [23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128],
- ],
- [
- [1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128],
- [109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128],
- [44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128],
- ],
- [
- [1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128],
- [94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128],
- [22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128],
- ],
- [
- [1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128],
- [124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128],
- [35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128],
- ],
- [
- [1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128],
- [121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128],
- [45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128],
- ],
- [
- [1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128],
- [203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128],
- [137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128],
- ],
- ],
- [
- [
- [253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128],
- [175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128],
- [73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128],
- ],
- [
- [1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128],
- [239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128],
- [155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128],
- ],
- [
- [1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128],
- [201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128],
- [69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128],
- ],
- [
- [1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128],
- [223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128],
- [141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128],
- ],
- [
- [1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128],
- [190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128],
- [149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- [
- [1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- [247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- [240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- [
- [1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128],
- [213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128],
- [55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- [
- [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- ],
- [
- [
- [202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255],
- [126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128],
- [61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128],
- ],
- [
- [1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128],
- [166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128],
- [39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128],
- ],
- [
- [1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128],
- [124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128],
- [24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128],
- ],
- [
- [1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128],
- [149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128],
- [28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128],
- ],
- [
- [1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128],
- [123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128],
- [20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128],
- ],
- [
- [1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128],
- [168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128],
- [47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128],
- ],
- [
- [1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128],
- [141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128],
- [42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128],
- ],
- [
- [1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- [244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- [238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128],
- ],
- ],
-];
-
-// DCT Tokens
-const DCT_0: i8 = 0;
-const DCT_1: i8 = 1;
-const DCT_2: i8 = 2;
-const DCT_3: i8 = 3;
-const DCT_4: i8 = 4;
-const DCT_CAT1: i8 = 5;
-const DCT_CAT2: i8 = 6;
-const DCT_CAT3: i8 = 7;
-const DCT_CAT4: i8 = 8;
-const DCT_CAT5: i8 = 9;
-const DCT_CAT6: i8 = 10;
-const DCT_EOB: i8 = 11;
-
-static DCT_TOKEN_TREE: [i8; 22] = [
- -DCT_EOB, 2, -DCT_0, 4, -DCT_1, 6, 8, 12, -DCT_2, 10, -DCT_3, -DCT_4, 14, 16, -DCT_CAT1,
- -DCT_CAT2, 18, 20, -DCT_CAT3, -DCT_CAT4, -DCT_CAT5, -DCT_CAT6,
-];
-
-static PROB_DCT_CAT: [[Prob; 12]; 6] = [
- [159, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- [165, 145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- [173, 148, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- [176, 155, 140, 135, 0, 0, 0, 0, 0, 0, 0, 0],
- [180, 157, 141, 134, 130, 0, 0, 0, 0, 0, 0, 0],
- [254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0],
-];
-
-static DCT_CAT_BASE: [u8; 6] = [5, 7, 11, 19, 35, 67];
-static COEFF_BANDS: [u8; 16] = [0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7];
-
-#[rustfmt::skip]
-static DC_QUANT: [i16; 128] = [
- 4, 5, 6, 7, 8, 9, 10, 10,
- 11, 12, 13, 14, 15, 16, 17, 17,
- 18, 19, 20, 20, 21, 21, 22, 22,
- 23, 23, 24, 25, 25, 26, 27, 28,
- 29, 30, 31, 32, 33, 34, 35, 36,
- 37, 37, 38, 39, 40, 41, 42, 43,
- 44, 45, 46, 46, 47, 48, 49, 50,
- 51, 52, 53, 54, 55, 56, 57, 58,
- 59, 60, 61, 62, 63, 64, 65, 66,
- 67, 68, 69, 70, 71, 72, 73, 74,
- 75, 76, 76, 77, 78, 79, 80, 81,
- 82, 83, 84, 85, 86, 87, 88, 89,
- 91, 93, 95, 96, 98, 100, 101, 102,
- 104, 106, 108, 110, 112, 114, 116, 118,
- 122, 124, 126, 128, 130, 132, 134, 136,
- 138, 140, 143, 145, 148, 151, 154, 157,
-];
-
-#[rustfmt::skip]
-static AC_QUANT: [i16; 128] = [
- 4, 5, 6, 7, 8, 9, 10, 11,
- 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27,
- 28, 29, 30, 31, 32, 33, 34, 35,
- 36, 37, 38, 39, 40, 41, 42, 43,
- 44, 45, 46, 47, 48, 49, 50, 51,
- 52, 53, 54, 55, 56, 57, 58, 60,
- 62, 64, 66, 68, 70, 72, 74, 76,
- 78, 80, 82, 84, 86, 88, 90, 92,
- 94, 96, 98, 100, 102, 104, 106, 108,
- 110, 112, 114, 116, 119, 122, 125, 128,
- 131, 134, 137, 140, 143, 146, 149, 152,
- 155, 158, 161, 164, 167, 170, 173, 177,
- 181, 185, 189, 193, 197, 201, 205, 209,
- 213, 217, 221, 225, 229, 234, 239, 245,
- 249, 254, 259, 264, 269, 274, 279, 284,
-];
-
-static ZIGZAG: [u8; 16] = [0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15];
-
-/// All errors that can occur when attempting to parse a VP8 codec inside WebP
-#[derive(Debug, Clone, Copy)]
-enum DecoderError {
- /// VP8's `[0x9D, 0x01, 0x2A]` magic not found or invalid
- Vp8MagicInvalid([u8; 3]),
-
- /// Decoder initialisation wasn't provided with enough data
- NotEnoughInitData,
-
- /// At time of writing, only the YUV colour-space encoded as `0` is specified
- ColorSpaceInvalid(u8),
- /// LUMA prediction mode was not recognised
- LumaPredictionModeInvalid(i8),
- /// Intra-prediction mode was not recognised
- IntraPredictionModeInvalid(i8),
- /// Chroma prediction mode was not recognised
- ChromaPredictionModeInvalid(i8),
-}
-
-impl fmt::Display for DecoderError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- DecoderError::Vp8MagicInvalid(tag) => f.write_fmt(format_args!(
- "Invalid VP8 magic: [{:#04X?}, {:#04X?}, {:#04X?}]",
- tag[0], tag[1], tag[2]
- )),
-
- DecoderError::NotEnoughInitData => {
- f.write_str("Expected at least 2 bytes of VP8 decoder initialization data")
- }
-
- DecoderError::ColorSpaceInvalid(cs) => {
- f.write_fmt(format_args!("Invalid non-YUV VP8 color space {}", cs))
- }
- DecoderError::LumaPredictionModeInvalid(pm) => {
- f.write_fmt(format_args!("Invalid VP8 LUMA prediction mode {}", pm))
- }
- DecoderError::IntraPredictionModeInvalid(i) => {
- f.write_fmt(format_args!("Invalid VP8 intra-prediction mode {}", i))
- }
- DecoderError::ChromaPredictionModeInvalid(c) => {
- f.write_fmt(format_args!("Invalid VP8 chroma prediction mode {}", c))
- }
- }
- }
-}
-
-impl From<DecoderError> for ImageError {
- fn from(e: DecoderError) -> ImageError {
- ImageError::Decoding(DecodingError::new(ImageFormat::WebP.into(), e))
- }
-}
-
-impl error::Error for DecoderError {}
-
-struct BoolReader {
- buf: Vec<u8>,
- index: usize,
-
- range: u32,
- value: u32,
- bit_count: u8,
-}
-
-impl BoolReader {
- pub(crate) fn new() -> BoolReader {
- BoolReader {
- buf: Vec::new(),
- range: 0,
- value: 0,
- bit_count: 0,
- index: 0,
- }
- }
-
- pub(crate) fn init(&mut self, buf: Vec<u8>) -> ImageResult<()> {
- if buf.len() < 2 {
- return Err(DecoderError::NotEnoughInitData.into());
- }
-
- self.buf = buf;
- // Direct access safe, since length has just been validated.
- self.value = (u32::from(self.buf[0]) << 8) | u32::from(self.buf[1]);
- self.index = 2;
- self.range = 255;
- self.bit_count = 0;
-
- Ok(())
- }
-
- pub(crate) fn read_bool(&mut self, probability: u8) -> bool {
- let split = 1 + (((self.range - 1) * u32::from(probability)) >> 8);
- let bigsplit = split << 8;
-
- let retval = if self.value >= bigsplit {
- self.range -= split;
- self.value -= bigsplit;
- true
- } else {
- self.range = split;
- false
- };
-
- while self.range < 128 {
- self.value <<= 1;
- self.range <<= 1;
- self.bit_count += 1;
-
- if self.bit_count == 8 {
- self.bit_count = 0;
-
- // If no more bits are available, just don't do anything.
- // This strategy is suggested in the reference implementation of RFC6386 (p.135)
- if self.index < self.buf.len() {
- self.value |= u32::from(self.buf[self.index]);
- self.index += 1;
- }
- }
- }
-
- retval
- }
-
- pub(crate) fn read_literal(&mut self, n: u8) -> u8 {
- let mut v = 0u8;
- let mut n = n;
-
- while n != 0 {
- v = (v << 1) + self.read_bool(128u8) as u8;
- n -= 1;
- }
-
- v
- }
-
- pub(crate) fn read_magnitude_and_sign(&mut self, n: u8) -> i32 {
- let magnitude = self.read_literal(n);
- let sign = self.read_literal(1);
-
- if sign == 1 {
- -i32::from(magnitude)
- } else {
- i32::from(magnitude)
- }
- }
-
- pub(crate) fn read_with_tree(&mut self, tree: &[i8], probs: &[Prob], start: isize) -> i8 {
- let mut index = start;
-
- loop {
- let a = self.read_bool(probs[index as usize >> 1]);
- let b = index + a as isize;
- index = tree[b as usize] as isize;
-
- if index <= 0 {
- break;
- }
- }
-
- -index as i8
- }
-
- pub(crate) fn read_flag(&mut self) -> bool {
- 0 != self.read_literal(1)
- }
-}
-
-#[derive(Default, Clone, Copy)]
-struct MacroBlock {
- bpred: [IntraMode; 16],
- complexity: [u8; 9],
- luma_mode: LumaMode,
- chroma_mode: ChromaMode,
- segmentid: u8,
- coeffs_skipped: bool,
-}
-
-/// A Representation of the last decoded video frame
-#[derive(Default, Debug, Clone)]
-pub struct Frame {
- /// The width of the luma plane
- pub width: u16,
-
- /// The height of the luma plane
- pub height: u16,
-
- /// The luma plane of the frame
- pub ybuf: Vec<u8>,
-
- /// The blue plane of the frame
- pub ubuf: Vec<u8>,
-
- /// The red plane of the frame
- pub vbuf: Vec<u8>,
-
- /// Indicates whether this frame is a keyframe
- pub keyframe: bool,
-
- version: u8,
-
- /// Indicates whether this frame is intended for display
- pub for_display: bool,
-
- // Section 9.2
- /// The pixel type of the frame as defined by Section 9.2
- /// of the VP8 Specification
- pub pixel_type: u8,
-
- // Section 9.4 and 15
- filter_type: bool, //if true uses simple filter // if false uses normal filter
- filter_level: u8,
- sharpness_level: u8,
-}
-
-impl Frame {
- /// Chroma plane is half the size of the Luma plane
- fn chroma_width(&self) -> u16 {
- (self.width + 1) / 2
- }
-
- fn chroma_height(&self) -> u16 {
- (self.height + 1) / 2
- }
-
- /// Fills an rgb buffer with the image
- pub(crate) fn fill_rgb(&self, buf: &mut [u8]) {
- for (index, rgb_chunk) in (0..self.ybuf.len()).zip(buf.chunks_exact_mut(3)) {
- let y = index / self.width as usize;
- let x = index % self.width as usize;
- let chroma_index = self.chroma_width() as usize * (y / 2) + x / 2;
-
- Frame::fill_single(
- self.ybuf[index],
- self.ubuf[chroma_index],
- self.vbuf[chroma_index],
- rgb_chunk,
- );
- }
- }
-
- /// Fills an rgba buffer by skipping the alpha values
- pub(crate) fn fill_rgba(&self, buf: &mut [u8]) {
- for (index, rgba_chunk) in (0..self.ybuf.len()).zip(buf.chunks_exact_mut(4)) {
- let y = index / self.width as usize;
- let x = index % self.width as usize;
- let chroma_index = self.chroma_width() as usize * (y / 2) + x / 2;
-
- Frame::fill_single(
- self.ybuf[index],
- self.ubuf[chroma_index],
- self.vbuf[chroma_index],
- rgba_chunk,
- );
- }
- }
-
- /// Conversion values from https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering#converting-8-bit-yuv-to-rgb888
- fn fill_single(y: u8, u: u8, v: u8, rgb: &mut [u8]) {
- let c: i32 = i32::from(y) - 16;
- let d: i32 = i32::from(u) - 128;
- let e: i32 = i32::from(v) - 128;
-
- let r: u8 = clamp((298 * c + 409 * e + 128) >> 8, 0, 255)
- .try_into()
- .unwrap();
- let g: u8 = clamp((298 * c - 100 * d - 208 * e + 128) >> 8, 0, 255)
- .try_into()
- .unwrap();
- let b: u8 = clamp((298 * c + 516 * d + 128) >> 8, 0, 255)
- .try_into()
- .unwrap();
-
- rgb[0] = r;
- rgb[1] = g;
- rgb[2] = b;
- }
-
- /// Gets the buffer size
- pub fn get_buf_size(&self) -> usize {
- self.ybuf.len() * 3
- }
-}
-
-#[derive(Clone, Copy, Default)]
-struct Segment {
- ydc: i16,
- yac: i16,
-
- y2dc: i16,
- y2ac: i16,
-
- uvdc: i16,
- uvac: i16,
-
- delta_values: bool,
-
- quantizer_level: i8,
- loopfilter_level: i8,
-}
-
-/// VP8 Decoder
-///
-/// Only decodes keyframes
-pub struct Vp8Decoder<R> {
- r: R,
- b: BoolReader,
-
- mbwidth: u16,
- mbheight: u16,
- macroblocks: Vec<MacroBlock>,
-
- frame: Frame,
-
- segments_enabled: bool,
- segments_update_map: bool,
- segment: [Segment; MAX_SEGMENTS],
-
- ref_delta: [i32; 4],
- mode_delta: [i32; 4],
-
- partitions: [BoolReader; 8],
- num_partitions: u8,
-
- segment_tree_probs: [Prob; 3],
- token_probs: Box<TokenProbTables>,
-
- // Section 9.10
- prob_intra: Prob,
-
- // Section 9.11
- prob_skip_false: Option<Prob>,
-
- top: Vec<MacroBlock>,
- left: MacroBlock,
-
- top_border: Vec<u8>,
- left_border: Vec<u8>,
-}
-
-impl<R: Read> Vp8Decoder<R> {
- /// Create a new decoder.
- /// The reader must present a raw vp8 bitstream to the decoder
- pub fn new(r: R) -> Vp8Decoder<R> {
- let f = Frame::default();
- let s = Segment::default();
- let m = MacroBlock::default();
-
- Vp8Decoder {
- r,
- b: BoolReader::new(),
-
- mbwidth: 0,
- mbheight: 0,
- macroblocks: Vec::new(),
-
- frame: f,
- segments_enabled: false,
- segments_update_map: false,
- segment: [s; MAX_SEGMENTS],
-
- ref_delta: [0; 4],
- mode_delta: [0; 4],
-
- partitions: [
- BoolReader::new(),
- BoolReader::new(),
- BoolReader::new(),
- BoolReader::new(),
- BoolReader::new(),
- BoolReader::new(),
- BoolReader::new(),
- BoolReader::new(),
- ],
-
- num_partitions: 1,
-
- segment_tree_probs: [255u8; 3],
- token_probs: Box::new(COEFF_PROBS),
-
- // Section 9.10
- prob_intra: 0u8,
-
- // Section 9.11
- prob_skip_false: None,
-
- top: Vec::new(),
- left: m,
-
- top_border: Vec::new(),
- left_border: Vec::new(),
- }
- }
-
- fn update_token_probabilities(&mut self) {
- for (i, is) in COEFF_UPDATE_PROBS.iter().enumerate() {
- for (j, js) in is.iter().enumerate() {
- for (k, ks) in js.iter().enumerate() {
- for (t, prob) in ks.iter().enumerate().take(NUM_DCT_TOKENS - 1) {
- if self.b.read_bool(*prob) {
- let v = self.b.read_literal(8);
- self.token_probs[i][j][k][t] = v;
- }
- }
- }
- }
- }
- }
-
- fn init_partitions(&mut self, n: usize) -> ImageResult<()> {
- if n > 1 {
- let mut sizes = vec![0; 3 * n - 3];
- self.r.read_exact(sizes.as_mut_slice())?;
-
- for (i, s) in sizes.chunks(3).enumerate() {
- let size = { s }
- .read_u24::<LittleEndian>()
- .expect("Reading from &[u8] can't fail and the chunk is complete");
-
- let mut buf = vec![0; size as usize];
- self.r.read_exact(buf.as_mut_slice())?;
-
- self.partitions[i].init(buf)?;
- }
- }
-
- let mut buf = Vec::new();
- self.r.read_to_end(&mut buf)?;
- self.partitions[n - 1].init(buf)?;
-
- Ok(())
- }
-
- fn read_quantization_indices(&mut self) {
- fn dc_quant(index: i32) -> i16 {
- DC_QUANT[clamp(index, 0, 127) as usize]
- }
-
- fn ac_quant(index: i32) -> i16 {
- AC_QUANT[clamp(index, 0, 127) as usize]
- }
-
- let yac_abs = self.b.read_literal(7);
- let ydc_delta = if self.b.read_flag() {
- self.b.read_magnitude_and_sign(4)
- } else {
- 0
- };
-
- let y2dc_delta = if self.b.read_flag() {
- self.b.read_magnitude_and_sign(4)
- } else {
- 0
- };
-
- let y2ac_delta = if self.b.read_flag() {
- self.b.read_magnitude_and_sign(4)
- } else {
- 0
- };
-
- let uvdc_delta = if self.b.read_flag() {
- self.b.read_magnitude_and_sign(4)
- } else {
- 0
- };
-
- let uvac_delta = if self.b.read_flag() {
- self.b.read_magnitude_and_sign(4)
- } else {
- 0
- };
-
- let n = if self.segments_enabled {
- MAX_SEGMENTS
- } else {
- 1
- };
- for i in 0usize..n {
- let base = i32::from(if !self.segment[i].delta_values {
- i16::from(self.segment[i].quantizer_level)
- } else {
- i16::from(self.segment[i].quantizer_level) + i16::from(yac_abs)
- });
-
- self.segment[i].ydc = dc_quant(base + ydc_delta);
- self.segment[i].yac = ac_quant(base);
-
- self.segment[i].y2dc = dc_quant(base + y2dc_delta) * 2;
- // The intermediate result (max`284*155`) can be larger than the `i16` range.
- self.segment[i].y2ac = (i32::from(ac_quant(base + y2ac_delta)) * 155 / 100) as i16;
-
- self.segment[i].uvdc = dc_quant(base + uvdc_delta);
- self.segment[i].uvac = ac_quant(base + uvac_delta);
-
- if self.segment[i].y2ac < 8 {
- self.segment[i].y2ac = 8;
- }
-
- if self.segment[i].uvdc > 132 {
- self.segment[i].uvdc = 132;
- }
- }
- }
-
- fn read_loop_filter_adjustments(&mut self) {
- if self.b.read_flag() {
- for i in 0usize..4 {
- let ref_frame_delta_update_flag = self.b.read_flag();
-
- self.ref_delta[i] = if ref_frame_delta_update_flag {
- self.b.read_magnitude_and_sign(6)
- } else {
- 0i32
- };
- }
-
- for i in 0usize..4 {
- let mb_mode_delta_update_flag = self.b.read_flag();
-
- self.mode_delta[i] = if mb_mode_delta_update_flag {
- self.b.read_magnitude_and_sign(6)
- } else {
- 0i32
- };
- }
- }
- }
-
- fn read_segment_updates(&mut self) {
- // Section 9.3
- self.segments_update_map = self.b.read_flag();
- let update_segment_feature_data = self.b.read_flag();
-
- if update_segment_feature_data {
- let segment_feature_mode = self.b.read_flag();
-
- for i in 0usize..MAX_SEGMENTS {
- self.segment[i].delta_values = !segment_feature_mode;
- }
-
- for i in 0usize..MAX_SEGMENTS {
- let update = self.b.read_flag();
-
- self.segment[i].quantizer_level = if update {
- self.b.read_magnitude_and_sign(7)
- } else {
- 0i32
- } as i8;
- }
-
- for i in 0usize..MAX_SEGMENTS {
- let update = self.b.read_flag();
-
- self.segment[i].loopfilter_level = if update {
- self.b.read_magnitude_and_sign(6)
- } else {
- 0i32
- } as i8;
- }
- }
-
- if self.segments_update_map {
- for i in 0usize..3 {
- let update = self.b.read_flag();
-
- self.segment_tree_probs[i] = if update { self.b.read_literal(8) } else { 255 };
- }
- }
- }
-
- fn read_frame_header(&mut self) -> ImageResult<()> {
- let tag = self.r.read_u24::<LittleEndian>()?;
-
- self.frame.keyframe = tag & 1 == 0;
- self.frame.version = ((tag >> 1) & 7) as u8;
- self.frame.for_display = (tag >> 4) & 1 != 0;
-
- let first_partition_size = tag >> 5;
-
- if self.frame.keyframe {
- let mut tag = [0u8; 3];
- self.r.read_exact(&mut tag)?;
-
- if tag != [0x9d, 0x01, 0x2a] {
- return Err(DecoderError::Vp8MagicInvalid(tag).into());
- }
-
- let w = self.r.read_u16::<LittleEndian>()?;
- let h = self.r.read_u16::<LittleEndian>()?;
-
- self.frame.width = w & 0x3FFF;
- self.frame.height = h & 0x3FFF;
-
- self.top = init_top_macroblocks(self.frame.width as usize);
- // Almost always the first macro block, except when non exists (i.e. `width == 0`)
- self.left = self.top.get(0).cloned().unwrap_or_default();
-
- self.mbwidth = (self.frame.width + 15) / 16;
- self.mbheight = (self.frame.height + 15) / 16;
-
- self.frame.ybuf = vec![0u8; self.frame.width as usize * self.frame.height as usize];
- self.frame.ubuf =
- vec![0u8; self.frame.chroma_width() as usize * self.frame.chroma_height() as usize];
- self.frame.vbuf =
- vec![0u8; self.frame.chroma_width() as usize * self.frame.chroma_height() as usize];
-
- self.top_border = vec![127u8; self.frame.width as usize + 4 + 16];
- self.left_border = vec![129u8; 1 + 16];
- }
-
- let mut buf = vec![0; first_partition_size as usize];
- self.r.read_exact(&mut buf)?;
-
- // initialise binary decoder
- self.b.init(buf)?;
-
- if self.frame.keyframe {
- let color_space = self.b.read_literal(1);
- self.frame.pixel_type = self.b.read_literal(1);
-
- if color_space != 0 {
- return Err(DecoderError::ColorSpaceInvalid(color_space).into());
- }
- }
-
- self.segments_enabled = self.b.read_flag();
- if self.segments_enabled {
- self.read_segment_updates();
- }
-
- self.frame.filter_type = self.b.read_flag();
- self.frame.filter_level = self.b.read_literal(6);
- self.frame.sharpness_level = self.b.read_literal(3);
-
- let lf_adjust_enable = self.b.read_flag();
- if lf_adjust_enable {
- self.read_loop_filter_adjustments();
- }
-
- self.num_partitions = (1usize << self.b.read_literal(2) as usize) as u8;
- let num_partitions = self.num_partitions as usize;
- self.init_partitions(num_partitions)?;
-
- self.read_quantization_indices();
-
- if !self.frame.keyframe {
- // 9.7 refresh golden frame and altref frame
- // FIXME: support this?
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::WebP.into(),
- UnsupportedErrorKind::GenericFeature("Non-keyframe frames".to_owned()),
- ),
- ));
- } else {
- // Refresh entropy probs ?????
- let _ = self.b.read_literal(1);
- }
-
- self.update_token_probabilities();
-
- let mb_no_skip_coeff = self.b.read_literal(1);
- self.prob_skip_false = if mb_no_skip_coeff == 1 {
- Some(self.b.read_literal(8))
- } else {
- None
- };
-
- if !self.frame.keyframe {
- // 9.10 remaining frame data
- self.prob_intra = 0;
-
- // FIXME: support this?
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::WebP.into(),
- UnsupportedErrorKind::GenericFeature("Non-keyframe frames".to_owned()),
- ),
- ));
- } else {
- // Reset motion vectors
- }
-
- Ok(())
- }
-
- fn read_macroblock_header(&mut self, mbx: usize) -> ImageResult<MacroBlock> {
- let mut mb = MacroBlock::default();
-
- if self.segments_enabled && self.segments_update_map {
- mb.segmentid = self
- .b
- .read_with_tree(&SEGMENT_ID_TREE, &self.segment_tree_probs, 0)
- as u8;
- };
-
- mb.coeffs_skipped = if self.prob_skip_false.is_some() {
- self.b.read_bool(*self.prob_skip_false.as_ref().unwrap())
- } else {
- false
- };
-
- let inter_predicted = if !self.frame.keyframe {
- self.b.read_bool(self.prob_intra)
- } else {
- false
- };
-
- if inter_predicted {
- return Err(ImageError::Unsupported(
- UnsupportedError::from_format_and_kind(
- ImageFormat::WebP.into(),
- UnsupportedErrorKind::GenericFeature("VP8 inter-prediction".to_owned()),
- ),
- ));
- }
-
- if self.frame.keyframe {
- // intra prediction
- let luma = self
- .b
- .read_with_tree(&KEYFRAME_YMODE_TREE, &KEYFRAME_YMODE_PROBS, 0);
- mb.luma_mode =
- LumaMode::from_i8(luma).ok_or(DecoderError::LumaPredictionModeInvalid(luma))?;
-
- match mb.luma_mode.into_intra() {
- // `LumaMode::B` - This is predicted individually
- None => {
- for y in 0usize..4 {
- for x in 0usize..4 {
- let top = self.top[mbx].bpred[12 + x];
- let left = self.left.bpred[y];
- let intra = self.b.read_with_tree(
- &KEYFRAME_BPRED_MODE_TREE,
- &KEYFRAME_BPRED_MODE_PROBS[top as usize][left as usize],
- 0,
- );
- let bmode = IntraMode::from_i8(intra)
- .ok_or(DecoderError::IntraPredictionModeInvalid(intra))?;
- mb.bpred[x + y * 4] = bmode;
-
- self.top[mbx].bpred[12 + x] = bmode;
- self.left.bpred[y] = bmode;
- }
- }
- }
- Some(mode) => {
- for i in 0usize..4 {
- mb.bpred[12 + i] = mode;
- self.left.bpred[i] = mode;
- }
- }
- }
-
- let chroma = self
- .b
- .read_with_tree(&KEYFRAME_UV_MODE_TREE, &KEYFRAME_UV_MODE_PROBS, 0);
- mb.chroma_mode = ChromaMode::from_i8(chroma)
- .ok_or(DecoderError::ChromaPredictionModeInvalid(chroma))?;
- }
-
- self.top[mbx].chroma_mode = mb.chroma_mode;
- self.top[mbx].luma_mode = mb.luma_mode;
- self.top[mbx].bpred = mb.bpred;
-
- Ok(mb)
- }
-
- fn intra_predict_luma(&mut self, mbx: usize, mby: usize, mb: &MacroBlock, resdata: &[i32]) {
- let stride = 1usize + 16 + 4;
- let w = self.frame.width as usize;
- let mw = self.mbwidth as usize;
- let mut ws = create_border_luma(mbx, mby, mw, &self.top_border, &self.left_border);
-
- match mb.luma_mode {
- LumaMode::V => predict_vpred(&mut ws, 16, 1, 1, stride),
- LumaMode::H => predict_hpred(&mut ws, 16, 1, 1, stride),
- LumaMode::TM => predict_tmpred(&mut ws, 16, 1, 1, stride),
- LumaMode::DC => predict_dcpred(&mut ws, 16, stride, mby != 0, mbx != 0),
- LumaMode::B => predict_4x4(&mut ws, stride, &mb.bpred, resdata),
- }
-
- if mb.luma_mode != LumaMode::B {
- for y in 0usize..4 {
- for x in 0usize..4 {
- let i = x + y * 4;
- // Create a reference to a [i32; 16] array for add_residue (slices of size 16 do not work).
- let rb: &[i32; 16] = resdata[i * 16..][..16].try_into().unwrap();
- let y0 = 1 + y * 4;
- let x0 = 1 + x * 4;
-
- add_residue(&mut ws, rb, y0, x0, stride);
- }
- }
- }
-
- self.left_border[0] = ws[16];
-
- for i in 0usize..16 {
- self.top_border[mbx * 16 + i] = ws[16 * stride + 1 + i];
- self.left_border[i + 1] = ws[(i + 1) * stride + 16];
- }
-
- // Length is the remainder to the border, but maximally the current chunk.
- let ylength = cmp::min(self.frame.height as usize - mby * 16, 16);
- let xlength = cmp::min(self.frame.width as usize - mbx * 16, 16);
-
- for y in 0usize..ylength {
- for x in 0usize..xlength {
- self.frame.ybuf[(mby * 16 + y) * w + mbx * 16 + x] = ws[(1 + y) * stride + 1 + x];
- }
- }
- }
-
- fn intra_predict_chroma(&mut self, mbx: usize, mby: usize, mb: &MacroBlock, resdata: &[i32]) {
- let stride = 1usize + 8;
-
- let w = self.frame.chroma_width() as usize;
-
- //8x8 with left top border of 1
- let mut uws = [0u8; (8 + 1) * (8 + 1)];
- let mut vws = [0u8; (8 + 1) * (8 + 1)];
-
- let ylength = cmp::min(self.frame.chroma_height() as usize - mby * 8, 8);
- let xlength = cmp::min(self.frame.chroma_width() as usize - mbx * 8, 8);
-
- //left border
- for y in 0usize..8 {
- let (uy, vy) = if mbx == 0 || y >= ylength {
- (129, 129)
- } else {
- let index = (mby * 8 + y) * w + ((mbx - 1) * 8 + 7);
- (self.frame.ubuf[index], self.frame.vbuf[index])
- };
-
- uws[(y + 1) * stride] = uy;
- vws[(y + 1) * stride] = vy;
- }
- //top border
- for x in 0usize..8 {
- let (ux, vx) = if mby == 0 || x >= xlength {
- (127, 127)
- } else {
- let index = ((mby - 1) * 8 + 7) * w + (mbx * 8 + x);
- (self.frame.ubuf[index], self.frame.vbuf[index])
- };
-
- uws[x + 1] = ux;
- vws[x + 1] = vx;
- }
-
- //top left point
- let (u1, v1) = if mby == 0 {
- (127, 127)
- } else if mbx == 0 {
- (129, 129)
- } else {
- let index = ((mby - 1) * 8 + 7) * w + (mbx - 1) * 8 + 7;
- if index >= self.frame.ubuf.len() {
- (127, 127)
- } else {
- (self.frame.ubuf[index], self.frame.vbuf[index])
- }
- };
-
- uws[0] = u1;
- vws[0] = v1;
-
- match mb.chroma_mode {
- ChromaMode::DC => {
- predict_dcpred(&mut uws, 8, stride, mby != 0, mbx != 0);
- predict_dcpred(&mut vws, 8, stride, mby != 0, mbx != 0);
- }
- ChromaMode::V => {
- predict_vpred(&mut uws, 8, 1, 1, stride);
- predict_vpred(&mut vws, 8, 1, 1, stride);
- }
- ChromaMode::H => {
- predict_hpred(&mut uws, 8, 1, 1, stride);
- predict_hpred(&mut vws, 8, 1, 1, stride);
- }
- ChromaMode::TM => {
- predict_tmpred(&mut uws, 8, 1, 1, stride);
- predict_tmpred(&mut vws, 8, 1, 1, stride);
- }
- }
-
- for y in 0usize..2 {
- for x in 0usize..2 {
- let i = x + y * 2;
- let urb: &[i32; 16] = resdata[16 * 16 + i * 16..][..16].try_into().unwrap();
-
- let y0 = 1 + y * 4;
- let x0 = 1 + x * 4;
- add_residue(&mut uws, urb, y0, x0, stride);
-
- let vrb: &[i32; 16] = resdata[20 * 16 + i * 16..][..16].try_into().unwrap();
-
- add_residue(&mut vws, vrb, y0, x0, stride);
- }
- }
-
- for y in 0usize..ylength {
- for x in 0usize..xlength {
- self.frame.ubuf[(mby * 8 + y) * w + mbx * 8 + x] = uws[(1 + y) * stride + 1 + x];
- self.frame.vbuf[(mby * 8 + y) * w + mbx * 8 + x] = vws[(1 + y) * stride + 1 + x];
- }
- }
- }
-
- fn read_coefficients(
- &mut self,
- block: &mut [i32],
- p: usize,
- plane: usize,
- complexity: usize,
- dcq: i16,
- acq: i16,
- ) -> bool {
- let first = if plane == 0 { 1usize } else { 0usize };
- let probs = &self.token_probs[plane];
- let tree = &DCT_TOKEN_TREE;
-
- let mut complexity = complexity;
- let mut has_coefficients = false;
- let mut skip = false;
-
- for i in first..16usize {
- let table = &probs[COEFF_BANDS[i] as usize][complexity];
-
- let token = if !skip {
- self.partitions[p].read_with_tree(tree, table, 0)
- } else {
- self.partitions[p].read_with_tree(tree, table, 2)
- };
-
- let mut abs_value = i32::from(match token {
- DCT_EOB => break,
-
- DCT_0 => {
- skip = true;
- has_coefficients = true;
- complexity = 0;
- continue;
- }
-
- literal @ DCT_1..=DCT_4 => i16::from(literal),
-
- category @ DCT_CAT1..=DCT_CAT6 => {
- let t = PROB_DCT_CAT[(category - DCT_CAT1) as usize];
-
- let mut extra = 0i16;
- let mut j = 0;
-
- while t[j] > 0 {
- extra = extra + extra + self.partitions[p].read_bool(t[j]) as i16;
- j += 1;
- }
-
- i16::from(DCT_CAT_BASE[(category - DCT_CAT1) as usize]) + extra
- }
-
- c => panic!("unknown token: {}", c),
- });
-
- skip = false;
-
- complexity = if abs_value == 0 {
- 0
- } else if abs_value == 1 {
- 1
- } else {
- 2
- };
-
- if self.partitions[p].read_bool(128) {
- abs_value = -abs_value;
- }
-
- block[ZIGZAG[i] as usize] =
- abs_value * i32::from(if ZIGZAG[i] > 0 { acq } else { dcq });
-
- has_coefficients = true;
- }
-
- has_coefficients
- }
-
- fn read_residual_data(&mut self, mb: &MacroBlock, mbx: usize, p: usize) -> [i32; 384] {
- let sindex = mb.segmentid as usize;
- let mut blocks = [0i32; 384];
- let mut plane = if mb.luma_mode == LumaMode::B { 3 } else { 1 };
-
- if plane == 1 {
- let complexity = self.top[mbx].complexity[0] + self.left.complexity[0];
- let mut block = [0i32; 16];
- let dcq = self.segment[sindex].y2dc;
- let acq = self.segment[sindex].y2ac;
- let n = self.read_coefficients(&mut block, p, plane, complexity as usize, dcq, acq);
-
- self.left.complexity[0] = if n { 1 } else { 0 };
- self.top[mbx].complexity[0] = if n { 1 } else { 0 };
-
- transform::iwht4x4(&mut block);
-
- for k in 0usize..16 {
- blocks[16 * k] = block[k];
- }
-
- plane = 0;
- }
-
- for y in 0usize..4 {
- let mut left = self.left.complexity[y + 1];
- for x in 0usize..4 {
- let i = x + y * 4;
- let block = &mut blocks[i * 16..i * 16 + 16];
-
- let complexity = self.top[mbx].complexity[x + 1] + left;
- let dcq = self.segment[sindex].ydc;
- let acq = self.segment[sindex].yac;
-
- let n = self.read_coefficients(block, p, plane, complexity as usize, dcq, acq);
-
- if block[0] != 0 || n {
- transform::idct4x4(block);
- }
-
- left = if n { 1 } else { 0 };
- self.top[mbx].complexity[x + 1] = if n { 1 } else { 0 };
- }
-
- self.left.complexity[y + 1] = left;
- }
-
- plane = 2;
-
- for &j in &[5usize, 7usize] {
- for y in 0usize..2 {
- let mut left = self.left.complexity[y + j];
-
- for x in 0usize..2 {
- let i = x + y * 2 + if j == 5 { 16 } else { 20 };
- let block = &mut blocks[i * 16..i * 16 + 16];
-
- let complexity = self.top[mbx].complexity[x + j] + left;
- let dcq = self.segment[sindex].uvdc;
- let acq = self.segment[sindex].uvac;
-
- let n = self.read_coefficients(block, p, plane, complexity as usize, dcq, acq);
- if block[0] != 0 || n {
- transform::idct4x4(block);
- }
-
- left = if n { 1 } else { 0 };
- self.top[mbx].complexity[x + j] = if n { 1 } else { 0 };
- }
-
- self.left.complexity[y + j] = left;
- }
- }
-
- blocks
- }
-
- /// Does loop filtering on the macroblock
- fn loop_filter(&mut self, mbx: usize, mby: usize, mb: &MacroBlock) {
- let luma_w = self.frame.width as usize;
- let luma_h = self.frame.height as usize;
- let chroma_w = self.frame.chroma_width() as usize;
- let chroma_h = self.frame.chroma_height() as usize;
-
- let (filter_level, interior_limit, hev_threshold) = self.calculate_filter_parameters(mb);
-
- if filter_level > 0 {
- let mbedge_limit = (filter_level + 2) * 2 + interior_limit;
- let sub_bedge_limit = (filter_level * 2) + interior_limit;
-
- let luma_ylength = cmp::min(luma_h - 16 * mby, 16);
- let luma_xlength = cmp::min(luma_w - 16 * mbx, 16);
-
- let chroma_ylength = cmp::min(chroma_h - 8 * mby, 8);
- let chroma_xlength = cmp::min(chroma_w - 8 * mbx, 8);
-
- //filter across left of macroblock
- if mbx > 0 {
- //simple loop filtering
- if self.frame.filter_type {
- if luma_xlength >= 2 {
- for y in 0usize..luma_ylength {
- let y0 = mby * 16 + y;
- let x0 = mbx * 16;
-
- loop_filter::simple_segment(
- mbedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- 1,
- );
- }
- }
- } else {
- if luma_xlength >= 4 {
- for y in 0usize..luma_ylength {
- let y0 = mby * 16 + y;
- let x0 = mbx * 16;
-
- loop_filter::macroblock_filter(
- hev_threshold,
- interior_limit,
- mbedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- 1,
- );
- }
- }
-
- if chroma_xlength >= 4 {
- for y in 0usize..chroma_ylength {
- let y0 = mby * 8 + y;
- let x0 = mbx * 8;
-
- loop_filter::macroblock_filter(
- hev_threshold,
- interior_limit,
- mbedge_limit,
- &mut self.frame.ubuf[..],
- y0 * chroma_w + x0,
- 1,
- );
- loop_filter::macroblock_filter(
- hev_threshold,
- interior_limit,
- mbedge_limit,
- &mut self.frame.vbuf[..],
- y0 * chroma_w + x0,
- 1,
- );
- }
- }
- }
- }
-
- //filter across vertical subblocks in macroblock
- if mb.luma_mode == LumaMode::B || !mb.coeffs_skipped {
- if self.frame.filter_type {
- for x in (4usize..luma_xlength - 1).step_by(4) {
- for y in 0..luma_ylength {
- let y0 = mby * 16 + y;
- let x0 = mbx * 16 + x;
-
- loop_filter::simple_segment(
- sub_bedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- 1,
- );
- }
- }
- } else {
- if luma_xlength > 3 {
- for x in (4usize..luma_xlength - 3).step_by(4) {
- for y in 0..luma_ylength {
- let y0 = mby * 16 + y;
- let x0 = mbx * 16 + x;
-
- loop_filter::subblock_filter(
- hev_threshold,
- interior_limit,
- sub_bedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- 1,
- );
- }
- }
- }
-
- if chroma_xlength == 8 {
- for y in 0usize..chroma_ylength {
- let y0 = mby * 8 + y;
- let x0 = mbx * 8 + 4;
-
- loop_filter::subblock_filter(
- hev_threshold,
- interior_limit,
- sub_bedge_limit,
- &mut self.frame.ubuf[..],
- y0 * chroma_w + x0,
- 1,
- );
-
- loop_filter::subblock_filter(
- hev_threshold,
- interior_limit,
- sub_bedge_limit,
- &mut self.frame.vbuf[..],
- y0 * chroma_w + x0,
- 1,
- );
- }
- }
- }
- }
-
- //filter across top of macroblock
- if mby > 0 {
- if self.frame.filter_type {
- if luma_ylength >= 2 {
- for x in 0usize..luma_xlength {
- let y0 = mby * 16;
- let x0 = mbx * 16 + x;
-
- loop_filter::simple_segment(
- mbedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- luma_w,
- );
- }
- }
- } else {
- //if bottom macroblock, can only filter if there is 3 pixels below
- if luma_ylength >= 4 {
- for x in 0usize..luma_xlength {
- let y0 = mby * 16;
- let x0 = mbx * 16 + x;
-
- loop_filter::macroblock_filter(
- hev_threshold,
- interior_limit,
- mbedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- luma_w,
- );
- }
- }
-
- if chroma_ylength >= 4 {
- for x in 0usize..chroma_xlength {
- let y0 = mby * 8;
- let x0 = mbx * 8 + x;
-
- loop_filter::macroblock_filter(
- hev_threshold,
- interior_limit,
- mbedge_limit,
- &mut self.frame.ubuf[..],
- y0 * chroma_w + x0,
- chroma_w,
- );
- loop_filter::macroblock_filter(
- hev_threshold,
- interior_limit,
- mbedge_limit,
- &mut self.frame.vbuf[..],
- y0 * chroma_w + x0,
- chroma_w,
- );
- }
- }
- }
- }
-
- //filter across horizontal subblock edges within the macroblock
- if mb.luma_mode == LumaMode::B || !mb.coeffs_skipped {
- if self.frame.filter_type {
- for y in (4usize..luma_ylength - 1).step_by(4) {
- for x in 0..luma_xlength {
- let y0 = mby * 16 + y;
- let x0 = mbx * 16 + x;
-
- loop_filter::simple_segment(
- sub_bedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- luma_w,
- );
- }
- }
- } else {
- if luma_ylength > 3 {
- for y in (4usize..luma_ylength - 3).step_by(4) {
- for x in 0..luma_xlength {
- let y0 = mby * 16 + y;
- let x0 = mbx * 16 + x;
-
- loop_filter::subblock_filter(
- hev_threshold,
- interior_limit,
- sub_bedge_limit,
- &mut self.frame.ybuf[..],
- y0 * luma_w + x0,
- luma_w,
- );
- }
- }
- }
-
- if chroma_ylength == 8 {
- for x in 0..chroma_xlength {
- let y0 = mby * 8 + 4;
- let x0 = mbx * 8 + x;
-
- loop_filter::subblock_filter(
- hev_threshold,
- interior_limit,
- sub_bedge_limit,
- &mut self.frame.ubuf[..],
- y0 * chroma_w + x0,
- chroma_w,
- );
-
- loop_filter::subblock_filter(
- hev_threshold,
- interior_limit,
- sub_bedge_limit,
- &mut self.frame.vbuf[..],
- y0 * chroma_w + x0,
- chroma_w,
- );
- }
- }
- }
- }
- }
- }
-
- //return values are the filter level, interior limit and hev threshold
- fn calculate_filter_parameters(&self, macroblock: &MacroBlock) -> (u8, u8, u8) {
- let segment = self.segment[macroblock.segmentid as usize];
- let mut filter_level = self.frame.filter_level as i32;
-
- if self.segments_enabled {
- if segment.delta_values {
- filter_level += i32::from(segment.loopfilter_level);
- } else {
- filter_level = i32::from(segment.loopfilter_level);
- }
- }
-
- filter_level = clamp(filter_level, 0, 63);
-
- if macroblock.luma_mode == LumaMode::B {
- filter_level += self.mode_delta[0];
- }
-
- let filter_level = clamp(filter_level, 0, 63) as u8;
-
- //interior limit
- let mut interior_limit = filter_level;
-
- if self.frame.sharpness_level > 0 {
- interior_limit >>= if self.frame.sharpness_level > 4 { 2 } else { 1 };
-
- if interior_limit > 9 - self.frame.sharpness_level {
- interior_limit = 9 - self.frame.sharpness_level;
- }
- }
-
- if interior_limit == 0 {
- interior_limit = 1;
- }
-
- //high edge variance threshold
- let mut hev_threshold = 0;
-
- #[allow(clippy::collapsible_else_if)]
- if self.frame.keyframe {
- if filter_level >= 40 {
- hev_threshold = 2;
- } else {
- hev_threshold = 1;
- }
- } else {
- if filter_level >= 40 {
- hev_threshold = 3;
- } else if filter_level >= 20 {
- hev_threshold = 2;
- } else if filter_level >= 15 {
- hev_threshold = 1;
- }
- }
-
- (filter_level, interior_limit, hev_threshold)
- }
-
- /// Decodes the current frame
- pub fn decode_frame(&mut self) -> ImageResult<&Frame> {
- self.read_frame_header()?;
-
- for mby in 0..self.mbheight as usize {
- let p = mby % self.num_partitions as usize;
- self.left = MacroBlock::default();
-
- for mbx in 0..self.mbwidth as usize {
- let mb = self.read_macroblock_header(mbx)?;
- let blocks = if !mb.coeffs_skipped {
- self.read_residual_data(&mb, mbx, p)
- } else {
- if mb.luma_mode != LumaMode::B {
- self.left.complexity[0] = 0;
- self.top[mbx].complexity[0] = 0;
- }
-
- for i in 1usize..9 {
- self.left.complexity[i] = 0;
- self.top[mbx].complexity[i] = 0;
- }
-
- [0i32; 384]
- };
-
- self.intra_predict_luma(mbx, mby, &mb, &blocks);
- self.intra_predict_chroma(mbx, mby, &mb, &blocks);
-
- self.macroblocks.push(mb);
- }
-
- self.left_border = vec![129u8; 1 + 16];
- }
-
- //do loop filtering
- for mby in 0..self.mbheight as usize {
- for mbx in 0..self.mbwidth as usize {
- let mb = self.macroblocks[mby * self.mbwidth as usize + mbx];
- self.loop_filter(mbx, mby, &mb);
- }
- }
-
- Ok(&self.frame)
- }
-}
-
-impl LumaMode {
- fn from_i8(val: i8) -> Option<Self> {
- Some(match val {
- DC_PRED => LumaMode::DC,
- V_PRED => LumaMode::V,
- H_PRED => LumaMode::H,
- TM_PRED => LumaMode::TM,
- B_PRED => LumaMode::B,
- _ => return None,
- })
- }
-
- fn into_intra(self) -> Option<IntraMode> {
- Some(match self {
- LumaMode::DC => IntraMode::DC,
- LumaMode::V => IntraMode::VE,
- LumaMode::H => IntraMode::HE,
- LumaMode::TM => IntraMode::TM,
- LumaMode::B => return None,
- })
- }
-}
-
-impl Default for LumaMode {
- fn default() -> Self {
- LumaMode::DC
- }
-}
-
-impl ChromaMode {
- fn from_i8(val: i8) -> Option<Self> {
- Some(match val {
- DC_PRED => ChromaMode::DC,
- V_PRED => ChromaMode::V,
- H_PRED => ChromaMode::H,
- TM_PRED => ChromaMode::TM,
- _ => return None,
- })
- }
-}
-
-impl Default for ChromaMode {
- fn default() -> Self {
- ChromaMode::DC
- }
-}
-
-impl IntraMode {
- fn from_i8(val: i8) -> Option<Self> {
- Some(match val {
- B_DC_PRED => IntraMode::DC,
- B_TM_PRED => IntraMode::TM,
- B_VE_PRED => IntraMode::VE,
- B_HE_PRED => IntraMode::HE,
- B_LD_PRED => IntraMode::LD,
- B_RD_PRED => IntraMode::RD,
- B_VR_PRED => IntraMode::VR,
- B_VL_PRED => IntraMode::VL,
- B_HD_PRED => IntraMode::HD,
- B_HU_PRED => IntraMode::HU,
- _ => return None,
- })
- }
-}
-
-impl Default for IntraMode {
- fn default() -> Self {
- IntraMode::DC
- }
-}
-
-fn init_top_macroblocks(width: usize) -> Vec<MacroBlock> {
- let mb_width = (width + 15) / 16;
-
- let mb = MacroBlock {
- // Section 11.3 #3
- bpred: [IntraMode::DC; 16],
- luma_mode: LumaMode::DC,
- ..MacroBlock::default()
- };
-
- vec![mb; mb_width]
-}
-
-fn create_border_luma(mbx: usize, mby: usize, mbw: usize, top: &[u8], left: &[u8]) -> [u8; 357] {
- let stride = 1usize + 16 + 4;
- let mut ws = [0u8; (1 + 16) * (1 + 16 + 4)];
-
- // A
- {
- let above = &mut ws[1..stride];
- if mby == 0 {
- for above in above.iter_mut() {
- *above = 127;
- }
- } else {
- for i in 0usize..16 {
- above[i] = top[mbx * 16 + i];
- }
-
- if mbx == mbw - 1 {
- for above in above.iter_mut().skip(16) {
- *above = top[mbx * 16 + 15];
- }
- } else {
- for i in 16usize..above.len() {
- above[i] = top[mbx * 16 + i];
- }
- }
- }
- }
-
- for i in 17usize..stride {
- ws[4 * stride + i] = ws[i];
- ws[8 * stride + i] = ws[i];
- ws[12 * stride + i] = ws[i];
- }
-
- // L
- if mbx == 0 {
- for i in 0usize..16 {
- ws[(i + 1) * stride] = 129;
- }
- } else {
- for i in 0usize..16 {
- ws[(i + 1) * stride] = left[i + 1];
- }
- }
-
- // P
- ws[0] = if mby == 0 {
- 127
- } else if mbx == 0 {
- 129
- } else {
- left[0]
- };
-
- ws
-}
-
-fn avg3(left: u8, this: u8, right: u8) -> u8 {
- let avg = (u16::from(left) + 2 * u16::from(this) + u16::from(right) + 2) >> 2;
- avg as u8
-}
-
-fn avg2(this: u8, right: u8) -> u8 {
- let avg = (u16::from(this) + u16::from(right) + 1) >> 1;
- avg as u8
-}
-
-// Only 16 elements from rblock are used to add residue, so it is restricted to 16 elements
-// to enable SIMD and other optimizations.
-fn add_residue(pblock: &mut [u8], rblock: &[i32; 16], y0: usize, x0: usize, stride: usize) {
- let mut pos = y0 * stride + x0;
- for row in rblock.chunks(4) {
- for (p, &a) in pblock[pos..pos + 4].iter_mut().zip(row.iter()) {
- *p = clamp(a + i32::from(*p), 0, 255) as u8;
- }
- pos += stride;
- }
-}
-
-fn predict_4x4(ws: &mut [u8], stride: usize, modes: &[IntraMode], resdata: &[i32]) {
- for sby in 0usize..4 {
- for sbx in 0usize..4 {
- let i = sbx + sby * 4;
- let y0 = sby * 4 + 1;
- let x0 = sbx * 4 + 1;
-
- match modes[i] {
- IntraMode::TM => predict_tmpred(ws, 4, x0, y0, stride),
- IntraMode::VE => predict_bvepred(ws, x0, y0, stride),
- IntraMode::HE => predict_bhepred(ws, x0, y0, stride),
- IntraMode::DC => predict_bdcpred(ws, x0, y0, stride),
- IntraMode::LD => predict_bldpred(ws, x0, y0, stride),
- IntraMode::RD => predict_brdpred(ws, x0, y0, stride),
- IntraMode::VR => predict_bvrpred(ws, x0, y0, stride),
- IntraMode::VL => predict_bvlpred(ws, x0, y0, stride),
- IntraMode::HD => predict_bhdpred(ws, x0, y0, stride),
- IntraMode::HU => predict_bhupred(ws, x0, y0, stride),
- }
-
- let rb: &[i32; 16] = resdata[i * 16..][..16].try_into().unwrap();
- add_residue(ws, rb, y0, x0, stride);
- }
- }
-}
-
-fn predict_vpred(a: &mut [u8], size: usize, x0: usize, y0: usize, stride: usize) {
- for y in 0usize..size {
- for x in 0usize..size {
- a[(x + x0) + stride * (y + y0)] = a[(x + x0) + stride * (y0 + y - 1)];
- }
- }
-}
-
-fn predict_hpred(a: &mut [u8], size: usize, x0: usize, y0: usize, stride: usize) {
- for y in 0usize..size {
- for x in 0usize..size {
- a[(x + x0) + stride * (y + y0)] = a[(x + x0 - 1) + stride * (y0 + y)];
- }
- }
-}
-
-fn predict_dcpred(a: &mut [u8], size: usize, stride: usize, above: bool, left: bool) {
- let mut sum = 0;
- let mut shf = if size == 8 { 2 } else { 3 };
-
- if left {
- for y in 0usize..size {
- sum += u32::from(a[(y + 1) * stride]);
- }
-
- shf += 1;
- }
-
- if above {
- for x in 0usize..size {
- sum += u32::from(a[x + 1]);
- }
-
- shf += 1;
- }
-
- let dcval = if !left && !above {
- 128
- } else {
- (sum + (1 << (shf - 1))) >> shf
- };
-
- for y in 0usize..size {
- for x in 0usize..size {
- a[(x + 1) + stride * (y + 1)] = dcval as u8;
- }
- }
-}
-
-fn predict_tmpred(a: &mut [u8], size: usize, x0: usize, y0: usize, stride: usize) {
- for y in 0usize..size {
- for x in 0usize..size {
- let pred = i32::from(a[(y0 + y) * stride + x0 - 1])
- + i32::from(a[(y0 - 1) * stride + x0 + x])
- - i32::from(a[(y0 - 1) * stride + x0 - 1]);
-
- a[(x + x0) + stride * (y + y0)] = clamp(pred, 0, 255) as u8;
- }
- }
-}
-
-fn predict_bdcpred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let mut v = 4;
- for i in 0usize..4 {
- v += u32::from(a[(y0 + i) * stride + x0 - 1]) + u32::from(a[(y0 - 1) * stride + x0 + i]);
- }
-
- v >>= 3;
- for y in 0usize..4 {
- for x in 0usize..4 {
- a[x + x0 + stride * (y + y0)] = v as u8;
- }
- }
-}
-
-fn topleft_pixel(a: &[u8], x0: usize, y0: usize, stride: usize) -> u8 {
- a[(y0 - 1) * stride + x0 - 1]
-}
-
-fn top_pixels(a: &[u8], x0: usize, y0: usize, stride: usize) -> (u8, u8, u8, u8, u8, u8, u8, u8) {
- let pos = (y0 - 1) * stride + x0;
- let a_slice = &a[pos..pos + 8];
- let a0 = a_slice[0];
- let a1 = a_slice[1];
- let a2 = a_slice[2];
- let a3 = a_slice[3];
- let a4 = a_slice[4];
- let a5 = a_slice[5];
- let a6 = a_slice[6];
- let a7 = a_slice[7];
-
- (a0, a1, a2, a3, a4, a5, a6, a7)
-}
-
-fn left_pixels(a: &[u8], x0: usize, y0: usize, stride: usize) -> (u8, u8, u8, u8) {
- let l0 = a[y0 * stride + x0 - 1];
- let l1 = a[(y0 + 1) * stride + x0 - 1];
- let l2 = a[(y0 + 2) * stride + x0 - 1];
- let l3 = a[(y0 + 3) * stride + x0 - 1];
-
- (l0, l1, l2, l3)
-}
-
-fn edge_pixels(
- a: &[u8],
- x0: usize,
- y0: usize,
- stride: usize,
-) -> (u8, u8, u8, u8, u8, u8, u8, u8, u8) {
- let pos = (y0 - 1) * stride + x0 - 1;
- let a_slice = &a[pos..=pos + 4];
- let e0 = a[pos + 4 * stride];
- let e1 = a[pos + 3 * stride];
- let e2 = a[pos + 2 * stride];
- let e3 = a[pos + stride];
- let e4 = a_slice[0];
- let e5 = a_slice[1];
- let e6 = a_slice[2];
- let e7 = a_slice[3];
- let e8 = a_slice[4];
-
- (e0, e1, e2, e3, e4, e5, e6, e7, e8)
-}
-
-fn predict_bvepred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let p = topleft_pixel(a, x0, y0, stride);
- let (a0, a1, a2, a3, a4, _, _, _) = top_pixels(a, x0, y0, stride);
- let avg_1 = avg3(p, a0, a1);
- let avg_2 = avg3(a0, a1, a2);
- let avg_3 = avg3(a1, a2, a3);
- let avg_4 = avg3(a2, a3, a4);
-
- let avg = [avg_1, avg_2, avg_3, avg_4];
-
- let mut pos = y0 * stride + x0;
- for _ in 0..4 {
- a[pos..=pos + 3].copy_from_slice(&avg);
- pos += stride;
- }
-}
-
-fn predict_bhepred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let p = topleft_pixel(a, x0, y0, stride);
- let (l0, l1, l2, l3) = left_pixels(a, x0, y0, stride);
-
- let avgs = [
- avg3(p, l0, l1),
- avg3(l0, l1, l2),
- avg3(l1, l2, l3),
- avg3(l2, l3, l3),
- ];
-
- let mut pos = y0 * stride + x0;
- for &avg in avgs.iter() {
- for a_p in a[pos..=pos + 3].iter_mut() {
- *a_p = avg;
- }
- pos += stride;
- }
-}
-
-fn predict_bldpred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let (a0, a1, a2, a3, a4, a5, a6, a7) = top_pixels(a, x0, y0, stride);
-
- let avgs = [
- avg3(a0, a1, a2),
- avg3(a1, a2, a3),
- avg3(a2, a3, a4),
- avg3(a3, a4, a5),
- avg3(a4, a5, a6),
- avg3(a5, a6, a7),
- avg3(a6, a7, a7),
- ];
-
- let mut pos = y0 * stride + x0;
-
- for i in 0..4 {
- a[pos..=pos + 3].copy_from_slice(&avgs[i..=i + 3]);
- pos += stride;
- }
-}
-
-fn predict_brdpred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let (e0, e1, e2, e3, e4, e5, e6, e7, e8) = edge_pixels(a, x0, y0, stride);
-
- let avgs = [
- avg3(e0, e1, e2),
- avg3(e1, e2, e3),
- avg3(e2, e3, e4),
- avg3(e3, e4, e5),
- avg3(e4, e5, e6),
- avg3(e5, e6, e7),
- avg3(e6, e7, e8),
- ];
- let mut pos = y0 * stride + x0;
-
- for i in 0..4 {
- a[pos..=pos + 3].copy_from_slice(&avgs[3 - i..7 - i]);
- pos += stride;
- }
-}
-
-fn predict_bvrpred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let (_, e1, e2, e3, e4, e5, e6, e7, e8) = edge_pixels(a, x0, y0, stride);
-
- a[(y0 + 3) * stride + x0] = avg3(e1, e2, e3);
- a[(y0 + 2) * stride + x0] = avg3(e2, e3, e4);
- a[(y0 + 3) * stride + x0 + 1] = avg3(e3, e4, e5);
- a[(y0 + 1) * stride + x0] = avg3(e3, e4, e5);
- a[(y0 + 2) * stride + x0 + 1] = avg2(e4, e5);
- a[y0 * stride + x0] = avg2(e4, e5);
- a[(y0 + 3) * stride + x0 + 2] = avg3(e4, e5, e6);
- a[(y0 + 1) * stride + x0 + 1] = avg3(e4, e5, e6);
- a[(y0 + 2) * stride + x0 + 2] = avg2(e5, e6);
- a[y0 * stride + x0 + 1] = avg2(e5, e6);
- a[(y0 + 3) * stride + x0 + 3] = avg3(e5, e6, e7);
- a[(y0 + 1) * stride + x0 + 2] = avg3(e5, e6, e7);
- a[(y0 + 2) * stride + x0 + 3] = avg2(e6, e7);
- a[y0 * stride + x0 + 2] = avg2(e6, e7);
- a[(y0 + 1) * stride + x0 + 3] = avg3(e6, e7, e8);
- a[y0 * stride + x0 + 3] = avg2(e7, e8);
-}
-
-fn predict_bvlpred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let (a0, a1, a2, a3, a4, a5, a6, a7) = top_pixels(a, x0, y0, stride);
-
- a[y0 * stride + x0] = avg2(a0, a1);
- a[(y0 + 1) * stride + x0] = avg3(a0, a1, a2);
- a[(y0 + 2) * stride + x0] = avg2(a1, a2);
- a[y0 * stride + x0 + 1] = avg2(a1, a2);
- a[(y0 + 1) * stride + x0 + 1] = avg3(a1, a2, a3);
- a[(y0 + 3) * stride + x0] = avg3(a1, a2, a3);
- a[(y0 + 2) * stride + x0 + 1] = avg2(a2, a3);
- a[y0 * stride + x0 + 2] = avg2(a2, a3);
- a[(y0 + 3) * stride + x0 + 1] = avg3(a2, a3, a4);
- a[(y0 + 1) * stride + x0 + 2] = avg3(a2, a3, a4);
- a[(y0 + 2) * stride + x0 + 2] = avg2(a3, a4);
- a[y0 * stride + x0 + 3] = avg2(a3, a4);
- a[(y0 + 3) * stride + x0 + 2] = avg3(a3, a4, a5);
- a[(y0 + 1) * stride + x0 + 3] = avg3(a3, a4, a5);
- a[(y0 + 2) * stride + x0 + 3] = avg3(a4, a5, a6);
- a[(y0 + 3) * stride + x0 + 3] = avg3(a5, a6, a7);
-}
-
-fn predict_bhdpred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let (e0, e1, e2, e3, e4, e5, e6, e7, _) = edge_pixels(a, x0, y0, stride);
-
- a[(y0 + 3) * stride + x0] = avg2(e0, e1);
- a[(y0 + 3) * stride + x0 + 1] = avg3(e0, e1, e2);
- a[(y0 + 2) * stride + x0] = avg2(e1, e2);
- a[(y0 + 3) * stride + x0 + 2] = avg2(e1, e2);
- a[(y0 + 2) * stride + x0 + 1] = avg3(e1, e2, e3);
- a[(y0 + 3) * stride + x0 + 3] = avg3(e1, e2, e3);
- a[(y0 + 2) * stride + x0 + 2] = avg2(e2, e3);
- a[(y0 + 1) * stride + x0] = avg2(e2, e3);
- a[(y0 + 2) * stride + x0 + 3] = avg3(e2, e3, e4);
- a[(y0 + 1) * stride + x0 + 1] = avg3(e2, e3, e4);
- a[(y0 + 1) * stride + x0 + 2] = avg2(e3, e4);
- a[y0 * stride + x0] = avg2(e3, e4);
- a[(y0 + 1) * stride + x0 + 3] = avg3(e3, e4, e5);
- a[y0 * stride + x0 + 1] = avg3(e3, e4, e5);
- a[y0 * stride + x0 + 2] = avg3(e4, e5, e6);
- a[y0 * stride + x0 + 3] = avg3(e5, e6, e7);
-}
-
-fn predict_bhupred(a: &mut [u8], x0: usize, y0: usize, stride: usize) {
- let (l0, l1, l2, l3) = left_pixels(a, x0, y0, stride);
-
- a[y0 * stride + x0] = avg2(l0, l1);
- a[y0 * stride + x0 + 1] = avg3(l0, l1, l2);
- a[y0 * stride + x0 + 2] = avg2(l1, l2);
- a[(y0 + 1) * stride + x0] = avg2(l1, l2);
- a[y0 * stride + x0 + 3] = avg3(l1, l2, l3);
- a[(y0 + 1) * stride + x0 + 1] = avg3(l1, l2, l3);
- a[(y0 + 1) * stride + x0 + 2] = avg2(l2, l3);
- a[(y0 + 2) * stride + x0] = avg2(l2, l3);
- a[(y0 + 1) * stride + x0 + 3] = avg3(l2, l3, l3);
- a[(y0 + 2) * stride + x0 + 1] = avg3(l2, l3, l3);
- a[(y0 + 2) * stride + x0 + 2] = l3;
- a[(y0 + 2) * stride + x0 + 3] = l3;
- a[(y0 + 3) * stride + x0] = l3;
- a[(y0 + 3) * stride + x0 + 1] = l3;
- a[(y0 + 3) * stride + x0 + 2] = l3;
- a[(y0 + 3) * stride + x0 + 3] = l3;
-}
-
-#[cfg(test)]
-mod test {
-
- #[cfg(feature = "benchmarks")]
- extern crate test;
- use super::{
- add_residue, avg2, avg3, edge_pixels, predict_bhepred, predict_bldpred, predict_brdpred,
- predict_bvepred, top_pixels,
- };
- #[cfg(feature = "benchmarks")]
- use super::{predict_4x4, IntraMode};
- #[cfg(feature = "benchmarks")]
- use test::{black_box, Bencher};
-
- #[cfg(feature = "benchmarks")]
- const W: usize = 256;
- #[cfg(feature = "benchmarks")]
- const H: usize = 256;
-
- #[cfg(feature = "benchmarks")]
- fn make_sample_image() -> Vec<u8> {
- let mut v = Vec::with_capacity((W * H * 4) as usize);
- for c in 0u8..=255 {
- for k in 0u8..=255 {
- v.push(c);
- v.push(0);
- v.push(0);
- v.push(k);
- }
- }
- v
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_predict_4x4(b: &mut Bencher) {
- let mut v = black_box(make_sample_image());
-
- let res_data = vec![1i32; W * H * 4];
- let modes = [
- IntraMode::TM,
- IntraMode::VE,
- IntraMode::HE,
- IntraMode::DC,
- IntraMode::LD,
- IntraMode::RD,
- IntraMode::VR,
- IntraMode::VL,
- IntraMode::HD,
- IntraMode::HU,
- IntraMode::TM,
- IntraMode::VE,
- IntraMode::HE,
- IntraMode::DC,
- IntraMode::LD,
- IntraMode::RD,
- ];
-
- b.iter(|| {
- black_box(predict_4x4(&mut v, W * 2, &modes, &res_data));
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_predict_bvepred(b: &mut Bencher) {
- let mut v = make_sample_image();
-
- b.iter(|| {
- predict_bvepred(black_box(&mut v), 5, 5, W * 2);
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_predict_bldpred(b: &mut Bencher) {
- let mut v = black_box(make_sample_image());
-
- b.iter(|| {
- black_box(predict_bldpred(black_box(&mut v), 5, 5, W * 2));
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_predict_brdpred(b: &mut Bencher) {
- let mut v = black_box(make_sample_image());
-
- b.iter(|| {
- black_box(predict_brdpred(black_box(&mut v), 5, 5, W * 2));
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_predict_bhepred(b: &mut Bencher) {
- let mut v = black_box(make_sample_image());
-
- b.iter(|| {
- black_box(predict_bhepred(black_box(&mut v), 5, 5, W * 2));
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_top_pixels(b: &mut Bencher) {
- let v = black_box(make_sample_image());
-
- b.iter(|| {
- black_box(top_pixels(black_box(&v), 5, 5, W * 2));
- });
- }
-
- #[cfg(feature = "benchmarks")]
- #[bench]
- fn bench_edge_pixels(b: &mut Bencher) {
- let v = black_box(make_sample_image());
-
- b.iter(|| {
- black_box(edge_pixels(black_box(&v), 5, 5, W * 2));
- });
- }
-
- #[test]
- fn test_avg2() {
- for i in 0u8..=255 {
- for j in 0u8..=255 {
- let ceil_avg = ((i as f32) + (j as f32)) / 2.0;
- let ceil_avg = ceil_avg.ceil() as u8;
- assert_eq!(
- ceil_avg,
- avg2(i, j),
- "avg2({}, {}), expected {}, got {}.",
- i,
- j,
- ceil_avg,
- avg2(i, j)
- );
- }
- }
- }
-
- #[test]
- fn test_avg2_specific() {
- assert_eq!(
- 255,
- avg2(255, 255),
- "avg2(255, 255), expected 255, got {}.",
- avg2(255, 255)
- );
- assert_eq!(1, avg2(1, 1), "avg2(1, 1), expected 1, got {}.", avg2(1, 1));
- assert_eq!(2, avg2(2, 1), "avg2(2, 1), expected 2, got {}.", avg2(2, 1));
- }
-
- #[test]
- fn test_avg3() {
- for i in 0u8..=255 {
- for j in 0u8..=255 {
- for k in 0u8..=255 {
- let floor_avg = ((i as f32) + 2.0 * (j as f32) + { k as f32 } + 2.0) / 4.0;
- let floor_avg = floor_avg.floor() as u8;
- assert_eq!(
- floor_avg,
- avg3(i, j, k),
- "avg3({}, {}, {}), expected {}, got {}.",
- i,
- j,
- k,
- floor_avg,
- avg3(i, j, k)
- );
- }
- }
- }
- }
-
- #[test]
- fn test_edge_pixels() {
- #[rustfmt::skip]
- let im = vec![5, 6, 7, 8, 9,
- 4, 0, 0, 0, 0,
- 3, 0, 0, 0, 0,
- 2, 0, 0, 0, 0,
- 1, 0, 0, 0, 0];
- let (e0, e1, e2, e3, e4, e5, e6, e7, e8) = edge_pixels(&im, 1, 1, 5);
- assert_eq!(e0, 1);
- assert_eq!(e1, 2);
- assert_eq!(e2, 3);
- assert_eq!(e3, 4);
- assert_eq!(e4, 5);
- assert_eq!(e5, 6);
- assert_eq!(e6, 7);
- assert_eq!(e7, 8);
- assert_eq!(e8, 9);
- }
-
- #[test]
- fn test_top_pixels() {
- #[rustfmt::skip]
- let im = vec![1, 2, 3, 4, 5, 6, 7, 8,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0];
- let (e0, e1, e2, e3, e4, e5, e6, e7) = top_pixels(&im, 0, 1, 8);
- assert_eq!(e0, 1);
- assert_eq!(e1, 2);
- assert_eq!(e2, 3);
- assert_eq!(e3, 4);
- assert_eq!(e4, 5);
- assert_eq!(e5, 6);
- assert_eq!(e6, 7);
- assert_eq!(e7, 8);
- }
-
- #[test]
- fn test_add_residue() {
- let mut pblock = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
- let rblock = [
- -1, -2, -3, -4, 250, 249, 248, 250, -10, -18, -192, -17, -3, 15, 18, 9,
- ];
- let expected: [u8; 16] = [0, 0, 0, 0, 255, 255, 255, 255, 0, 0, 0, 0, 10, 29, 33, 25];
-
- add_residue(&mut pblock, &rblock, 0, 0, 4);
-
- for (&e, &i) in expected.iter().zip(&pblock) {
- assert_eq!(e, i);
- }
- }
-
- #[test]
- fn test_predict_bhepred() {
- #[rustfmt::skip]
- let expected: Vec<u8> = vec![5, 0, 0, 0, 0,
- 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1];
-
- #[rustfmt::skip]
- let mut im = vec![5, 0, 0, 0, 0,
- 4, 0, 0, 0, 0,
- 3, 0, 0, 0, 0,
- 2, 0, 0, 0, 0,
- 1, 0, 0, 0, 0];
- predict_bhepred(&mut im, 1, 1, 5);
- for (&e, i) in expected.iter().zip(im) {
- assert_eq!(e, i);
- }
- }
-
- #[test]
- fn test_predict_brdpred() {
- #[rustfmt::skip]
- let expected: Vec<u8> = vec![5, 6, 7, 8, 9,
- 4, 5, 6, 7, 8,
- 3, 4, 5, 6, 7,
- 2, 3, 4, 5, 6,
- 1, 2, 3, 4, 5];
-
- #[rustfmt::skip]
- let mut im = vec![5, 6, 7, 8, 9,
- 4, 0, 0, 0, 0,
- 3, 0, 0, 0, 0,
- 2, 0, 0, 0, 0,
- 1, 0, 0, 0, 0];
- predict_brdpred(&mut im, 1, 1, 5);
- for (&e, i) in expected.iter().zip(im) {
- assert_eq!(e, i);
- }
- }
-
- #[test]
- fn test_predict_bldpred() {
- #[rustfmt::skip]
- let mut im: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0];
- let avg_1 = 2u8;
- let avg_2 = 3u8;
- let avg_3 = 4u8;
- let avg_4 = 5u8;
- let avg_5 = 6u8;
- let avg_6 = 7u8;
- let avg_7 = 8u8;
-
- predict_bldpred(&mut im, 0, 1, 8);
-
- assert_eq!(im[8], avg_1);
- assert_eq!(im[9], avg_2);
- assert_eq!(im[10], avg_3);
- assert_eq!(im[11], avg_4);
- assert_eq!(im[16], avg_2);
- assert_eq!(im[17], avg_3);
- assert_eq!(im[18], avg_4);
- assert_eq!(im[19], avg_5);
- assert_eq!(im[24], avg_3);
- assert_eq!(im[25], avg_4);
- assert_eq!(im[26], avg_5);
- assert_eq!(im[27], avg_6);
- assert_eq!(im[32], avg_4);
- assert_eq!(im[33], avg_5);
- assert_eq!(im[34], avg_6);
- assert_eq!(im[35], avg_7);
- }
-
- #[test]
- fn test_predict_bvepred() {
- #[rustfmt::skip]
- let mut im: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0];
- let avg_1 = 2u8;
- let avg_2 = 3u8;
- let avg_3 = 4u8;
- let avg_4 = 5u8;
-
- predict_bvepred(&mut im, 1, 1, 9);
-
- assert_eq!(im[10], avg_1);
- assert_eq!(im[11], avg_2);
- assert_eq!(im[12], avg_3);
- assert_eq!(im[13], avg_4);
- assert_eq!(im[19], avg_1);
- assert_eq!(im[20], avg_2);
- assert_eq!(im[21], avg_3);
- assert_eq!(im[22], avg_4);
- assert_eq!(im[28], avg_1);
- assert_eq!(im[29], avg_2);
- assert_eq!(im[30], avg_3);
- assert_eq!(im[31], avg_4);
- assert_eq!(im[37], avg_1);
- assert_eq!(im[38], avg_2);
- assert_eq!(im[39], avg_3);
- assert_eq!(im[40], avg_4);
- }
-}