aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/imageops/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/image/src/imageops/mod.rs')
-rw-r--r--vendor/image/src/imageops/mod.rs485
1 files changed, 485 insertions, 0 deletions
diff --git a/vendor/image/src/imageops/mod.rs b/vendor/image/src/imageops/mod.rs
new file mode 100644
index 0000000..fdd2bf3
--- /dev/null
+++ b/vendor/image/src/imageops/mod.rs
@@ -0,0 +1,485 @@
+//! Image Processing Functions
+use std::cmp;
+
+use crate::image::{GenericImage, GenericImageView, SubImage};
+use crate::traits::{Lerp, Pixel, Primitive};
+
+pub use self::sample::FilterType;
+
+pub use self::sample::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
+
+/// Affine transformations
+pub use self::affine::{
+ flip_horizontal, flip_horizontal_in, flip_horizontal_in_place, flip_vertical, flip_vertical_in,
+ flip_vertical_in_place, rotate180, rotate180_in, rotate180_in_place, rotate270, rotate270_in,
+ rotate90, rotate90_in,
+};
+
+/// Image sampling
+pub use self::sample::{
+ blur, filter3x3, interpolate_bilinear, interpolate_nearest, resize, sample_bilinear,
+ sample_nearest, thumbnail, unsharpen,
+};
+
+/// Color operations
+pub use self::colorops::{
+ brighten, contrast, dither, grayscale, grayscale_alpha, grayscale_with_type,
+ grayscale_with_type_alpha, huerotate, index_colors, invert, BiLevel, ColorMap,
+};
+
+mod affine;
+// Public only because of Rust bug:
+// https://github.com/rust-lang/rust/issues/18241
+pub mod colorops;
+mod sample;
+
+/// Return a mutable view into an image
+/// The coordinates set the position of the top left corner of the crop.
+pub fn crop<I: GenericImageView>(
+ image: &mut I,
+ x: u32,
+ y: u32,
+ width: u32,
+ height: u32,
+) -> SubImage<&mut I> {
+ let (x, y, width, height) = crop_dimms(image, x, y, width, height);
+ SubImage::new(image, x, y, width, height)
+}
+
+/// Return an immutable view into an image
+/// The coordinates set the position of the top left corner of the crop.
+pub fn crop_imm<I: GenericImageView>(
+ image: &I,
+ x: u32,
+ y: u32,
+ width: u32,
+ height: u32,
+) -> SubImage<&I> {
+ let (x, y, width, height) = crop_dimms(image, x, y, width, height);
+ SubImage::new(image, x, y, width, height)
+}
+
+fn crop_dimms<I: GenericImageView>(
+ image: &I,
+ x: u32,
+ y: u32,
+ width: u32,
+ height: u32,
+) -> (u32, u32, u32, u32) {
+ let (iwidth, iheight) = image.dimensions();
+
+ let x = cmp::min(x, iwidth);
+ let y = cmp::min(y, iheight);
+
+ let height = cmp::min(height, iheight - y);
+ let width = cmp::min(width, iwidth - x);
+
+ (x, y, width, height)
+}
+
+/// Calculate the region that can be copied from top to bottom.
+///
+/// Given image size of bottom and top image, and a point at which we want to place the top image
+/// onto the bottom image, how large can we be? Have to wary of the following issues:
+/// * Top might be larger than bottom
+/// * Overflows in the computation
+/// * Coordinates could be completely out of bounds
+///
+/// The main idea is to make use of inequalities provided by the nature of `saturating_add` and
+/// `saturating_sub`. These intrinsically validate that all resulting coordinates will be in bounds
+/// for both images.
+///
+/// We want that all these coordinate accesses are safe:
+/// 1. `bottom.get_pixel(x + [0..x_range), y + [0..y_range))`
+/// 2. `top.get_pixel([0..x_range), [0..y_range))`
+///
+/// Proof that the function provides the necessary bounds for width. Note that all unaugmented math
+/// operations are to be read in standard arithmetic, not integer arithmetic. Since no direct
+/// integer arithmetic occurs in the implementation, this is unambiguous.
+///
+/// ```text
+/// Three short notes/lemmata:
+/// - Iff `(a - b) <= 0` then `a.saturating_sub(b) = 0`
+/// - Iff `(a - b) >= 0` then `a.saturating_sub(b) = a - b`
+/// - If `a <= c` then `a.saturating_sub(b) <= c.saturating_sub(b)`
+///
+/// 1.1 We show that if `bottom_width <= x`, then `x_range = 0` therefore `x + [0..x_range)` is empty.
+///
+/// x_range
+/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
+/// <= bottom_width.saturating_sub(x)
+///
+/// bottom_width <= x
+/// <==> bottom_width - x <= 0
+/// <==> bottom_width.saturating_sub(x) = 0
+/// ==> x_range <= 0
+/// ==> x_range = 0
+///
+/// 1.2 If `x < bottom_width` then `x + x_range < bottom_width`
+///
+/// x + x_range
+/// <= x + bottom_width.saturating_sub(x)
+/// = x + (bottom_width - x)
+/// = bottom_width
+///
+/// 2. We show that `x_range <= top_width`
+///
+/// x_range
+/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
+/// <= top_width.saturating_add(x).saturating_sub(x)
+/// <= (top_wdith + x).saturating_sub(x)
+/// = top_width (due to `top_width >= 0` and `x >= 0`)
+/// ```
+///
+/// Proof is the same for height.
+pub fn overlay_bounds(
+ (bottom_width, bottom_height): (u32, u32),
+ (top_width, top_height): (u32, u32),
+ x: u32,
+ y: u32,
+) -> (u32, u32) {
+ let x_range = top_width
+ .saturating_add(x) // Calculate max coordinate
+ .min(bottom_width) // Restrict to lower width
+ .saturating_sub(x); // Determinate length from start `x`
+ let y_range = top_height
+ .saturating_add(y)
+ .min(bottom_height)
+ .saturating_sub(y);
+ (x_range, y_range)
+}
+
+/// Calculate the region that can be copied from top to bottom.
+///
+/// Given image size of bottom and top image, and a point at which we want to place the top image
+/// onto the bottom image, how large can we be? Have to wary of the following issues:
+/// * Top might be larger than bottom
+/// * Overflows in the computation
+/// * Coordinates could be completely out of bounds
+///
+/// The returned value is of the form:
+///
+/// `(origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, x_range, y_range)`
+///
+/// The main idea is to do computations on i64's and then clamp to image dimensions.
+/// In particular, we want to ensure that all these coordinate accesses are safe:
+/// 1. `bottom.get_pixel(origin_bottom_x + [0..x_range), origin_bottom_y + [0..y_range))`
+/// 2. `top.get_pixel(origin_top_y + [0..x_range), origin_top_y + [0..y_range))`
+///
+fn overlay_bounds_ext(
+ (bottom_width, bottom_height): (u32, u32),
+ (top_width, top_height): (u32, u32),
+ x: i64,
+ y: i64,
+) -> (u32, u32, u32, u32, u32, u32) {
+ // Return a predictable value if the two images don't overlap at all.
+ if x > i64::from(bottom_width)
+ || y > i64::from(bottom_height)
+ || x.saturating_add(i64::from(top_width)) <= 0
+ || y.saturating_add(i64::from(top_height)) <= 0
+ {
+ return (0, 0, 0, 0, 0, 0);
+ }
+
+ // Find the maximum x and y coordinates in terms of the bottom image.
+ let max_x = x.saturating_add(i64::from(top_width));
+ let max_y = y.saturating_add(i64::from(top_height));
+
+ // Clip the origin and maximum coordinates to the bounds of the bottom image.
+ // Casting to a u32 is safe because both 0 and `bottom_{width,height}` fit
+ // into 32-bits.
+ let max_inbounds_x = max_x.clamp(0, i64::from(bottom_width)) as u32;
+ let max_inbounds_y = max_y.clamp(0, i64::from(bottom_height)) as u32;
+ let origin_bottom_x = x.clamp(0, i64::from(bottom_width)) as u32;
+ let origin_bottom_y = y.clamp(0, i64::from(bottom_height)) as u32;
+
+ // The range is the difference between the maximum inbounds coordinates and
+ // the clipped origin. Unchecked subtraction is safe here because both are
+ // always positive and `max_inbounds_{x,y}` >= `origin_{x,y}` due to
+ // `top_{width,height}` being >= 0.
+ let x_range = max_inbounds_x - origin_bottom_x;
+ let y_range = max_inbounds_y - origin_bottom_y;
+
+ // If x (or y) is negative, then the origin of the top image is shifted by -x (or -y).
+ let origin_top_x = x.saturating_mul(-1).clamp(0, i64::from(top_width)) as u32;
+ let origin_top_y = y.saturating_mul(-1).clamp(0, i64::from(top_height)) as u32;
+
+ (
+ origin_bottom_x,
+ origin_bottom_y,
+ origin_top_x,
+ origin_top_y,
+ x_range,
+ y_range,
+ )
+}
+
+/// Overlay an image at a given coordinate (x, y)
+pub fn overlay<I, J>(bottom: &mut I, top: &J, x: i64, y: i64)
+where
+ I: GenericImage,
+ J: GenericImageView<Pixel = I::Pixel>,
+{
+ let bottom_dims = bottom.dimensions();
+ let top_dims = top.dimensions();
+
+ // Crop our top image if we're going out of bounds
+ let (origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, range_width, range_height) =
+ overlay_bounds_ext(bottom_dims, top_dims, x, y);
+
+ for y in 0..range_height {
+ for x in 0..range_width {
+ let p = top.get_pixel(origin_top_x + x, origin_top_y + y);
+ let mut bottom_pixel = bottom.get_pixel(origin_bottom_x + x, origin_bottom_y + y);
+ bottom_pixel.blend(&p);
+
+ bottom.put_pixel(origin_bottom_x + x, origin_bottom_y + y, bottom_pixel);
+ }
+ }
+}
+
+/// Tile an image by repeating it multiple times
+///
+/// # Examples
+/// ```no_run
+/// use image::{RgbaImage};
+///
+/// let mut img = RgbaImage::new(1920, 1080);
+/// let tile = image::open("tile.png").unwrap();
+///
+/// image::imageops::tile(&mut img, &tile);
+/// img.save("tiled_wallpaper.png").unwrap();
+/// ```
+pub fn tile<I, J>(bottom: &mut I, top: &J)
+where
+ I: GenericImage,
+ J: GenericImageView<Pixel = I::Pixel>,
+{
+ for x in (0..bottom.width()).step_by(top.width() as usize) {
+ for y in (0..bottom.height()).step_by(top.height() as usize) {
+ overlay(bottom, top, i64::from(x), i64::from(y));
+ }
+ }
+}
+
+/// Fill the image with a linear vertical gradient
+///
+/// This function assumes a linear color space.
+///
+/// # Examples
+/// ```no_run
+/// use image::{Rgba, RgbaImage, Pixel};
+///
+/// let mut img = RgbaImage::new(100, 100);
+/// let start = Rgba::from_slice(&[0, 128, 0, 0]);
+/// let end = Rgba::from_slice(&[255, 255, 255, 255]);
+///
+/// image::imageops::vertical_gradient(&mut img, start, end);
+/// img.save("vertical_gradient.png").unwrap();
+pub fn vertical_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
+where
+ I: GenericImage<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + Lerp + 'static,
+{
+ for y in 0..img.height() {
+ let pixel = start.map2(stop, |a, b| {
+ let y = <S::Ratio as num_traits::NumCast>::from(y).unwrap();
+ let height = <S::Ratio as num_traits::NumCast>::from(img.height() - 1).unwrap();
+ S::lerp(a, b, y / height)
+ });
+
+ for x in 0..img.width() {
+ img.put_pixel(x, y, pixel);
+ }
+ }
+}
+
+/// Fill the image with a linear horizontal gradient
+///
+/// This function assumes a linear color space.
+///
+/// # Examples
+/// ```no_run
+/// use image::{Rgba, RgbaImage, Pixel};
+///
+/// let mut img = RgbaImage::new(100, 100);
+/// let start = Rgba::from_slice(&[0, 128, 0, 0]);
+/// let end = Rgba::from_slice(&[255, 255, 255, 255]);
+///
+/// image::imageops::horizontal_gradient(&mut img, start, end);
+/// img.save("horizontal_gradient.png").unwrap();
+pub fn horizontal_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
+where
+ I: GenericImage<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + Lerp + 'static,
+{
+ for x in 0..img.width() {
+ let pixel = start.map2(stop, |a, b| {
+ let x = <S::Ratio as num_traits::NumCast>::from(x).unwrap();
+ let width = <S::Ratio as num_traits::NumCast>::from(img.width() - 1).unwrap();
+ S::lerp(a, b, x / width)
+ });
+
+ for y in 0..img.height() {
+ img.put_pixel(x, y, pixel);
+ }
+ }
+}
+
+/// Replace the contents of an image at a given coordinate (x, y)
+pub fn replace<I, J>(bottom: &mut I, top: &J, x: i64, y: i64)
+where
+ I: GenericImage,
+ J: GenericImageView<Pixel = I::Pixel>,
+{
+ let bottom_dims = bottom.dimensions();
+ let top_dims = top.dimensions();
+
+ // Crop our top image if we're going out of bounds
+ let (origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, range_width, range_height) =
+ overlay_bounds_ext(bottom_dims, top_dims, x, y);
+
+ for y in 0..range_height {
+ for x in 0..range_width {
+ let p = top.get_pixel(origin_top_x + x, origin_top_y + y);
+ bottom.put_pixel(origin_bottom_x + x, origin_bottom_y + y, p);
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+
+ use super::{overlay, overlay_bounds_ext};
+ use crate::color::Rgb;
+ use crate::ImageBuffer;
+ use crate::RgbaImage;
+
+ #[test]
+ fn test_overlay_bounds_ext() {
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), 0, 0),
+ (0, 0, 0, 0, 10, 10)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), 1, 0),
+ (1, 0, 0, 0, 9, 10)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), 0, 11),
+ (0, 0, 0, 0, 0, 0)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), -1, 0),
+ (0, 0, 1, 0, 9, 10)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), -10, 0),
+ (0, 0, 0, 0, 0, 0)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), 1i64 << 50, 0),
+ (0, 0, 0, 0, 0, 0)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (10, 10), -(1i64 << 50), 0),
+ (0, 0, 0, 0, 0, 0)
+ );
+ assert_eq!(
+ overlay_bounds_ext((10, 10), (u32::MAX, 10), 10 - i64::from(u32::MAX), 0),
+ (0, 0, u32::MAX - 10, 0, 10, 10)
+ );
+ }
+
+ #[test]
+ /// Test that images written into other images works
+ fn test_image_in_image() {
+ let mut target = ImageBuffer::new(32, 32);
+ let source = ImageBuffer::from_pixel(16, 16, Rgb([255u8, 0, 0]));
+ overlay(&mut target, &source, 0, 0);
+ assert!(*target.get_pixel(0, 0) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(15, 0) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(16, 0) == Rgb([0u8, 0, 0]));
+ assert!(*target.get_pixel(0, 15) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(0, 16) == Rgb([0u8, 0, 0]));
+ }
+
+ #[test]
+ /// Test that images written outside of a frame doesn't blow up
+ fn test_image_in_image_outside_of_bounds() {
+ let mut target = ImageBuffer::new(32, 32);
+ let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
+ overlay(&mut target, &source, 1, 1);
+ assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(1, 1) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(31, 31) == Rgb([255u8, 0, 0]));
+ }
+
+ #[test]
+ /// Test that images written to coordinates out of the frame doesn't blow up
+ /// (issue came up in #848)
+ fn test_image_outside_image_no_wrap_around() {
+ let mut target = ImageBuffer::new(32, 32);
+ let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
+ overlay(&mut target, &source, 33, 33);
+ assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(31, 31) == Rgb([0, 0, 0]));
+ }
+
+ #[test]
+ /// Test that images written to coordinates with overflow works
+ fn test_image_coordinate_overflow() {
+ let mut target = ImageBuffer::new(16, 16);
+ let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
+ // Overflows to 'sane' coordinates but top is larger than bot.
+ overlay(
+ &mut target,
+ &source,
+ i64::from(u32::max_value() - 31),
+ i64::from(u32::max_value() - 31),
+ );
+ assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(15, 15) == Rgb([0, 0, 0]));
+ }
+
+ use super::{horizontal_gradient, vertical_gradient};
+
+ #[test]
+ /// Test that horizontal gradients are correctly generated
+ fn test_image_horizontal_gradient_limits() {
+ let mut img = ImageBuffer::new(100, 1);
+
+ let start = Rgb([0u8, 128, 0]);
+ let end = Rgb([255u8, 255, 255]);
+
+ horizontal_gradient(&mut img, &start, &end);
+
+ assert_eq!(img.get_pixel(0, 0), &start);
+ assert_eq!(img.get_pixel(img.width() - 1, 0), &end);
+ }
+
+ #[test]
+ /// Test that vertical gradients are correctly generated
+ fn test_image_vertical_gradient_limits() {
+ let mut img = ImageBuffer::new(1, 100);
+
+ let start = Rgb([0u8, 128, 0]);
+ let end = Rgb([255u8, 255, 255]);
+
+ vertical_gradient(&mut img, &start, &end);
+
+ assert_eq!(img.get_pixel(0, 0), &start);
+ assert_eq!(img.get_pixel(0, img.height() - 1), &end);
+ }
+
+ #[test]
+ /// Test blur doesn't panick when passed 0.0
+ fn test_blur_zero() {
+ let image = RgbaImage::new(50, 50);
+ let _ = super::blur(&image, 0.0);
+ }
+}