summaryrefslogtreecommitdiff
path: root/vendor/jpeg-decoder/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/jpeg-decoder/src')
-rw-r--r--vendor/jpeg-decoder/src/arch/mod.rs46
-rw-r--r--vendor/jpeg-decoder/src/arch/neon.rs221
-rw-r--r--vendor/jpeg-decoder/src/arch/ssse3.rs288
-rw-r--r--vendor/jpeg-decoder/src/decoder.rs1493
-rw-r--r--vendor/jpeg-decoder/src/decoder/lossless.rs259
-rw-r--r--vendor/jpeg-decoder/src/error.rs75
-rw-r--r--vendor/jpeg-decoder/src/huffman.rs346
-rw-r--r--vendor/jpeg-decoder/src/idct.rs657
-rw-r--r--vendor/jpeg-decoder/src/lib.rs66
-rw-r--r--vendor/jpeg-decoder/src/marker.rs136
-rw-r--r--vendor/jpeg-decoder/src/parser.rs685
-rw-r--r--vendor/jpeg-decoder/src/upsampler.rs252
-rw-r--r--vendor/jpeg-decoder/src/worker/immediate.rs80
-rw-r--r--vendor/jpeg-decoder/src/worker/mod.rs128
-rw-r--r--vendor/jpeg-decoder/src/worker/multithreaded.rs123
-rw-r--r--vendor/jpeg-decoder/src/worker/rayon.rs221
16 files changed, 5076 insertions, 0 deletions
diff --git a/vendor/jpeg-decoder/src/arch/mod.rs b/vendor/jpeg-decoder/src/arch/mod.rs
new file mode 100644
index 0000000..15b46c5
--- /dev/null
+++ b/vendor/jpeg-decoder/src/arch/mod.rs
@@ -0,0 +1,46 @@
+#![allow(unsafe_code)]
+
+mod neon;
+mod ssse3;
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+use std::is_x86_feature_detected;
+
+/// Arch-specific implementation of YCbCr conversion. Returns the number of pixels that were
+/// converted.
+pub fn get_color_convert_line_ycbcr() -> Option<unsafe fn(&[u8], &[u8], &[u8], &mut [u8]) -> usize>
+{
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ #[allow(unsafe_code)]
+ {
+ if is_x86_feature_detected!("ssse3") {
+ return Some(ssse3::color_convert_line_ycbcr);
+ }
+ }
+ // Runtime detection is not needed on aarch64.
+ #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+ {
+ return Some(neon::color_convert_line_ycbcr);
+ }
+ #[allow(unreachable_code)]
+ None
+}
+
+/// Arch-specific implementation of 8x8 IDCT.
+pub fn get_dequantize_and_idct_block_8x8(
+) -> Option<unsafe fn(&[i16; 64], &[u16; 64], usize, &mut [u8])> {
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ #[allow(unsafe_code)]
+ {
+ if is_x86_feature_detected!("ssse3") {
+ return Some(ssse3::dequantize_and_idct_block_8x8);
+ }
+ }
+ // Runtime detection is not needed on aarch64.
+ #[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+ {
+ return Some(neon::dequantize_and_idct_block_8x8);
+ }
+ #[allow(unreachable_code)]
+ None
+}
diff --git a/vendor/jpeg-decoder/src/arch/neon.rs b/vendor/jpeg-decoder/src/arch/neon.rs
new file mode 100644
index 0000000..4843578
--- /dev/null
+++ b/vendor/jpeg-decoder/src/arch/neon.rs
@@ -0,0 +1,221 @@
+#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+use core::arch::aarch64::*;
+
+#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+#[target_feature(enable = "neon")]
+unsafe fn idct8(data: &mut [int16x8_t; 8]) {
+ // The fixed-point constants here are obtained by taking the fractional part of the constants
+ // from the non-SIMD implementation and scaling them up by 1<<15. This is because
+ // vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
+ // slight differences in rounding).
+
+ // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
+ // doesn't apply any further scaling and fixed point constants have a different precision.
+
+ let p2 = data[2];
+ let p3 = data[6];
+ let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961
+ let t2 = vqsubq_s16(
+ vqsubq_s16(p1, p3),
+ vqrdmulhq_n_s16(p3, 27779), // 0.847759065
+ );
+ let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865
+
+ let p2 = data[0];
+ let p3 = data[4];
+ let t0 = vqaddq_s16(p2, p3);
+ let t1 = vqsubq_s16(p2, p3);
+
+ let x0 = vqaddq_s16(t0, t3);
+ let x3 = vqsubq_s16(t0, t3);
+ let x1 = vqaddq_s16(t1, t2);
+ let x2 = vqsubq_s16(t1, t2);
+
+ let t0 = data[7];
+ let t1 = data[5];
+ let t2 = data[3];
+ let t3 = data[1];
+
+ let p3 = vqaddq_s16(t0, t2);
+ let p4 = vqaddq_s16(t1, t3);
+ let p1 = vqaddq_s16(t0, t3);
+ let p2 = vqaddq_s16(t1, t2);
+ let p5 = vqaddq_s16(p3, p4);
+ let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602
+
+ let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336
+ let t1 = vqaddq_s16(
+ vqaddq_s16(t1, t1),
+ vqrdmulhq_n_s16(t1, 1741), // 0.053119869
+ );
+ let t2 = vqaddq_s16(
+ vqaddq_s16(t2, vqaddq_s16(t2, t2)),
+ vqrdmulhq_n_s16(t2, 2383), // 0.072711026
+ );
+ let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110
+
+ let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223
+ let p2 = vqsubq_s16(
+ vqsubq_s16(vqsubq_s16(p5, p2), p2),
+ vqrdmulhq_n_s16(p2, 18446), // 0.562915447
+ );
+
+ let p3 = vqsubq_s16(
+ vqrdmulhq_n_s16(p3, -31509), // -0.961570560
+ p3,
+ );
+ let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644
+
+ let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3);
+ let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2);
+ let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1);
+ let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0);
+
+ data[0] = vqaddq_s16(x0, t3);
+ data[7] = vqsubq_s16(x0, t3);
+ data[1] = vqaddq_s16(x1, t2);
+ data[6] = vqsubq_s16(x1, t2);
+ data[2] = vqaddq_s16(x2, t1);
+ data[5] = vqsubq_s16(x2, t1);
+ data[3] = vqaddq_s16(x3, t0);
+ data[4] = vqsubq_s16(x3, t0);
+}
+
+#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+#[target_feature(enable = "neon")]
+unsafe fn transpose8(data: &mut [int16x8_t; 8]) {
+ // Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then
+ // combine the 4x4 blocks.
+ let a01 = vtrnq_s16(data[0], data[1]);
+ let a23 = vtrnq_s16(data[2], data[3]);
+
+ let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0));
+ let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1));
+
+ let a45 = vtrnq_s16(data[4], data[5]);
+ let a67 = vtrnq_s16(data[6], data[7]);
+
+ let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0));
+ let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1));
+
+ data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0)));
+ data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0)));
+ data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1)));
+ data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1)));
+ data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0)));
+ data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0)));
+ data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1)));
+ data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1)));
+}
+
+#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+#[target_feature(enable = "neon")]
+pub unsafe fn dequantize_and_idct_block_8x8(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output_linestride: usize,
+ output: &mut [u8],
+) {
+ // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
+ // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
+ // and if that position is in-bounds, so are all other accesses.
+ assert!(
+ output.len()
+ > output_linestride
+ .checked_mul(7)
+ .unwrap()
+ .checked_add(7)
+ .unwrap()
+ );
+
+ const SHIFT: i32 = 3;
+
+ // Read the DCT coefficients, scale them up and dequantize them.
+ let mut data = [vdupq_n_s16(0); 8];
+ for i in 0..8 {
+ data[i] = vshlq_n_s16(
+ vmulq_s16(
+ vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)),
+ vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))),
+ ),
+ SHIFT,
+ );
+ }
+
+ // Usual column IDCT - transpose - column IDCT - transpose approach.
+ idct8(&mut data);
+ transpose8(&mut data);
+ idct8(&mut data);
+ transpose8(&mut data);
+
+ for i in 0..8 {
+ // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
+ // increased by 3.
+ // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
+ // We add 128 with the appropriate shift for that purpose.
+ const OFFSET: i16 = 128 << (SHIFT + 3);
+ // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
+ const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;
+
+ let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS));
+
+ vst1_u8(
+ output.as_mut_ptr().wrapping_add(output_linestride * i),
+ vqshrun_n_s16(data_with_offset, SHIFT + 3),
+ );
+ }
+}
+
+#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
+#[target_feature(enable = "neon")]
+pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
+ assert!(output.len() % 3 == 0);
+ let num = output.len() / 3;
+ assert!(num <= y.len());
+ assert!(num <= cb.len());
+ assert!(num <= cr.len());
+ let num_vecs = num / 8;
+
+ for i in 0..num_vecs {
+ const SHIFT: i32 = 6;
+ // Load.
+ let y = vld1_u8(y.as_ptr().wrapping_add(i * 8));
+ let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8));
+ let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8));
+
+ // Convert to 16 bit and shift.
+ let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT));
+ let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT));
+ let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT));
+
+ // Add offsets
+ let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1));
+ let c128 = vdupq_n_s16(128 << SHIFT);
+ let cb = vqsubq_s16(cb, c128);
+ let cr = vqsubq_s16(cr, c128);
+
+ // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
+ let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr);
+ let cb_034414 = vqrdmulhq_n_s16(cb, 11276);
+ let cr_071414 = vqrdmulhq_n_s16(cr, 23401);
+ let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb);
+
+ // Last conversion step.
+ let r = vqaddq_s16(y, cr_140200);
+ let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414));
+ let b = vqaddq_s16(y, cb_177200);
+
+ // Shift back and convert to u8.
+ let r = vqshrun_n_s16(r, SHIFT);
+ let g = vqshrun_n_s16(g, SHIFT);
+ let b = vqshrun_n_s16(b, SHIFT);
+
+ // Shuffle + store.
+ vst3_u8(
+ output.as_mut_ptr().wrapping_add(24 * i),
+ uint8x8x3_t(r, g, b),
+ );
+ }
+
+ num_vecs * 8
+}
diff --git a/vendor/jpeg-decoder/src/arch/ssse3.rs b/vendor/jpeg-decoder/src/arch/ssse3.rs
new file mode 100644
index 0000000..374a70c
--- /dev/null
+++ b/vendor/jpeg-decoder/src/arch/ssse3.rs
@@ -0,0 +1,288 @@
+#[cfg(target_arch = "x86")]
+use std::arch::x86::*;
+#[cfg(target_arch = "x86_64")]
+use std::arch::x86_64::*;
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+#[target_feature(enable = "ssse3")]
+unsafe fn idct8(data: &mut [__m128i; 8]) {
+ // The fixed-point constants here are obtained by taking the fractional part of the constants
+ // from the non-SIMD implementation and scaling them up by 1<<15. This is because
+ // _mm_mulhrs_epi16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
+ // slight differences in rounding).
+
+ // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
+ // doesn't apply any further scaling and fixed point constants have a different precision.
+
+ let p2 = data[2];
+ let p3 = data[6];
+ let p1 = _mm_mulhrs_epi16(_mm_adds_epi16(p2, p3), _mm_set1_epi16(17734)); // 0.5411961
+ let t2 = _mm_subs_epi16(
+ _mm_subs_epi16(p1, p3),
+ _mm_mulhrs_epi16(p3, _mm_set1_epi16(27779)), // 0.847759065
+ );
+ let t3 = _mm_adds_epi16(p1, _mm_mulhrs_epi16(p2, _mm_set1_epi16(25079))); // 0.765366865
+
+ let p2 = data[0];
+ let p3 = data[4];
+ let t0 = _mm_adds_epi16(p2, p3);
+ let t1 = _mm_subs_epi16(p2, p3);
+
+ let x0 = _mm_adds_epi16(t0, t3);
+ let x3 = _mm_subs_epi16(t0, t3);
+ let x1 = _mm_adds_epi16(t1, t2);
+ let x2 = _mm_subs_epi16(t1, t2);
+
+ let t0 = data[7];
+ let t1 = data[5];
+ let t2 = data[3];
+ let t3 = data[1];
+
+ let p3 = _mm_adds_epi16(t0, t2);
+ let p4 = _mm_adds_epi16(t1, t3);
+ let p1 = _mm_adds_epi16(t0, t3);
+ let p2 = _mm_adds_epi16(t1, t2);
+ let p5 = _mm_adds_epi16(p3, p4);
+ let p5 = _mm_adds_epi16(p5, _mm_mulhrs_epi16(p5, _mm_set1_epi16(5763))); // 0.175875602
+
+ let t0 = _mm_mulhrs_epi16(t0, _mm_set1_epi16(9786)); // 0.298631336
+ let t1 = _mm_adds_epi16(
+ _mm_adds_epi16(t1, t1),
+ _mm_mulhrs_epi16(t1, _mm_set1_epi16(1741)), // 0.053119869
+ );
+ let t2 = _mm_adds_epi16(
+ _mm_adds_epi16(t2, _mm_adds_epi16(t2, t2)),
+ _mm_mulhrs_epi16(t2, _mm_set1_epi16(2383)), // 0.072711026
+ );
+ let t3 = _mm_adds_epi16(t3, _mm_mulhrs_epi16(t3, _mm_set1_epi16(16427))); // 0.501321110
+
+ let p1 = _mm_subs_epi16(p5, _mm_mulhrs_epi16(p1, _mm_set1_epi16(29490))); // 0.899976223
+ let p2 = _mm_subs_epi16(
+ _mm_subs_epi16(_mm_subs_epi16(p5, p2), p2),
+ _mm_mulhrs_epi16(p2, _mm_set1_epi16(18446)), // 0.562915447
+ );
+
+ let p3 = _mm_subs_epi16(
+ _mm_mulhrs_epi16(p3, _mm_set1_epi16(-31509)), // -0.961570560
+ p3,
+ );
+ let p4 = _mm_mulhrs_epi16(p4, _mm_set1_epi16(-12785)); // -0.390180644
+
+ let t3 = _mm_adds_epi16(_mm_adds_epi16(p1, p4), t3);
+ let t2 = _mm_adds_epi16(_mm_adds_epi16(p2, p3), t2);
+ let t1 = _mm_adds_epi16(_mm_adds_epi16(p2, p4), t1);
+ let t0 = _mm_adds_epi16(_mm_adds_epi16(p1, p3), t0);
+
+ data[0] = _mm_adds_epi16(x0, t3);
+ data[7] = _mm_subs_epi16(x0, t3);
+ data[1] = _mm_adds_epi16(x1, t2);
+ data[6] = _mm_subs_epi16(x1, t2);
+ data[2] = _mm_adds_epi16(x2, t1);
+ data[5] = _mm_subs_epi16(x2, t1);
+ data[3] = _mm_adds_epi16(x3, t0);
+ data[4] = _mm_subs_epi16(x3, t0);
+}
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+#[target_feature(enable = "ssse3")]
+unsafe fn transpose8(data: &mut [__m128i; 8]) {
+ // Transpose a 8x8 matrix with a sequence of interleaving operations.
+ // Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e.
+ // A0 B0 A1 B1 ...
+ // dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved -
+ // A0 B0 C0 D0 A1 B1 C1 D1 ...
+ let d01l = _mm_unpacklo_epi16(data[0], data[1]);
+ let d23l = _mm_unpacklo_epi16(data[2], data[3]);
+ let d45l = _mm_unpacklo_epi16(data[4], data[5]);
+ let d67l = _mm_unpacklo_epi16(data[6], data[7]);
+ let d01h = _mm_unpackhi_epi16(data[0], data[1]);
+ let d23h = _mm_unpackhi_epi16(data[2], data[3]);
+ let d45h = _mm_unpackhi_epi16(data[4], data[5]);
+ let d67h = _mm_unpackhi_epi16(data[6], data[7]);
+ // Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers.
+ let d0123ll = _mm_unpacklo_epi32(d01l, d23l);
+ let d0123lh = _mm_unpackhi_epi32(d01l, d23l);
+ let d4567ll = _mm_unpacklo_epi32(d45l, d67l);
+ let d4567lh = _mm_unpackhi_epi32(d45l, d67l);
+ let d0123hl = _mm_unpacklo_epi32(d01h, d23h);
+ let d0123hh = _mm_unpackhi_epi32(d01h, d23h);
+ let d4567hl = _mm_unpacklo_epi32(d45h, d67h);
+ let d4567hh = _mm_unpackhi_epi32(d45h, d67h);
+ // Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers.
+ data[0] = _mm_unpacklo_epi64(d0123ll, d4567ll);
+ data[1] = _mm_unpackhi_epi64(d0123ll, d4567ll);
+ data[2] = _mm_unpacklo_epi64(d0123lh, d4567lh);
+ data[3] = _mm_unpackhi_epi64(d0123lh, d4567lh);
+ data[4] = _mm_unpacklo_epi64(d0123hl, d4567hl);
+ data[5] = _mm_unpackhi_epi64(d0123hl, d4567hl);
+ data[6] = _mm_unpacklo_epi64(d0123hh, d4567hh);
+ data[7] = _mm_unpackhi_epi64(d0123hh, d4567hh);
+}
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+#[target_feature(enable = "ssse3")]
+pub unsafe fn dequantize_and_idct_block_8x8(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output_linestride: usize,
+ output: &mut [u8],
+) {
+ // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
+ // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
+ // and if that position is in-bounds, so are all other accesses.
+ assert!(
+ output.len()
+ > output_linestride
+ .checked_mul(7)
+ .unwrap()
+ .checked_add(7)
+ .unwrap()
+ );
+
+ #[cfg(target_arch = "x86")]
+ use std::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use std::arch::x86_64::*;
+
+ const SHIFT: i32 = 3;
+
+ // Read the DCT coefficients, scale them up and dequantize them.
+ let mut data = [_mm_setzero_si128(); 8];
+ for i in 0..8 {
+ data[i] = _mm_slli_epi16(
+ _mm_mullo_epi16(
+ _mm_loadu_si128(coefficients.as_ptr().wrapping_add(i * 8) as *const _),
+ _mm_loadu_si128(quantization_table.as_ptr().wrapping_add(i * 8) as *const _),
+ ),
+ SHIFT,
+ );
+ }
+
+ // Usual column IDCT - transpose - column IDCT - transpose approach.
+ idct8(&mut data);
+ transpose8(&mut data);
+ idct8(&mut data);
+ transpose8(&mut data);
+
+ for i in 0..8 {
+ let mut buf = [0u8; 16];
+ // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
+ // increased by 3.
+ // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
+ // We add 128 with the appropriate shift for that purpose.
+ const OFFSET: i16 = 128 << (SHIFT + 3);
+ // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
+ const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;
+
+ let data_with_offset = _mm_adds_epi16(data[i], _mm_set1_epi16(OFFSET + ROUNDING_BIAS));
+
+ _mm_storeu_si128(
+ buf.as_mut_ptr() as *mut _,
+ _mm_packus_epi16(
+ _mm_srai_epi16(data_with_offset, SHIFT + 3),
+ _mm_setzero_si128(),
+ ),
+ );
+ std::ptr::copy_nonoverlapping::<u8>(
+ buf.as_ptr(),
+ output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _,
+ 8,
+ );
+ }
+}
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+#[target_feature(enable = "ssse3")]
+pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
+ assert!(output.len() % 3 == 0);
+ let num = output.len() / 3;
+ assert!(num <= y.len());
+ assert!(num <= cb.len());
+ assert!(num <= cr.len());
+ // _mm_loadu_si64 generates incorrect code for Rust <1.58. To circumvent this, we use a full
+ // 128-bit load, but that requires leaving an extra vector of border to the scalar code.
+ // From Rust 1.58 on, the _mm_loadu_si128 can be replaced with _mm_loadu_si64 and this
+ // .saturating_sub() can be removed.
+ let num_vecs = (num / 8).saturating_sub(1);
+
+ for i in 0..num_vecs {
+ const SHIFT: i32 = 6;
+ // Load.
+ let y = _mm_loadu_si128(y.as_ptr().wrapping_add(i * 8) as *const _);
+ let cb = _mm_loadu_si128(cb.as_ptr().wrapping_add(i * 8) as *const _);
+ let cr = _mm_loadu_si128(cr.as_ptr().wrapping_add(i * 8) as *const _);
+
+ // Convert to 16 bit.
+ let shuf16 = _mm_setr_epi8(
+ 0, -0x7F, 1, -0x7F, 2, -0x7F, 3, -0x7F, 4, -0x7F, 5, -0x7F, 6, -0x7F, 7, -0x7F,
+ );
+ let y = _mm_slli_epi16(_mm_shuffle_epi8(y, shuf16), SHIFT);
+ let cb = _mm_slli_epi16(_mm_shuffle_epi8(cb, shuf16), SHIFT);
+ let cr = _mm_slli_epi16(_mm_shuffle_epi8(cr, shuf16), SHIFT);
+
+ // Add offsets
+ let c128 = _mm_set1_epi16(128 << SHIFT);
+ let y = _mm_adds_epi16(y, _mm_set1_epi16((1 << SHIFT) >> 1));
+ let cb = _mm_subs_epi16(cb, c128);
+ let cr = _mm_subs_epi16(cr, c128);
+
+ // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
+ let cr_140200 = _mm_adds_epi16(_mm_mulhrs_epi16(cr, _mm_set1_epi16(13173)), cr);
+ let cb_034414 = _mm_mulhrs_epi16(cb, _mm_set1_epi16(11276));
+ let cr_071414 = _mm_mulhrs_epi16(cr, _mm_set1_epi16(23401));
+ let cb_177200 = _mm_adds_epi16(_mm_mulhrs_epi16(cb, _mm_set1_epi16(25297)), cb);
+
+ // Last conversion step.
+ let r = _mm_adds_epi16(y, cr_140200);
+ let g = _mm_subs_epi16(y, _mm_adds_epi16(cb_034414, cr_071414));
+ let b = _mm_adds_epi16(y, cb_177200);
+
+ // Shift back and convert to u8.
+ let zero = _mm_setzero_si128();
+ let r = _mm_packus_epi16(_mm_srai_epi16(r, SHIFT), zero);
+ let g = _mm_packus_epi16(_mm_srai_epi16(g, SHIFT), zero);
+ let b = _mm_packus_epi16(_mm_srai_epi16(b, SHIFT), zero);
+
+ // Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb...
+
+ // Control vectors for _mm_shuffle_epi8. -0x7F is selected so that the resulting position
+ // after _mm_shuffle_epi8 will be filled with 0, so that the r, g, and b vectors can then
+ // be OR-ed together.
+ let shufr = _mm_setr_epi8(
+ 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, -0x7F, 5,
+ );
+ let shufg = _mm_setr_epi8(
+ -0x7F, 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F,
+ -0x7F,
+ );
+ let shufb = _mm_alignr_epi8(shufg, shufg, 15);
+
+ let rgb_low = _mm_or_si128(
+ _mm_shuffle_epi8(r, shufr),
+ _mm_or_si128(_mm_shuffle_epi8(g, shufg), _mm_shuffle_epi8(b, shufb)),
+ );
+
+ // For the next part of the rgb vectors, we need to select R values from 6 up, G and B from
+ // 5 up. The highest bit of -0x7F + 6 is still set, so the corresponding location will
+ // still be 0.
+ let shufr1 = _mm_add_epi8(shufb, _mm_set1_epi8(6));
+ let shufg1 = _mm_add_epi8(shufr, _mm_set1_epi8(5));
+ let shufb1 = _mm_add_epi8(shufg, _mm_set1_epi8(5));
+
+ let rgb_hi = _mm_or_si128(
+ _mm_shuffle_epi8(r, shufr1),
+ _mm_or_si128(_mm_shuffle_epi8(g, shufg1), _mm_shuffle_epi8(b, shufb1)),
+ );
+
+ let mut data = [0u8; 32];
+ _mm_storeu_si128(data.as_mut_ptr() as *mut _, rgb_low);
+ _mm_storeu_si128(data.as_mut_ptr().wrapping_add(16) as *mut _, rgb_hi);
+ std::ptr::copy_nonoverlapping::<u8>(
+ data.as_ptr(),
+ output.as_mut_ptr().wrapping_add(24 * i),
+ 24,
+ );
+ }
+
+ num_vecs * 8
+}
diff --git a/vendor/jpeg-decoder/src/decoder.rs b/vendor/jpeg-decoder/src/decoder.rs
new file mode 100644
index 0000000..795ad1e
--- /dev/null
+++ b/vendor/jpeg-decoder/src/decoder.rs
@@ -0,0 +1,1493 @@
+use crate::error::{Error, Result, UnsupportedFeature};
+use crate::huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
+use crate::marker::Marker;
+use crate::parser::{
+ parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos,
+ AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
+ IccChunk, ScanInfo,
+};
+use crate::read_u8;
+use crate::upsampler::Upsampler;
+use crate::worker::{compute_image_parallel, PreferWorkerKind, RowData, Worker, WorkerScope};
+use alloc::borrow::ToOwned;
+use alloc::sync::Arc;
+use alloc::vec::Vec;
+use alloc::{format, vec};
+use core::cmp;
+use core::mem;
+use core::ops::Range;
+use std::convert::TryInto;
+use std::io::Read;
+
+pub const MAX_COMPONENTS: usize = 4;
+
+mod lossless;
+use self::lossless::compute_image_lossless;
+
+#[cfg_attr(rustfmt, rustfmt_skip)]
+static UNZIGZAG: [u8; 64] = [
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+];
+
+/// An enumeration over combinations of color spaces and bit depths a pixel can have.
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum PixelFormat {
+ /// Luminance (grayscale), 8 bits
+ L8,
+ /// Luminance (grayscale), 16 bits
+ L16,
+ /// RGB, 8 bits per channel
+ RGB24,
+ /// CMYK, 8 bits per channel
+ CMYK32,
+}
+
+impl PixelFormat {
+ /// Determine the size in bytes of each pixel in this format
+ pub fn pixel_bytes(&self) -> usize {
+ match self {
+ PixelFormat::L8 => 1,
+ PixelFormat::L16 => 2,
+ PixelFormat::RGB24 => 3,
+ PixelFormat::CMYK32 => 4,
+ }
+ }
+}
+
+/// Represents metadata of an image.
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub struct ImageInfo {
+ /// The width of the image, in pixels.
+ pub width: u16,
+ /// The height of the image, in pixels.
+ pub height: u16,
+ /// The pixel format of the image.
+ pub pixel_format: PixelFormat,
+ /// The coding process of the image.
+ pub coding_process: CodingProcess,
+}
+
+/// Describes the colour transform to apply before binary data is returned
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
+#[non_exhaustive]
+pub enum ColorTransform {
+ /// No transform should be applied and the data is returned as-is.
+ None,
+ /// Unknown colour transformation
+ Unknown,
+ /// Grayscale transform should be applied (expects 1 channel)
+ Grayscale,
+ /// RGB transform should be applied.
+ RGB,
+ /// YCbCr transform should be applied.
+ YCbCr,
+ /// CMYK transform should be applied.
+ CMYK,
+ /// YCCK transform should be applied.
+ YCCK,
+ /// big gamut Y/Cb/Cr, bg-sYCC
+ JcsBgYcc,
+ /// big gamut red/green/blue, bg-sRGB
+ JcsBgRgb,
+}
+
+/// JPEG decoder
+pub struct Decoder<R> {
+ reader: R,
+
+ frame: Option<FrameInfo>,
+ dc_huffman_tables: Vec<Option<HuffmanTable>>,
+ ac_huffman_tables: Vec<Option<HuffmanTable>>,
+ quantization_tables: [Option<Arc<[u16; 64]>>; 4],
+
+ restart_interval: u16,
+
+ adobe_color_transform: Option<AdobeColorTransform>,
+ color_transform: Option<ColorTransform>,
+
+ is_jfif: bool,
+ is_mjpeg: bool,
+
+ icc_markers: Vec<IccChunk>,
+
+ exif_data: Option<Vec<u8>>,
+
+ // Used for progressive JPEGs.
+ coefficients: Vec<Vec<i16>>,
+ // Bitmask of which coefficients has been completely decoded.
+ coefficients_finished: [u64; MAX_COMPONENTS],
+
+ // Maximum allowed size of decoded image buffer
+ decoding_buffer_size_limit: usize,
+}
+
+impl<R: Read> Decoder<R> {
+ /// Creates a new `Decoder` using the reader `reader`.
+ pub fn new(reader: R) -> Decoder<R> {
+ Decoder {
+ reader,
+ frame: None,
+ dc_huffman_tables: vec![None, None, None, None],
+ ac_huffman_tables: vec![None, None, None, None],
+ quantization_tables: [None, None, None, None],
+ restart_interval: 0,
+ adobe_color_transform: None,
+ color_transform: None,
+ is_jfif: false,
+ is_mjpeg: false,
+ icc_markers: Vec::new(),
+ exif_data: None,
+ coefficients: Vec::new(),
+ coefficients_finished: [0; MAX_COMPONENTS],
+ decoding_buffer_size_limit: usize::MAX,
+ }
+ }
+
+ /// Colour transform to use when decoding the image. App segments relating to colour transforms
+ /// will be ignored.
+ pub fn set_color_transform(&mut self, transform: ColorTransform) {
+ self.color_transform = Some(transform);
+ }
+
+ /// Set maximum buffer size allowed for decoded images
+ pub fn set_max_decoding_buffer_size(&mut self, max: usize) {
+ self.decoding_buffer_size_limit = max;
+ }
+
+ /// Returns metadata about the image.
+ ///
+ /// The returned value will be `None` until a call to either `read_info` or `decode` has
+ /// returned `Ok`.
+ pub fn info(&self) -> Option<ImageInfo> {
+ match self.frame {
+ Some(ref frame) => {
+ let pixel_format = match frame.components.len() {
+ 1 => match frame.precision {
+ 8 => PixelFormat::L8,
+ 16 => PixelFormat::L16,
+ _ => panic!(),
+ },
+ 3 => PixelFormat::RGB24,
+ 4 => PixelFormat::CMYK32,
+ _ => panic!(),
+ };
+
+ Some(ImageInfo {
+ width: frame.output_size.width,
+ height: frame.output_size.height,
+ pixel_format,
+ coding_process: frame.coding_process,
+ })
+ }
+ None => None,
+ }
+ }
+
+ /// Returns raw exif data, starting at the TIFF header, if the image contains any.
+ ///
+ /// The returned value will be `None` until a call to `decode` has returned `Ok`.
+ pub fn exif_data(&self) -> Option<&[u8]> {
+ self.exif_data.as_deref()
+ }
+
+ /// Returns the embeded icc profile if the image contains one.
+ pub fn icc_profile(&self) -> Option<Vec<u8>> {
+ let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
+ let num_markers = self.icc_markers.len();
+ if num_markers == 0 || num_markers >= 255 {
+ return None;
+ }
+ // check the validity of the markers
+ for chunk in &self.icc_markers {
+ if usize::from(chunk.num_markers) != num_markers {
+ // all the lengths must match
+ return None;
+ }
+ if chunk.seq_no == 0 {
+ return None;
+ }
+ if marker_present[usize::from(chunk.seq_no)].is_some() {
+ // duplicate seq_no
+ return None;
+ } else {
+ marker_present[usize::from(chunk.seq_no)] = Some(chunk);
+ }
+ }
+
+ // assemble them together by seq_no failing if any are missing
+ let mut data = Vec::new();
+ // seq_no's start at 1
+ for &chunk in marker_present.get(1..=num_markers)? {
+ data.extend_from_slice(&chunk?.data);
+ }
+ Some(data)
+ }
+
+ /// Heuristic to avoid starting thread, synchronization if we expect a small amount of
+ /// parallelism to be utilized.
+ fn select_worker(frame: &FrameInfo, worker_preference: PreferWorkerKind) -> PreferWorkerKind {
+ const PARALLELISM_THRESHOLD: u64 = 128 * 128;
+
+ match worker_preference {
+ PreferWorkerKind::Immediate => PreferWorkerKind::Immediate,
+ PreferWorkerKind::Multithreaded => {
+ let width: u64 = frame.output_size.width.into();
+ let height: u64 = frame.output_size.width.into();
+ if width * height > PARALLELISM_THRESHOLD {
+ PreferWorkerKind::Multithreaded
+ } else {
+ PreferWorkerKind::Immediate
+ }
+ }
+ }
+ }
+
+ /// Tries to read metadata from the image without decoding it.
+ ///
+ /// If successful, the metadata can be obtained using the `info` method.
+ pub fn read_info(&mut self) -> Result<()> {
+ WorkerScope::with(|worker| self.decode_internal(true, worker)).map(|_| ())
+ }
+
+ /// Configure the decoder to scale the image during decoding.
+ ///
+ /// This efficiently scales the image by the smallest supported scale
+ /// factor that produces an image larger than or equal to the requested
+ /// size in at least one axis. The currently implemented scale factors
+ /// are 1/8, 1/4, 1/2 and 1.
+ ///
+ /// To generate a thumbnail of an exact size, pass the desired size and
+ /// then scale to the final size using a traditional resampling algorithm.
+ pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
+ self.read_info()?;
+ let frame = self.frame.as_mut().unwrap();
+ let idct_size = crate::idct::choose_idct_size(
+ frame.image_size,
+ Dimensions {
+ width: requested_width,
+ height: requested_height,
+ },
+ );
+ frame.update_idct_size(idct_size)?;
+ Ok((frame.output_size.width, frame.output_size.height))
+ }
+
+ /// Decodes the image and returns the decoded pixels if successful.
+ pub fn decode(&mut self) -> Result<Vec<u8>> {
+ WorkerScope::with(|worker| self.decode_internal(false, worker))
+ }
+
+ fn decode_internal(
+ &mut self,
+ stop_after_metadata: bool,
+ worker_scope: &WorkerScope,
+ ) -> Result<Vec<u8>> {
+ if stop_after_metadata && self.frame.is_some() {
+ // The metadata has already been read.
+ return Ok(Vec::new());
+ } else if self.frame.is_none()
+ && (read_u8(&mut self.reader)? != 0xFF
+ || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI))
+ {
+ return Err(Error::Format(
+ "first two bytes are not an SOI marker".to_owned(),
+ ));
+ }
+
+ let mut previous_marker = Marker::SOI;
+ let mut pending_marker = None;
+ let mut scans_processed = 0;
+ let mut planes = vec![
+ Vec::<u8>::new();
+ self.frame
+ .as_ref()
+ .map_or(0, |frame| frame.components.len())
+ ];
+ let mut planes_u16 = vec![
+ Vec::<u16>::new();
+ self.frame
+ .as_ref()
+ .map_or(0, |frame| frame.components.len())
+ ];
+
+ loop {
+ let marker = match pending_marker.take() {
+ Some(m) => m,
+ None => self.read_marker()?,
+ };
+
+ match marker {
+ // Frame header
+ Marker::SOF(..) => {
+ // Section 4.10
+ // "An image contains only one frame in the cases of sequential and
+ // progressive coding processes; an image contains multiple frames for the
+ // hierarchical mode."
+ if self.frame.is_some() {
+ return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
+ }
+
+ let frame = parse_sof(&mut self.reader, marker)?;
+ let component_count = frame.components.len();
+
+ if frame.is_differential {
+ return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
+ }
+ if frame.entropy_coding == EntropyCoding::Arithmetic {
+ return Err(Error::Unsupported(
+ UnsupportedFeature::ArithmeticEntropyCoding,
+ ));
+ }
+ if frame.precision != 8 && frame.coding_process != CodingProcess::Lossless {
+ return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
+ frame.precision,
+ )));
+ }
+ if frame.precision != 8 && frame.precision != 16 {
+ return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
+ frame.precision,
+ )));
+ }
+ if component_count != 1 && component_count != 3 && component_count != 4 {
+ return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(
+ component_count as u8,
+ )));
+ }
+
+ // Make sure we support the subsampling ratios used.
+ let _ = Upsampler::new(
+ &frame.components,
+ frame.image_size.width,
+ frame.image_size.height,
+ )?;
+
+ self.frame = Some(frame);
+
+ if stop_after_metadata {
+ return Ok(Vec::new());
+ }
+
+ planes = vec![Vec::new(); component_count];
+ planes_u16 = vec![Vec::new(); component_count];
+ }
+
+ // Scan header
+ Marker::SOS => {
+ if self.frame.is_none() {
+ return Err(Error::Format("scan encountered before frame".to_owned()));
+ }
+
+ let frame = self.frame.clone().unwrap();
+ let scan = parse_sos(&mut self.reader, &frame)?;
+
+ if frame.coding_process == CodingProcess::DctProgressive
+ && self.coefficients.is_empty()
+ {
+ self.coefficients = frame
+ .components
+ .iter()
+ .map(|c| {
+ let block_count =
+ c.block_size.width as usize * c.block_size.height as usize;
+ vec![0; block_count * 64]
+ })
+ .collect();
+ }
+
+ if frame.coding_process == CodingProcess::Lossless {
+ let (marker, data) = self.decode_scan_lossless(&frame, &scan)?;
+
+ for (i, plane) in data
+ .into_iter()
+ .enumerate()
+ .filter(|&(_, ref plane)| !plane.is_empty())
+ {
+ planes_u16[i] = plane;
+ }
+ pending_marker = marker;
+ } else {
+ // This was previously buggy, so let's explain the log here a bit. When a
+ // progressive frame is encoded then the coefficients (DC, AC) of each
+ // component (=color plane) can be split amongst scans. In particular it can
+ // happen or at least occurs in the wild that a scan contains coefficient 0 of
+ // all components. If now one but not all components had all other coefficients
+ // delivered in previous scans then such a scan contains all components but
+ // completes only some of them! (This is technically NOT permitted for all
+ // other coefficients as the standard dictates that scans with coefficients
+ // other than the 0th must only contain ONE component so we would either
+ // complete it or not. We may want to detect and error in case more component
+ // are part of a scan than allowed.) What a weird edge case.
+ //
+ // But this means we track precisely which components get completed here.
+ let mut finished = [false; MAX_COMPONENTS];
+
+ if scan.successive_approximation_low == 0 {
+ for (&i, component_finished) in
+ scan.component_indices.iter().zip(&mut finished)
+ {
+ if self.coefficients_finished[i] == !0 {
+ continue;
+ }
+ for j in scan.spectral_selection.clone() {
+ self.coefficients_finished[i] |= 1 << j;
+ }
+ if self.coefficients_finished[i] == !0 {
+ *component_finished = true;
+ }
+ }
+ }
+
+ let preference =
+ Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
+
+ let (marker, data) = worker_scope
+ .get_or_init_worker(preference, |worker| {
+ self.decode_scan(&frame, &scan, worker, &finished)
+ })?;
+
+ if let Some(data) = data {
+ for (i, plane) in data
+ .into_iter()
+ .enumerate()
+ .filter(|&(_, ref plane)| !plane.is_empty())
+ {
+ if self.coefficients_finished[i] == !0 {
+ planes[i] = plane;
+ }
+ }
+ }
+
+ pending_marker = marker;
+ }
+
+ scans_processed += 1;
+ }
+
+ // Table-specification and miscellaneous markers
+ // Quantization table-specification
+ Marker::DQT => {
+ let tables = parse_dqt(&mut self.reader)?;
+
+ for (i, &table) in tables.iter().enumerate() {
+ if let Some(table) = table {
+ let mut unzigzagged_table = [0u16; 64];
+
+ for j in 0..64 {
+ unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
+ }
+
+ self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
+ }
+ }
+ }
+ // Huffman table-specification
+ Marker::DHT => {
+ let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
+ let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
+
+ let current_dc_tables = mem::take(&mut self.dc_huffman_tables);
+ self.dc_huffman_tables = dc_tables
+ .into_iter()
+ .zip(current_dc_tables.into_iter())
+ .map(|(a, b)| a.or(b))
+ .collect();
+
+ let current_ac_tables = mem::take(&mut self.ac_huffman_tables);
+ self.ac_huffman_tables = ac_tables
+ .into_iter()
+ .zip(current_ac_tables.into_iter())
+ .map(|(a, b)| a.or(b))
+ .collect();
+ }
+ // Arithmetic conditioning table-specification
+ Marker::DAC => {
+ return Err(Error::Unsupported(
+ UnsupportedFeature::ArithmeticEntropyCoding,
+ ))
+ }
+ // Restart interval definition
+ Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
+ // Comment
+ Marker::COM => {
+ let _comment = parse_com(&mut self.reader)?;
+ }
+ // Application data
+ Marker::APP(..) => {
+ if let Some(data) = parse_app(&mut self.reader, marker)? {
+ match data {
+ AppData::Adobe(color_transform) => {
+ self.adobe_color_transform = Some(color_transform)
+ }
+ AppData::Jfif => {
+ // From the JFIF spec:
+ // "The APP0 marker is used to identify a JPEG FIF file.
+ // The JPEG FIF APP0 marker is mandatory right after the SOI marker."
+ // Some JPEGs in the wild does not follow this though, so we allow
+ // JFIF headers anywhere APP0 markers are allowed.
+ /*
+ if previous_marker != Marker::SOI {
+ return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
+ }
+ */
+
+ self.is_jfif = true;
+ }
+ AppData::Avi1 => self.is_mjpeg = true,
+ AppData::Icc(icc) => self.icc_markers.push(icc),
+ AppData::Exif(data) => self.exif_data = Some(data),
+ }
+ }
+ }
+ // Restart
+ Marker::RST(..) => {
+ // Some encoders emit a final RST marker after entropy-coded data, which
+ // decode_scan does not take care of. So if we encounter one, we ignore it.
+ if previous_marker != Marker::SOS {
+ return Err(Error::Format(
+ "RST found outside of entropy-coded data".to_owned(),
+ ));
+ }
+ }
+
+ // Define number of lines
+ Marker::DNL => {
+ // Section B.2.1
+ // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
+ if previous_marker != Marker::SOS || scans_processed != 1 {
+ return Err(Error::Format(
+ "DNL is only allowed immediately after the first scan".to_owned(),
+ ));
+ }
+
+ return Err(Error::Unsupported(UnsupportedFeature::DNL));
+ }
+
+ // Hierarchical mode markers
+ Marker::DHP | Marker::EXP => {
+ return Err(Error::Unsupported(UnsupportedFeature::Hierarchical))
+ }
+
+ // End of image
+ Marker::EOI => break,
+
+ _ => {
+ return Err(Error::Format(format!(
+ "{:?} marker found where not allowed",
+ marker
+ )))
+ }
+ }
+
+ previous_marker = marker;
+ }
+
+ if self.frame.is_none() {
+ return Err(Error::Format(
+ "end of image encountered before frame".to_owned(),
+ ));
+ }
+
+ let frame = self.frame.as_ref().unwrap();
+ let preference = Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
+
+ worker_scope.get_or_init_worker(preference, |worker| {
+ self.decode_planes(worker, planes, planes_u16)
+ })
+ }
+
+ fn decode_planes(
+ &mut self,
+ worker: &mut dyn Worker,
+ mut planes: Vec<Vec<u8>>,
+ planes_u16: Vec<Vec<u16>>,
+ ) -> Result<Vec<u8>> {
+ if self.frame.is_none() {
+ return Err(Error::Format(
+ "end of image encountered before frame".to_owned(),
+ ));
+ }
+
+ let frame = self.frame.as_ref().unwrap();
+
+ if {
+ let required_mem = frame
+ .components
+ .len()
+ .checked_mul(frame.output_size.width.into())
+ .and_then(|m| m.checked_mul(frame.output_size.height.into()));
+ required_mem.map_or(true, |m| self.decoding_buffer_size_limit < m)
+ } {
+ return Err(Error::Format(
+ "size of decoded image exceeds maximum allowed size".to_owned(),
+ ));
+ }
+
+ // If we're decoding a progressive jpeg and a component is unfinished, render what we've got
+ if frame.coding_process == CodingProcess::DctProgressive
+ && self.coefficients.len() == frame.components.len()
+ {
+ for (i, component) in frame.components.iter().enumerate() {
+ // Only dealing with unfinished components
+ if self.coefficients_finished[i] == !0 {
+ continue;
+ }
+
+ let quantization_table =
+ match self.quantization_tables[component.quantization_table_index].clone() {
+ Some(quantization_table) => quantization_table,
+ None => continue,
+ };
+
+ // Get the worker prepared
+ let row_data = RowData {
+ index: i,
+ component: component.clone(),
+ quantization_table,
+ };
+ worker.start(row_data)?;
+
+ // Send the rows over to the worker and collect the result
+ let coefficients_per_mcu_row = usize::from(component.block_size.width)
+ * usize::from(component.vertical_sampling_factor)
+ * 64;
+
+ let mut tasks = (0..frame.mcu_size.height).map(|mcu_y| {
+ let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
+ let row_coefficients =
+ self.coefficients[i][offset..offset + coefficients_per_mcu_row].to_vec();
+ (i, row_coefficients)
+ });
+
+ // FIXME: additional potential work stealing opportunities for rayon case if we
+ // also internally can parallelize over components.
+ worker.append_rows(&mut tasks)?;
+ planes[i] = worker.get_result(i)?;
+ }
+ }
+
+ if frame.coding_process == CodingProcess::Lossless {
+ compute_image_lossless(frame, planes_u16)
+ } else {
+ compute_image(
+ &frame.components,
+ planes,
+ frame.output_size,
+ self.determine_color_transform(),
+ )
+ }
+ }
+
+ fn determine_color_transform(&self) -> ColorTransform {
+ if let Some(color_transform) = self.color_transform {
+ return color_transform;
+ }
+
+ let frame = self.frame.as_ref().unwrap();
+
+ if frame.components.len() == 1 {
+ return ColorTransform::Grayscale;
+ }
+
+ // Using logic for determining colour as described here: https://entropymine.wordpress.com/2018/10/22/how-is-a-jpeg-images-color-type-determined/
+
+ if frame.components.len() == 3 {
+ match (
+ frame.components[0].identifier,
+ frame.components[1].identifier,
+ frame.components[2].identifier,
+ ) {
+ (1, 2, 3) => {
+ return ColorTransform::YCbCr;
+ }
+ (1, 34, 35) => {
+ return ColorTransform::JcsBgYcc;
+ }
+ (82, 71, 66) => {
+ return ColorTransform::RGB;
+ }
+ (114, 103, 98) => {
+ return ColorTransform::JcsBgRgb;
+ }
+ _ => {}
+ }
+
+ if self.is_jfif {
+ return ColorTransform::YCbCr;
+ }
+ }
+
+ if let Some(colour_transform) = self.adobe_color_transform {
+ match colour_transform {
+ AdobeColorTransform::Unknown => {
+ if frame.components.len() == 3 {
+ return ColorTransform::RGB;
+ } else if frame.components.len() == 4 {
+ return ColorTransform::CMYK;
+ }
+ }
+ AdobeColorTransform::YCbCr => {
+ return ColorTransform::YCbCr;
+ }
+ AdobeColorTransform::YCCK => {
+ return ColorTransform::YCCK;
+ }
+ }
+ } else if frame.components.len() == 4 {
+ return ColorTransform::CMYK;
+ }
+
+ if frame.components.len() == 4 {
+ ColorTransform::YCCK
+ } else if frame.components.len() == 3 {
+ ColorTransform::YCbCr
+ } else {
+ ColorTransform::Unknown
+ }
+ }
+
+ fn read_marker(&mut self) -> Result<Marker> {
+ loop {
+ // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
+ // libjpeg allows this though and there are images in the wild utilising it, so we are
+ // forced to support this behavior.
+ // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
+ while read_u8(&mut self.reader)? != 0xFF {}
+
+ // Section B.1.1.2
+ // All markers are assigned two-byte codes: an X’FF’ byte followed by a
+ // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
+ // optionally be preceded by any number of fill bytes, which are bytes
+ // assigned code X’FF’.
+ let mut byte = read_u8(&mut self.reader)?;
+
+ // Section B.1.1.2
+ // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
+ while byte == 0xFF {
+ byte = read_u8(&mut self.reader)?;
+ }
+
+ if byte != 0x00 && byte != 0xFF {
+ return Ok(Marker::from_u8(byte).unwrap());
+ }
+ }
+ }
+
+ fn decode_scan(
+ &mut self,
+ frame: &FrameInfo,
+ scan: &ScanInfo,
+ worker: &mut dyn Worker,
+ finished: &[bool; MAX_COMPONENTS],
+ ) -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
+ assert!(scan.component_indices.len() <= MAX_COMPONENTS);
+
+ let components: Vec<Component> = scan
+ .component_indices
+ .iter()
+ .map(|&i| frame.components[i].clone())
+ .collect();
+
+ // Verify that all required quantization tables has been set.
+ if components
+ .iter()
+ .any(|component| self.quantization_tables[component.quantization_table_index].is_none())
+ {
+ return Err(Error::Format("use of unset quantization table".to_owned()));
+ }
+
+ if self.is_mjpeg {
+ fill_default_mjpeg_tables(
+ scan,
+ &mut self.dc_huffman_tables,
+ &mut self.ac_huffman_tables,
+ );
+ }
+
+ // Verify that all required huffman tables has been set.
+ if scan.spectral_selection.start == 0
+ && scan
+ .dc_table_indices
+ .iter()
+ .any(|&i| self.dc_huffman_tables[i].is_none())
+ {
+ return Err(Error::Format(
+ "scan makes use of unset dc huffman table".to_owned(),
+ ));
+ }
+ if scan.spectral_selection.end > 1
+ && scan
+ .ac_table_indices
+ .iter()
+ .any(|&i| self.ac_huffman_tables[i].is_none())
+ {
+ return Err(Error::Format(
+ "scan makes use of unset ac huffman table".to_owned(),
+ ));
+ }
+
+ // Prepare the worker thread for the work to come.
+ for (i, component) in components.iter().enumerate() {
+ if finished[i] {
+ let row_data = RowData {
+ index: i,
+ component: component.clone(),
+ quantization_table: self.quantization_tables
+ [component.quantization_table_index]
+ .clone()
+ .unwrap(),
+ };
+
+ worker.start(row_data)?;
+ }
+ }
+
+ let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
+ let is_interleaved = components.len() > 1;
+ let mut dummy_block = [0i16; 64];
+ let mut huffman = HuffmanDecoder::new();
+ let mut dc_predictors = [0i16; MAX_COMPONENTS];
+ let mut mcus_left_until_restart = self.restart_interval;
+ let mut expected_rst_num = 0;
+ let mut eob_run = 0;
+ let mut mcu_row_coefficients = vec![vec![]; components.len()];
+
+ if !is_progressive {
+ for (i, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
+ let coefficients_per_mcu_row = component.block_size.width as usize
+ * component.vertical_sampling_factor as usize
+ * 64;
+ mcu_row_coefficients[i] = vec![0i16; coefficients_per_mcu_row];
+ }
+ }
+
+ // 4.8.2
+ // When reading from the stream, if the data is non-interleaved then an MCU consists of
+ // exactly one block (effectively a 1x1 sample).
+ let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
+ let horizontal = components
+ .iter()
+ .map(|component| component.horizontal_sampling_factor as u16)
+ .collect::<Vec<_>>();
+ let vertical = components
+ .iter()
+ .map(|component| component.vertical_sampling_factor as u16)
+ .collect::<Vec<_>>();
+ (horizontal, vertical)
+ } else {
+ (vec![1], vec![1])
+ };
+
+ // This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
+ // the MCUs will be exactly the block count.
+ let (max_mcu_x, max_mcu_y) = if is_interleaved {
+ (frame.mcu_size.width, frame.mcu_size.height)
+ } else {
+ (
+ components[0].block_size.width,
+ components[0].block_size.height,
+ )
+ };
+
+ for mcu_y in 0..max_mcu_y {
+ if mcu_y * 8 >= frame.image_size.height {
+ break;
+ }
+
+ for mcu_x in 0..max_mcu_x {
+ if mcu_x * 8 >= frame.image_size.width {
+ break;
+ }
+
+ if self.restart_interval > 0 {
+ if mcus_left_until_restart == 0 {
+ match huffman.take_marker(&mut self.reader)? {
+ Some(Marker::RST(n)) => {
+ if n != expected_rst_num {
+ return Err(Error::Format(format!(
+ "found RST{} where RST{} was expected",
+ n, expected_rst_num
+ )));
+ }
+
+ huffman.reset();
+ // Section F.2.1.3.1
+ dc_predictors = [0i16; MAX_COMPONENTS];
+ // Section G.1.2.2
+ eob_run = 0;
+
+ expected_rst_num = (expected_rst_num + 1) % 8;
+ mcus_left_until_restart = self.restart_interval;
+ }
+ Some(marker) => {
+ return Err(Error::Format(format!(
+ "found marker {:?} inside scan where RST{} was expected",
+ marker, expected_rst_num
+ )))
+ }
+ None => {
+ return Err(Error::Format(format!(
+ "no marker found where RST{} was expected",
+ expected_rst_num
+ )))
+ }
+ }
+ }
+
+ mcus_left_until_restart -= 1;
+ }
+
+ for (i, component) in components.iter().enumerate() {
+ for v_pos in 0..mcu_vertical_samples[i] {
+ for h_pos in 0..mcu_horizontal_samples[i] {
+ let coefficients = if is_progressive {
+ let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
+ let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
+ let block_offset =
+ (block_y * component.block_size.width as usize + block_x) * 64;
+ &mut self.coefficients[scan.component_indices[i]]
+ [block_offset..block_offset + 64]
+ } else if finished[i] {
+ // Because the worker thread operates in batches as if we were always interleaved, we
+ // need to distinguish between a single-shot buffer and one that's currently in process
+ // (for a non-interleaved) stream
+ let mcu_batch_current_row = if is_interleaved {
+ 0
+ } else {
+ mcu_y % component.vertical_sampling_factor as u16
+ };
+
+ let block_y = (mcu_batch_current_row * mcu_vertical_samples[i]
+ + v_pos) as usize;
+ let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
+ let block_offset =
+ (block_y * component.block_size.width as usize + block_x) * 64;
+ &mut mcu_row_coefficients[i][block_offset..block_offset + 64]
+ } else {
+ &mut dummy_block[..64]
+ }
+ .try_into()
+ .unwrap();
+
+ if scan.successive_approximation_high == 0 {
+ decode_block(
+ &mut self.reader,
+ coefficients,
+ &mut huffman,
+ self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
+ self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
+ scan.spectral_selection.clone(),
+ scan.successive_approximation_low,
+ &mut eob_run,
+ &mut dc_predictors[i],
+ )?;
+ } else {
+ decode_block_successive_approximation(
+ &mut self.reader,
+ coefficients,
+ &mut huffman,
+ self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
+ scan.spectral_selection.clone(),
+ scan.successive_approximation_low,
+ &mut eob_run,
+ )?;
+ }
+ }
+ }
+ }
+ }
+
+ // Send the coefficients from this MCU row to the worker thread for dequantization and idct.
+ for (i, component) in components.iter().enumerate() {
+ if finished[i] {
+ // In the event of non-interleaved streams, if we're still building the buffer out,
+ // keep going; don't send it yet. We also need to ensure we don't skip over the last
+ // row(s) of the image.
+ if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
+ if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
+ continue;
+ }
+ }
+
+ let coefficients_per_mcu_row = component.block_size.width as usize
+ * component.vertical_sampling_factor as usize
+ * 64;
+
+ let row_coefficients = if is_progressive {
+ // Because non-interleaved streams will have multiple MCU rows concatenated together,
+ // the row for calculating the offset is different.
+ let worker_mcu_y = if is_interleaved {
+ mcu_y
+ } else {
+ // Explicitly doing floor-division here
+ mcu_y / component.vertical_sampling_factor as u16
+ };
+
+ let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
+ self.coefficients[scan.component_indices[i]]
+ [offset..offset + coefficients_per_mcu_row]
+ .to_vec()
+ } else {
+ mem::replace(
+ &mut mcu_row_coefficients[i],
+ vec![0i16; coefficients_per_mcu_row],
+ )
+ };
+
+ // FIXME: additional potential work stealing opportunities for rayon case if we
+ // also internally can parallelize over components.
+ worker.append_row((i, row_coefficients))?;
+ }
+ }
+ }
+
+ let mut marker = huffman.take_marker(&mut self.reader)?;
+ while let Some(Marker::RST(_)) = marker {
+ marker = self.read_marker().ok();
+ }
+
+ if finished.iter().any(|&c| c) {
+ // Retrieve all the data from the worker thread.
+ let mut data = vec![Vec::new(); frame.components.len()];
+
+ for (i, &component_index) in scan.component_indices.iter().enumerate() {
+ if finished[i] {
+ data[component_index] = worker.get_result(i)?;
+ }
+ }
+
+ Ok((marker, Some(data)))
+ } else {
+ Ok((marker, None))
+ }
+ }
+}
+
+fn decode_block<R: Read>(
+ reader: &mut R,
+ coefficients: &mut [i16; 64],
+ huffman: &mut HuffmanDecoder,
+ dc_table: Option<&HuffmanTable>,
+ ac_table: Option<&HuffmanTable>,
+ spectral_selection: Range<u8>,
+ successive_approximation_low: u8,
+ eob_run: &mut u16,
+ dc_predictor: &mut i16,
+) -> Result<()> {
+ debug_assert_eq!(coefficients.len(), 64);
+
+ if spectral_selection.start == 0 {
+ // Section F.2.2.1
+ // Figure F.12
+ let value = huffman.decode(reader, dc_table.unwrap())?;
+ let diff = match value {
+ 0 => 0,
+ 1..=11 => huffman.receive_extend(reader, value)?,
+ _ => {
+ // Section F.1.2.1.1
+ // Table F.1
+ return Err(Error::Format(
+ "invalid DC difference magnitude category".to_owned(),
+ ));
+ }
+ };
+
+ // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
+ // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
+ *dc_predictor = dc_predictor.wrapping_add(diff);
+ coefficients[0] = *dc_predictor << successive_approximation_low;
+ }
+
+ let mut index = cmp::max(spectral_selection.start, 1);
+
+ if index < spectral_selection.end && *eob_run > 0 {
+ *eob_run -= 1;
+ return Ok(());
+ }
+
+ // Section F.1.2.2.1
+ while index < spectral_selection.end {
+ if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
+ index += run;
+
+ if index >= spectral_selection.end {
+ break;
+ }
+
+ coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
+ index += 1;
+ } else {
+ let byte = huffman.decode(reader, ac_table.unwrap())?;
+ let r = byte >> 4;
+ let s = byte & 0x0f;
+
+ if s == 0 {
+ match r {
+ 15 => index += 16, // Run length of 16 zero coefficients.
+ _ => {
+ *eob_run = (1 << r) - 1;
+
+ if r > 0 {
+ *eob_run += huffman.get_bits(reader, r)?;
+ }
+
+ break;
+ }
+ }
+ } else {
+ index += r;
+
+ if index >= spectral_selection.end {
+ break;
+ }
+
+ coefficients[UNZIGZAG[index as usize] as usize] =
+ huffman.receive_extend(reader, s)? << successive_approximation_low;
+ index += 1;
+ }
+ }
+ }
+
+ Ok(())
+}
+
+fn decode_block_successive_approximation<R: Read>(
+ reader: &mut R,
+ coefficients: &mut [i16; 64],
+ huffman: &mut HuffmanDecoder,
+ ac_table: Option<&HuffmanTable>,
+ spectral_selection: Range<u8>,
+ successive_approximation_low: u8,
+ eob_run: &mut u16,
+) -> Result<()> {
+ debug_assert_eq!(coefficients.len(), 64);
+
+ let bit = 1 << successive_approximation_low;
+
+ if spectral_selection.start == 0 {
+ // Section G.1.2.1
+
+ if huffman.get_bits(reader, 1)? == 1 {
+ coefficients[0] |= bit;
+ }
+ } else {
+ // Section G.1.2.3
+
+ if *eob_run > 0 {
+ *eob_run -= 1;
+ refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
+ return Ok(());
+ }
+
+ let mut index = spectral_selection.start;
+
+ while index < spectral_selection.end {
+ let byte = huffman.decode(reader, ac_table.unwrap())?;
+ let r = byte >> 4;
+ let s = byte & 0x0f;
+
+ let mut zero_run_length = r;
+ let mut value = 0;
+
+ match s {
+ 0 => {
+ match r {
+ 15 => {
+ // Run length of 16 zero coefficients.
+ // We don't need to do anything special here, zero_run_length is 15
+ // and then value (which is zero) gets written, resulting in 16
+ // zero coefficients.
+ }
+ _ => {
+ *eob_run = (1 << r) - 1;
+
+ if r > 0 {
+ *eob_run += huffman.get_bits(reader, r)?;
+ }
+
+ // Force end of block.
+ zero_run_length = 64;
+ }
+ }
+ }
+ 1 => {
+ if huffman.get_bits(reader, 1)? == 1 {
+ value = bit;
+ } else {
+ value = -bit;
+ }
+ }
+ _ => return Err(Error::Format("unexpected huffman code".to_owned())),
+ }
+
+ let range = Range {
+ start: index,
+ end: spectral_selection.end,
+ };
+ index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
+
+ if value != 0 {
+ coefficients[UNZIGZAG[index as usize] as usize] = value;
+ }
+
+ index += 1;
+ }
+ }
+
+ Ok(())
+}
+
+fn refine_non_zeroes<R: Read>(
+ reader: &mut R,
+ coefficients: &mut [i16; 64],
+ huffman: &mut HuffmanDecoder,
+ range: Range<u8>,
+ zrl: u8,
+ bit: i16,
+) -> Result<u8> {
+ debug_assert_eq!(coefficients.len(), 64);
+
+ let last = range.end - 1;
+ let mut zero_run_length = zrl;
+
+ for i in range {
+ let index = UNZIGZAG[i as usize] as usize;
+
+ let coefficient = &mut coefficients[index];
+
+ if *coefficient == 0 {
+ if zero_run_length == 0 {
+ return Ok(i);
+ }
+
+ zero_run_length -= 1;
+ } else if huffman.get_bits(reader, 1)? == 1 && *coefficient & bit == 0 {
+ if *coefficient > 0 {
+ *coefficient = coefficient
+ .checked_add(bit)
+ .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
+ } else {
+ *coefficient = coefficient
+ .checked_sub(bit)
+ .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
+ }
+ }
+ }
+
+ Ok(last)
+}
+
+fn compute_image(
+ components: &[Component],
+ mut data: Vec<Vec<u8>>,
+ output_size: Dimensions,
+ color_transform: ColorTransform,
+) -> Result<Vec<u8>> {
+ if data.is_empty() || data.iter().any(Vec::is_empty) {
+ return Err(Error::Format("not all components have data".to_owned()));
+ }
+
+ if components.len() == 1 {
+ let component = &components[0];
+ let mut decoded: Vec<u8> = data.remove(0);
+
+ let width = component.size.width as usize;
+ let height = component.size.height as usize;
+ let size = width * height;
+ let line_stride = component.block_size.width as usize * component.dct_scale;
+
+ // if the image width is a multiple of the block size,
+ // then we don't have to move bytes in the decoded data
+ if usize::from(output_size.width) != line_stride {
+ // The first line already starts at index 0, so we need to move only lines 1..height
+ // We move from the top down because all lines are being moved backwards.
+ for y in 1..height {
+ let destination_idx = y * width;
+ let source_idx = y * line_stride;
+ let end = source_idx + width;
+ decoded.copy_within(source_idx..end, destination_idx);
+ }
+ }
+ decoded.resize(size, 0);
+ Ok(decoded)
+ } else {
+ compute_image_parallel(components, data, output_size, color_transform)
+ }
+}
+
+pub(crate) fn choose_color_convert_func(
+ component_count: usize,
+ color_transform: ColorTransform,
+) -> Result<fn(&[Vec<u8>], &mut [u8])> {
+ match component_count {
+ 3 => match color_transform {
+ ColorTransform::None => Ok(color_no_convert),
+ ColorTransform::Grayscale => Err(Error::Format(
+ "Invalid number of channels (3) for Grayscale data".to_string(),
+ )),
+ ColorTransform::RGB => Ok(color_convert_line_rgb),
+ ColorTransform::YCbCr => Ok(color_convert_line_ycbcr),
+ ColorTransform::CMYK => Err(Error::Format(
+ "Invalid number of channels (3) for CMYK data".to_string(),
+ )),
+ ColorTransform::YCCK => Err(Error::Format(
+ "Invalid number of channels (3) for YCCK data".to_string(),
+ )),
+ ColorTransform::JcsBgYcc => Err(Error::Unsupported(
+ UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
+ )),
+ ColorTransform::JcsBgRgb => Err(Error::Unsupported(
+ UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
+ )),
+ ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
+ },
+ 4 => match color_transform {
+ ColorTransform::None => Ok(color_no_convert),
+ ColorTransform::Grayscale => Err(Error::Format(
+ "Invalid number of channels (4) for Grayscale data".to_string(),
+ )),
+ ColorTransform::RGB => Err(Error::Format(
+ "Invalid number of channels (4) for RGB data".to_string(),
+ )),
+ ColorTransform::YCbCr => Err(Error::Format(
+ "Invalid number of channels (4) for YCbCr data".to_string(),
+ )),
+ ColorTransform::CMYK => Ok(color_convert_line_cmyk),
+ ColorTransform::YCCK => Ok(color_convert_line_ycck),
+
+ ColorTransform::JcsBgYcc => Err(Error::Unsupported(
+ UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
+ )),
+ ColorTransform::JcsBgRgb => Err(Error::Unsupported(
+ UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
+ )),
+ ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
+ },
+ _ => panic!(),
+ }
+}
+
+fn color_convert_line_rgb(data: &[Vec<u8>], output: &mut [u8]) {
+ assert!(data.len() == 3, "wrong number of components for rgb");
+ let [r, g, b]: &[Vec<u8>; 3] = data.try_into().unwrap();
+ for (((chunk, r), g), b) in output
+ .chunks_exact_mut(3)
+ .zip(r.iter())
+ .zip(g.iter())
+ .zip(b.iter())
+ {
+ chunk[0] = *r;
+ chunk[1] = *g;
+ chunk[2] = *b;
+ }
+}
+
+fn color_convert_line_ycbcr(data: &[Vec<u8>], output: &mut [u8]) {
+ assert!(data.len() == 3, "wrong number of components for ycbcr");
+ let [y, cb, cr]: &[_; 3] = data.try_into().unwrap();
+
+ #[cfg(not(feature = "platform_independent"))]
+ let arch_specific_pixels = {
+ if let Some(ycbcr) = crate::arch::get_color_convert_line_ycbcr() {
+ #[allow(unsafe_code)]
+ unsafe {
+ ycbcr(y, cb, cr, output)
+ }
+ } else {
+ 0
+ }
+ };
+
+ #[cfg(feature = "platform_independent")]
+ let arch_specific_pixels = 0;
+
+ for (((chunk, y), cb), cr) in output
+ .chunks_exact_mut(3)
+ .zip(y.iter())
+ .zip(cb.iter())
+ .zip(cr.iter())
+ .skip(arch_specific_pixels)
+ {
+ let (r, g, b) = ycbcr_to_rgb(*y, *cb, *cr);
+ chunk[0] = r;
+ chunk[1] = g;
+ chunk[2] = b;
+ }
+}
+
+fn color_convert_line_ycck(data: &[Vec<u8>], output: &mut [u8]) {
+ assert!(data.len() == 4, "wrong number of components for ycck");
+ let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
+
+ for ((((chunk, c), m), y), k) in output
+ .chunks_exact_mut(4)
+ .zip(c.iter())
+ .zip(m.iter())
+ .zip(y.iter())
+ .zip(k.iter())
+ {
+ let (r, g, b) = ycbcr_to_rgb(*c, *m, *y);
+ chunk[0] = r;
+ chunk[1] = g;
+ chunk[2] = b;
+ chunk[3] = 255 - *k;
+ }
+}
+
+fn color_convert_line_cmyk(data: &[Vec<u8>], output: &mut [u8]) {
+ assert!(data.len() == 4, "wrong number of components for cmyk");
+ let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
+
+ for ((((chunk, c), m), y), k) in output
+ .chunks_exact_mut(4)
+ .zip(c.iter())
+ .zip(m.iter())
+ .zip(y.iter())
+ .zip(k.iter())
+ {
+ chunk[0] = 255 - c;
+ chunk[1] = 255 - m;
+ chunk[2] = 255 - y;
+ chunk[3] = 255 - k;
+ }
+}
+
+fn color_no_convert(data: &[Vec<u8>], output: &mut [u8]) {
+ let mut output_iter = output.iter_mut();
+
+ for pixel in data {
+ for d in pixel {
+ *(output_iter.next().unwrap()) = *d;
+ }
+ }
+}
+
+const FIXED_POINT_OFFSET: i32 = 20;
+const HALF: i32 = (1 << FIXED_POINT_OFFSET) / 2;
+
+// ITU-R BT.601
+// Based on libjpeg-turbo's jdcolext.c
+fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
+ let y = y as i32 * (1 << FIXED_POINT_OFFSET) + HALF;
+ let cb = cb as i32 - 128;
+ let cr = cr as i32 - 128;
+
+ let r = clamp_fixed_point(y + stbi_f2f(1.40200) * cr);
+ let g = clamp_fixed_point(y - stbi_f2f(0.34414) * cb - stbi_f2f(0.71414) * cr);
+ let b = clamp_fixed_point(y + stbi_f2f(1.77200) * cb);
+ (r, g, b)
+}
+
+fn stbi_f2f(x: f32) -> i32 {
+ (x * ((1 << FIXED_POINT_OFFSET) as f32) + 0.5) as i32
+}
+
+fn clamp_fixed_point(value: i32) -> u8 {
+ (value >> FIXED_POINT_OFFSET).min(255).max(0) as u8
+}
diff --git a/vendor/jpeg-decoder/src/decoder/lossless.rs b/vendor/jpeg-decoder/src/decoder/lossless.rs
new file mode 100644
index 0000000..6422220
--- /dev/null
+++ b/vendor/jpeg-decoder/src/decoder/lossless.rs
@@ -0,0 +1,259 @@
+use std::io::Read;
+use crate::decoder::{Decoder, MAX_COMPONENTS};
+use crate::error::{Error, Result};
+use crate::huffman::HuffmanDecoder;
+use crate::marker::Marker;
+use crate::parser::Predictor;
+use crate::parser::{Component, FrameInfo, ScanInfo};
+
+impl<R: Read> Decoder<R> {
+ /// decode_scan_lossless
+ pub fn decode_scan_lossless(
+ &mut self,
+ frame: &FrameInfo,
+ scan: &ScanInfo,
+ ) -> Result<(Option<Marker>, Vec<Vec<u16>>)> {
+ let ncomp = scan.component_indices.len();
+ let npixel = frame.image_size.height as usize * frame.image_size.width as usize;
+ assert!(ncomp <= MAX_COMPONENTS);
+ let mut results = vec![vec![0u16; npixel]; ncomp];
+
+ let components: Vec<Component> = scan
+ .component_indices
+ .iter()
+ .map(|&i| frame.components[i].clone())
+ .collect();
+
+ // Verify that all required huffman tables has been set.
+ if scan
+ .dc_table_indices
+ .iter()
+ .any(|&i| self.dc_huffman_tables[i].is_none())
+ {
+ return Err(Error::Format(
+ "scan makes use of unset dc huffman table".to_owned(),
+ ));
+ }
+
+ let mut huffman = HuffmanDecoder::new();
+ let reader = &mut self.reader;
+ let mut mcus_left_until_restart = self.restart_interval;
+ let mut expected_rst_num = 0;
+ let mut ra = [0u16; MAX_COMPONENTS];
+ let mut rb = [0u16; MAX_COMPONENTS];
+ let mut rc = [0u16; MAX_COMPONENTS];
+
+ let width = frame.image_size.width as usize;
+ let height = frame.image_size.height as usize;
+
+ let mut differences = vec![Vec::with_capacity(npixel); ncomp];
+ for _mcu_y in 0..height {
+ for _mcu_x in 0..width {
+ if self.restart_interval > 0 {
+ if mcus_left_until_restart == 0 {
+ match huffman.take_marker(reader)? {
+ Some(Marker::RST(n)) => {
+ if n != expected_rst_num {
+ return Err(Error::Format(format!(
+ "found RST{} where RST{} was expected",
+ n, expected_rst_num
+ )));
+ }
+
+ huffman.reset();
+
+ expected_rst_num = (expected_rst_num + 1) % 8;
+ mcus_left_until_restart = self.restart_interval;
+ }
+ Some(marker) => {
+ return Err(Error::Format(format!(
+ "found marker {:?} inside scan where RST{} was expected",
+ marker, expected_rst_num
+ )))
+ }
+ None => {
+ return Err(Error::Format(format!(
+ "no marker found where RST{} was expected",
+ expected_rst_num
+ )))
+ }
+ }
+ }
+
+ mcus_left_until_restart -= 1;
+ }
+
+ for (i, _component) in components.iter().enumerate() {
+ let dc_table = self.dc_huffman_tables[scan.dc_table_indices[i]]
+ .as_ref()
+ .unwrap();
+ let value = huffman.decode(reader, dc_table)?;
+ let diff = match value {
+ 0 => 0,
+ 1..=15 => huffman.receive_extend(reader, value)? as i32,
+ 16 => 32768,
+ _ => {
+ // Section F.1.2.1.1
+ // Table F.1
+ return Err(Error::Format(
+ "invalid DC difference magnitude category".to_owned(),
+ ));
+ }
+ };
+ differences[i].push(diff);
+ }
+ }
+ }
+
+ if scan.predictor_selection == Predictor::Ra {
+ for (i, _component) in components.iter().enumerate() {
+ // calculate the top left pixel
+ let diff = differences[i][0];
+ let prediction = 1 << (frame.precision - scan.point_transform - 1) as i32;
+ let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
+ let result = result << scan.point_transform;
+ results[i][0] = result;
+
+ // calculate leftmost column, using top pixel as predictor
+ let mut previous = result;
+ for mcu_y in 1..height {
+ let diff = differences[i][mcu_y * width];
+ let prediction = previous as i32;
+ let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
+ let result = result << scan.point_transform;
+ results[i][mcu_y * width] = result;
+ previous = result;
+ }
+
+ // calculate rows, using left pixel as predictor
+ for mcu_y in 0..height {
+ for mcu_x in 1..width {
+ let diff = differences[i][mcu_y * width + mcu_x];
+ let prediction = results[i][mcu_y * width + mcu_x - 1] as i32;
+ let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
+ let result = result << scan.point_transform;
+ results[i][mcu_y * width + mcu_x] = result;
+ }
+ }
+ }
+ } else {
+ for mcu_y in 0..height {
+ for mcu_x in 0..width {
+ for (i, _component) in components.iter().enumerate() {
+ let diff = differences[i][mcu_y * width + mcu_x];
+
+ // The following lines could be further optimized, e.g. moving the checks
+ // and updates of the previous values into the prediction function or
+ // iterating such that diagonals with mcu_x + mcu_y = const are computed at
+ // the same time to exploit independent predictions in this case
+ if mcu_x > 0 {
+ ra[i] = results[i][mcu_y * frame.image_size.width as usize + mcu_x - 1];
+ }
+ if mcu_y > 0 {
+ rb[i] =
+ results[i][(mcu_y - 1) * frame.image_size.width as usize + mcu_x];
+ if mcu_x > 0 {
+ rc[i] = results[i]
+ [(mcu_y - 1) * frame.image_size.width as usize + (mcu_x - 1)];
+ }
+ }
+ let prediction = predict(
+ ra[i] as i32,
+ rb[i] as i32,
+ rc[i] as i32,
+ scan.predictor_selection,
+ scan.point_transform,
+ frame.precision,
+ mcu_x,
+ mcu_y,
+ self.restart_interval > 0
+ && mcus_left_until_restart == self.restart_interval - 1,
+ );
+ let result = ((prediction + diff) & 0xFFFF) as u16; // modulo 2^16
+ results[i][mcu_y * width + mcu_x] = result << scan.point_transform;
+ }
+ }
+ }
+ }
+
+ let mut marker = huffman.take_marker(&mut self.reader)?;
+ while let Some(Marker::RST(_)) = marker {
+ marker = self.read_marker().ok();
+ }
+ Ok((marker, results))
+ }
+}
+
+/// H.1.2.1
+fn predict(
+ ra: i32,
+ rb: i32,
+ rc: i32,
+ predictor: Predictor,
+ point_transform: u8,
+ input_precision: u8,
+ ix: usize,
+ iy: usize,
+ restart: bool,
+) -> i32 {
+ if (ix == 0 && iy == 0) || restart {
+ // start of first line or restart
+ if input_precision > 1 + point_transform {
+ 1 << (input_precision - point_transform - 1)
+ } else {
+ 0
+ }
+ } else if iy == 0 {
+ // rest of first line
+ ra
+ } else if ix == 0 {
+ // start of other line
+ rb
+ } else {
+ // use predictor Table H.1
+ match predictor {
+ Predictor::NoPrediction => 0,
+ Predictor::Ra => ra,
+ Predictor::Rb => rb,
+ Predictor::Rc => rc,
+ Predictor::RaRbRc1 => ra + rb - rc,
+ Predictor::RaRbRc2 => ra + ((rb - rc) >> 1),
+ Predictor::RaRbRc3 => rb + ((ra - rc) >> 1),
+ Predictor::RaRb => (ra + rb) / 2,
+ }
+ }
+}
+
+pub fn compute_image_lossless(frame: &FrameInfo, mut data: Vec<Vec<u16>>) -> Result<Vec<u8>> {
+ if data.is_empty() || data.iter().any(Vec::is_empty) {
+ return Err(Error::Format("not all components have data".to_owned()));
+ }
+ let output_size = frame.output_size;
+ let components = &frame.components;
+ let ncomp = components.len();
+
+ if ncomp == 1 {
+ let decoded = convert_to_u8(frame, data.remove(0));
+ Ok(decoded)
+ } else {
+ let mut decoded: Vec<u16> =
+ vec![0u16; ncomp * output_size.width as usize * output_size.height as usize];
+ for (x, chunk) in decoded.chunks_mut(ncomp).enumerate() {
+ for (i, (component_data, _)) in data.iter().zip(components.iter()).enumerate() {
+ chunk[i] = component_data[x];
+ }
+ }
+ let decoded = convert_to_u8(frame, decoded);
+ Ok(decoded)
+ }
+}
+
+fn convert_to_u8(frame: &FrameInfo, data: Vec<u16>) -> Vec<u8> {
+ if frame.precision == 8 {
+ data.iter().map(|x| *x as u8).collect()
+ } else {
+ // we output native endian, which is the standard for image-rs
+ let ne_bytes: Vec<_> = data.iter().map(|x| x.to_ne_bytes()).collect();
+ ne_bytes.concat()
+ }
+}
diff --git a/vendor/jpeg-decoder/src/error.rs b/vendor/jpeg-decoder/src/error.rs
new file mode 100644
index 0000000..c5fe7b6
--- /dev/null
+++ b/vendor/jpeg-decoder/src/error.rs
@@ -0,0 +1,75 @@
+use alloc::boxed::Box;
+use alloc::fmt;
+use alloc::string::String;
+use core::result;
+use std::error::Error as StdError;
+use std::io::Error as IoError;
+
+use crate::ColorTransform;
+
+pub type Result<T> = result::Result<T, Error>;
+
+/// An enumeration over JPEG features (currently) unsupported by this library.
+///
+/// Support for features listed here may be included in future versions of this library.
+#[derive(Debug, Clone, PartialEq, Eq, Hash)]
+pub enum UnsupportedFeature {
+ /// Hierarchical JPEG.
+ Hierarchical,
+ /// JPEG using arithmetic entropy coding instead of Huffman coding.
+ ArithmeticEntropyCoding,
+ /// Sample precision in bits. 8 bit sample precision is what is currently supported in non-lossless coding process.
+ SamplePrecision(u8),
+ /// Number of components in an image. 1, 3 and 4 components are currently supported.
+ ComponentCount(u8),
+ /// An image can specify a zero height in the frame header and use the DNL (Define Number of
+ /// Lines) marker at the end of the first scan to define the number of lines in the frame.
+ DNL,
+ /// Subsampling ratio.
+ SubsamplingRatio,
+ /// A subsampling ratio not representable as an integer.
+ NonIntegerSubsamplingRatio,
+ /// Colour transform
+ ColorTransform(ColorTransform),
+}
+
+/// Errors that can occur while decoding a JPEG image.
+#[derive(Debug)]
+pub enum Error {
+ /// The image is not formatted properly. The string contains detailed information about the
+ /// error.
+ Format(String),
+ /// The image makes use of a JPEG feature not (currently) supported by this library.
+ Unsupported(UnsupportedFeature),
+ /// An I/O error occurred while decoding the image.
+ Io(IoError),
+ /// An internal error occurred while decoding the image.
+ Internal(Box<dyn StdError + Send + Sync + 'static>), //TODO: not used, can be removed with the next version bump
+}
+
+impl fmt::Display for Error {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match *self {
+ Error::Format(ref desc) => write!(f, "invalid JPEG format: {}", desc),
+ Error::Unsupported(ref feat) => write!(f, "unsupported JPEG feature: {:?}", feat),
+ Error::Io(ref err) => err.fmt(f),
+ Error::Internal(ref err) => err.fmt(f),
+ }
+ }
+}
+
+impl StdError for Error {
+ fn source(&self) -> Option<&(dyn StdError + 'static)> {
+ match *self {
+ Error::Io(ref err) => Some(err),
+ Error::Internal(ref err) => Some(&**err),
+ _ => None,
+ }
+ }
+}
+
+impl From<IoError> for Error {
+ fn from(err: IoError) -> Error {
+ Error::Io(err)
+ }
+}
diff --git a/vendor/jpeg-decoder/src/huffman.rs b/vendor/jpeg-decoder/src/huffman.rs
new file mode 100644
index 0000000..fca57c1
--- /dev/null
+++ b/vendor/jpeg-decoder/src/huffman.rs
@@ -0,0 +1,346 @@
+use alloc::borrow::ToOwned;
+use alloc::vec;
+use alloc::vec::Vec;
+use core::iter;
+use std::io::Read;
+use crate::read_u8;
+use crate::error::{Error, Result};
+use crate::marker::Marker;
+use crate::parser::ScanInfo;
+
+const LUT_BITS: u8 = 8;
+
+#[derive(Debug)]
+pub struct HuffmanDecoder {
+ bits: u64,
+ num_bits: u8,
+ marker: Option<Marker>,
+}
+
+impl HuffmanDecoder {
+ pub fn new() -> HuffmanDecoder {
+ HuffmanDecoder {
+ bits: 0,
+ num_bits: 0,
+ marker: None,
+ }
+ }
+
+ // Section F.2.2.3
+ // Figure F.16
+ pub fn decode<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<u8> {
+ if self.num_bits < 16 {
+ self.read_bits(reader)?;
+ }
+
+ let (value, size) = table.lut[self.peek_bits(LUT_BITS) as usize];
+
+ if size > 0 {
+ self.consume_bits(size);
+ Ok(value)
+ }
+ else {
+ let bits = self.peek_bits(16);
+
+ for i in LUT_BITS .. 16 {
+ let code = (bits >> (15 - i)) as i32;
+
+ if code <= table.maxcode[i as usize] {
+ self.consume_bits(i + 1);
+
+ let index = (code + table.delta[i as usize]) as usize;
+ return Ok(table.values[index]);
+ }
+ }
+
+ Err(Error::Format("failed to decode huffman code".to_owned()))
+ }
+ }
+
+ pub fn decode_fast_ac<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<Option<(i16, u8)>> {
+ if let Some(ref ac_lut) = table.ac_lut {
+ if self.num_bits < LUT_BITS {
+ self.read_bits(reader)?;
+ }
+
+ let (value, run_size) = ac_lut[self.peek_bits(LUT_BITS) as usize];
+
+ if run_size != 0 {
+ let run = run_size >> 4;
+ let size = run_size & 0x0f;
+
+ self.consume_bits(size);
+ return Ok(Some((value, run)));
+ }
+ }
+
+ Ok(None)
+ }
+
+ #[inline]
+ pub fn get_bits<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<u16> {
+ if self.num_bits < count {
+ self.read_bits(reader)?;
+ }
+
+ let bits = self.peek_bits(count);
+ self.consume_bits(count);
+
+ Ok(bits)
+ }
+
+ #[inline]
+ pub fn receive_extend<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<i16> {
+ let value = self.get_bits(reader, count)?;
+ Ok(extend(value, count))
+ }
+
+ pub fn reset(&mut self) {
+ self.bits = 0;
+ self.num_bits = 0;
+ }
+
+ pub fn take_marker<R: Read>(&mut self, reader: &mut R) -> Result<Option<Marker>> {
+ self.read_bits(reader).map(|_| self.marker.take())
+ }
+
+ #[inline]
+ fn peek_bits(&mut self, count: u8) -> u16 {
+ debug_assert!(count <= 16);
+ debug_assert!(self.num_bits >= count);
+
+ ((self.bits >> (64 - count)) & ((1 << count) - 1)) as u16
+ }
+
+ #[inline]
+ fn consume_bits(&mut self, count: u8) {
+ debug_assert!(self.num_bits >= count);
+
+ self.bits <<= count as usize;
+ self.num_bits -= count;
+ }
+
+ fn read_bits<R: Read>(&mut self, reader: &mut R) -> Result<()> {
+ while self.num_bits <= 56 {
+ // Fill with zero bits if we have reached the end.
+ let byte = match self.marker {
+ Some(_) => 0,
+ None => read_u8(reader)?,
+ };
+
+ if byte == 0xFF {
+ let mut next_byte = read_u8(reader)?;
+
+ // Check for byte stuffing.
+ if next_byte != 0x00 {
+ // We seem to have reached the end of entropy-coded data and encountered a
+ // marker. Since we can't put data back into the reader, we have to continue
+ // reading to identify the marker so we can pass it on.
+
+ // Section B.1.1.2
+ // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
+ while next_byte == 0xFF {
+ next_byte = read_u8(reader)?;
+ }
+
+ match next_byte {
+ 0x00 => return Err(Error::Format("FF 00 found where marker was expected".to_owned())),
+ _ => self.marker = Some(Marker::from_u8(next_byte).unwrap()),
+ }
+
+ continue;
+ }
+ }
+
+ self.bits |= (byte as u64) << (56 - self.num_bits);
+ self.num_bits += 8;
+ }
+
+ Ok(())
+ }
+}
+
+// Section F.2.2.1
+// Figure F.12
+fn extend(value: u16, count: u8) -> i16 {
+ let vt = 1 << (count as u16 - 1);
+
+ if value < vt {
+ value as i16 + (-1 << count as i16) + 1
+ } else {
+ value as i16
+ }
+}
+
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum HuffmanTableClass {
+ DC,
+ AC,
+}
+
+pub struct HuffmanTable {
+ values: Vec<u8>,
+ delta: [i32; 16],
+ maxcode: [i32; 16],
+
+ lut: [(u8, u8); 1 << LUT_BITS],
+ ac_lut: Option<[(i16, u8); 1 << LUT_BITS]>,
+}
+
+impl HuffmanTable {
+ pub fn new(bits: &[u8; 16], values: &[u8], class: HuffmanTableClass) -> Result<HuffmanTable> {
+ let (huffcode, huffsize) = derive_huffman_codes(bits)?;
+
+ // Section F.2.2.3
+ // Figure F.15
+ // delta[i] is set to VALPTR(I) - MINCODE(I)
+ let mut delta = [0i32; 16];
+ let mut maxcode = [-1i32; 16];
+ let mut j = 0;
+
+ for i in 0 .. 16 {
+ if bits[i] != 0 {
+ delta[i] = j as i32 - huffcode[j] as i32;
+ j += bits[i] as usize;
+ maxcode[i] = huffcode[j - 1] as i32;
+ }
+ }
+
+ // Build a lookup table for faster decoding.
+ let mut lut = [(0u8, 0u8); 1 << LUT_BITS];
+
+ for (i, &size) in huffsize.iter().enumerate().filter(|&(_, &size)| size <= LUT_BITS) {
+ let bits_remaining = LUT_BITS - size;
+ let start = (huffcode[i] << bits_remaining) as usize;
+
+ let val = (values[i], size);
+ for b in &mut lut[start..][..1 << bits_remaining] {
+ *b = val;
+ }
+ }
+
+ // Build a lookup table for small AC coefficients which both decodes the value and does the
+ // equivalent of receive_extend.
+ let ac_lut = match class {
+ HuffmanTableClass::DC => None,
+ HuffmanTableClass::AC => {
+ let mut table = [(0i16, 0u8); 1 << LUT_BITS];
+
+ for (i, &(value, size)) in lut.iter().enumerate() {
+ let run_length = value >> 4;
+ let magnitude_category = value & 0x0f;
+
+ if magnitude_category > 0 && size + magnitude_category <= LUT_BITS {
+ let unextended_ac_value = (((i << size) & ((1 << LUT_BITS) - 1)) >> (LUT_BITS - magnitude_category)) as u16;
+ let ac_value = extend(unextended_ac_value, magnitude_category);
+
+ table[i] = (ac_value, (run_length << 4) | (size + magnitude_category));
+ }
+ }
+
+ Some(table)
+ },
+ };
+
+ Ok(HuffmanTable {
+ values: values.to_vec(),
+ delta,
+ maxcode,
+ lut,
+ ac_lut,
+ })
+ }
+}
+
+// Section C.2
+fn derive_huffman_codes(bits: &[u8; 16]) -> Result<(Vec<u16>, Vec<u8>)> {
+ // Figure C.1
+ let huffsize = bits.iter()
+ .enumerate()
+ .fold(Vec::new(), |mut acc, (i, &value)| {
+ acc.extend(iter::repeat((i + 1) as u8).take(value as usize));
+ acc
+ });
+
+ // Figure C.2
+ let mut huffcode = vec![0u16; huffsize.len()];
+ let mut code_size = huffsize[0];
+ let mut code = 0u32;
+
+ for (i, &size) in huffsize.iter().enumerate() {
+ while code_size < size {
+ code <<= 1;
+ code_size += 1;
+ }
+
+ if code >= (1u32 << size) {
+ return Err(Error::Format("bad huffman code length".to_owned()));
+ }
+
+ huffcode[i] = code as u16;
+ code += 1;
+ }
+
+ Ok((huffcode, huffsize))
+}
+
+// https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml
+// "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at
+// least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and
+// *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must
+// use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the
+// MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT
+// segment to them, or else the decoder won't have any idea how to decompress the data.
+// The exact table necessary is given in the OpenDML spec.""
+pub fn fill_default_mjpeg_tables(scan: &ScanInfo,
+ dc_huffman_tables: &mut[Option<HuffmanTable>],
+ ac_huffman_tables: &mut[Option<HuffmanTable>]) {
+ // Section K.3.3
+
+ if dc_huffman_tables[0].is_none() && scan.dc_table_indices.iter().any(|&i| i == 0) {
+ // Table K.3
+ dc_huffman_tables[0] = Some(HuffmanTable::new(
+ &[0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
+ &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
+ }
+ if dc_huffman_tables[1].is_none() && scan.dc_table_indices.iter().any(|&i| i == 1) {
+ // Table K.4
+ dc_huffman_tables[1] = Some(HuffmanTable::new(
+ &[0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00],
+ &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
+ }
+ if ac_huffman_tables[0].is_none() && scan.ac_table_indices.iter().any(|&i| i == 0) {
+ // Table K.5
+ ac_huffman_tables[0] = Some(HuffmanTable::new(
+ &[0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D],
+ &[0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+ 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
+ 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
+ 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+ 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+ 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+ 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
+ 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
+ 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
+ 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
+ 0xF9, 0xFA
+ ], HuffmanTableClass::AC).unwrap());
+ }
+ if ac_huffman_tables[1].is_none() && scan.ac_table_indices.iter().any(|&i| i == 1) {
+ // Table K.6
+ ac_huffman_tables[1] = Some(HuffmanTable::new(
+ &[0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77],
+ &[0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+ 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
+ 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
+ 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+ 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+ 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
+ 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
+ 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
+ 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
+ 0xF9, 0xFA
+ ], HuffmanTableClass::AC).unwrap());
+ }
+}
diff --git a/vendor/jpeg-decoder/src/idct.rs b/vendor/jpeg-decoder/src/idct.rs
new file mode 100644
index 0000000..ad8dc4c
--- /dev/null
+++ b/vendor/jpeg-decoder/src/idct.rs
@@ -0,0 +1,657 @@
+// Malicious JPEG files can cause operations in the idct to overflow.
+// One example is tests/crashtest/images/imagetestsuite/b0b8914cc5f7a6eff409f16d8cc236c5.jpg
+// That's why wrapping operators are needed.
+
+// Note: we have many values that are straight from a reference.
+// Do not warn on them or try to automatically change them.
+#![allow(clippy::excessive_precision)]
+// Note: consistency for unrolled, scaled offset loops
+#![allow(clippy::erasing_op)]
+#![allow(clippy::identity_op)]
+use crate::parser::Dimensions;
+use core::{convert::TryFrom, num::Wrapping};
+
+pub(crate) fn choose_idct_size(full_size: Dimensions, requested_size: Dimensions) -> usize {
+ fn scaled(len: u16, scale: usize) -> u16 {
+ ((len as u32 * scale as u32 - 1) / 8 + 1) as u16
+ }
+
+ for &scale in &[1, 2, 4] {
+ if scaled(full_size.width, scale) >= requested_size.width
+ || scaled(full_size.height, scale) >= requested_size.height
+ {
+ return scale;
+ }
+ }
+
+ 8
+}
+
+#[test]
+fn test_choose_idct_size() {
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 200,
+ height: 200
+ }
+ ),
+ 1
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 500,
+ height: 500
+ }
+ ),
+ 1
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 684,
+ height: 456
+ }
+ ),
+ 1
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 999,
+ height: 456
+ }
+ ),
+ 1
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 684,
+ height: 999
+ }
+ ),
+ 1
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 500,
+ height: 333
+ },
+ Dimensions {
+ width: 63,
+ height: 42
+ }
+ ),
+ 1
+ );
+
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 685,
+ height: 999
+ }
+ ),
+ 2
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 1000,
+ height: 1000
+ }
+ ),
+ 2
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 1400,
+ height: 1400
+ }
+ ),
+ 4
+ );
+
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 5472,
+ height: 3648
+ }
+ ),
+ 8
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 16384,
+ height: 16384
+ }
+ ),
+ 8
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 1,
+ height: 1
+ },
+ Dimensions {
+ width: 65535,
+ height: 65535
+ }
+ ),
+ 8
+ );
+ assert_eq!(
+ choose_idct_size(
+ Dimensions {
+ width: 5472,
+ height: 3648
+ },
+ Dimensions {
+ width: 16384,
+ height: 16384
+ }
+ ),
+ 8
+ );
+}
+
+pub(crate) fn dequantize_and_idct_block(
+ scale: usize,
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output_linestride: usize,
+ output: &mut [u8],
+) {
+ match scale {
+ 8 => dequantize_and_idct_block_8x8(
+ coefficients,
+ quantization_table,
+ output_linestride,
+ output,
+ ),
+ 4 => dequantize_and_idct_block_4x4(
+ coefficients,
+ quantization_table,
+ output_linestride,
+ output,
+ ),
+ 2 => dequantize_and_idct_block_2x2(
+ coefficients,
+ quantization_table,
+ output_linestride,
+ output,
+ ),
+ 1 => dequantize_and_idct_block_1x1(
+ coefficients,
+ quantization_table,
+ output_linestride,
+ output,
+ ),
+ _ => panic!("Unsupported IDCT scale {}/8", scale),
+ }
+}
+
+pub fn dequantize_and_idct_block_8x8(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output_linestride: usize,
+ output: &mut [u8],
+) {
+ #[cfg(not(feature = "platform_independent"))]
+ if let Some(idct) = crate::arch::get_dequantize_and_idct_block_8x8() {
+ #[allow(unsafe_code)]
+ unsafe {
+ return idct(coefficients, quantization_table, output_linestride, output);
+ }
+ }
+
+ let output = output.chunks_mut(output_linestride);
+ dequantize_and_idct_block_8x8_inner(coefficients, quantization_table, output)
+}
+
+// This is based on stb_image's 'stbi__idct_block'.
+fn dequantize_and_idct_block_8x8_inner<'a, I>(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output: I,
+) where
+ I: IntoIterator<Item = &'a mut [u8]>,
+ I::IntoIter: ExactSizeIterator<Item = &'a mut [u8]>,
+{
+ let output = output.into_iter();
+ debug_assert!(
+ output.len() >= 8,
+ "Output iterator has the wrong length: {}",
+ output.len()
+ );
+
+ let mut temp = [Wrapping(0); 64];
+
+ // columns
+ for i in 0..8 {
+ if coefficients[i + 8] == 0
+ && coefficients[i + 16] == 0
+ && coefficients[i + 24] == 0
+ && coefficients[i + 32] == 0
+ && coefficients[i + 40] == 0
+ && coefficients[i + 48] == 0
+ && coefficients[i + 56] == 0
+ {
+ let dcterm = dequantize(coefficients[i], quantization_table[i]) << 2;
+ temp[i] = dcterm;
+ temp[i + 8] = dcterm;
+ temp[i + 16] = dcterm;
+ temp[i + 24] = dcterm;
+ temp[i + 32] = dcterm;
+ temp[i + 40] = dcterm;
+ temp[i + 48] = dcterm;
+ temp[i + 56] = dcterm;
+ } else {
+ let s0 = dequantize(coefficients[i], quantization_table[i]);
+ let s1 = dequantize(coefficients[i + 8], quantization_table[i + 8]);
+ let s2 = dequantize(coefficients[i + 16], quantization_table[i + 16]);
+ let s3 = dequantize(coefficients[i + 24], quantization_table[i + 24]);
+ let s4 = dequantize(coefficients[i + 32], quantization_table[i + 32]);
+ let s5 = dequantize(coefficients[i + 40], quantization_table[i + 40]);
+ let s6 = dequantize(coefficients[i + 48], quantization_table[i + 48]);
+ let s7 = dequantize(coefficients[i + 56], quantization_table[i + 56]);
+
+ let Kernel {
+ xs: [x0, x1, x2, x3],
+ ts: [t0, t1, t2, t3],
+ } = kernel(
+ [s0, s1, s2, s3, s4, s5, s6, s7],
+ // constants scaled things up by 1<<12; let's bring them back
+ // down, but keep 2 extra bits of precision
+ 512,
+ );
+
+ temp[i] = (x0 + t3) >> 10;
+ temp[i + 56] = (x0 - t3) >> 10;
+ temp[i + 8] = (x1 + t2) >> 10;
+ temp[i + 48] = (x1 - t2) >> 10;
+ temp[i + 16] = (x2 + t1) >> 10;
+ temp[i + 40] = (x2 - t1) >> 10;
+ temp[i + 24] = (x3 + t0) >> 10;
+ temp[i + 32] = (x3 - t0) >> 10;
+ }
+ }
+
+ for (chunk, output_chunk) in temp.chunks_exact(8).zip(output) {
+ let chunk = <&[_; 8]>::try_from(chunk).unwrap();
+
+ // constants scaled things up by 1<<12, plus we had 1<<2 from first
+ // loop, plus horizontal and vertical each scale by sqrt(8) so together
+ // we've got an extra 1<<3, so 1<<17 total we need to remove.
+ // so we want to round that, which means adding 0.5 * 1<<17,
+ // aka 65536. Also, we'll end up with -128 to 127 that we want
+ // to encode as 0..255 by adding 128, so we'll add that before the shift
+ const X_SCALE: i32 = 65536 + (128 << 17);
+
+ // eliminate downstream bounds checks
+ let output_chunk = &mut output_chunk[..8];
+
+ // TODO When the minimum rust version supports it
+ // let [s0, rest @ ..] = chunk;
+ let (s0, rest) = chunk.split_first().unwrap();
+ if *rest == [Wrapping(0); 7] {
+ let dcterm = stbi_clamp((stbi_fsh(*s0) + Wrapping(X_SCALE)) >> 17);
+ output_chunk[0] = dcterm;
+ output_chunk[1] = dcterm;
+ output_chunk[2] = dcterm;
+ output_chunk[3] = dcterm;
+ output_chunk[4] = dcterm;
+ output_chunk[5] = dcterm;
+ output_chunk[6] = dcterm;
+ output_chunk[7] = dcterm;
+ } else {
+ let Kernel {
+ xs: [x0, x1, x2, x3],
+ ts: [t0, t1, t2, t3],
+ } = kernel(*chunk, X_SCALE);
+
+ output_chunk[0] = stbi_clamp((x0 + t3) >> 17);
+ output_chunk[7] = stbi_clamp((x0 - t3) >> 17);
+ output_chunk[1] = stbi_clamp((x1 + t2) >> 17);
+ output_chunk[6] = stbi_clamp((x1 - t2) >> 17);
+ output_chunk[2] = stbi_clamp((x2 + t1) >> 17);
+ output_chunk[5] = stbi_clamp((x2 - t1) >> 17);
+ output_chunk[3] = stbi_clamp((x3 + t0) >> 17);
+ output_chunk[4] = stbi_clamp((x3 - t0) >> 17);
+ }
+ }
+}
+
+struct Kernel {
+ xs: [Wrapping<i32>; 4],
+ ts: [Wrapping<i32>; 4],
+}
+
+#[inline]
+fn kernel_x([s0, s2, s4, s6]: [Wrapping<i32>; 4], x_scale: i32) -> [Wrapping<i32>; 4] {
+ // Even `chunk` indicies
+ let (t2, t3);
+ {
+ let p2 = s2;
+ let p3 = s6;
+
+ let p1 = (p2 + p3) * stbi_f2f(0.5411961);
+ t2 = p1 + p3 * stbi_f2f(-1.847759065);
+ t3 = p1 + p2 * stbi_f2f(0.765366865);
+ }
+
+ let (t0, t1);
+ {
+ let p2 = s0;
+ let p3 = s4;
+
+ t0 = stbi_fsh(p2 + p3);
+ t1 = stbi_fsh(p2 - p3);
+ }
+
+ let x0 = t0 + t3;
+ let x3 = t0 - t3;
+ let x1 = t1 + t2;
+ let x2 = t1 - t2;
+
+ let x_scale = Wrapping(x_scale);
+
+ [x0 + x_scale, x1 + x_scale, x2 + x_scale, x3 + x_scale]
+}
+
+#[inline]
+fn kernel_t([s1, s3, s5, s7]: [Wrapping<i32>; 4]) -> [Wrapping<i32>; 4] {
+ // Odd `chunk` indicies
+ let mut t0 = s7;
+ let mut t1 = s5;
+ let mut t2 = s3;
+ let mut t3 = s1;
+
+ let p3 = t0 + t2;
+ let p4 = t1 + t3;
+ let p1 = t0 + t3;
+ let p2 = t1 + t2;
+ let p5 = (p3 + p4) * stbi_f2f(1.175875602);
+
+ t0 *= stbi_f2f(0.298631336);
+ t1 *= stbi_f2f(2.053119869);
+ t2 *= stbi_f2f(3.072711026);
+ t3 *= stbi_f2f(1.501321110);
+
+ let p1 = p5 + p1 * stbi_f2f(-0.899976223);
+ let p2 = p5 + p2 * stbi_f2f(-2.562915447);
+ let p3 = p3 * stbi_f2f(-1.961570560);
+ let p4 = p4 * stbi_f2f(-0.390180644);
+
+ t3 += p1 + p4;
+ t2 += p2 + p3;
+ t1 += p2 + p4;
+ t0 += p1 + p3;
+
+ [t0, t1, t2, t3]
+}
+
+#[inline]
+fn kernel([s0, s1, s2, s3, s4, s5, s6, s7]: [Wrapping<i32>; 8], x_scale: i32) -> Kernel {
+ Kernel {
+ xs: kernel_x([s0, s2, s4, s6], x_scale),
+ ts: kernel_t([s1, s3, s5, s7]),
+ }
+}
+
+#[inline(always)]
+fn dequantize(c: i16, q: u16) -> Wrapping<i32> {
+ Wrapping(i32::from(c) * i32::from(q))
+}
+
+// 4x4 and 2x2 IDCT based on Rakesh Dugad and Narendra Ahuja: "A Fast Scheme for Image Size Change in the Compressed Domain" (2001).
+// http://sylvana.net/jpegcrop/jidctred/
+fn dequantize_and_idct_block_4x4(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output_linestride: usize,
+ output: &mut [u8],
+) {
+ debug_assert_eq!(coefficients.len(), 64);
+ let mut temp = [Wrapping(0i32); 4 * 4];
+
+ const CONST_BITS: usize = 12;
+ const PASS1_BITS: usize = 2;
+ const FINAL_BITS: usize = CONST_BITS + PASS1_BITS + 3;
+
+ // columns
+ for i in 0..4 {
+ let s0 = Wrapping(coefficients[i + 8 * 0] as i32 * quantization_table[i + 8 * 0] as i32);
+ let s1 = Wrapping(coefficients[i + 8 * 1] as i32 * quantization_table[i + 8 * 1] as i32);
+ let s2 = Wrapping(coefficients[i + 8 * 2] as i32 * quantization_table[i + 8 * 2] as i32);
+ let s3 = Wrapping(coefficients[i + 8 * 3] as i32 * quantization_table[i + 8 * 3] as i32);
+
+ let x0 = (s0 + s2) << PASS1_BITS;
+ let x2 = (s0 - s2) << PASS1_BITS;
+
+ let p1 = (s1 + s3) * stbi_f2f(0.541196100);
+ let t0 = (p1 + s3 * stbi_f2f(-1.847759065) + Wrapping(512)) >> (CONST_BITS - PASS1_BITS);
+ let t2 = (p1 + s1 * stbi_f2f(0.765366865) + Wrapping(512)) >> (CONST_BITS - PASS1_BITS);
+
+ temp[i + 4 * 0] = x0 + t2;
+ temp[i + 4 * 3] = x0 - t2;
+ temp[i + 4 * 1] = x2 + t0;
+ temp[i + 4 * 2] = x2 - t0;
+ }
+
+ for i in 0..4 {
+ let s0 = temp[i * 4 + 0];
+ let s1 = temp[i * 4 + 1];
+ let s2 = temp[i * 4 + 2];
+ let s3 = temp[i * 4 + 3];
+
+ let x0 = (s0 + s2) << CONST_BITS;
+ let x2 = (s0 - s2) << CONST_BITS;
+
+ let p1 = (s1 + s3) * stbi_f2f(0.541196100);
+ let t0 = p1 + s3 * stbi_f2f(-1.847759065);
+ let t2 = p1 + s1 * stbi_f2f(0.765366865);
+
+ // constants scaled things up by 1<<12, plus we had 1<<2 from first
+ // loop, plus horizontal and vertical each scale by sqrt(8) so together
+ // we've got an extra 1<<3, so 1<<17 total we need to remove.
+ // so we want to round that, which means adding 0.5 * 1<<17,
+ // aka 65536. Also, we'll end up with -128 to 127 that we want
+ // to encode as 0..255 by adding 128, so we'll add that before the shift
+ let x0 = x0 + Wrapping(1 << (FINAL_BITS - 1)) + Wrapping(128 << FINAL_BITS);
+ let x2 = x2 + Wrapping(1 << (FINAL_BITS - 1)) + Wrapping(128 << FINAL_BITS);
+
+ let output = &mut output[i * output_linestride..][..4];
+ output[0] = stbi_clamp((x0 + t2) >> FINAL_BITS);
+ output[3] = stbi_clamp((x0 - t2) >> FINAL_BITS);
+ output[1] = stbi_clamp((x2 + t0) >> FINAL_BITS);
+ output[2] = stbi_clamp((x2 - t0) >> FINAL_BITS);
+ }
+}
+
+fn dequantize_and_idct_block_2x2(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ output_linestride: usize,
+ output: &mut [u8],
+) {
+ debug_assert_eq!(coefficients.len(), 64);
+
+ const SCALE_BITS: usize = 3;
+
+ // Column 0
+ let s00 = Wrapping(coefficients[8 * 0] as i32 * quantization_table[8 * 0] as i32);
+ let s10 = Wrapping(coefficients[8 * 1] as i32 * quantization_table[8 * 1] as i32);
+
+ let x0 = s00 + s10;
+ let x2 = s00 - s10;
+
+ // Column 1
+ let s01 = Wrapping(coefficients[8 * 0 + 1] as i32 * quantization_table[8 * 0 + 1] as i32);
+ let s11 = Wrapping(coefficients[8 * 1 + 1] as i32 * quantization_table[8 * 1 + 1] as i32);
+
+ let x1 = s01 + s11;
+ let x3 = s01 - s11;
+
+ let x0 = x0 + Wrapping(1 << (SCALE_BITS - 1)) + Wrapping(128 << SCALE_BITS);
+ let x2 = x2 + Wrapping(1 << (SCALE_BITS - 1)) + Wrapping(128 << SCALE_BITS);
+
+ // Row 0
+ output[0] = stbi_clamp((x0 + x1) >> SCALE_BITS);
+ output[1] = stbi_clamp((x0 - x1) >> SCALE_BITS);
+
+ // Row 1
+ output[output_linestride + 0] = stbi_clamp((x2 + x3) >> SCALE_BITS);
+ output[output_linestride + 1] = stbi_clamp((x2 - x3) >> SCALE_BITS);
+}
+
+fn dequantize_and_idct_block_1x1(
+ coefficients: &[i16; 64],
+ quantization_table: &[u16; 64],
+ _output_linestride: usize,
+ output: &mut [u8],
+) {
+ debug_assert_eq!(coefficients.len(), 64);
+
+ let s0 = (Wrapping(coefficients[0] as i32 * quantization_table[0] as i32) + Wrapping(128 * 8)) / Wrapping(8);
+ output[0] = stbi_clamp(s0);
+}
+
+// take a -128..127 value and stbi__clamp it and convert to 0..255
+fn stbi_clamp(x: Wrapping<i32>) -> u8 {
+ x.0.max(0).min(255) as u8
+}
+
+fn stbi_f2f(x: f32) -> Wrapping<i32> {
+ Wrapping((x * 4096.0 + 0.5) as i32)
+}
+
+fn stbi_fsh(x: Wrapping<i32>) -> Wrapping<i32> {
+ x << 12
+}
+
+#[test]
+fn test_dequantize_and_idct_block_8x8() {
+ #[cfg_attr(rustfmt, rustfmt_skip)]
+ let coefficients: [i16; 8 * 8] = [
+ -14, -39, 58, -2, 3, 3, 0, 1,
+ 11, 27, 4, -3, 3, 0, 1, 0,
+ -6, -13, -9, -1, -2, -1, 0, 0,
+ -4, 0, -1, -2, 0, 0, 0, 0,
+ 3, 0, 0, 0, 0, 0, 0, 0,
+ -3, -2, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0
+ ];
+
+ #[cfg_attr(rustfmt, rustfmt_skip)]
+ let quantization_table: [u16; 8 * 8] = [
+ 8, 6, 5, 8, 12, 20, 26, 31,
+ 6, 6, 7, 10, 13, 29, 30, 28,
+ 7, 7, 8, 12, 20, 29, 35, 28,
+ 7, 9, 11, 15, 26, 44, 40, 31,
+ 9, 11, 19, 28, 34, 55, 52, 39,
+ 12, 18, 28, 32, 41, 52, 57, 46,
+ 25, 32, 39, 44, 52, 61, 60, 51,
+ 36, 46, 48, 49, 56, 50, 52, 50
+ ];
+ let output_linestride: usize = 8;
+ let mut output = [0u8; 8 * 8];
+ dequantize_and_idct_block_8x8(
+ &coefficients,
+ &quantization_table,
+ output_linestride,
+ &mut output,
+ );
+ #[cfg_attr(rustfmt, rustfmt_skip)]
+ let expected_output = [
+ 118, 92, 110, 83, 77, 93, 144, 198,
+ 172, 116, 114, 87, 78, 93, 146, 191,
+ 194, 107, 91, 76, 71, 93, 160, 198,
+ 196, 100, 80, 74, 67, 92, 174, 209,
+ 182, 104, 88, 81, 68, 89, 178, 206,
+ 105, 64, 59, 59, 63, 94, 183, 201,
+ 35, 27, 28, 37, 72, 121, 203, 204,
+ 37, 45, 41, 47, 98, 154, 223, 208
+ ];
+ for i in 0..64 {
+ assert!((output[i] as i16 - expected_output[i] as i16).abs() <= 1);
+ }
+}
+
+#[test]
+fn test_dequantize_and_idct_block_8x8_all_zero() {
+ let mut output = [0u8; 8 * 8];
+ dequantize_and_idct_block_8x8(&[0; 8 * 8], &[666; 8 * 8], 8, &mut output);
+ assert_eq!(&output[..], &[128; 8 * 8][..]);
+}
+
+#[test]
+fn test_dequantize_and_idct_block_8x8_saturated() {
+ // Arch-specific IDCT implementations need not handle i16::MAX values.
+ #[cfg(not(feature = "platform_independent"))]
+ if crate::arch::get_dequantize_and_idct_block_8x8().is_some() {
+ return;
+ }
+ let mut output = [0u8; 8 * 8];
+ dequantize_and_idct_block_8x8(&[i16::MAX; 8 * 8], &[u16::MAX; 8 * 8], 8, &mut output);
+ #[cfg_attr(rustfmt, rustfmt_skip)]
+ let expected = [
+ 0, 0, 0, 255, 255, 0, 0, 255,
+ 0, 0, 215, 0, 0, 255, 255, 0,
+ 255, 255, 255, 255, 255, 0, 0, 255,
+ 0, 0, 255, 0, 255, 0, 255, 255,
+ 0, 0, 255, 255, 0, 255, 0, 0,
+ 255, 255, 0, 255, 255, 255, 170, 0,
+ 0, 255, 0, 0, 0, 0, 0, 255,
+ 255, 255, 0, 255, 0, 255, 0, 0
+ ];
+ assert_eq!(&output[..], &expected[..]);
+}
diff --git a/vendor/jpeg-decoder/src/lib.rs b/vendor/jpeg-decoder/src/lib.rs
new file mode 100644
index 0000000..ff1ceb1
--- /dev/null
+++ b/vendor/jpeg-decoder/src/lib.rs
@@ -0,0 +1,66 @@
+//! This crate contains a JPEG decoder.
+//!
+//! # Examples
+//!
+//! ```
+//! use jpeg_decoder::Decoder;
+//! use std::fs::File;
+//! use std::io::BufReader;
+//!
+//! let file = File::open("tests/reftest/images/extraneous-data.jpg").expect("failed to open file");
+//! let mut decoder = Decoder::new(BufReader::new(file));
+//! let pixels = decoder.decode().expect("failed to decode image");
+//! let metadata = decoder.info().unwrap();
+//! ```
+//!
+//! Get metadata from a file without decoding it:
+//!
+//! ```
+//! use jpeg_decoder::Decoder;
+//! use std::fs::File;
+//! use std::io::BufReader;
+//!
+//! let file = File::open("tests/reftest/images/extraneous-data.jpg").expect("failed to open file");
+//! let mut decoder = Decoder::new(BufReader::new(file));
+//! decoder.read_info().expect("failed to read metadata");
+//! let metadata = decoder.info().unwrap();
+//! ```
+
+#![deny(missing_docs)]
+#![deny(unsafe_code)]
+#![cfg_attr(feature = "platform_independent", forbid(unsafe_code))]
+
+extern crate alloc;
+extern crate core;
+
+#[cfg(feature = "rayon")]
+extern crate rayon;
+
+pub use decoder::{ColorTransform, Decoder, ImageInfo, PixelFormat};
+pub use error::{Error, UnsupportedFeature};
+pub use parser::CodingProcess;
+
+use std::io;
+
+#[cfg(not(feature = "platform_independent"))]
+mod arch;
+mod decoder;
+mod error;
+mod huffman;
+mod idct;
+mod marker;
+mod parser;
+mod upsampler;
+mod worker;
+
+fn read_u8<R: io::Read>(reader: &mut R) -> io::Result<u8> {
+ let mut buf = [0];
+ reader.read_exact(&mut buf)?;
+ Ok(buf[0])
+}
+
+fn read_u16_from_be<R: io::Read>(reader: &mut R) -> io::Result<u16> {
+ let mut buf = [0, 0];
+ reader.read_exact(&mut buf)?;
+ Ok(u16::from_be_bytes(buf))
+}
diff --git a/vendor/jpeg-decoder/src/marker.rs b/vendor/jpeg-decoder/src/marker.rs
new file mode 100644
index 0000000..2fe74be
--- /dev/null
+++ b/vendor/jpeg-decoder/src/marker.rs
@@ -0,0 +1,136 @@
+// Table B.1
+#[derive(Clone, Copy, Debug, PartialEq)]
+// Note: Established names.
+#[allow(clippy::upper_case_acronyms)]
+pub enum Marker {
+ /// Start Of Frame markers
+ ///
+ /// - SOF(0): Baseline DCT (Huffman coding)
+ /// - SOF(1): Extended sequential DCT (Huffman coding)
+ /// - SOF(2): Progressive DCT (Huffman coding)
+ /// - SOF(3): Lossless (sequential) (Huffman coding)
+ /// - SOF(5): Differential sequential DCT (Huffman coding)
+ /// - SOF(6): Differential progressive DCT (Huffman coding)
+ /// - SOF(7): Differential lossless (sequential) (Huffman coding)
+ /// - SOF(9): Extended sequential DCT (arithmetic coding)
+ /// - SOF(10): Progressive DCT (arithmetic coding)
+ /// - SOF(11): Lossless (sequential) (arithmetic coding)
+ /// - SOF(13): Differential sequential DCT (arithmetic coding)
+ /// - SOF(14): Differential progressive DCT (arithmetic coding)
+ /// - SOF(15): Differential lossless (sequential) (arithmetic coding)
+ SOF(u8),
+ /// Reserved for JPEG extensions
+ JPG,
+ /// Define Huffman table(s)
+ DHT,
+ /// Define arithmetic coding conditioning(s)
+ DAC,
+ /// Restart with modulo 8 count `m`
+ RST(u8),
+ /// Start of image
+ SOI,
+ /// End of image
+ EOI,
+ /// Start of scan
+ SOS,
+ /// Define quantization table(s)
+ DQT,
+ /// Define number of lines
+ DNL,
+ /// Define restart interval
+ DRI,
+ /// Define hierarchical progression
+ DHP,
+ /// Expand reference component(s)
+ EXP,
+ /// Reserved for application segments
+ APP(u8),
+ /// Reserved for JPEG extensions
+ JPGn(u8),
+ /// Comment
+ COM,
+ /// For temporary private use in arithmetic coding
+ TEM,
+ /// Reserved
+ RES,
+}
+
+impl Marker {
+ pub fn has_length(self) -> bool {
+ use self::Marker::*;
+ ! matches!(self, RST(..) | SOI | EOI | TEM)
+ }
+
+ pub fn from_u8(n: u8) -> Option<Marker> {
+ use self::Marker::*;
+ match n {
+ 0x00 => None, // Byte stuffing
+ 0x01 => Some(TEM),
+ 0x02 ..= 0xBF => Some(RES),
+ 0xC0 => Some(SOF(0)),
+ 0xC1 => Some(SOF(1)),
+ 0xC2 => Some(SOF(2)),
+ 0xC3 => Some(SOF(3)),
+ 0xC4 => Some(DHT),
+ 0xC5 => Some(SOF(5)),
+ 0xC6 => Some(SOF(6)),
+ 0xC7 => Some(SOF(7)),
+ 0xC8 => Some(JPG),
+ 0xC9 => Some(SOF(9)),
+ 0xCA => Some(SOF(10)),
+ 0xCB => Some(SOF(11)),
+ 0xCC => Some(DAC),
+ 0xCD => Some(SOF(13)),
+ 0xCE => Some(SOF(14)),
+ 0xCF => Some(SOF(15)),
+ 0xD0 => Some(RST(0)),
+ 0xD1 => Some(RST(1)),
+ 0xD2 => Some(RST(2)),
+ 0xD3 => Some(RST(3)),
+ 0xD4 => Some(RST(4)),
+ 0xD5 => Some(RST(5)),
+ 0xD6 => Some(RST(6)),
+ 0xD7 => Some(RST(7)),
+ 0xD8 => Some(SOI),
+ 0xD9 => Some(EOI),
+ 0xDA => Some(SOS),
+ 0xDB => Some(DQT),
+ 0xDC => Some(DNL),
+ 0xDD => Some(DRI),
+ 0xDE => Some(DHP),
+ 0xDF => Some(EXP),
+ 0xE0 => Some(APP(0)),
+ 0xE1 => Some(APP(1)),
+ 0xE2 => Some(APP(2)),
+ 0xE3 => Some(APP(3)),
+ 0xE4 => Some(APP(4)),
+ 0xE5 => Some(APP(5)),
+ 0xE6 => Some(APP(6)),
+ 0xE7 => Some(APP(7)),
+ 0xE8 => Some(APP(8)),
+ 0xE9 => Some(APP(9)),
+ 0xEA => Some(APP(10)),
+ 0xEB => Some(APP(11)),
+ 0xEC => Some(APP(12)),
+ 0xED => Some(APP(13)),
+ 0xEE => Some(APP(14)),
+ 0xEF => Some(APP(15)),
+ 0xF0 => Some(JPGn(0)),
+ 0xF1 => Some(JPGn(1)),
+ 0xF2 => Some(JPGn(2)),
+ 0xF3 => Some(JPGn(3)),
+ 0xF4 => Some(JPGn(4)),
+ 0xF5 => Some(JPGn(5)),
+ 0xF6 => Some(JPGn(6)),
+ 0xF7 => Some(JPGn(7)),
+ 0xF8 => Some(JPGn(8)),
+ 0xF9 => Some(JPGn(9)),
+ 0xFA => Some(JPGn(10)),
+ 0xFB => Some(JPGn(11)),
+ 0xFC => Some(JPGn(12)),
+ 0xFD => Some(JPGn(13)),
+ 0xFE => Some(COM),
+ 0xFF => None, // Fill byte
+ }
+ }
+}
diff --git a/vendor/jpeg-decoder/src/parser.rs b/vendor/jpeg-decoder/src/parser.rs
new file mode 100644
index 0000000..72ba00d
--- /dev/null
+++ b/vendor/jpeg-decoder/src/parser.rs
@@ -0,0 +1,685 @@
+use alloc::borrow::ToOwned;
+use alloc::{format, vec};
+use alloc::vec::Vec;
+use core::ops::{self, Range};
+use std::io::{self, Read};
+use crate::{read_u16_from_be, read_u8};
+use crate::error::{Error, Result, UnsupportedFeature};
+use crate::huffman::{HuffmanTable, HuffmanTableClass};
+use crate::marker::Marker;
+use crate::marker::Marker::*;
+
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub struct Dimensions {
+ pub width: u16,
+ pub height: u16,
+}
+
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum EntropyCoding {
+ Huffman,
+ Arithmetic,
+}
+
+/// Represents the coding process of an image.
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum CodingProcess {
+ /// Sequential Discrete Cosine Transform
+ DctSequential,
+ /// Progressive Discrete Cosine Transform
+ DctProgressive,
+ /// Lossless
+ Lossless,
+}
+
+// Table H.1
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum Predictor {
+ NoPrediction,
+ Ra,
+ Rb,
+ Rc,
+ RaRbRc1, // Ra + Rb - Rc
+ RaRbRc2, // Ra + ((Rb - Rc) >> 1)
+ RaRbRc3, // Rb + ((Ra - Rb) >> 1)
+ RaRb, // (Ra + Rb)/2
+}
+
+
+#[derive(Clone)]
+pub struct FrameInfo {
+ pub is_baseline: bool,
+ pub is_differential: bool,
+ pub coding_process: CodingProcess,
+ pub entropy_coding: EntropyCoding,
+ pub precision: u8,
+
+ pub image_size: Dimensions,
+ pub output_size: Dimensions,
+ pub mcu_size: Dimensions,
+ pub components: Vec<Component>,
+}
+
+#[derive(Debug)]
+pub struct ScanInfo {
+ pub component_indices: Vec<usize>,
+ pub dc_table_indices: Vec<usize>,
+ pub ac_table_indices: Vec<usize>,
+
+ pub spectral_selection: Range<u8>,
+ pub predictor_selection: Predictor, // for lossless
+ pub successive_approximation_high: u8,
+ pub successive_approximation_low: u8,
+ pub point_transform: u8, // for lossless
+}
+
+#[derive(Clone, Debug)]
+pub struct Component {
+ pub identifier: u8,
+
+ pub horizontal_sampling_factor: u8,
+ pub vertical_sampling_factor: u8,
+
+ pub quantization_table_index: usize,
+
+ pub dct_scale: usize,
+
+ pub size: Dimensions,
+ pub block_size: Dimensions,
+}
+
+#[derive(Debug)]
+pub enum AppData {
+ Adobe(AdobeColorTransform),
+ Jfif,
+ Avi1,
+ Icc(IccChunk),
+ Exif(Vec<u8>),
+}
+
+// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum AdobeColorTransform {
+ // RGB or CMYK
+ Unknown,
+ YCbCr,
+ // YCbCrK
+ YCCK,
+}
+#[derive(Debug)]
+pub struct IccChunk {
+ pub num_markers: u8,
+ pub seq_no: u8,
+ pub data: Vec<u8>,
+}
+
+impl FrameInfo {
+ pub(crate) fn update_idct_size(&mut self, idct_size: usize) -> Result<()> {
+ for component in &mut self.components {
+ component.dct_scale = idct_size;
+ }
+
+ update_component_sizes(self.image_size, &mut self.components)?;
+
+ self.output_size = Dimensions {
+ width: (self.image_size.width as f32 * idct_size as f32 / 8.0).ceil() as u16,
+ height: (self.image_size.height as f32 * idct_size as f32 / 8.0).ceil() as u16
+ };
+
+ Ok(())
+ }
+}
+
+fn read_length<R: Read>(reader: &mut R, marker: Marker) -> Result<usize> {
+ assert!(marker.has_length());
+
+ // length is including itself.
+ let length = usize::from(read_u16_from_be(reader)?);
+
+ if length < 2 {
+ return Err(Error::Format(format!("encountered {:?} with invalid length {}", marker, length)));
+ }
+
+ Ok(length - 2)
+}
+
+fn skip_bytes<R: Read>(reader: &mut R, length: usize) -> Result<()> {
+ let length = length as u64;
+ let to_skip = &mut reader.by_ref().take(length);
+ let copied = io::copy(to_skip, &mut io::sink())?;
+ if copied < length {
+ Err(Error::Io(io::ErrorKind::UnexpectedEof.into()))
+ } else {
+ Ok(())
+ }
+}
+
+// Section B.2.2
+pub fn parse_sof<R: Read>(reader: &mut R, marker: Marker) -> Result<FrameInfo> {
+ let length = read_length(reader, marker)?;
+
+ if length <= 6 {
+ return Err(Error::Format("invalid length in SOF".to_owned()));
+ }
+
+ let is_baseline = marker == SOF(0);
+ let is_differential = match marker {
+ SOF(0 ..= 3) | SOF(9 ..= 11) => false,
+ SOF(5 ..= 7) | SOF(13 ..= 15) => true,
+ _ => panic!(),
+ };
+ let coding_process = match marker {
+ SOF(0) | SOF(1) | SOF(5) | SOF(9) | SOF(13) => CodingProcess::DctSequential,
+ SOF(2) | SOF(6) | SOF(10) | SOF(14) => CodingProcess::DctProgressive,
+ SOF(3) | SOF(7) | SOF(11) | SOF(15) => CodingProcess::Lossless,
+ _ => panic!(),
+ };
+ let entropy_coding = match marker {
+ SOF(0 ..= 3) | SOF(5 ..= 7) => EntropyCoding::Huffman,
+ SOF(9 ..= 11) | SOF(13 ..= 15) => EntropyCoding::Arithmetic,
+ _ => panic!(),
+ };
+
+ let precision = read_u8(reader)?;
+
+ match precision {
+ 8 => {},
+ 12 => {
+ if is_baseline {
+ return Err(Error::Format("12 bit sample precision is not allowed in baseline".to_owned()));
+ }
+ },
+ _ => {
+ if coding_process != CodingProcess::Lossless || precision > 16 {
+ return Err(Error::Format(format!("invalid precision {} in frame header", precision)))
+ }
+ },
+ }
+
+ let height = read_u16_from_be(reader)?;
+ let width = read_u16_from_be(reader)?;
+
+ // height:
+ // "Value 0 indicates that the number of lines shall be defined by the DNL marker and
+ // parameters at the end of the first scan (see B.2.5)."
+ if height == 0 {
+ return Err(Error::Unsupported(UnsupportedFeature::DNL));
+ }
+
+ if width == 0 {
+ return Err(Error::Format("zero width in frame header".to_owned()));
+ }
+
+ let component_count = read_u8(reader)?;
+
+ if component_count == 0 {
+ return Err(Error::Format("zero component count in frame header".to_owned()));
+ }
+ if coding_process == CodingProcess::DctProgressive && component_count > 4 {
+ return Err(Error::Format("progressive frame with more than 4 components".to_owned()));
+ }
+
+ if length != 6 + 3 * component_count as usize {
+ return Err(Error::Format("invalid length in SOF".to_owned()));
+ }
+
+ let mut components: Vec<Component> = Vec::with_capacity(component_count as usize);
+
+ for _ in 0 .. component_count {
+ let identifier = read_u8(reader)?;
+
+ // Each component's identifier must be unique.
+ if components.iter().any(|c| c.identifier == identifier) {
+ return Err(Error::Format(format!("duplicate frame component identifier {}", identifier)));
+ }
+
+ let byte = read_u8(reader)?;
+ let horizontal_sampling_factor = byte >> 4;
+ let vertical_sampling_factor = byte & 0x0f;
+
+ if horizontal_sampling_factor == 0 || horizontal_sampling_factor > 4 {
+ return Err(Error::Format(format!("invalid horizontal sampling factor {}", horizontal_sampling_factor)));
+ }
+ if vertical_sampling_factor == 0 || vertical_sampling_factor > 4 {
+ return Err(Error::Format(format!("invalid vertical sampling factor {}", vertical_sampling_factor)));
+ }
+
+ let quantization_table_index = read_u8(reader)?;
+
+ if quantization_table_index > 3 || (coding_process == CodingProcess::Lossless && quantization_table_index != 0) {
+ return Err(Error::Format(format!("invalid quantization table index {}", quantization_table_index)));
+ }
+
+ components.push(Component {
+ identifier,
+ horizontal_sampling_factor,
+ vertical_sampling_factor,
+ quantization_table_index: quantization_table_index as usize,
+ dct_scale: 8,
+ size: Dimensions {width: 0, height: 0},
+ block_size: Dimensions {width: 0, height: 0},
+ });
+ }
+
+ let mcu_size = update_component_sizes(Dimensions { width, height }, &mut components)?;
+
+ Ok(FrameInfo {
+ is_baseline,
+ is_differential,
+ coding_process,
+ entropy_coding,
+ precision,
+ image_size: Dimensions { width, height },
+ output_size: Dimensions { width, height },
+ mcu_size,
+ components,
+ })
+}
+
+/// Returns ceil(x/y), requires x>0
+fn ceil_div(x: u32, y: u32) -> Result<u16> {
+ if x == 0 || y == 0 {
+ // TODO Determine how this error is reached. Can we validate input
+ // earlier and error out then?
+ return Err(Error::Format("invalid dimensions".to_owned()));
+ }
+ Ok((1 + ((x - 1) / y)) as u16)
+}
+
+fn update_component_sizes(size: Dimensions, components: &mut [Component]) -> Result<Dimensions> {
+ let h_max = components.iter().map(|c| c.horizontal_sampling_factor).max().unwrap() as u32;
+ let v_max = components.iter().map(|c| c.vertical_sampling_factor).max().unwrap() as u32;
+
+ let mcu_size = Dimensions {
+ width: ceil_div(size.width as u32, h_max * 8)?,
+ height: ceil_div(size.height as u32, v_max * 8)?,
+ };
+
+ for component in components {
+ component.size.width = ceil_div(size.width as u32 * component.horizontal_sampling_factor as u32 * component.dct_scale as u32, h_max * 8)?;
+ component.size.height = ceil_div(size.height as u32 * component.vertical_sampling_factor as u32 * component.dct_scale as u32, v_max * 8)?;
+
+ component.block_size.width = mcu_size.width * component.horizontal_sampling_factor as u16;
+ component.block_size.height = mcu_size.height * component.vertical_sampling_factor as u16;
+ }
+
+ Ok(mcu_size)
+}
+
+#[test]
+fn test_update_component_sizes() {
+ let mut components = [Component {
+ identifier: 1,
+ horizontal_sampling_factor: 2,
+ vertical_sampling_factor: 2,
+ quantization_table_index: 0,
+ dct_scale: 8,
+ size: Dimensions { width: 0, height: 0 },
+ block_size: Dimensions { width: 0, height: 0 },
+ }];
+ let mcu = update_component_sizes(
+ Dimensions { width: 800, height: 280 },
+ &mut components).unwrap();
+ assert_eq!(mcu, Dimensions { width: 50, height: 18 });
+ assert_eq!(components[0].block_size, Dimensions { width: 100, height: 36 });
+ assert_eq!(components[0].size, Dimensions { width: 800, height: 280 });
+}
+
+// Section B.2.3
+pub fn parse_sos<R: Read>(reader: &mut R, frame: &FrameInfo) -> Result<ScanInfo> {
+ let length = read_length(reader, SOS)?;
+ if 0 == length {
+ return Err(Error::Format("zero length in SOS".to_owned()));
+ }
+
+ let component_count = read_u8(reader)?;
+
+ if component_count == 0 || component_count > 4 {
+ return Err(Error::Format(format!("invalid component count {} in scan header", component_count)));
+ }
+
+ if length != 4 + 2 * component_count as usize {
+ return Err(Error::Format("invalid length in SOS".to_owned()));
+ }
+
+ let mut component_indices = Vec::with_capacity(component_count as usize);
+ let mut dc_table_indices = Vec::with_capacity(component_count as usize);
+ let mut ac_table_indices = Vec::with_capacity(component_count as usize);
+
+ for _ in 0 .. component_count {
+ let identifier = read_u8(reader)?;
+
+ let component_index = match frame.components.iter().position(|c| c.identifier == identifier) {
+ Some(value) => value,
+ None => return Err(Error::Format(format!("scan component identifier {} does not match any of the component identifiers defined in the frame", identifier))),
+ };
+
+ // Each of the scan's components must be unique.
+ if component_indices.contains(&component_index) {
+ return Err(Error::Format(format!("duplicate scan component identifier {}", identifier)));
+ }
+
+ // "... the ordering in the scan header shall follow the ordering in the frame header."
+ if component_index < *component_indices.iter().max().unwrap_or(&0) {
+ return Err(Error::Format("the scan component order does not follow the order in the frame header".to_owned()));
+ }
+
+ let byte = read_u8(reader)?;
+ let dc_table_index = byte >> 4;
+ let ac_table_index = byte & 0x0f;
+
+ if dc_table_index > 3 || (frame.is_baseline && dc_table_index > 1) {
+ return Err(Error::Format(format!("invalid dc table index {}", dc_table_index)));
+ }
+ if ac_table_index > 3 || (frame.is_baseline && ac_table_index > 1) {
+ return Err(Error::Format(format!("invalid ac table index {}", ac_table_index)));
+ }
+
+ component_indices.push(component_index);
+ dc_table_indices.push(dc_table_index as usize);
+ ac_table_indices.push(ac_table_index as usize);
+ }
+
+ let blocks_per_mcu = component_indices.iter().map(|&i| {
+ frame.components[i].horizontal_sampling_factor as u32 * frame.components[i].vertical_sampling_factor as u32
+ }).fold(0, ops::Add::add);
+
+ if component_count > 1 && blocks_per_mcu > 10 {
+ return Err(Error::Format("scan with more than one component and more than 10 blocks per MCU".to_owned()));
+ }
+
+ // Also utilized as 'Predictor' in lossless coding, as MEAN in JPEG-LS etc.
+ let spectral_selection_start = read_u8(reader)?;
+ // Also utilized as ILV parameter in JPEG-LS.
+ let mut spectral_selection_end = read_u8(reader)?;
+
+ let byte = read_u8(reader)?;
+ let successive_approximation_high = byte >> 4;
+ let successive_approximation_low = byte & 0x0f;
+
+ // The Differential Pulse-Mode prediction used (similar to png). Only utilized in Lossless
+ // coding. Don't confuse with the JPEG-LS parameter coded using the same scan info portion.
+ let predictor_selection;
+ let point_transform = successive_approximation_low;
+
+ if frame.coding_process == CodingProcess::DctProgressive {
+ predictor_selection = Predictor::NoPrediction;
+ if spectral_selection_end > 63 || spectral_selection_start > spectral_selection_end ||
+ (spectral_selection_start == 0 && spectral_selection_end != 0) {
+ return Err(Error::Format(format!("invalid spectral selection parameters: ss={}, se={}", spectral_selection_start, spectral_selection_end)));
+ }
+ if spectral_selection_start != 0 && component_count != 1 {
+ return Err(Error::Format("spectral selection scan with AC coefficients can't have more than one component".to_owned()));
+ }
+
+ if successive_approximation_high > 13 || successive_approximation_low > 13 {
+ return Err(Error::Format(format!("invalid successive approximation parameters: ah={}, al={}", successive_approximation_high, successive_approximation_low)));
+ }
+
+ // Section G.1.1.1.2
+ // "Each scan which follows the first scan for a given band progressively improves
+ // the precision of the coefficients by one bit, until full precision is reached."
+ if successive_approximation_high != 0 && successive_approximation_high != successive_approximation_low + 1 {
+ return Err(Error::Format("successive approximation scan with more than one bit of improvement".to_owned()));
+ }
+ }
+ else if frame.coding_process == CodingProcess::Lossless {
+ if spectral_selection_end != 0 {
+ return Err(Error::Format("spectral selection end shall be zero in lossless scan".to_owned()));
+ }
+ if successive_approximation_high != 0 {
+ return Err(Error::Format("successive approximation high shall be zero in lossless scan".to_owned()));
+ }
+ predictor_selection = match spectral_selection_start {
+ 0 => Predictor::NoPrediction,
+ 1 => Predictor::Ra,
+ 2 => Predictor::Rb,
+ 3 => Predictor::Rc,
+ 4 => Predictor::RaRbRc1,
+ 5 => Predictor::RaRbRc2,
+ 6 => Predictor::RaRbRc3,
+ 7 => Predictor::RaRb,
+ _ => {
+ return Err(Error::Format(format!("invalid predictor selection value: {}", spectral_selection_start)));
+ },
+ };
+ }
+ else {
+ predictor_selection = Predictor::NoPrediction;
+ if spectral_selection_end == 0 {
+ spectral_selection_end = 63;
+ }
+ if spectral_selection_start != 0 || spectral_selection_end != 63 {
+ return Err(Error::Format("spectral selection is not allowed in non-progressive scan".to_owned()));
+ }
+ if successive_approximation_high != 0 || successive_approximation_low != 0 {
+ return Err(Error::Format("successive approximation is not allowed in non-progressive scan".to_owned()));
+ }
+ }
+
+ Ok(ScanInfo {
+ component_indices,
+ dc_table_indices,
+ ac_table_indices,
+ spectral_selection: Range {
+ start: spectral_selection_start,
+ end: spectral_selection_end + 1,
+ },
+ predictor_selection,
+ successive_approximation_high,
+ successive_approximation_low,
+ point_transform,
+ })
+}
+
+// Section B.2.4.1
+pub fn parse_dqt<R: Read>(reader: &mut R) -> Result<[Option<[u16; 64]>; 4]> {
+ let mut length = read_length(reader, DQT)?;
+ let mut tables = [None; 4];
+
+ // Each DQT segment may contain multiple quantization tables.
+ while length > 0 {
+ let byte = read_u8(reader)?;
+ let precision = (byte >> 4) as usize;
+ let index = (byte & 0x0f) as usize;
+
+ // The combination of 8-bit sample precision and 16-bit quantization tables is explicitly
+ // disallowed by the JPEG spec:
+ // "An 8-bit DCT-based process shall not use a 16-bit precision quantization table."
+ // "Pq: Quantization table element precision – Specifies the precision of the Qk
+ // values. Value 0 indicates 8-bit Qk values; value 1 indicates 16-bit Qk values. Pq
+ // shall be zero for 8 bit sample precision P (see B.2.2)."
+ // libjpeg allows this behavior though, and there are images in the wild using it. So to
+ // match libjpeg's behavior we are deviating from the JPEG spec here.
+ if precision > 1 {
+ return Err(Error::Format(format!("invalid precision {} in DQT", precision)));
+ }
+ if index > 3 {
+ return Err(Error::Format(format!("invalid destination identifier {} in DQT", index)));
+ }
+ if length < 65 + 64 * precision {
+ return Err(Error::Format("invalid length in DQT".to_owned()));
+ }
+
+ let mut table = [0u16; 64];
+
+ for item in table.iter_mut() {
+ *item = match precision {
+ 0 => u16::from(read_u8(reader)?),
+ 1 => read_u16_from_be(reader)?,
+ _ => unreachable!(),
+ };
+ }
+
+ if table.iter().any(|&val| val == 0) {
+ return Err(Error::Format("quantization table contains element with a zero value".to_owned()));
+ }
+
+ tables[index] = Some(table);
+ length -= 65 + 64 * precision;
+ }
+
+ Ok(tables)
+}
+
+// Section B.2.4.2
+pub fn parse_dht<R: Read>(reader: &mut R, is_baseline: Option<bool>) -> Result<(Vec<Option<HuffmanTable>>, Vec<Option<HuffmanTable>>)> {
+ let mut length = read_length(reader, DHT)?;
+ let mut dc_tables = vec![None, None, None, None];
+ let mut ac_tables = vec![None, None, None, None];
+
+ // Each DHT segment may contain multiple huffman tables.
+ while length > 17 {
+ let byte = read_u8(reader)?;
+ let class = byte >> 4;
+ let index = (byte & 0x0f) as usize;
+
+ if class != 0 && class != 1 {
+ return Err(Error::Format(format!("invalid class {} in DHT", class)));
+ }
+ if is_baseline == Some(true) && index > 1 {
+ return Err(Error::Format("a maximum of two huffman tables per class are allowed in baseline".to_owned()));
+ }
+ if index > 3 {
+ return Err(Error::Format(format!("invalid destination identifier {} in DHT", index)));
+ }
+
+ let mut counts = [0u8; 16];
+ reader.read_exact(&mut counts)?;
+
+ let size = counts.iter().map(|&val| val as usize).fold(0, ops::Add::add);
+
+ if size == 0 {
+ return Err(Error::Format("encountered table with zero length in DHT".to_owned()));
+ }
+ else if size > 256 {
+ return Err(Error::Format("encountered table with excessive length in DHT".to_owned()));
+ }
+ else if size > length - 17 {
+ return Err(Error::Format("invalid length in DHT".to_owned()));
+ }
+
+ let mut values = vec![0u8; size];
+ reader.read_exact(&mut values)?;
+
+ match class {
+ 0 => dc_tables[index] = Some(HuffmanTable::new(&counts, &values, HuffmanTableClass::DC)?),
+ 1 => ac_tables[index] = Some(HuffmanTable::new(&counts, &values, HuffmanTableClass::AC)?),
+ _ => unreachable!(),
+ }
+
+ length -= 17 + size;
+ }
+
+ if length != 0 {
+ return Err(Error::Format("invalid length in DHT".to_owned()));
+ }
+
+ Ok((dc_tables, ac_tables))
+}
+
+// Section B.2.4.4
+pub fn parse_dri<R: Read>(reader: &mut R) -> Result<u16> {
+ let length = read_length(reader, DRI)?;
+
+ if length != 2 {
+ return Err(Error::Format("DRI with invalid length".to_owned()));
+ }
+
+ Ok(read_u16_from_be(reader)?)
+}
+
+// Section B.2.4.5
+pub fn parse_com<R: Read>(reader: &mut R) -> Result<Vec<u8>> {
+ let length = read_length(reader, COM)?;
+ let mut buffer = vec![0u8; length];
+
+ reader.read_exact(&mut buffer)?;
+
+ Ok(buffer)
+}
+
+// Section B.2.4.6
+pub fn parse_app<R: Read>(reader: &mut R, marker: Marker) -> Result<Option<AppData>> {
+ let length = read_length(reader, marker)?;
+ let mut bytes_read = 0;
+ let mut result = None;
+
+ match marker {
+ APP(0) => {
+ if length >= 5 {
+ let mut buffer = [0u8; 5];
+ reader.read_exact(&mut buffer)?;
+ bytes_read = buffer.len();
+
+ // http://www.w3.org/Graphics/JPEG/jfif3.pdf
+ if buffer[0..5] == *b"JFIF\0" {
+ result = Some(AppData::Jfif);
+ // https://sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#AVI1
+ } else if buffer[0..5] == *b"AVI1\0" {
+ result = Some(AppData::Avi1);
+ }
+ }
+ }
+ // Exif Data
+ APP(1) => {
+ if length >= 6 {
+ let mut buffer = [0u8; 6];
+ reader.read_exact(&mut buffer)?;
+ bytes_read = buffer.len();
+
+ // https://web.archive.org/web/20190624045241if_/http://www.cipa.jp:80/std/documents/e/DC-008-Translation-2019-E.pdf
+ // 4.5.4 Basic Structure of JPEG Compressed Data
+ if buffer == *b"Exif\x00\x00" {
+ let mut data = vec![0; length - bytes_read];
+ reader.read_exact(&mut data)?;
+ bytes_read += data.len();
+ result = Some(AppData::Exif(data));
+ }
+ }
+ }
+ APP(2) => {
+ if length > 14 {
+ let mut buffer = [0u8; 14];
+ reader.read_exact(&mut buffer)?;
+ bytes_read = buffer.len();
+
+ // http://www.color.org/ICC_Minor_Revision_for_Web.pdf
+ // B.4 Embedding ICC profiles in JFIF files
+ if buffer[0..12] == *b"ICC_PROFILE\0" {
+ let mut data = vec![0; length - bytes_read];
+ reader.read_exact(&mut data)?;
+ bytes_read += data.len();
+ result = Some(AppData::Icc(IccChunk {
+ seq_no: buffer[12],
+ num_markers: buffer[13],
+ data,
+ }));
+ }
+ }
+ }
+ APP(14) => {
+ if length >= 12 {
+ let mut buffer = [0u8; 12];
+ reader.read_exact(&mut buffer)?;
+ bytes_read = buffer.len();
+
+ // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
+ if buffer[0 .. 6] == *b"Adobe\0" {
+ let color_transform = match buffer[11] {
+ 0 => AdobeColorTransform::Unknown,
+ 1 => AdobeColorTransform::YCbCr,
+ 2 => AdobeColorTransform::YCCK,
+ _ => return Err(Error::Format("invalid color transform in adobe app segment".to_owned())),
+ };
+
+ result = Some(AppData::Adobe(color_transform));
+ }
+ }
+ },
+ _ => {},
+ }
+
+ skip_bytes(reader, length - bytes_read)?;
+ Ok(result)
+}
diff --git a/vendor/jpeg-decoder/src/upsampler.rs b/vendor/jpeg-decoder/src/upsampler.rs
new file mode 100644
index 0000000..a5c39d4
--- /dev/null
+++ b/vendor/jpeg-decoder/src/upsampler.rs
@@ -0,0 +1,252 @@
+use alloc::boxed::Box;
+use alloc::vec;
+use alloc::vec::Vec;
+use crate::error::{Error, Result, UnsupportedFeature};
+use crate::parser::Component;
+
+pub struct Upsampler {
+ components: Vec<UpsamplerComponent>,
+ line_buffer_size: usize
+}
+
+struct UpsamplerComponent {
+ upsampler: Box<dyn Upsample + Sync>,
+ width: usize,
+ height: usize,
+ row_stride: usize,
+}
+
+impl Upsampler {
+ pub fn new(components: &[Component], output_width: u16, output_height: u16) -> Result<Upsampler> {
+ let h_max = components.iter().map(|c| c.horizontal_sampling_factor).max().unwrap();
+ let v_max = components.iter().map(|c| c.vertical_sampling_factor).max().unwrap();
+ let mut upsampler_components = Vec::with_capacity(components.len());
+
+ for component in components {
+ let upsampler = choose_upsampler((component.horizontal_sampling_factor,
+ component.vertical_sampling_factor),
+ (h_max, v_max),
+ output_width,
+ output_height)?;
+ upsampler_components.push(UpsamplerComponent {
+ upsampler,
+ width: component.size.width as usize,
+ height: component.size.height as usize,
+ row_stride: component.block_size.width as usize * component.dct_scale,
+ });
+ }
+
+ let buffer_size = components.iter().map(|c| c.size.width).max().unwrap() as usize * h_max as usize;
+
+ Ok(Upsampler {
+ components: upsampler_components,
+ line_buffer_size: buffer_size
+ })
+ }
+
+ pub fn upsample_and_interleave_row(&self, component_data: &[Vec<u8>], row: usize, output_width: usize, output: &mut [u8], color_convert: fn(&[Vec<u8>], &mut [u8])) {
+ let component_count = component_data.len();
+ let mut line_buffers = vec![vec![0u8; self.line_buffer_size]; component_count];
+
+ debug_assert_eq!(component_count, self.components.len());
+
+ for (i, component) in self.components.iter().enumerate() {
+ component.upsampler.upsample_row(&component_data[i],
+ component.width,
+ component.height,
+ component.row_stride,
+ row,
+ output_width,
+ &mut line_buffers[i]);
+ }
+ color_convert(&line_buffers, output);
+ }
+}
+
+struct UpsamplerH1V1;
+struct UpsamplerH2V1;
+struct UpsamplerH1V2;
+struct UpsamplerH2V2;
+
+struct UpsamplerGeneric {
+ horizontal_scaling_factor: u8,
+ vertical_scaling_factor: u8
+}
+
+fn choose_upsampler(sampling_factors: (u8, u8),
+ max_sampling_factors: (u8, u8),
+ output_width: u16,
+ output_height: u16) -> Result<Box<dyn Upsample + Sync>> {
+ let h1 = sampling_factors.0 == max_sampling_factors.0 || output_width == 1;
+ let v1 = sampling_factors.1 == max_sampling_factors.1 || output_height == 1;
+ let h2 = sampling_factors.0 * 2 == max_sampling_factors.0;
+ let v2 = sampling_factors.1 * 2 == max_sampling_factors.1;
+
+ if h1 && v1 {
+ Ok(Box::new(UpsamplerH1V1))
+ }
+ else if h2 && v1 {
+ Ok(Box::new(UpsamplerH2V1))
+ }
+ else if h1 && v2 {
+ Ok(Box::new(UpsamplerH1V2))
+ }
+ else if h2 && v2 {
+ Ok(Box::new(UpsamplerH2V2))
+ }
+ else {
+ if max_sampling_factors.0 % sampling_factors.0 != 0 || max_sampling_factors.1 % sampling_factors.1 != 0 {
+ Err(Error::Unsupported(UnsupportedFeature::NonIntegerSubsamplingRatio))
+ }
+ else {
+ Ok(Box::new(UpsamplerGeneric {
+ horizontal_scaling_factor: max_sampling_factors.0 / sampling_factors.0,
+ vertical_scaling_factor: max_sampling_factors.1 / sampling_factors.1
+ }))
+ }
+ }
+}
+
+trait Upsample {
+ fn upsample_row(&self,
+ input: &[u8],
+ input_width: usize,
+ input_height: usize,
+ row_stride: usize,
+ row: usize,
+ output_width: usize,
+ output: &mut [u8]);
+}
+
+impl Upsample for UpsamplerH1V1 {
+ fn upsample_row(&self,
+ input: &[u8],
+ _input_width: usize,
+ _input_height: usize,
+ row_stride: usize,
+ row: usize,
+ output_width: usize,
+ output: &mut [u8]) {
+ let input = &input[row * row_stride ..];
+
+ output[..output_width].copy_from_slice(&input[..output_width]);
+ }
+}
+
+impl Upsample for UpsamplerH2V1 {
+ fn upsample_row(&self,
+ input: &[u8],
+ input_width: usize,
+ _input_height: usize,
+ row_stride: usize,
+ row: usize,
+ _output_width: usize,
+ output: &mut [u8]) {
+ let input = &input[row * row_stride ..];
+
+ if input_width == 1 {
+ output[0] = input[0];
+ output[1] = input[0];
+ return;
+ }
+
+ output[0] = input[0];
+ output[1] = ((input[0] as u32 * 3 + input[1] as u32 + 2) >> 2) as u8;
+
+ for i in 1 .. input_width - 1 {
+ let sample = 3 * input[i] as u32 + 2;
+ output[i * 2] = ((sample + input[i - 1] as u32) >> 2) as u8;
+ output[i * 2 + 1] = ((sample + input[i + 1] as u32) >> 2) as u8;
+ }
+
+ output[(input_width - 1) * 2] = ((input[input_width - 1] as u32 * 3 + input[input_width - 2] as u32 + 2) >> 2) as u8;
+ output[(input_width - 1) * 2 + 1] = input[input_width - 1];
+ }
+}
+
+impl Upsample for UpsamplerH1V2 {
+ fn upsample_row(&self,
+ input: &[u8],
+ _input_width: usize,
+ input_height: usize,
+ row_stride: usize,
+ row: usize,
+ output_width: usize,
+ output: &mut [u8]) {
+ let row_near = row as f32 / 2.0;
+ // If row_near's fractional is 0.0 we want row_far to be the previous row and if it's 0.5 we
+ // want it to be the next row.
+ let row_far = (row_near + row_near.fract() * 3.0 - 0.25).min((input_height - 1) as f32);
+
+ let input_near = &input[row_near as usize * row_stride ..];
+ let input_far = &input[row_far as usize * row_stride ..];
+
+ let output = &mut output[..output_width];
+ let input_near = &input_near[..output_width];
+ let input_far = &input_far[..output_width];
+ for i in 0..output_width {
+ output[i] = ((3 * input_near[i] as u32 + input_far[i] as u32 + 2) >> 2) as u8;
+ }
+ }
+}
+
+impl Upsample for UpsamplerH2V2 {
+ fn upsample_row(&self,
+ input: &[u8],
+ input_width: usize,
+ input_height: usize,
+ row_stride: usize,
+ row: usize,
+ _output_width: usize,
+ output: &mut [u8]) {
+ let row_near = row as f32 / 2.0;
+ // If row_near's fractional is 0.0 we want row_far to be the previous row and if it's 0.5 we
+ // want it to be the next row.
+ let row_far = (row_near + row_near.fract() * 3.0 - 0.25).min((input_height - 1) as f32);
+
+ let input_near = &input[row_near as usize * row_stride ..];
+ let input_far = &input[row_far as usize * row_stride ..];
+
+ if input_width == 1 {
+ let value = ((3 * input_near[0] as u32 + input_far[0] as u32 + 2) >> 2) as u8;
+ output[0] = value;
+ output[1] = value;
+ return;
+ }
+
+ let mut t1 = 3 * input_near[0] as u32 + input_far[0] as u32;
+ output[0] = ((t1 + 2) >> 2) as u8;
+
+ for i in 1 .. input_width {
+ let t0 = t1;
+ t1 = 3 * input_near[i] as u32 + input_far[i] as u32;
+
+ output[i * 2 - 1] = ((3 * t0 + t1 + 8) >> 4) as u8;
+ output[i * 2] = ((3 * t1 + t0 + 8) >> 4) as u8;
+ }
+
+ output[input_width * 2 - 1] = ((t1 + 2) >> 2) as u8;
+ }
+}
+
+impl Upsample for UpsamplerGeneric {
+ // Uses nearest neighbor sampling
+ fn upsample_row(&self,
+ input: &[u8],
+ input_width: usize,
+ _input_height: usize,
+ row_stride: usize,
+ row: usize,
+ _output_width: usize,
+ output: &mut [u8]) {
+ let mut index = 0;
+ let start = (row / self.vertical_scaling_factor as usize) * row_stride;
+ let input = &input[start..(start + input_width)];
+ for val in input {
+ for _ in 0..self.horizontal_scaling_factor {
+ output[index] = *val;
+ index += 1;
+ }
+ }
+ }
+}
diff --git a/vendor/jpeg-decoder/src/worker/immediate.rs b/vendor/jpeg-decoder/src/worker/immediate.rs
new file mode 100644
index 0000000..8c6e7db
--- /dev/null
+++ b/vendor/jpeg-decoder/src/worker/immediate.rs
@@ -0,0 +1,80 @@
+use alloc::vec;
+use alloc::vec::Vec;
+use core::mem;
+use core::convert::TryInto;
+use crate::decoder::MAX_COMPONENTS;
+use crate::error::Result;
+use crate::idct::dequantize_and_idct_block;
+use crate::alloc::sync::Arc;
+use crate::parser::Component;
+use super::{RowData, Worker};
+
+pub struct ImmediateWorker {
+ offsets: [usize; MAX_COMPONENTS],
+ results: Vec<Vec<u8>>,
+ components: Vec<Option<Component>>,
+ quantization_tables: Vec<Option<Arc<[u16; 64]>>>,
+}
+
+impl Default for ImmediateWorker {
+ fn default() -> Self {
+ ImmediateWorker {
+ offsets: [0; MAX_COMPONENTS],
+ results: vec![Vec::new(); MAX_COMPONENTS],
+ components: vec![None; MAX_COMPONENTS],
+ quantization_tables: vec![None; MAX_COMPONENTS],
+ }
+ }
+}
+
+impl ImmediateWorker {
+ pub fn start_immediate(&mut self, data: RowData) {
+ assert!(self.results[data.index].is_empty());
+
+ self.offsets[data.index] = 0;
+ self.results[data.index].resize(data.component.block_size.width as usize * data.component.block_size.height as usize * data.component.dct_scale * data.component.dct_scale, 0u8);
+ self.components[data.index] = Some(data.component);
+ self.quantization_tables[data.index] = Some(data.quantization_table);
+ }
+
+ pub fn append_row_immediate(&mut self, (index, data): (usize, Vec<i16>)) {
+ // Convert coefficients from a MCU row to samples.
+
+ let component = self.components[index].as_ref().unwrap();
+ let quantization_table = self.quantization_tables[index].as_ref().unwrap();
+ let block_count = component.block_size.width as usize * component.vertical_sampling_factor as usize;
+ let line_stride = component.block_size.width as usize * component.dct_scale;
+
+ assert_eq!(data.len(), block_count * 64);
+
+ for i in 0..block_count {
+ let x = (i % component.block_size.width as usize) * component.dct_scale;
+ let y = (i / component.block_size.width as usize) * component.dct_scale;
+
+ let coefficients = data[i * 64..(i + 1) * 64].try_into().unwrap();
+ let output = &mut self.results[index][self.offsets[index] + y * line_stride + x..];
+
+ dequantize_and_idct_block(component.dct_scale, coefficients, quantization_table, line_stride, output);
+ }
+
+ self.offsets[index] += block_count * component.dct_scale * component.dct_scale;
+ }
+
+ pub fn get_result_immediate(&mut self, index: usize) -> Vec<u8> {
+ mem::take(&mut self.results[index])
+ }
+}
+
+impl Worker for ImmediateWorker {
+ fn start(&mut self, data: RowData) -> Result<()> {
+ self.start_immediate(data);
+ Ok(())
+ }
+ fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
+ self.append_row_immediate(row);
+ Ok(())
+ }
+ fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
+ Ok(self.get_result_immediate(index))
+ }
+}
diff --git a/vendor/jpeg-decoder/src/worker/mod.rs b/vendor/jpeg-decoder/src/worker/mod.rs
new file mode 100644
index 0000000..d6c2b10
--- /dev/null
+++ b/vendor/jpeg-decoder/src/worker/mod.rs
@@ -0,0 +1,128 @@
+mod immediate;
+mod multithreaded;
+#[cfg(all(
+ not(any(target_arch = "asmjs", target_arch = "wasm32")),
+ feature = "rayon"
+))]
+mod rayon;
+
+use crate::decoder::{choose_color_convert_func, ColorTransform};
+use crate::error::Result;
+use crate::parser::{Component, Dimensions};
+use crate::upsampler::Upsampler;
+
+use alloc::sync::Arc;
+use alloc::vec::Vec;
+use core::cell::RefCell;
+
+pub struct RowData {
+ pub index: usize,
+ pub component: Component,
+ pub quantization_table: Arc<[u16; 64]>,
+}
+
+pub trait Worker {
+ fn start(&mut self, row_data: RowData) -> Result<()>;
+ fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()>;
+ fn get_result(&mut self, index: usize) -> Result<Vec<u8>>;
+ /// Default implementation for spawning multiple tasks.
+ fn append_rows(&mut self, row: &mut dyn Iterator<Item = (usize, Vec<i16>)>) -> Result<()> {
+ for item in row {
+ self.append_row(item)?;
+ }
+ Ok(())
+ }
+}
+
+#[allow(dead_code)]
+pub enum PreferWorkerKind {
+ Immediate,
+ Multithreaded,
+}
+
+#[derive(Default)]
+pub struct WorkerScope {
+ inner: core::cell::RefCell<Option<WorkerScopeInner>>,
+}
+
+enum WorkerScopeInner {
+ #[cfg(all(
+ not(any(target_arch = "asmjs", target_arch = "wasm32")),
+ feature = "rayon"
+ ))]
+ Rayon(rayon::Scoped),
+ #[cfg(not(any(target_arch = "asmjs", target_arch = "wasm32")))]
+ Multithreaded(multithreaded::MpscWorker),
+ Immediate(immediate::ImmediateWorker),
+}
+
+impl WorkerScope {
+ pub fn with<T>(with: impl FnOnce(&Self) -> T) -> T {
+ with(&WorkerScope {
+ inner: RefCell::default(),
+ })
+ }
+
+ pub fn get_or_init_worker<T>(
+ &self,
+ prefer: PreferWorkerKind,
+ f: impl FnOnce(&mut dyn Worker) -> T,
+ ) -> T {
+ let mut inner = self.inner.borrow_mut();
+ let inner = inner.get_or_insert_with(move || match prefer {
+ #[cfg(all(
+ not(any(target_arch = "asmjs", target_arch = "wasm32")),
+ feature = "rayon"
+ ))]
+ PreferWorkerKind::Multithreaded => WorkerScopeInner::Rayon(Default::default()),
+ #[allow(unreachable_patterns)]
+ #[cfg(not(any(target_arch = "asmjs", target_arch = "wasm32")))]
+ PreferWorkerKind::Multithreaded => WorkerScopeInner::Multithreaded(Default::default()),
+ _ => WorkerScopeInner::Immediate(Default::default()),
+ });
+
+ f(match &mut *inner {
+ #[cfg(all(
+ not(any(target_arch = "asmjs", target_arch = "wasm32")),
+ feature = "rayon"
+ ))]
+ WorkerScopeInner::Rayon(worker) => worker,
+ #[cfg(not(any(target_arch = "asmjs", target_arch = "wasm32")))]
+ WorkerScopeInner::Multithreaded(worker) => worker,
+ WorkerScopeInner::Immediate(worker) => worker,
+ })
+ }
+}
+
+pub fn compute_image_parallel(
+ components: &[Component],
+ data: Vec<Vec<u8>>,
+ output_size: Dimensions,
+ color_transform: ColorTransform,
+) -> Result<Vec<u8>> {
+ #[cfg(all(
+ not(any(target_arch = "asmjs", target_arch = "wasm32")),
+ feature = "rayon"
+ ))]
+ return rayon::compute_image_parallel(components, data, output_size, color_transform);
+
+ #[allow(unreachable_code)]
+ {
+ let color_convert_func = choose_color_convert_func(components.len(), color_transform)?;
+ let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
+ let line_size = output_size.width as usize * components.len();
+ let mut image = vec![0u8; line_size * output_size.height as usize];
+
+ for (row, line) in image.chunks_mut(line_size).enumerate() {
+ upsampler.upsample_and_interleave_row(
+ &data,
+ row,
+ output_size.width as usize,
+ line,
+ color_convert_func,
+ );
+ }
+
+ Ok(image)
+ }
+}
diff --git a/vendor/jpeg-decoder/src/worker/multithreaded.rs b/vendor/jpeg-decoder/src/worker/multithreaded.rs
new file mode 100644
index 0000000..c820702
--- /dev/null
+++ b/vendor/jpeg-decoder/src/worker/multithreaded.rs
@@ -0,0 +1,123 @@
+//! This module implements per-component parallelism.
+//! It should be possible to implement per-row parallelism as well,
+//! which should also boost performance of grayscale images
+//! and allow scaling to more cores.
+//! However, that would be more complex, so we use this as a starting point.
+
+use super::immediate::ImmediateWorker;
+use super::{RowData, Worker};
+use crate::decoder::MAX_COMPONENTS;
+use crate::error::Result;
+use std::{
+ mem,
+ sync::mpsc::{self, Receiver, Sender},
+};
+
+enum WorkerMsg {
+ Start(RowData),
+ AppendRow(Vec<i16>),
+ GetResult(Sender<Vec<u8>>),
+}
+
+#[derive(Default)]
+pub struct MpscWorker {
+ senders: [Option<Sender<WorkerMsg>>; MAX_COMPONENTS],
+}
+
+impl MpscWorker {
+ fn start_with(
+ &mut self,
+ row_data: RowData,
+ spawn_worker: impl FnOnce(usize) -> Result<Sender<WorkerMsg>>,
+ ) -> Result<()> {
+ // if there is no worker thread for this component yet, start one
+ let component = row_data.index;
+ if let None = self.senders[component] {
+ let sender = spawn_worker(component)?;
+ self.senders[component] = Some(sender);
+ }
+
+ // we do the "take out value and put it back in once we're done" dance here
+ // and in all other message-passing methods because there's not that many rows
+ // and this should be cheaper than spawning MAX_COMPONENTS many threads up front
+ let sender = self.senders[component].as_mut().unwrap();
+ sender
+ .send(WorkerMsg::Start(row_data))
+ .expect("jpeg-decoder worker thread error");
+ Ok(())
+ }
+
+ fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
+ let component = row.0;
+ let sender = self.senders[component].as_mut().unwrap();
+ sender
+ .send(WorkerMsg::AppendRow(row.1))
+ .expect("jpeg-decoder worker thread error");
+ Ok(())
+ }
+
+ fn get_result_with(
+ &mut self,
+ index: usize,
+ collect: impl FnOnce(Receiver<Vec<u8>>) -> Vec<u8>,
+ ) -> Result<Vec<u8>> {
+ let (tx, rx) = mpsc::channel();
+ let sender = mem::take(&mut self.senders[index]).unwrap();
+ sender
+ .send(WorkerMsg::GetResult(tx))
+ .expect("jpeg-decoder worker thread error");
+ Ok(collect(rx))
+ }
+}
+
+impl Worker for MpscWorker {
+ fn start(&mut self, row_data: RowData) -> Result<()> {
+ self.start_with(row_data, spawn_worker_thread)
+ }
+ fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
+ MpscWorker::append_row(self, row)
+ }
+ fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
+ self.get_result_with(index, collect_worker_thread)
+ }
+}
+
+fn create_worker() -> (Sender<WorkerMsg>, impl FnOnce() + 'static) {
+ let (tx, rx) = mpsc::channel();
+ let closure = move || {
+ let mut worker = ImmediateWorker::default();
+
+ while let Ok(message) = rx.recv() {
+ match message {
+ WorkerMsg::Start(mut data) => {
+ // we always set component index to 0 for worker threads
+ // because they only ever handle one per thread and we don't want them
+ // to attempt to access nonexistent components
+ data.index = 0;
+ worker.start_immediate(data);
+ }
+ WorkerMsg::AppendRow(row) => {
+ worker.append_row_immediate((0, row));
+ }
+ WorkerMsg::GetResult(chan) => {
+ let _ = chan.send(worker.get_result_immediate(0));
+ break;
+ }
+ }
+ }
+ };
+
+ (tx, closure)
+}
+
+fn spawn_worker_thread(component: usize) -> Result<Sender<WorkerMsg>> {
+ let (tx, worker) = create_worker();
+ let thread_builder =
+ std::thread::Builder::new().name(format!("worker thread for component {}", component));
+ thread_builder.spawn(worker)?;
+ Ok(tx)
+}
+
+fn collect_worker_thread(rx: Receiver<Vec<u8>>) -> Vec<u8> {
+ rx.recv().expect("jpeg-decoder worker thread error")
+}
diff --git a/vendor/jpeg-decoder/src/worker/rayon.rs b/vendor/jpeg-decoder/src/worker/rayon.rs
new file mode 100644
index 0000000..ec7df25
--- /dev/null
+++ b/vendor/jpeg-decoder/src/worker/rayon.rs
@@ -0,0 +1,221 @@
+use core::convert::TryInto;
+
+use rayon::iter::{IndexedParallelIterator, ParallelIterator};
+use rayon::slice::ParallelSliceMut;
+
+use crate::decoder::{choose_color_convert_func, ColorTransform};
+use crate::error::Result;
+use crate::idct::dequantize_and_idct_block;
+use crate::parser::Component;
+use crate::upsampler::Upsampler;
+use crate::{decoder::MAX_COMPONENTS, parser::Dimensions};
+
+use std::sync::Arc;
+
+use super::{RowData, Worker};
+
+/// Technically similar to `immediate::ImmediateWorker` but we copy it since we may prefer
+/// different style of managing the memory allocation, something that multiple actors can access in
+/// parallel.
+#[derive(Default)]
+struct ImmediateWorker {
+ offsets: [usize; MAX_COMPONENTS],
+ results: [Vec<u8>; MAX_COMPONENTS],
+ components: [Option<Component>; MAX_COMPONENTS],
+ quantization_tables: [Option<Arc<[u16; 64]>>; MAX_COMPONENTS],
+}
+
+#[derive(Clone, Copy)]
+struct ComponentMetadata {
+ block_width: usize,
+ block_count: usize,
+ line_stride: usize,
+ dct_scale: usize,
+}
+
+#[derive(Default)]
+pub struct Scoped {
+ inner: ImmediateWorker,
+}
+
+impl ImmediateWorker {
+ pub fn start_immediate(&mut self, data: RowData) {
+ let elements = data.component.block_size.width as usize
+ * data.component.block_size.height as usize
+ * data.component.dct_scale
+ * data.component.dct_scale;
+ self.offsets[data.index] = 0;
+ self.results[data.index].resize(elements, 0u8);
+ self.components[data.index] = Some(data.component);
+ self.quantization_tables[data.index] = Some(data.quantization_table);
+ }
+
+ pub fn get_result_immediate(&mut self, index: usize) -> Vec<u8> {
+ core::mem::take(&mut self.results[index])
+ }
+
+ pub fn component_metadata(&self, index: usize) -> Option<ComponentMetadata> {
+ let component = self.components[index].as_ref()?;
+ let block_size = component.block_size;
+ let block_width = block_size.width as usize;
+ let block_count = block_size.width as usize * component.vertical_sampling_factor as usize;
+ let line_stride = block_size.width as usize * component.dct_scale;
+ let dct_scale = component.dct_scale;
+
+ Some(ComponentMetadata {
+ block_width,
+ block_count,
+ line_stride,
+ dct_scale,
+ })
+ }
+
+ pub fn append_row_locked(
+ quantization_table: Arc<[u16; 64]>,
+ metadata: ComponentMetadata,
+ data: Vec<i16>,
+ result_block: &mut [u8],
+ ) {
+ // Convert coefficients from a MCU row to samples.
+ let ComponentMetadata {
+ block_count,
+ line_stride,
+ block_width,
+ dct_scale,
+ } = metadata;
+
+ assert_eq!(data.len(), block_count * 64);
+
+ let mut output_buffer = [0; 64];
+ for i in 0..block_count {
+ let x = (i % block_width) * dct_scale;
+ let y = (i / block_width) * dct_scale;
+
+ let coefficients: &[i16; 64] = &data[i * 64..(i + 1) * 64].try_into().unwrap();
+
+ // Write to a temporary intermediate buffer, a 8x8 'image'.
+ dequantize_and_idct_block(
+ dct_scale,
+ coefficients,
+ &*quantization_table,
+ 8,
+ &mut output_buffer,
+ );
+
+ let write_back = &mut result_block[y * line_stride + x..];
+
+ let buffered_lines = output_buffer.chunks_mut(8);
+ let back_lines = write_back.chunks_mut(line_stride);
+
+ for (buf, back) in buffered_lines.zip(back_lines).take(dct_scale) {
+ back[..dct_scale].copy_from_slice(&buf[..dct_scale]);
+ }
+ }
+ }
+}
+
+impl Worker for Scoped {
+ fn start(&mut self, row_data: RowData) -> Result<()> {
+ self.inner.start_immediate(row_data);
+ Ok(())
+ }
+
+ fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
+ let inner = &mut self.inner;
+ let (index, data) = row;
+
+ let quantization_table = inner.quantization_tables[index].as_ref().unwrap().clone();
+ let metadata = inner.component_metadata(index).unwrap();
+ let result_block = &mut inner.results[index][inner.offsets[index]..];
+ inner.offsets[index] += metadata.bytes_used();
+
+ ImmediateWorker::append_row_locked(quantization_table, metadata, data, result_block);
+ Ok(())
+ }
+
+ fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
+ let result = self.inner.get_result_immediate(index);
+ Ok(result)
+ }
+
+ // Magic sauce, these _may_ run in parallel.
+ fn append_rows(&mut self, iter: &mut dyn Iterator<Item = (usize, Vec<i16>)>) -> Result<()> {
+ let inner = &mut self.inner;
+ rayon::in_place_scope(|scope| {
+ let metadatas = [
+ inner.component_metadata(0),
+ inner.component_metadata(1),
+ inner.component_metadata(2),
+ inner.component_metadata(3),
+ ];
+
+ let [res0, res1, res2, res3] = &mut inner.results;
+
+ // Lazily get the blocks. Note: if we've already collected results from a component
+ // then the result vector has already been deallocated/taken. But no more tasks should
+ // be created for it.
+ let mut result_blocks = [
+ res0.get_mut(inner.offsets[0]..).unwrap_or(&mut []),
+ res1.get_mut(inner.offsets[1]..).unwrap_or(&mut []),
+ res2.get_mut(inner.offsets[2]..).unwrap_or(&mut []),
+ res3.get_mut(inner.offsets[3]..).unwrap_or(&mut []),
+ ];
+
+ // First we schedule everything, making sure their index is right etc.
+ for (index, data) in iter {
+ let metadata = metadatas[index].unwrap();
+ let quantization_table = inner.quantization_tables[index].as_ref().unwrap().clone();
+
+ inner.offsets[index] += metadata.bytes_used();
+ let (result_block, tail) =
+ core::mem::take(&mut result_blocks[index]).split_at_mut(metadata.bytes_used());
+ result_blocks[index] = tail;
+
+ scope.spawn(move |_| {
+ ImmediateWorker::append_row_locked(
+ quantization_table,
+ metadata,
+ data,
+ result_block,
+ )
+ });
+ }
+ });
+
+ Ok(())
+ }
+}
+
+impl ComponentMetadata {
+ fn bytes_used(&self) -> usize {
+ self.block_count * self.dct_scale * self.dct_scale
+ }
+}
+
+pub fn compute_image_parallel(
+ components: &[Component],
+ data: Vec<Vec<u8>>,
+ output_size: Dimensions,
+ color_transform: ColorTransform,
+) -> Result<Vec<u8>> {
+ let color_convert_func = choose_color_convert_func(components.len(), color_transform)?;
+ let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
+ let line_size = output_size.width as usize * components.len();
+ let mut image = vec![0u8; line_size * output_size.height as usize];
+
+ image
+ .par_chunks_mut(line_size)
+ .with_max_len(1)
+ .enumerate()
+ .for_each(|(row, line)| {
+ upsampler.upsample_and_interleave_row(
+ &data,
+ row,
+ output_size.width as usize,
+ line,
+ color_convert_func,
+ );
+ });
+
+ Ok(image)
+}