aboutsummaryrefslogtreecommitdiff
path: root/vendor/lebe
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/lebe')
-rw-r--r--vendor/lebe/.cargo-checksum.json1
-rw-r--r--vendor/lebe/Cargo.toml61
-rw-r--r--vendor/lebe/LICENSE-BSD-3-Clause26
-rw-r--r--vendor/lebe/README.md90
-rw-r--r--vendor/lebe/benches/benches.rs137
-rw-r--r--vendor/lebe/src/lib.rs578
-rw-r--r--vendor/lebe/tests/tests.rs213
7 files changed, 1106 insertions, 0 deletions
diff --git a/vendor/lebe/.cargo-checksum.json b/vendor/lebe/.cargo-checksum.json
new file mode 100644
index 0000000..14ab426
--- /dev/null
+++ b/vendor/lebe/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.toml":"365b393a87b2706f0eb52139c1ce3909e47ca4e1226cf7bdcae4e4c1d0f386b5","LICENSE-BSD-3-Clause":"f1b2855ae21da69e0a02499e13f57f3be92db7abbbffe9a89f33e04e9e21ec81","README.md":"d9f3a595b28433de13f0c88ae049a73af3d88068f08dd8364d45504224651448","benches/benches.rs":"a73feca65ddde13e082121cc2268318fc72a87029f2d7106f939a4356af3e232","src/lib.rs":"72567c8ad6ae8e59d59ce2e9ffcfa8f013bb24f104b128d92a52f034f592b777","tests/tests.rs":"76b860f51bef80c4223f06998fbed540d9bcd0ddc4fa1ed0f0c0964e3d58bdcc"},"package":"03087c2bad5e1034e8cace5926dec053fb3790248370865f5117a7d0213354c8"} \ No newline at end of file
diff --git a/vendor/lebe/Cargo.toml b/vendor/lebe/Cargo.toml
new file mode 100644
index 0000000..38a619e
--- /dev/null
+++ b/vendor/lebe/Cargo.toml
@@ -0,0 +1,61 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+edition = "2018"
+name = "lebe"
+version = "0.5.2"
+authors = ["johannesvollmer <johannes596@t-online.de>"]
+description = "Tiny, dead simple, high performance endianness conversions with a generic API"
+documentation = "https://docs.rs/crate/lebe/"
+readme = "README.md"
+keywords = [
+ "endianness",
+ "binary",
+ "io",
+ "byteorder",
+ "endian",
+]
+categories = [
+ "encoding",
+ "filesystem",
+ "algorithms",
+]
+license = "BSD-3-Clause"
+repository = "https://github.com/johannesvollmer/lebe"
+
+[profile.bench]
+lto = true
+debug = true
+
+[lib]
+path = "src/lib.rs"
+test = true
+doctest = true
+bench = true
+doc = true
+plugin = false
+proc-macro = false
+
+[[bench]]
+name = "benches"
+harness = false
+
+[dev-dependencies.bencher]
+version = "0.1.5"
+
+[dev-dependencies.byteorder]
+version = "1.4.3"
+
+[features]
+
+[badges.maintenance]
+status = "actively-developed"
diff --git a/vendor/lebe/LICENSE-BSD-3-Clause b/vendor/lebe/LICENSE-BSD-3-Clause
new file mode 100644
index 0000000..8c53234
--- /dev/null
+++ b/vendor/lebe/LICENSE-BSD-3-Clause
@@ -0,0 +1,26 @@
+Copyright (c) 2022 Contributors to the lebe Project. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice,
+this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+this list of conditions and the following disclaimer in the documentation
+and/or other materials provided with the distribution.
+
+3. Neither the name of the copyright holder nor the names of its contributors
+may be used to endorse or promote products derived from this software without
+specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/lebe/README.md b/vendor/lebe/README.md
new file mode 100644
index 0000000..d32a28a
--- /dev/null
+++ b/vendor/lebe/README.md
@@ -0,0 +1,90 @@
+[![Rust Docs](https://docs.rs/lebe/badge.svg)](https://docs.rs/lebe)
+[![Crate Crate](https://img.shields.io/crates/v/lebe.svg)](https://crates.io/crates/lebe)
+![Lines of Code](https://tokei.rs/b1/github/johannesvollmer/lebe?category=code)
+
+
+# LEBE
+Tiny, dead simple, high performance endianness conversions with a generic API.
+This crate purposefully does not have a different method, like `write_u16(my_value)`, for each primitive type. Instead, this uses generic type inference: `write(my_u16)`.
+
+# Purpose
+This crate has exactly two purposes:
+ 1. Simple conversion between slices of primitives and byte arrays without unsafe code
+ 2. Simple and fast conversion from one endianness to the other one
+
+The [byteorder crate](https://github.com/BurntSushi/byteorder) uses ![Lines of Code](https://tokei.rs/b1/github/BurntSushi/byteorder?category=code) for this.
+
+This simplifies reading and writing binary data to files or network streams.
+
+
+# Usage
+
+Write values.
+```rust
+ use lebe::io::WriteEndian;
+ use std::io::Write;
+
+ fn main(){
+ let mut output_bytes: Vec<u8> = Vec::new();
+
+ let numbers: &[i32] = &[ 32, 102, 420, 594 ];
+ output_bytes.write_as_little_endian(numbers.len()).unwrap();
+ output_bytes.write_as_little_endian(numbers).unwrap();
+ }
+```
+
+Read numbers.
+```rust
+ use lebe::io::ReadEndian;
+ use std::io::Read;
+
+ fn main(){
+ let mut input_bytes: &[u8] = &[ 3, 244 ];
+ let number: u16 = input_bytes.read_from_little_endian().unwrap();
+ }
+```
+
+Read slices.
+```rust
+ use lebe::io::ReadEndian;
+ use std::io::Read;
+
+ fn main(){
+ let mut input_bytes: &[u8] = &[ 0, 2, 0, 3, 244, 1, 0, 3, 244, 1 ];
+
+ let len: u16 = input_bytes.read_from_little_endian().unwrap();
+ let mut numbers = vec![ 0.0; len as usize ];
+
+ input_bytes.read_from_little_endian_into(numbers.as_mut_slice()).unwrap();
+ }
+```
+
+Convert slices in-place.
+```rust
+ use lebe::Endian;
+
+ fn main(){
+ let mut numbers: &[i32] = &[ 32, 102, 420, 594 ];
+ numbers.convert_current_to_little_endian();
+ }
+```
+
+
+# Why not use [byteorder](https://crates.io/crates/byteorder)?
+This crate supports batch-writing slices with native speed
+where the os has the matching endianness. Writing slices in `byteorder`
+must be done manually, and may be slower than expected.
+This crate does provide u8 and i8 slice operations for completeness.
+Also, the API of this crate looks simpler.
+
+# Why not use [endianness](https://crates.io/crates/endianness)?
+This crate has no runtime costs, just as `byteorder`.
+
+# Why not use this crate?
+The other crates probably have better documentation.
+
+
+# Fun Facts
+LEBE is made up from 'le' for little endian and 'be' for big endian.
+If you say that word using english pronounciation,
+a german might think you said the german word for 'love'.
diff --git a/vendor/lebe/benches/benches.rs b/vendor/lebe/benches/benches.rs
new file mode 100644
index 0000000..eca67f5
--- /dev/null
+++ b/vendor/lebe/benches/benches.rs
@@ -0,0 +1,137 @@
+#[macro_use]
+extern crate bencher;
+
+use bencher::Bencher;
+use lebe::prelude::*;
+use byteorder::{ReadBytesExt, LittleEndian, BigEndian, WriteBytesExt};
+use std::io::{Read, Write, Cursor};
+
+const COUNT_8: usize = 2048;
+const COUNT_16: usize = COUNT_8 / 2;
+const COUNT_32: usize = COUNT_8 / 4;
+const COUNT_64: usize = COUNT_8 / 8;
+
+
+fn bytes(count: usize) -> Cursor<Vec<u8>> {
+ let vec: Vec<u8> = (0..count).map(|i| (i % 256) as u8).collect();
+ Cursor::new(vec)
+}
+
+fn floats(count: usize) -> Vec<f32> {
+ (0..count).map(|i| i as f32).collect()
+}
+
+fn read_slice_f32_le_crate(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let mut target = vec![ 0_f32; COUNT_32 ];
+ bencher::black_box(bytes(COUNT_8).read_from_little_endian_into(target.as_mut_slice())).unwrap();
+ bencher::black_box(target);
+ })
+}
+
+fn read_slice_f32_le_byteorder(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let mut target = vec![ 0_f32; COUNT_32 ];
+ bencher::black_box(bytes(COUNT_8).read_f32_into::<LittleEndian>(target.as_mut_slice())).unwrap();
+ bencher::black_box(target);
+ })
+}
+
+fn read_slice_f32_be_crate(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let mut target = vec![ 0_f32; COUNT_32 ];
+ bencher::black_box(bytes(COUNT_8).read_from_big_endian_into(target.as_mut_slice())).unwrap();
+ bencher::black_box(target);
+ })
+}
+
+fn read_slice_f32_be_byteorder(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let mut target = vec![ 0_f32; COUNT_32 ];
+ bencher::black_box(bytes(COUNT_8).read_f32_into::<BigEndian>(target.as_mut_slice())).unwrap();
+ bencher::black_box(target);
+ })
+}
+
+// FIXME faster than baseline?!?!!
+fn write_slice_f32_le_crate(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let data = floats(COUNT_32);
+ let mut output = Vec::with_capacity(COUNT_8);
+
+ bencher::black_box(output.write_as_little_endian(data.as_slice())).unwrap();
+ assert_eq!(output.len(), COUNT_8);
+ bencher::black_box(output);
+ })
+}
+
+fn write_slice_f32_le_byteorder(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let data = floats(COUNT_32);
+ let mut output = Vec::with_capacity(COUNT_8);
+
+ for number in data {
+ bencher::black_box(output.write_f32::<LittleEndian>(number)).unwrap();
+ }
+
+ assert_eq!(output.len(), COUNT_8);
+ bencher::black_box(output);
+ })
+}
+
+
+fn write_slice_f32_be_crate(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let data = floats(COUNT_32);
+ let mut output = Vec::with_capacity(COUNT_8);
+
+ bencher::black_box(output.write_as_big_endian(data.as_slice())).unwrap();
+ assert_eq!(output.len(), COUNT_8);
+ bencher::black_box(output);
+ })
+}
+
+fn write_slice_f32_be_byteorder(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let data = floats(COUNT_32);
+ let mut output = Vec::with_capacity(COUNT_8);
+
+ for number in data {
+ bencher::black_box(output.write_f32::<BigEndian>(number)).unwrap();
+ }
+
+ assert_eq!(output.len(), COUNT_8);
+ bencher::black_box(output);
+ })
+}
+
+
+
+fn read_slice_baseline(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let mut target = vec![ 0_u8; COUNT_8 ];
+ bencher::black_box(bytes(COUNT_8).read_exact(target.as_mut_slice())).unwrap();
+ bencher::black_box(target);
+ })
+}
+
+
+fn write_slice_baseline(bench: &mut Bencher) {
+ bench.iter(move ||{
+ let data = bytes(COUNT_8).into_inner();
+ let mut output = Vec::with_capacity(COUNT_8);
+
+ bencher::black_box(output.write_all(data.as_slice())).unwrap();
+ bencher::black_box(output);
+ })
+}
+
+benchmark_group!(
+ benches,
+ read_slice_f32_be_byteorder, read_slice_f32_be_crate, read_slice_f32_le_byteorder,
+ read_slice_f32_le_crate, write_slice_f32_le_byteorder, write_slice_f32_le_crate,
+ write_slice_f32_be_byteorder, write_slice_f32_be_crate,
+ read_slice_baseline, write_slice_baseline
+);
+
+benchmark_main!(benches); \ No newline at end of file
diff --git a/vendor/lebe/src/lib.rs b/vendor/lebe/src/lib.rs
new file mode 100644
index 0000000..fbb4482
--- /dev/null
+++ b/vendor/lebe/src/lib.rs
@@ -0,0 +1,578 @@
+#![warn(
+ missing_docs, unused,
+ trivial_numeric_casts,
+ future_incompatible,
+ rust_2018_compatibility,
+ rust_2018_idioms,
+ clippy::all
+)]
+
+#![doc(html_root_url = "https://docs.rs/lebe/0.5.0")]
+
+//! Dead simple endianness conversions.
+//! The following operations are implemented on
+//! `u8`, `i8`, `u16`, `i16`, `u32`, `i32`, `u64`, `i64`, `u128`, `i128`, `f32`, `f64`:
+//!
+//!
+//! ### Read Numbers
+//! ```rust
+//! use lebe::prelude::*;
+//! let mut reader: &[u8] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
+//!
+//! let number : u64 = reader.read_from_little_endian()?;
+//! let number = u64::read_from_big_endian(&mut reader)?;
+//! # Ok::<(), std::io::Error>(())
+//! ```
+//!
+//! ### Read Slices
+//! ```rust
+//! use std::io::Read;
+//! use lebe::prelude::*;
+//! let mut reader: &[u8] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
+//!
+//! let mut numbers: &mut [u64] = &mut [0, 0];
+//! reader.read_from_little_endian_into(numbers)?;
+//! # Ok::<(), std::io::Error>(())
+//! ```
+//!
+//! ### Write Numbers
+//! ```rust
+//! use std::io::Read;
+//! use lebe::prelude::*;
+//! let mut writer: Vec<u8> = Vec::new();
+//!
+//! let number: u64 = 1237691;
+//! writer.write_as_big_endian(&number)?;
+//! # Ok::<(), std::io::Error>(())
+//! ```
+//!
+//! ### Write Slices
+//! ```rust
+//! use std::io::Write;
+//! use lebe::prelude::*;
+//! let mut writer: Vec<u8> = Vec::new();
+//!
+//! let numbers: &[u64] = &[1_u64, 234545_u64];
+//! writer.write_as_little_endian(numbers)?;
+//! # Ok::<(), std::io::Error>(())
+//! ```
+//!
+
+
+/// Exports some of the most common types.
+pub mod prelude {
+ pub use super::Endian;
+ pub use super::io::{ WriteEndian, ReadEndian, ReadPrimitive };
+}
+
+/// Represents values that can swap their bytes to reverse their endianness.
+///
+/// Supports converting values in-place using [`swap_bytes`] or [`convert_current_to_little_endian`]:
+/// Supports converting while transferring ownership using
+/// [`from_little_endian_into_current`] or [`from_current_into_little_endian`].
+///
+///
+/// For the types `u8`, `i8`, `&[u8]` and `&[i8]`, this trait will never transform any data,
+/// as they are just implemented for completeness.
+pub trait Endian {
+
+ /// Swaps all bytes in this value, inverting its endianness.
+ fn swap_bytes(&mut self);
+
+ /// On a little endian machine, this does nothing.
+ /// On a big endian machine, the bytes of this value are reversed.
+ #[inline] fn convert_current_to_little_endian(&mut self) {
+ #[cfg(target_endian = "big")] {
+ self.swap_bytes();
+ }
+ }
+
+ /// On a big endian machine, this does nothing.
+ /// On a little endian machine, the bytes of this value are reversed.
+ #[inline] fn convert_current_to_big_endian(&mut self) {
+ #[cfg(target_endian = "little")] {
+ self.swap_bytes();
+ }
+ }
+
+ /// On a little endian machine, this does nothing.
+ /// On a big endian machine, the bytes of this value are reversed.
+ #[inline] fn convert_little_endian_to_current(&mut self) {
+ #[cfg(target_endian = "big")] {
+ self.swap_bytes();
+ }
+ }
+
+ /// On a big endian machine, this does nothing.
+ /// On a little endian machine, the bytes of this value are reversed.
+ #[inline] fn convert_big_endian_to_current(&mut self) {
+ #[cfg(target_endian = "little")] {
+ self.swap_bytes();
+ }
+ }
+
+ /// On a little endian machine, this does nothing.
+ /// On a big endian machine, the bytes of this value are reversed.
+ #[inline] fn from_current_into_little_endian(mut self) -> Self where Self: Sized {
+ self.convert_current_to_little_endian();
+ self
+ }
+
+ /// On a big endian machine, this does nothing.
+ /// On a little endian machine, the bytes of this value are reversed.
+ #[inline] fn from_current_into_big_endian(mut self) -> Self where Self: Sized {
+ self.convert_current_to_big_endian();
+ self
+ }
+
+ /// On a little endian machine, this does nothing.
+ /// On a big endian machine, the bytes of this value are reversed.
+ #[inline] fn from_little_endian_into_current(mut self) -> Self where Self: Sized {
+ self.convert_little_endian_to_current();
+ self
+ }
+
+ /// On a big endian machine, this does nothing.
+ /// On a little endian machine, the bytes of this value are reversed.
+ #[inline] fn from_big_endian_into_current(mut self) -> Self where Self: Sized {
+ self.convert_big_endian_to_current();
+ self
+ }
+}
+
+
+// call a macro for each argument
+macro_rules! call_single_arg_macro_for_each {
+ ($macro: ident, $( $arguments: ident ),* ) => {
+ $( $macro! { $arguments } )*
+ };
+}
+
+// implement this interface for primitive signed and unsigned integers
+macro_rules! implement_simple_primitive_endian {
+ ($type: ident) => {
+ impl Endian for $type {
+ fn swap_bytes(&mut self) {
+ *self = $type::swap_bytes(*self);
+ }
+ }
+ };
+}
+
+
+call_single_arg_macro_for_each! {
+ implement_simple_primitive_endian,
+ u16, u32, u64, u128, i16, i32, i64, i128
+}
+
+// no-op implementations
+impl Endian for u8 { fn swap_bytes(&mut self) {} }
+impl Endian for i8 { fn swap_bytes(&mut self) {} }
+impl Endian for [u8] { fn swap_bytes(&mut self) {} }
+impl Endian for [i8] { fn swap_bytes(&mut self) {} }
+
+// implement this interface for primitive floats, because they do not have a `swap_bytes()` in `std`
+macro_rules! implement_float_primitive_by_bits {
+ ($type: ident) => {
+ impl Endian for $type {
+ fn swap_bytes(&mut self) {
+ *self = Self::from_bits(self.to_bits().swap_bytes());
+ }
+ }
+ };
+}
+
+
+implement_float_primitive_by_bits!(f32);
+implement_float_primitive_by_bits!(f64);
+
+macro_rules! implement_slice_by_element {
+ ($type: ident) => {
+ impl Endian for [$type] {
+ fn swap_bytes(&mut self) {
+ for number in self.iter_mut() { // TODO SIMD?
+ number.swap_bytes();
+ }
+ }
+ }
+ };
+}
+
+call_single_arg_macro_for_each! {
+ implement_slice_by_element,
+ u16, u32, u64, u128,
+ i16, i32, i64, i128,
+ f64, f32
+}
+
+/// Easily write primitives and slices of primitives to
+/// binary `std::io::Write` streams and easily read from binary `std::io::Read` streams.
+///
+/// Also contains the unsafe `bytes` module for reinterpreting values as byte slices and vice versa.
+pub mod io {
+ use super::Endian;
+ use std::io::{Read, Write, Result};
+
+ /// Reinterpret values as byte slices and byte slices as values unsafely.
+ pub mod bytes {
+ use std::io::{Read, Write, Result};
+
+ /// View this slice of values as a slice of bytes.
+ #[inline]
+ pub unsafe fn slice_as_bytes<T>(value: &[T]) -> &[u8] {
+ std::slice::from_raw_parts(
+ value.as_ptr() as *const u8,
+ value.len() * std::mem::size_of::<T>()
+ )
+ }
+
+ /// View this slice of values as a mutable slice of bytes.
+ #[inline]
+ pub unsafe fn slice_as_bytes_mut<T>(value: &mut [T]) -> &mut [u8] {
+ std::slice::from_raw_parts_mut(
+ value.as_mut_ptr() as *mut u8,
+ value.len() * std::mem::size_of::<T>()
+ )
+ }
+
+ /// View this reference as a slice of bytes.
+ #[inline]
+ pub unsafe fn value_as_bytes<T: Sized>(value: &T) -> &[u8] {
+ std::slice::from_raw_parts(
+ value as *const T as *const u8,
+ std::mem::size_of::<T>()
+ )
+ }
+
+ /// View this reference as a mutable slice of bytes.
+ #[inline]
+ pub unsafe fn value_as_bytes_mut<T: Sized>(value: &mut T) ->&mut [u8] {
+ std::slice::from_raw_parts_mut(
+ value as *mut T as *mut u8,
+ std::mem::size_of::<T>()
+ )
+ }
+
+ /// View this slice as a mutable slice of bytes and write it.
+ #[inline]
+ pub unsafe fn write_slice<T>(write: &mut impl Write, value: &[T]) -> Result<()> {
+ write.write_all(slice_as_bytes(value))
+ }
+
+ /// Read a slice of bytes into the specified slice.
+ #[inline]
+ pub unsafe fn read_slice<T>(read: &mut impl Read, value: &mut [T]) -> Result<()> {
+ read.read_exact(slice_as_bytes_mut(value))
+ }
+
+ /// View this reference as a mutable slice of bytes and write it.
+ #[inline]
+ pub unsafe fn write_value<T: Sized>(write: &mut impl Write, value: &T) -> Result<()> {
+ write.write_all(value_as_bytes(value))
+ }
+
+ /// Read a slice of bytes into the specified reference.
+ #[inline]
+ pub unsafe fn read_value<T: Sized>(read: &mut impl Read, value: &mut T) -> Result<()> {
+ read.read_exact(value_as_bytes_mut(value))
+ }
+ }
+
+ /// A `std::io::Write` output stream which supports writing any primitive values as bytes.
+ /// Will encode the values to be either little endian or big endian, as desired.
+ ///
+ /// This extension trait is implemented for all `Write` types.
+ /// Add `use lebe::io::WriteEndian;` to your code
+ /// to automatically unlock this functionality for all types that implement `Write`.
+ pub trait WriteEndian<T: ?Sized> {
+
+ /// Write the byte value of the specified reference, converting it to little endianness
+ fn write_as_little_endian(&mut self, value: &T) -> Result<()>;
+
+ /// Write the byte value of the specified reference, converting it to big endianness
+ fn write_as_big_endian(&mut self, value: &T) -> Result<()>;
+
+ /// Write the byte value of the specified reference, not converting it
+ fn write_as_native_endian(&mut self, value: &T) -> Result<()> {
+ #[cfg(target_endian = "little")] { self.write_as_little_endian(value) }
+ #[cfg(target_endian = "big")] { self.write_as_big_endian(value) }
+ }
+ }
+
+ /// A `std::io::Read` input stream which supports reading any primitive values from bytes.
+ /// Will decode the values from either little endian or big endian, as desired.
+ ///
+ /// This extension trait is implemented for all `Read` types.
+ /// Add `use lebe::io::ReadEndian;` to your code
+ /// to automatically unlock this functionality for all types that implement `Read`.
+ pub trait ReadEndian<T: ?Sized> {
+
+ /// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`.
+ fn read_from_little_endian_into(&mut self, value: &mut T) -> Result<()>;
+
+ /// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`.
+ fn read_from_big_endian_into(&mut self, value: &mut T) -> Result<()>;
+
+ /// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`.
+ fn read_from_native_endian_into(&mut self, value: &mut T) -> Result<()> {
+ #[cfg(target_endian = "little")] { self.read_from_little_endian_into(value) }
+ #[cfg(target_endian = "big")] { self.read_from_big_endian_into(value) }
+ }
+
+ /// Read the byte value of the inferred type
+ #[inline]
+ fn read_from_little_endian(&mut self) -> Result<T> where T: Sized + Default {
+ let mut value = T::default();
+ self.read_from_little_endian_into(&mut value)?;
+ Ok(value)
+ }
+
+ /// Read the byte value of the inferred type
+ #[inline]
+ fn read_from_big_endian(&mut self) -> Result<T> where T: Sized + Default {
+ let mut value = T::default();
+ self.read_from_big_endian_into(&mut value)?;
+ Ok(value)
+ }
+
+ /// Read the byte value of the inferred type
+ #[inline]
+ fn read_from_native_endian(&mut self) -> Result<T> where T: Sized + Default {
+ #[cfg(target_endian = "little")] { self.read_from_little_endian() }
+ #[cfg(target_endian = "big")] { self.read_from_big_endian() }
+ }
+ }
+
+ // implement primitive for all types that are implemented by `Read`
+ impl<R: Read + ReadEndian<P>, P: Default> ReadPrimitive<R> for P {}
+
+
+ /// Offers a prettier versions of reading a primitive number.
+ ///
+ /// The default way of reading a value is:
+ /// ```rust
+ /// # use std::io::Read;
+ /// # use lebe::prelude::*;
+ /// # let mut reader : &[u8] = &[2, 1];
+ ///
+ /// let number: u16 = reader.read_from_little_endian()?;
+ /// println!("{}", number);
+ /// # Ok::<(), std::io::Error>(())
+ ///
+ /// ```
+ ///
+ /// This trait enables you to use expressions:
+ /// ```rust
+ /// # use std::io::Read;
+ /// # use lebe::prelude::*;
+ /// # let mut reader : &[u8] = &[2, 1];
+ ///
+ /// println!("{}", u16::read_from_little_endian(&mut reader)?);
+ /// # Ok::<(), std::io::Error>(())
+ /// ```
+ /// .
+ ///
+ pub trait ReadPrimitive<R: Read + ReadEndian<Self>> : Sized + Default {
+ /// Read this value from the supplied reader. Same as `ReadEndian::read_from_little_endian()`.
+ fn read_from_little_endian(read: &mut R) -> Result<Self> {
+ read.read_from_little_endian()
+ }
+
+ /// Read this value from the supplied reader. Same as `ReadEndian::read_from_big_endian()`.
+ fn read_from_big_endian(read: &mut R) -> Result<Self> {
+ read.read_from_big_endian()
+ }
+
+ /// Read this value from the supplied reader. Same as `ReadEndian::read_from_native_endian()`.
+ fn read_from_native_endian(read: &mut R) -> Result<Self> {
+ read.read_from_native_endian()
+ }
+ }
+
+ macro_rules! implement_simple_primitive_write {
+ ($type: ident) => {
+ impl<W: Write> WriteEndian<$type> for W {
+ fn write_as_little_endian(&mut self, value: &$type) -> Result<()> {
+ unsafe { bytes::write_value(self, &value.from_current_into_little_endian()) }
+ }
+
+ fn write_as_big_endian(&mut self, value: &$type) -> Result<()> {
+ unsafe { bytes::write_value(self, &value.from_current_into_big_endian()) }
+ }
+ }
+
+ impl<R: Read> ReadEndian<$type> for R {
+ #[inline]
+ fn read_from_little_endian_into(&mut self, value: &mut $type) -> Result<()> {
+ unsafe { bytes::read_value(self, value)?; }
+ value.convert_little_endian_to_current();
+ Ok(())
+ }
+
+ #[inline]
+ fn read_from_big_endian_into(&mut self, value: &mut $type) -> Result<()> {
+ unsafe { bytes::read_value(self, value)?; }
+ value.convert_big_endian_to_current();
+ Ok(())
+ }
+ }
+ };
+ }
+
+ call_single_arg_macro_for_each! {
+ implement_simple_primitive_write,
+ u8, u16, u32, u64, u128,
+ i8, i16, i32, i64, i128,
+ f32, f64
+ }
+
+
+ macro_rules! implement_slice_io {
+ ($type: ident) => {
+ impl<W: Write> WriteEndian<[$type]> for W {
+ fn write_as_little_endian(&mut self, value: &[$type]) -> Result<()> {
+ #[cfg(target_endian = "big")] {
+ for number in value { // TODO SIMD!
+ self.write_as_little_endian(number)?;
+ }
+ }
+
+ // else write whole slice
+ #[cfg(target_endian = "little")]
+ unsafe { bytes::write_slice(self, value)?; }
+
+ Ok(())
+ }
+
+ fn write_as_big_endian(&mut self, value: &[$type]) -> Result<()> {
+ #[cfg(target_endian = "little")] {
+ for number in value { // TODO SIMD!
+ self.write_as_big_endian(number)?;
+ }
+ }
+
+ // else write whole slice
+ #[cfg(target_endian = "big")]
+ unsafe { bytes::write_slice(self, value)?; }
+
+ Ok(())
+ }
+ }
+
+ impl<R: Read> ReadEndian<[$type]> for R {
+ fn read_from_little_endian_into(&mut self, value: &mut [$type]) -> Result<()> {
+ unsafe { bytes::read_slice(self, value)? };
+ value.convert_little_endian_to_current();
+ Ok(())
+ }
+
+ fn read_from_big_endian_into(&mut self, value: &mut [$type]) -> Result<()> {
+ unsafe { bytes::read_slice(self, value)? };
+ value.convert_big_endian_to_current();
+ Ok(())
+ }
+ }
+ };
+ }
+
+ call_single_arg_macro_for_each! {
+ implement_slice_io,
+ u8, u16, u32, u64, u128,
+ i8, i16, i32, i64, i128,
+ f64, f32
+ }
+
+
+
+ // TODO: SIMD
+ /*impl<R: Read> ReadEndian<[f32]> for R {
+ fn read_from_little_endian_into(&mut self, value: &mut [f32]) -> Result<()> {
+ unsafe { bytes::read_slice(self, value)? };
+ value.convert_little_endian_to_current();
+ Ok(())
+ }
+
+ fn read_from_big_endian_into(&mut self, value: &mut [f32]) -> Result<()> {
+ unsafe { bytes::read_slice(self, value)? };
+ value.convert_big_endian_to_current();
+ Ok(())
+ }
+ }
+
+ impl<W: Write> WriteEndian<[f32]> for W {
+ fn write_as_big_endian(&mut self, value: &[f32]) -> Result<()> {
+ if cfg!(target_endian = "little") {
+
+ // FIX ME this SIMD optimization makes no difference ... why? like, ZERO difference, not even worse
+// #[cfg(feature = "simd")]
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ unsafe {
+ if is_x86_feature_detected!("avx2") {
+ write_bytes_avx(self, value);
+ return Ok(());
+ }
+ }
+
+ // otherwise (no avx2 available)
+// for number in value {
+// self.write_as_little_endian(number);
+// }
+//
+// return Ok(());
+ unimplemented!();
+
+ #[target_feature(enable = "avx2")]
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ unsafe fn write_bytes_avx(write: &mut impl Write, slice: &[f32]) -> Result<()> {
+ #[cfg(target_arch = "x86")] use std::arch::x86 as mm;
+ #[cfg(target_arch = "x86_64")] use std::arch::x86_64 as mm;
+
+ let bytes: &[u8] = crate::io::bytes::slice_as_bytes(slice);
+ let mut chunks = bytes.chunks_exact(32);
+
+ let indices = mm::_mm256_set_epi8(
+ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
+ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+// 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12,
+// 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12
+ );
+
+ for chunk in &mut chunks {
+ let data = mm::_mm256_loadu_si256(chunk.as_ptr() as _);
+ let result = mm::_mm256_shuffle_epi8(data, indices);
+ let mut out = [0_u8; 32];
+ mm::_mm256_storeu_si256(out.as_mut_ptr() as _, result);
+ write.write_all(&out)?;
+ }
+
+ let remainder = chunks.remainder();
+
+ { // copy remainder into larger slice, with zeroes at the end
+ let mut last_chunk = [0_u8; 32];
+ last_chunk[0..remainder.len()].copy_from_slice(remainder);
+ let data = mm::_mm256_loadu_si256(last_chunk.as_ptr() as _);
+ let result = mm::_mm256_shuffle_epi8(data, indices);
+ mm::_mm256_storeu_si256(last_chunk.as_mut_ptr() as _, result);
+ write.write_all(&last_chunk[0..remainder.len()])?;
+ }
+
+ Ok(())
+ }
+ }
+
+ else {
+ unsafe { bytes::write_slice(self, value)?; }
+ Ok(())
+ }
+ }
+
+ fn write_as_little_endian(&mut self, value: &[f32]) -> Result<()> {
+ for number in value {
+ self.write_as_little_endian(number)?;
+ }
+
+ Ok(())
+ }
+ }*/
+}
+
diff --git a/vendor/lebe/tests/tests.rs b/vendor/lebe/tests/tests.rs
new file mode 100644
index 0000000..fb88bdd
--- /dev/null
+++ b/vendor/lebe/tests/tests.rs
@@ -0,0 +1,213 @@
+extern crate lebe;
+
+use lebe::prelude::*;
+use std::mem;
+
+use byteorder::{WriteBytesExt, LittleEndian, BigEndian, ReadBytesExt};
+
+#[test]
+fn make_le_u32_slice() {
+ // as seen on https://doc.rust-lang.org/std/primitive.u32.html#method.to_le
+ let n = 0x1Au32;
+
+ let mut n_le = [n];
+ n_le.convert_current_to_little_endian();
+
+ if cfg!(target_endian = "little") {
+ assert_eq!(n_le, [n])
+ }
+ else {
+ assert_eq!(n_le, [u32::swap_bytes(n)])
+ }
+
+// assert_eq!(n_le, byteorder::LittleEndian::from_)
+}
+
+#[test]
+fn make_be_u32_slice() {
+ // as seen on https://doc.rust-lang.org/std/primitive.u32.html#method.to_be
+ let n = 0x1Au32;
+
+ let mut n_be = [n];
+ n_be.convert_current_to_big_endian();
+
+ if cfg!(target_endian = "big") {
+ assert_eq!(n_be, [n])
+ }
+ else {
+ assert_eq!(n_be, [n.swap_bytes()])
+ }
+}
+
+#[test]
+fn make_le_u16_slice() {
+ // as seen on https://doc.rust-lang.org/std/primitive.u16.html#method.to_le
+ let n = 0x1Au16;
+
+ let mut n_le = [n];
+ n_le.convert_current_to_little_endian();
+
+ if cfg!(target_endian = "little") {
+ assert_eq!(n_le, [n])
+ }
+ else {
+ assert_eq!(n_le, [n.swap_bytes()])
+ }
+}
+
+#[test]
+fn make_le_i64_slice() {
+ // as seen on https://doc.rust-lang.org/std/primitive.u64.html#method.to_be
+ let n1 = 0x14F3EEBCCD93895A_i64;
+ let n2 = 0x114F3EF99B81CC5A_i64;
+
+ let mut n_be = [n1, n2];
+ n_be.convert_current_to_big_endian();
+
+ if cfg!(target_endian = "big") {
+ assert_eq!(n_be, [n1, n2])
+ }
+ else {
+ assert_eq!(n_be, [n1.swap_bytes(), n2.swap_bytes()])
+ }
+}
+
+#[test]
+fn make_be_f64() {
+ let i = 0x14F3EEBCCD93895A_u64;
+
+ let mut f: f64 = unsafe { mem::transmute(i) };
+ f.convert_current_to_big_endian();
+
+ assert_eq!(f, unsafe { mem::transmute(i.to_be()) })
+}
+
+#[test]
+fn into_be_f64() {
+ let i = 0x14F3EEBCCD93895A_u64;
+
+ let f: f64 = unsafe { mem::transmute(i) };
+ let f = f.from_current_into_big_endian();
+
+ assert_eq!(f, unsafe { mem::transmute(i.to_be()) })
+}
+
+#[test]
+fn into_be_i16() {
+ let i = 0x195A_i16;
+ let be = i.from_current_into_big_endian();
+
+ if cfg!(target_endian = "big") {
+ assert_eq!(be, i)
+ }
+ else {
+ assert_eq!(be, i.swap_bytes())
+ }
+}
+
+#[test]
+fn into_be_u32() {
+ let i = 0x1220943_u32;
+ let be = i.from_current_into_big_endian();
+
+ if cfg!(target_endian = "big") {
+ assert_eq!(be, i)
+ }
+ else {
+ assert_eq!(be, i.swap_bytes())
+ }
+}
+
+#[test]
+fn cmp_read_be_u16() {
+ let read: &[u8] = &[0x33, 0xbb];
+ let a = u16::read_from_big_endian(&mut read.clone()).unwrap();
+ let b: u16 = read.clone().read_from_big_endian().unwrap();
+ let c = read.clone().read_u16::<BigEndian>().unwrap();
+
+ assert_eq!(a, b);
+ assert_eq!(a, c);
+}
+
+#[test]
+fn cmp_read_le_u16() {
+ let read: &[u8] = &[0x33, 0xbb];
+ let a = u16::read_from_little_endian(&mut read.clone()).unwrap();
+ let b: u16 = read.clone().read_from_little_endian().unwrap();
+ let c = read.clone().read_u16::<LittleEndian>().unwrap();
+
+ assert_eq!(a, b);
+ assert_eq!(a, c);
+}
+
+#[test]
+fn cmp_read_le_f32() {
+ let read: &[u8] = &[0x33, 0xBB, 0x44, 0xCC];
+ let a = f32::read_from_little_endian(&mut read.clone()).unwrap();
+ let b: f32 = read.clone().read_from_little_endian().unwrap();
+ let c = read.clone().read_f32::<LittleEndian>().unwrap();
+
+ assert_eq!(a, b);
+ assert_eq!(a, c);
+}
+
+#[test]
+fn cmp_read_be_slice() {
+ let mut write_expected = Vec::new();
+ let mut write_actual = Vec::new();
+
+ let data: Vec<f32> = (0..31*31).map(|i| i as f32).collect();
+
+ for number in &data {
+ write_expected.write_f32::<BigEndian>(*number).unwrap();
+ }
+
+ write_actual.write_as_big_endian(data.as_slice()).unwrap();
+ assert_eq!(write_actual, write_expected);
+}
+
+#[test]
+fn cmp_write_le_slice() {
+ let mut write_expected = Vec::new();
+ let mut write_actual = Vec::new();
+
+ let data: Vec<f32> = (0..31*31).map(|i| i as f32).collect();
+
+ for number in &data {
+ write_expected.write_f32::<LittleEndian>(*number).unwrap();
+ }
+
+ write_actual.write_as_little_endian(data.as_slice()).unwrap();
+
+ assert_eq!(write_actual, write_expected);
+}
+
+#[test]
+fn cmp_write_le_u32() {
+ let mut write_expected = Vec::new();
+ let mut write_actual = Vec::new();
+
+ let data = 0x23573688_u32;
+ write_expected.write_u32::<LittleEndian>(data).unwrap();
+ write_actual.write_as_little_endian(&data).unwrap();
+
+ assert_eq!(write_actual, write_expected);
+}
+
+
+
+#[test]
+fn cmp_write_le_slice_u64() {
+ let mut write_expected = Vec::new();
+ let mut write_actual = Vec::new();
+
+ let data: Vec<u64> = (1000..1000+310*31).map(|i| i as u64).collect();
+
+ for number in &data {
+ write_expected.write_u64::<LittleEndian>(*number).unwrap();
+ }
+
+ write_actual.write_as_little_endian(data.as_slice()).unwrap();
+
+ assert_eq!(write_actual, write_expected);
+} \ No newline at end of file