aboutsummaryrefslogtreecommitdiff
path: root/vendor/memchr/src/arch/all/packedpair/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/memchr/src/arch/all/packedpair/mod.rs')
-rw-r--r--vendor/memchr/src/arch/all/packedpair/mod.rs359
1 files changed, 0 insertions, 359 deletions
diff --git a/vendor/memchr/src/arch/all/packedpair/mod.rs b/vendor/memchr/src/arch/all/packedpair/mod.rs
deleted file mode 100644
index 148a985..0000000
--- a/vendor/memchr/src/arch/all/packedpair/mod.rs
+++ /dev/null
@@ -1,359 +0,0 @@
-/*!
-Provides an architecture independent implementation of the "packed pair"
-algorithm.
-
-The "packed pair" algorithm is based on the [generic SIMD] algorithm. The main
-difference is that it (by default) uses a background distribution of byte
-frequencies to heuristically select the pair of bytes to search for. Note that
-this module provides an architecture independent version that doesn't do as
-good of a job keeping the search for candidates inside a SIMD hot path. It
-however can be good enough in many circumstances.
-
-[generic SIMD]: http://0x80.pl/articles/simd-strfind.html#first-and-last
-*/
-
-use crate::memchr;
-
-mod default_rank;
-
-/// An architecture independent "packed pair" finder.
-///
-/// This finder picks two bytes that it believes have high predictive power for
-/// indicating an overall match of a needle. At search time, it reports offsets
-/// where the needle could match based on whether the pair of bytes it chose
-/// match.
-///
-/// This is architecture independent because it utilizes `memchr` to find the
-/// occurrence of one of the bytes in the pair, and then checks whether the
-/// second byte matches. If it does, in the case of [`Finder::find_prefilter`],
-/// the location at which the needle could match is returned.
-///
-/// It is generally preferred to use architecture specific routines for a
-/// "packed pair" prefilter, but this can be a useful fallback when the
-/// architecture independent routines are unavailable.
-#[derive(Clone, Copy, Debug)]
-pub struct Finder {
- pair: Pair,
- byte1: u8,
- byte2: u8,
-}
-
-impl Finder {
- /// Create a new prefilter that reports possible locations where the given
- /// needle matches.
- #[inline]
- pub fn new(needle: &[u8]) -> Option<Finder> {
- Finder::with_pair(needle, Pair::new(needle)?)
- }
-
- /// Create a new prefilter using the pair given.
- ///
- /// If the prefilter could not be constructed, then `None` is returned.
- ///
- /// This constructor permits callers to control precisely which pair of
- /// bytes is used as a predicate.
- #[inline]
- pub fn with_pair(needle: &[u8], pair: Pair) -> Option<Finder> {
- let byte1 = needle[usize::from(pair.index1())];
- let byte2 = needle[usize::from(pair.index2())];
- // Currently this can never fail so we could just return a Finder,
- // but it's conceivable this could change.
- Some(Finder { pair, byte1, byte2 })
- }
-
- /// Run this finder on the given haystack as a prefilter.
- ///
- /// If a candidate match is found, then an offset where the needle *could*
- /// begin in the haystack is returned.
- #[inline]
- pub fn find_prefilter(&self, haystack: &[u8]) -> Option<usize> {
- let mut i = 0;
- let index1 = usize::from(self.pair.index1());
- let index2 = usize::from(self.pair.index2());
- loop {
- // Use a fast vectorized implementation to skip to the next
- // occurrence of the rarest byte (heuristically chosen) in the
- // needle.
- i += memchr(self.byte1, &haystack[i..])?;
- let found = i;
- i += 1;
-
- // If we can't align our first byte match with the haystack, then a
- // match is impossible.
- let aligned1 = match found.checked_sub(index1) {
- None => continue,
- Some(aligned1) => aligned1,
- };
-
- // Now align the second byte match with the haystack. A mismatch
- // means that a match is impossible.
- let aligned2 = match aligned1.checked_add(index2) {
- None => continue,
- Some(aligned_index2) => aligned_index2,
- };
- if haystack.get(aligned2).map_or(true, |&b| b != self.byte2) {
- continue;
- }
-
- // We've done what we can. There might be a match here.
- return Some(aligned1);
- }
- }
-
- /// Returns the pair of offsets (into the needle) used to check as a
- /// predicate before confirming whether a needle exists at a particular
- /// position.
- #[inline]
- pub fn pair(&self) -> &Pair {
- &self.pair
- }
-}
-
-/// A pair of byte offsets into a needle to use as a predicate.
-///
-/// This pair is used as a predicate to quickly filter out positions in a
-/// haystack in which a needle cannot match. In some cases, this pair can even
-/// be used in vector algorithms such that the vector algorithm only switches
-/// over to scalar code once this pair has been found.
-///
-/// A pair of offsets can be used in both substring search implementations and
-/// in prefilters. The former will report matches of a needle in a haystack
-/// where as the latter will only report possible matches of a needle.
-///
-/// The offsets are limited each to a maximum of 255 to keep memory usage low.
-/// Moreover, it's rarely advantageous to create a predicate using offsets
-/// greater than 255 anyway.
-///
-/// The only guarantee enforced on the pair of offsets is that they are not
-/// equivalent. It is not necessarily the case that `index1 < index2` for
-/// example. By convention, `index1` corresponds to the byte in the needle
-/// that is believed to be most the predictive. Note also that because of the
-/// requirement that the indices be both valid for the needle used to build
-/// the pair and not equal, it follows that a pair can only be constructed for
-/// needles with length at least 2.
-#[derive(Clone, Copy, Debug)]
-pub struct Pair {
- index1: u8,
- index2: u8,
-}
-
-impl Pair {
- /// Create a new pair of offsets from the given needle.
- ///
- /// If a pair could not be created (for example, if the needle is too
- /// short), then `None` is returned.
- ///
- /// This chooses the pair in the needle that is believed to be as
- /// predictive of an overall match of the needle as possible.
- #[inline]
- pub fn new(needle: &[u8]) -> Option<Pair> {
- Pair::with_ranker(needle, DefaultFrequencyRank)
- }
-
- /// Create a new pair of offsets from the given needle and ranker.
- ///
- /// This permits the caller to choose a background frequency distribution
- /// with which bytes are selected. The idea is to select a pair of bytes
- /// that is believed to strongly predict a match in the haystack. This
- /// usually means selecting bytes that occur rarely in a haystack.
- ///
- /// If a pair could not be created (for example, if the needle is too
- /// short), then `None` is returned.
- #[inline]
- pub fn with_ranker<R: HeuristicFrequencyRank>(
- needle: &[u8],
- ranker: R,
- ) -> Option<Pair> {
- if needle.len() <= 1 {
- return None;
- }
- // Find the rarest two bytes. We make them distinct indices by
- // construction. (The actual byte value may be the same in degenerate
- // cases, but that's OK.)
- let (mut rare1, mut index1) = (needle[0], 0);
- let (mut rare2, mut index2) = (needle[1], 1);
- if ranker.rank(rare2) < ranker.rank(rare1) {
- core::mem::swap(&mut rare1, &mut rare2);
- core::mem::swap(&mut index1, &mut index2);
- }
- let max = usize::from(core::u8::MAX);
- for (i, &b) in needle.iter().enumerate().take(max).skip(2) {
- if ranker.rank(b) < ranker.rank(rare1) {
- rare2 = rare1;
- index2 = index1;
- rare1 = b;
- index1 = u8::try_from(i).unwrap();
- } else if b != rare1 && ranker.rank(b) < ranker.rank(rare2) {
- rare2 = b;
- index2 = u8::try_from(i).unwrap();
- }
- }
- // While not strictly required for how a Pair is normally used, we
- // really don't want these to be equivalent. If they were, it would
- // reduce the effectiveness of candidate searching using these rare
- // bytes by increasing the rate of false positives.
- assert_ne!(index1, index2);
- Some(Pair { index1, index2 })
- }
-
- /// Create a new pair using the offsets given for the needle given.
- ///
- /// This bypasses any sort of heuristic process for choosing the offsets
- /// and permits the caller to choose the offsets themselves.
- ///
- /// Indices are limited to valid `u8` values so that a `Pair` uses less
- /// memory. It is not possible to create a `Pair` with offsets bigger than
- /// `u8::MAX`. It's likely that such a thing is not needed, but if it is,
- /// it's suggested to build your own bespoke algorithm because you're
- /// likely working on a very niche case. (File an issue if this suggestion
- /// does not make sense to you.)
- ///
- /// If a pair could not be created (for example, if the needle is too
- /// short), then `None` is returned.
- #[inline]
- pub fn with_indices(
- needle: &[u8],
- index1: u8,
- index2: u8,
- ) -> Option<Pair> {
- // While not strictly required for how a Pair is normally used, we
- // really don't want these to be equivalent. If they were, it would
- // reduce the effectiveness of candidate searching using these rare
- // bytes by increasing the rate of false positives.
- if index1 == index2 {
- return None;
- }
- // Similarly, invalid indices means the Pair is invalid too.
- if usize::from(index1) >= needle.len() {
- return None;
- }
- if usize::from(index2) >= needle.len() {
- return None;
- }
- Some(Pair { index1, index2 })
- }
-
- /// Returns the first offset of the pair.
- #[inline]
- pub fn index1(&self) -> u8 {
- self.index1
- }
-
- /// Returns the second offset of the pair.
- #[inline]
- pub fn index2(&self) -> u8 {
- self.index2
- }
-}
-
-/// This trait allows the user to customize the heuristic used to determine the
-/// relative frequency of a given byte in the dataset being searched.
-///
-/// The use of this trait can have a dramatic impact on performance depending
-/// on the type of data being searched. The details of why are explained in the
-/// docs of [`crate::memmem::Prefilter`]. To summarize, the core algorithm uses
-/// a prefilter to quickly identify candidate matches that are later verified
-/// more slowly. This prefilter is implemented in terms of trying to find
-/// `rare` bytes at specific offsets that will occur less frequently in the
-/// dataset. While the concept of a `rare` byte is similar for most datasets,
-/// there are some specific datasets (like binary executables) that have
-/// dramatically different byte distributions. For these datasets customizing
-/// the byte frequency heuristic can have a massive impact on performance, and
-/// might even need to be done at runtime.
-///
-/// The default implementation of `HeuristicFrequencyRank` reads from the
-/// static frequency table defined in `src/memmem/byte_frequencies.rs`. This
-/// is optimal for most inputs, so if you are unsure of the impact of using a
-/// custom `HeuristicFrequencyRank` you should probably just use the default.
-///
-/// # Example
-///
-/// ```
-/// use memchr::{
-/// arch::all::packedpair::HeuristicFrequencyRank,
-/// memmem::FinderBuilder,
-/// };
-///
-/// /// A byte-frequency table that is good for scanning binary executables.
-/// struct Binary;
-///
-/// impl HeuristicFrequencyRank for Binary {
-/// fn rank(&self, byte: u8) -> u8 {
-/// const TABLE: [u8; 256] = [
-/// 255, 128, 61, 43, 50, 41, 27, 28, 57, 15, 21, 13, 24, 17, 17,
-/// 89, 58, 16, 11, 7, 14, 23, 7, 6, 24, 9, 6, 5, 9, 4, 7, 16,
-/// 68, 11, 9, 6, 88, 7, 4, 4, 23, 9, 4, 8, 8, 5, 10, 4, 30, 11,
-/// 9, 24, 11, 5, 5, 5, 19, 11, 6, 17, 9, 9, 6, 8,
-/// 48, 58, 11, 14, 53, 40, 9, 9, 254, 35, 3, 6, 52, 23, 6, 6, 27,
-/// 4, 7, 11, 14, 13, 10, 11, 11, 5, 2, 10, 16, 12, 6, 19,
-/// 19, 20, 5, 14, 16, 31, 19, 7, 14, 20, 4, 4, 19, 8, 18, 20, 24,
-/// 1, 25, 19, 58, 29, 10, 5, 15, 20, 2, 2, 9, 4, 3, 5,
-/// 51, 11, 4, 53, 23, 39, 6, 4, 13, 81, 4, 186, 5, 67, 3, 2, 15,
-/// 0, 0, 1, 3, 2, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0,
-/// 12, 2, 1, 1, 3, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 2, 9, 1, 1, 0,
-/// 2, 2, 4, 4, 11, 6, 7, 3, 6, 9, 4, 5,
-/// 46, 18, 8, 18, 17, 3, 8, 20, 16, 10, 3, 7, 175, 4, 6, 7, 13,
-/// 3, 7, 3, 3, 1, 3, 3, 10, 3, 1, 5, 2, 0, 1, 2,
-/// 16, 3, 5, 1, 6, 1, 1, 2, 58, 20, 3, 14, 12, 2, 1, 3, 16, 3, 5,
-/// 8, 3, 1, 8, 6, 17, 6, 5, 3, 8, 6, 13, 175,
-/// ];
-/// TABLE[byte as usize]
-/// }
-/// }
-/// // Create a new finder with the custom heuristic.
-/// let finder = FinderBuilder::new()
-/// .build_forward_with_ranker(Binary, b"\x00\x00\xdd\xdd");
-/// // Find needle with custom heuristic.
-/// assert!(finder.find(b"\x00\x00\x00\xdd\xdd").is_some());
-/// ```
-pub trait HeuristicFrequencyRank {
- /// Return the heuristic frequency rank of the given byte. A lower rank
- /// means the byte is believed to occur less frequently in the haystack.
- ///
- /// Some uses of this heuristic may treat arbitrary absolute rank values as
- /// significant. For example, an implementation detail in this crate may
- /// determine that heuristic prefilters are inappropriate if every byte in
- /// the needle has a "high" rank.
- fn rank(&self, byte: u8) -> u8;
-}
-
-/// The default byte frequency heuristic that is good for most haystacks.
-pub(crate) struct DefaultFrequencyRank;
-
-impl HeuristicFrequencyRank for DefaultFrequencyRank {
- fn rank(&self, byte: u8) -> u8 {
- self::default_rank::RANK[usize::from(byte)]
- }
-}
-
-/// This permits passing any implementation of `HeuristicFrequencyRank` as a
-/// borrowed version of itself.
-impl<'a, R> HeuristicFrequencyRank for &'a R
-where
- R: HeuristicFrequencyRank,
-{
- fn rank(&self, byte: u8) -> u8 {
- (**self).rank(byte)
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn forward_packedpair() {
- fn find(
- haystack: &[u8],
- needle: &[u8],
- _index1: u8,
- _index2: u8,
- ) -> Option<Option<usize>> {
- // We ignore the index positions requested since it winds up making
- // this test too slow overall.
- let f = Finder::new(needle)?;
- Some(f.find_prefilter(haystack))
- }
- crate::tests::packedpair::Runner::new().fwd(find).run()
- }
-}