diff options
Diffstat (limited to 'vendor/num-integer/benches')
-rw-r--r-- | vendor/num-integer/benches/average.rs | 414 | ||||
-rw-r--r-- | vendor/num-integer/benches/gcd.rs | 176 | ||||
-rw-r--r-- | vendor/num-integer/benches/roots.rs | 170 |
3 files changed, 760 insertions, 0 deletions
diff --git a/vendor/num-integer/benches/average.rs b/vendor/num-integer/benches/average.rs new file mode 100644 index 0000000..649078c --- /dev/null +++ b/vendor/num-integer/benches/average.rs @@ -0,0 +1,414 @@ +//! Benchmark sqrt and cbrt + +#![feature(test)] + +extern crate num_integer; +extern crate num_traits; +extern crate test; + +use num_integer::Integer; +use num_traits::{AsPrimitive, PrimInt, WrappingAdd, WrappingMul}; +use std::cmp::{max, min}; +use std::fmt::Debug; +use test::{black_box, Bencher}; + +// --- Utilities for RNG ---------------------------------------------------- + +trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {} + +impl<T> BenchInteger for T where T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {} + +// Simple PRNG so we don't have to worry about rand compatibility +fn lcg<T>(x: T) -> T +where + u32: AsPrimitive<T>, + T: BenchInteger, +{ + // LCG parameters from Numerical Recipes + // (but we're applying it to arbitrary sizes) + const LCG_A: u32 = 1664525; + const LCG_C: u32 = 1013904223; + x.wrapping_mul(&LCG_A.as_()).wrapping_add(&LCG_C.as_()) +} + +// --- Alt. Implementations ------------------------------------------------- + +trait NaiveAverage { + fn naive_average_ceil(&self, other: &Self) -> Self; + fn naive_average_floor(&self, other: &Self) -> Self; +} + +trait UncheckedAverage { + fn unchecked_average_ceil(&self, other: &Self) -> Self; + fn unchecked_average_floor(&self, other: &Self) -> Self; +} + +trait ModuloAverage { + fn modulo_average_ceil(&self, other: &Self) -> Self; + fn modulo_average_floor(&self, other: &Self) -> Self; +} + +macro_rules! naive_average { + ($T:ident) => { + impl super::NaiveAverage for $T { + fn naive_average_floor(&self, other: &$T) -> $T { + match self.checked_add(*other) { + Some(z) => Integer::div_floor(&z, &2), + None => { + if self > other { + let diff = self - other; + other + Integer::div_floor(&diff, &2) + } else { + let diff = other - self; + self + Integer::div_floor(&diff, &2) + } + } + } + } + fn naive_average_ceil(&self, other: &$T) -> $T { + match self.checked_add(*other) { + Some(z) => Integer::div_ceil(&z, &2), + None => { + if self > other { + let diff = self - other; + self - Integer::div_floor(&diff, &2) + } else { + let diff = other - self; + other - Integer::div_floor(&diff, &2) + } + } + } + } + } + }; +} + +macro_rules! unchecked_average { + ($T:ident) => { + impl super::UncheckedAverage for $T { + fn unchecked_average_floor(&self, other: &$T) -> $T { + self.wrapping_add(*other) / 2 + } + fn unchecked_average_ceil(&self, other: &$T) -> $T { + (self.wrapping_add(*other) / 2).wrapping_add(1) + } + } + }; +} + +macro_rules! modulo_average { + ($T:ident) => { + impl super::ModuloAverage for $T { + fn modulo_average_ceil(&self, other: &$T) -> $T { + let (q1, r1) = self.div_mod_floor(&2); + let (q2, r2) = other.div_mod_floor(&2); + q1 + q2 + (r1 | r2) + } + fn modulo_average_floor(&self, other: &$T) -> $T { + let (q1, r1) = self.div_mod_floor(&2); + let (q2, r2) = other.div_mod_floor(&2); + q1 + q2 + (r1 * r2) + } + } + }; +} + +// --- Bench functions ------------------------------------------------------ + +fn bench_unchecked<T, F>(b: &mut Bencher, v: &[(T, T)], f: F) +where + T: Integer + Debug + Copy, + F: Fn(&T, &T) -> T, +{ + b.iter(|| { + for (x, y) in v { + black_box(f(x, y)); + } + }); +} + +fn bench_ceil<T, F>(b: &mut Bencher, v: &[(T, T)], f: F) +where + T: Integer + Debug + Copy, + F: Fn(&T, &T) -> T, +{ + for &(i, j) in v { + let rt = f(&i, &j); + let (a, b) = (min(i, j), max(i, j)); + // if both number are the same sign, check rt is in the middle + if (a < T::zero()) == (b < T::zero()) { + if (b - a).is_even() { + assert_eq!(rt - a, b - rt); + } else { + assert_eq!(rt - a, b - rt + T::one()); + } + // if both number have a different sign, + } else { + if (a + b).is_even() { + assert_eq!(rt, (a + b) / (T::one() + T::one())) + } else { + assert_eq!(rt, (a + b + T::one()) / (T::one() + T::one())) + } + } + } + bench_unchecked(b, v, f); +} + +fn bench_floor<T, F>(b: &mut Bencher, v: &[(T, T)], f: F) +where + T: Integer + Debug + Copy, + F: Fn(&T, &T) -> T, +{ + for &(i, j) in v { + let rt = f(&i, &j); + let (a, b) = (min(i, j), max(i, j)); + // if both number are the same sign, check rt is in the middle + if (a < T::zero()) == (b < T::zero()) { + if (b - a).is_even() { + assert_eq!(rt - a, b - rt); + } else { + assert_eq!(rt - a + T::one(), b - rt); + } + // if both number have a different sign, + } else { + if (a + b).is_even() { + assert_eq!(rt, (a + b) / (T::one() + T::one())) + } else { + assert_eq!(rt, (a + b - T::one()) / (T::one() + T::one())) + } + } + } + bench_unchecked(b, v, f); +} + +// --- Bench implementation ------------------------------------------------- + +macro_rules! bench_average { + ($($T:ident),*) => {$( + mod $T { + use test::Bencher; + use num_integer::{Average, Integer}; + use super::{UncheckedAverage, NaiveAverage, ModuloAverage}; + use super::{bench_ceil, bench_floor, bench_unchecked}; + + naive_average!($T); + unchecked_average!($T); + modulo_average!($T); + + const SIZE: $T = 30; + + fn overflowing() -> Vec<($T, $T)> { + (($T::max_value()-SIZE)..$T::max_value()) + .flat_map(|x| -> Vec<_> { + (($T::max_value()-100)..($T::max_value()-100+SIZE)) + .map(|y| (x, y)) + .collect() + }) + .collect() + } + + fn small() -> Vec<($T, $T)> { + (0..SIZE) + .flat_map(|x| -> Vec<_> {(0..SIZE).map(|y| (x, y)).collect()}) + .collect() + } + + fn rand() -> Vec<($T, $T)> { + small() + .into_iter() + .map(|(x, y)| (super::lcg(x), super::lcg(y))) + .collect() + } + + mod ceil { + + use super::*; + + mod small { + + use super::*; + + #[bench] + fn optimized(b: &mut Bencher) { + let v = small(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y)); + } + + #[bench] + fn naive(b: &mut Bencher) { + let v = small(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y)); + } + + #[bench] + fn unchecked(b: &mut Bencher) { + let v = small(); + bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y)); + } + + #[bench] + fn modulo(b: &mut Bencher) { + let v = small(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y)); + } + } + + mod overflowing { + + use super::*; + + #[bench] + fn optimized(b: &mut Bencher) { + let v = overflowing(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y)); + } + + #[bench] + fn naive(b: &mut Bencher) { + let v = overflowing(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y)); + } + + #[bench] + fn unchecked(b: &mut Bencher) { + let v = overflowing(); + bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y)); + } + + #[bench] + fn modulo(b: &mut Bencher) { + let v = overflowing(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y)); + } + } + + mod rand { + + use super::*; + + #[bench] + fn optimized(b: &mut Bencher) { + let v = rand(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y)); + } + + #[bench] + fn naive(b: &mut Bencher) { + let v = rand(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y)); + } + + #[bench] + fn unchecked(b: &mut Bencher) { + let v = rand(); + bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y)); + } + + #[bench] + fn modulo(b: &mut Bencher) { + let v = rand(); + bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y)); + } + } + + } + + mod floor { + + use super::*; + + mod small { + + use super::*; + + #[bench] + fn optimized(b: &mut Bencher) { + let v = small(); + bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y)); + } + + #[bench] + fn naive(b: &mut Bencher) { + let v = small(); + bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y)); + } + + #[bench] + fn unchecked(b: &mut Bencher) { + let v = small(); + bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y)); + } + + #[bench] + fn modulo(b: &mut Bencher) { + let v = small(); + bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y)); + } + } + + mod overflowing { + + use super::*; + + #[bench] + fn optimized(b: &mut Bencher) { + let v = overflowing(); + bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y)); + } + + #[bench] + fn naive(b: &mut Bencher) { + let v = overflowing(); + bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y)); + } + + #[bench] + fn unchecked(b: &mut Bencher) { + let v = overflowing(); + bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y)); + } + + #[bench] + fn modulo(b: &mut Bencher) { + let v = overflowing(); + bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y)); + } + } + + mod rand { + + use super::*; + + #[bench] + fn optimized(b: &mut Bencher) { + let v = rand(); + bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y)); + } + + #[bench] + fn naive(b: &mut Bencher) { + let v = rand(); + bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y)); + } + + #[bench] + fn unchecked(b: &mut Bencher) { + let v = rand(); + bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y)); + } + + #[bench] + fn modulo(b: &mut Bencher) { + let v = rand(); + bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y)); + } + } + + } + + } + )*} +} + +bench_average!(i8, i16, i32, i64, i128, isize); +bench_average!(u8, u16, u32, u64, u128, usize); diff --git a/vendor/num-integer/benches/gcd.rs b/vendor/num-integer/benches/gcd.rs new file mode 100644 index 0000000..082d5ee --- /dev/null +++ b/vendor/num-integer/benches/gcd.rs @@ -0,0 +1,176 @@ +//! Benchmark comparing the current GCD implemtation against an older one. + +#![feature(test)] + +extern crate num_integer; +extern crate num_traits; +extern crate test; + +use num_integer::Integer; +use num_traits::{AsPrimitive, Bounded, Signed}; +use test::{black_box, Bencher}; + +trait GcdOld: Integer { + fn gcd_old(&self, other: &Self) -> Self; +} + +macro_rules! impl_gcd_old_for_isize { + ($T:ty) => { + impl GcdOld for $T { + /// Calculates the Greatest Common Divisor (GCD) of the number and + /// `other`. The result is always positive. + #[inline] + fn gcd_old(&self, other: &Self) -> Self { + // Use Stein's algorithm + let mut m = *self; + let mut n = *other; + if m == 0 || n == 0 { + return (m | n).abs(); + } + + // find common factors of 2 + let shift = (m | n).trailing_zeros(); + + // The algorithm needs positive numbers, but the minimum value + // can't be represented as a positive one. + // It's also a power of two, so the gcd can be + // calculated by bitshifting in that case + + // Assuming two's complement, the number created by the shift + // is positive for all numbers except gcd = abs(min value) + // The call to .abs() causes a panic in debug mode + if m == Self::min_value() || n == Self::min_value() { + return (1 << shift).abs(); + } + + // guaranteed to be positive now, rest like unsigned algorithm + m = m.abs(); + n = n.abs(); + + // divide n and m by 2 until odd + // m inside loop + n >>= n.trailing_zeros(); + + while m != 0 { + m >>= m.trailing_zeros(); + if n > m { + std::mem::swap(&mut n, &mut m) + } + m -= n; + } + + n << shift + } + } + }; +} + +impl_gcd_old_for_isize!(i8); +impl_gcd_old_for_isize!(i16); +impl_gcd_old_for_isize!(i32); +impl_gcd_old_for_isize!(i64); +impl_gcd_old_for_isize!(isize); +impl_gcd_old_for_isize!(i128); + +macro_rules! impl_gcd_old_for_usize { + ($T:ty) => { + impl GcdOld for $T { + /// Calculates the Greatest Common Divisor (GCD) of the number and + /// `other`. The result is always positive. + #[inline] + fn gcd_old(&self, other: &Self) -> Self { + // Use Stein's algorithm + let mut m = *self; + let mut n = *other; + if m == 0 || n == 0 { + return m | n; + } + + // find common factors of 2 + let shift = (m | n).trailing_zeros(); + + // divide n and m by 2 until odd + // m inside loop + n >>= n.trailing_zeros(); + + while m != 0 { + m >>= m.trailing_zeros(); + if n > m { + std::mem::swap(&mut n, &mut m) + } + m -= n; + } + + n << shift + } + } + }; +} + +impl_gcd_old_for_usize!(u8); +impl_gcd_old_for_usize!(u16); +impl_gcd_old_for_usize!(u32); +impl_gcd_old_for_usize!(u64); +impl_gcd_old_for_usize!(usize); +impl_gcd_old_for_usize!(u128); + +/// Return an iterator that yields all Fibonacci numbers fitting into a u128. +fn fibonacci() -> impl Iterator<Item = u128> { + (0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| { + let tmp = *a; + *a = *b; + *b += tmp; + Some(*b) + }) +} + +fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T) +where + T: AsPrimitive<u128>, + u128: AsPrimitive<T>, +{ + let max_value: u128 = T::max_value().as_(); + let pairs: Vec<(T, T)> = fibonacci() + .collect::<Vec<_>>() + .windows(2) + .filter(|&pair| pair[0] <= max_value && pair[1] <= max_value) + .map(|pair| (pair[0].as_(), pair[1].as_())) + .collect(); + b.iter(|| { + for &(ref m, ref n) in &pairs { + black_box(gcd(m, n)); + } + }); +} + +macro_rules! bench_gcd { + ($T:ident) => { + mod $T { + use crate::{run_bench, GcdOld}; + use num_integer::Integer; + use test::Bencher; + + #[bench] + fn bench_gcd(b: &mut Bencher) { + run_bench(b, $T::gcd); + } + + #[bench] + fn bench_gcd_old(b: &mut Bencher) { + run_bench(b, $T::gcd_old); + } + } + }; +} + +bench_gcd!(u8); +bench_gcd!(u16); +bench_gcd!(u32); +bench_gcd!(u64); +bench_gcd!(u128); + +bench_gcd!(i8); +bench_gcd!(i16); +bench_gcd!(i32); +bench_gcd!(i64); +bench_gcd!(i128); diff --git a/vendor/num-integer/benches/roots.rs b/vendor/num-integer/benches/roots.rs new file mode 100644 index 0000000..7f67278 --- /dev/null +++ b/vendor/num-integer/benches/roots.rs @@ -0,0 +1,170 @@ +//! Benchmark sqrt and cbrt + +#![feature(test)] + +extern crate num_integer; +extern crate num_traits; +extern crate test; + +use num_integer::Integer; +use num_traits::checked_pow; +use num_traits::{AsPrimitive, PrimInt, WrappingAdd, WrappingMul}; +use test::{black_box, Bencher}; + +trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {} + +impl<T> BenchInteger for T where T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {} + +fn bench<T, F>(b: &mut Bencher, v: &[T], f: F, n: u32) +where + T: BenchInteger, + F: Fn(&T) -> T, +{ + // Pre-validate the results... + for i in v { + let rt = f(i); + if *i >= T::zero() { + let rt1 = rt + T::one(); + assert!(rt.pow(n) <= *i); + if let Some(x) = checked_pow(rt1, n as usize) { + assert!(*i < x); + } + } else { + let rt1 = rt - T::one(); + assert!(rt < T::zero()); + assert!(*i <= rt.pow(n)); + if let Some(x) = checked_pow(rt1, n as usize) { + assert!(x < *i); + } + }; + } + + // Now just run as fast as we can! + b.iter(|| { + for i in v { + black_box(f(i)); + } + }); +} + +// Simple PRNG so we don't have to worry about rand compatibility +fn lcg<T>(x: T) -> T +where + u32: AsPrimitive<T>, + T: BenchInteger, +{ + // LCG parameters from Numerical Recipes + // (but we're applying it to arbitrary sizes) + const LCG_A: u32 = 1664525; + const LCG_C: u32 = 1013904223; + x.wrapping_mul(&LCG_A.as_()).wrapping_add(&LCG_C.as_()) +} + +fn bench_rand<T, F>(b: &mut Bencher, f: F, n: u32) +where + u32: AsPrimitive<T>, + T: BenchInteger, + F: Fn(&T) -> T, +{ + let mut x: T = 3u32.as_(); + let v: Vec<T> = (0..1000) + .map(|_| { + x = lcg(x); + x + }) + .collect(); + bench(b, &v, f, n); +} + +fn bench_rand_pos<T, F>(b: &mut Bencher, f: F, n: u32) +where + u32: AsPrimitive<T>, + T: BenchInteger, + F: Fn(&T) -> T, +{ + let mut x: T = 3u32.as_(); + let v: Vec<T> = (0..1000) + .map(|_| { + x = lcg(x); + while x < T::zero() { + x = lcg(x); + } + x + }) + .collect(); + bench(b, &v, f, n); +} + +fn bench_small<T, F>(b: &mut Bencher, f: F, n: u32) +where + u32: AsPrimitive<T>, + T: BenchInteger, + F: Fn(&T) -> T, +{ + let v: Vec<T> = (0..1000).map(|i| i.as_()).collect(); + bench(b, &v, f, n); +} + +fn bench_small_pos<T, F>(b: &mut Bencher, f: F, n: u32) +where + u32: AsPrimitive<T>, + T: BenchInteger, + F: Fn(&T) -> T, +{ + let v: Vec<T> = (0..1000) + .map(|i| i.as_().mod_floor(&T::max_value())) + .collect(); + bench(b, &v, f, n); +} + +macro_rules! bench_roots { + ($($T:ident),*) => {$( + mod $T { + use test::Bencher; + use num_integer::Roots; + + #[bench] + fn sqrt_rand(b: &mut Bencher) { + ::bench_rand_pos(b, $T::sqrt, 2); + } + + #[bench] + fn sqrt_small(b: &mut Bencher) { + ::bench_small_pos(b, $T::sqrt, 2); + } + + #[bench] + fn cbrt_rand(b: &mut Bencher) { + ::bench_rand(b, $T::cbrt, 3); + } + + #[bench] + fn cbrt_small(b: &mut Bencher) { + ::bench_small(b, $T::cbrt, 3); + } + + #[bench] + fn fourth_root_rand(b: &mut Bencher) { + ::bench_rand_pos(b, |x: &$T| x.nth_root(4), 4); + } + + #[bench] + fn fourth_root_small(b: &mut Bencher) { + ::bench_small_pos(b, |x: &$T| x.nth_root(4), 4); + } + + #[bench] + fn fifth_root_rand(b: &mut Bencher) { + ::bench_rand(b, |x: &$T| x.nth_root(5), 5); + } + + #[bench] + fn fifth_root_small(b: &mut Bencher) { + ::bench_small(b, |x: &$T| x.nth_root(5), 5); + } + } + )*} +} + +bench_roots!(i8, i16, i32, i64, i128); +bench_roots!(u8, u16, u32, u64, u128); |