diff options
Diffstat (limited to 'vendor/num-integer/src/roots.rs')
-rw-r--r-- | vendor/num-integer/src/roots.rs | 391 |
1 files changed, 0 insertions, 391 deletions
diff --git a/vendor/num-integer/src/roots.rs b/vendor/num-integer/src/roots.rs deleted file mode 100644 index a9eec1a..0000000 --- a/vendor/num-integer/src/roots.rs +++ /dev/null @@ -1,391 +0,0 @@ -use core; -use core::mem; -use traits::checked_pow; -use traits::PrimInt; -use Integer; - -/// Provides methods to compute an integer's square root, cube root, -/// and arbitrary `n`th root. -pub trait Roots: Integer { - /// Returns the truncated principal `n`th root of an integer - /// -- `if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ }` - /// - /// This is solving for `r` in `rⁿ = x`, rounding toward zero. - /// If `x` is positive, the result will satisfy `rⁿ ≤ x < (r+1)ⁿ`. - /// If `x` is negative and `n` is odd, then `(r-1)ⁿ < x ≤ rⁿ`. - /// - /// # Panics - /// - /// Panics if `n` is zero: - /// - /// ```should_panic - /// # use num_integer::Roots; - /// println!("can't compute ⁰√x : {}", 123.nth_root(0)); - /// ``` - /// - /// or if `n` is even and `self` is negative: - /// - /// ```should_panic - /// # use num_integer::Roots; - /// println!("no imaginary numbers... {}", (-1).nth_root(10)); - /// ``` - /// - /// # Examples - /// - /// ``` - /// use num_integer::Roots; - /// - /// let x: i32 = 12345; - /// assert_eq!(x.nth_root(1), x); - /// assert_eq!(x.nth_root(2), x.sqrt()); - /// assert_eq!(x.nth_root(3), x.cbrt()); - /// assert_eq!(x.nth_root(4), 10); - /// assert_eq!(x.nth_root(13), 2); - /// assert_eq!(x.nth_root(14), 1); - /// assert_eq!(x.nth_root(std::u32::MAX), 1); - /// - /// assert_eq!(std::i32::MAX.nth_root(30), 2); - /// assert_eq!(std::i32::MAX.nth_root(31), 1); - /// assert_eq!(std::i32::MIN.nth_root(31), -2); - /// assert_eq!((std::i32::MIN + 1).nth_root(31), -1); - /// - /// assert_eq!(std::u32::MAX.nth_root(31), 2); - /// assert_eq!(std::u32::MAX.nth_root(32), 1); - /// ``` - fn nth_root(&self, n: u32) -> Self; - - /// Returns the truncated principal square root of an integer -- `⌊√x⌋` - /// - /// This is solving for `r` in `r² = x`, rounding toward zero. - /// The result will satisfy `r² ≤ x < (r+1)²`. - /// - /// # Panics - /// - /// Panics if `self` is less than zero: - /// - /// ```should_panic - /// # use num_integer::Roots; - /// println!("no imaginary numbers... {}", (-1).sqrt()); - /// ``` - /// - /// # Examples - /// - /// ``` - /// use num_integer::Roots; - /// - /// let x: i32 = 12345; - /// assert_eq!((x * x).sqrt(), x); - /// assert_eq!((x * x + 1).sqrt(), x); - /// assert_eq!((x * x - 1).sqrt(), x - 1); - /// ``` - #[inline] - fn sqrt(&self) -> Self { - self.nth_root(2) - } - - /// Returns the truncated principal cube root of an integer -- - /// `if x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ }` - /// - /// This is solving for `r` in `r³ = x`, rounding toward zero. - /// If `x` is positive, the result will satisfy `r³ ≤ x < (r+1)³`. - /// If `x` is negative, then `(r-1)³ < x ≤ r³`. - /// - /// # Examples - /// - /// ``` - /// use num_integer::Roots; - /// - /// let x: i32 = 1234; - /// assert_eq!((x * x * x).cbrt(), x); - /// assert_eq!((x * x * x + 1).cbrt(), x); - /// assert_eq!((x * x * x - 1).cbrt(), x - 1); - /// - /// assert_eq!((-(x * x * x)).cbrt(), -x); - /// assert_eq!((-(x * x * x + 1)).cbrt(), -x); - /// assert_eq!((-(x * x * x - 1)).cbrt(), -(x - 1)); - /// ``` - #[inline] - fn cbrt(&self) -> Self { - self.nth_root(3) - } -} - -/// Returns the truncated principal square root of an integer -- -/// see [Roots::sqrt](trait.Roots.html#method.sqrt). -#[inline] -pub fn sqrt<T: Roots>(x: T) -> T { - x.sqrt() -} - -/// Returns the truncated principal cube root of an integer -- -/// see [Roots::cbrt](trait.Roots.html#method.cbrt). -#[inline] -pub fn cbrt<T: Roots>(x: T) -> T { - x.cbrt() -} - -/// Returns the truncated principal `n`th root of an integer -- -/// see [Roots::nth_root](trait.Roots.html#tymethod.nth_root). -#[inline] -pub fn nth_root<T: Roots>(x: T, n: u32) -> T { - x.nth_root(n) -} - -macro_rules! signed_roots { - ($T:ty, $U:ty) => { - impl Roots for $T { - #[inline] - fn nth_root(&self, n: u32) -> Self { - if *self >= 0 { - (*self as $U).nth_root(n) as Self - } else { - assert!(n.is_odd(), "even roots of a negative are imaginary"); - -((self.wrapping_neg() as $U).nth_root(n) as Self) - } - } - - #[inline] - fn sqrt(&self) -> Self { - assert!(*self >= 0, "the square root of a negative is imaginary"); - (*self as $U).sqrt() as Self - } - - #[inline] - fn cbrt(&self) -> Self { - if *self >= 0 { - (*self as $U).cbrt() as Self - } else { - -((self.wrapping_neg() as $U).cbrt() as Self) - } - } - } - }; -} - -signed_roots!(i8, u8); -signed_roots!(i16, u16); -signed_roots!(i32, u32); -signed_roots!(i64, u64); -#[cfg(has_i128)] -signed_roots!(i128, u128); -signed_roots!(isize, usize); - -#[inline] -fn fixpoint<T, F>(mut x: T, f: F) -> T -where - T: Integer + Copy, - F: Fn(T) -> T, -{ - let mut xn = f(x); - while x < xn { - x = xn; - xn = f(x); - } - while x > xn { - x = xn; - xn = f(x); - } - x -} - -#[inline] -fn bits<T>() -> u32 { - 8 * mem::size_of::<T>() as u32 -} - -#[inline] -fn log2<T: PrimInt>(x: T) -> u32 { - debug_assert!(x > T::zero()); - bits::<T>() - 1 - x.leading_zeros() -} - -macro_rules! unsigned_roots { - ($T:ident) => { - impl Roots for $T { - #[inline] - fn nth_root(&self, n: u32) -> Self { - fn go(a: $T, n: u32) -> $T { - // Specialize small roots - match n { - 0 => panic!("can't find a root of degree 0!"), - 1 => return a, - 2 => return a.sqrt(), - 3 => return a.cbrt(), - _ => (), - } - - // The root of values less than 2ⁿ can only be 0 or 1. - if bits::<$T>() <= n || a < (1 << n) { - return (a > 0) as $T; - } - - if bits::<$T>() > 64 { - // 128-bit division is slow, so do a bitwise `nth_root` until it's small enough. - return if a <= core::u64::MAX as $T { - (a as u64).nth_root(n) as $T - } else { - let lo = (a >> n).nth_root(n) << 1; - let hi = lo + 1; - // 128-bit `checked_mul` also involves division, but we can't always - // compute `hiⁿ` without risking overflow. Try to avoid it though... - if hi.next_power_of_two().trailing_zeros() * n >= bits::<$T>() { - match checked_pow(hi, n as usize) { - Some(x) if x <= a => hi, - _ => lo, - } - } else { - if hi.pow(n) <= a { - hi - } else { - lo - } - } - }; - } - - #[cfg(feature = "std")] - #[inline] - fn guess(x: $T, n: u32) -> $T { - // for smaller inputs, `f64` doesn't justify its cost. - if bits::<$T>() <= 32 || x <= core::u32::MAX as $T { - 1 << ((log2(x) + n - 1) / n) - } else { - ((x as f64).ln() / f64::from(n)).exp() as $T - } - } - - #[cfg(not(feature = "std"))] - #[inline] - fn guess(x: $T, n: u32) -> $T { - 1 << ((log2(x) + n - 1) / n) - } - - // https://en.wikipedia.org/wiki/Nth_root_algorithm - let n1 = n - 1; - let next = |x: $T| { - let y = match checked_pow(x, n1 as usize) { - Some(ax) => a / ax, - None => 0, - }; - (y + x * n1 as $T) / n as $T - }; - fixpoint(guess(a, n), next) - } - go(*self, n) - } - - #[inline] - fn sqrt(&self) -> Self { - fn go(a: $T) -> $T { - if bits::<$T>() > 64 { - // 128-bit division is slow, so do a bitwise `sqrt` until it's small enough. - return if a <= core::u64::MAX as $T { - (a as u64).sqrt() as $T - } else { - let lo = (a >> 2u32).sqrt() << 1; - let hi = lo + 1; - if hi * hi <= a { - hi - } else { - lo - } - }; - } - - if a < 4 { - return (a > 0) as $T; - } - - #[cfg(feature = "std")] - #[inline] - fn guess(x: $T) -> $T { - (x as f64).sqrt() as $T - } - - #[cfg(not(feature = "std"))] - #[inline] - fn guess(x: $T) -> $T { - 1 << ((log2(x) + 1) / 2) - } - - // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method - let next = |x: $T| (a / x + x) >> 1; - fixpoint(guess(a), next) - } - go(*self) - } - - #[inline] - fn cbrt(&self) -> Self { - fn go(a: $T) -> $T { - if bits::<$T>() > 64 { - // 128-bit division is slow, so do a bitwise `cbrt` until it's small enough. - return if a <= core::u64::MAX as $T { - (a as u64).cbrt() as $T - } else { - let lo = (a >> 3u32).cbrt() << 1; - let hi = lo + 1; - if hi * hi * hi <= a { - hi - } else { - lo - } - }; - } - - if bits::<$T>() <= 32 { - // Implementation based on Hacker's Delight `icbrt2` - let mut x = a; - let mut y2 = 0; - let mut y = 0; - let smax = bits::<$T>() / 3; - for s in (0..smax + 1).rev() { - let s = s * 3; - y2 *= 4; - y *= 2; - let b = 3 * (y2 + y) + 1; - if x >> s >= b { - x -= b << s; - y2 += 2 * y + 1; - y += 1; - } - } - return y; - } - - if a < 8 { - return (a > 0) as $T; - } - if a <= core::u32::MAX as $T { - return (a as u32).cbrt() as $T; - } - - #[cfg(feature = "std")] - #[inline] - fn guess(x: $T) -> $T { - (x as f64).cbrt() as $T - } - - #[cfg(not(feature = "std"))] - #[inline] - fn guess(x: $T) -> $T { - 1 << ((log2(x) + 2) / 3) - } - - // https://en.wikipedia.org/wiki/Cube_root#Numerical_methods - let next = |x: $T| (a / (x * x) + x * 2) / 3; - fixpoint(guess(a), next) - } - go(*self) - } - } - }; -} - -unsigned_roots!(u8); -unsigned_roots!(u16); -unsigned_roots!(u32); -unsigned_roots!(u64); -#[cfg(has_i128)] -unsigned_roots!(u128); -unsigned_roots!(usize); |