aboutsummaryrefslogtreecommitdiff
path: root/vendor/num-rational/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/num-rational/src')
-rw-r--r--vendor/num-rational/src/lib.rs3106
-rw-r--r--vendor/num-rational/src/pow.rs173
2 files changed, 0 insertions, 3279 deletions
diff --git a/vendor/num-rational/src/lib.rs b/vendor/num-rational/src/lib.rs
deleted file mode 100644
index bf209ad..0000000
--- a/vendor/num-rational/src/lib.rs
+++ /dev/null
@@ -1,3106 +0,0 @@
-// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Rational numbers
-//!
-//! ## Compatibility
-//!
-//! The `num-rational` crate is tested for rustc 1.31 and greater.
-
-#![doc(html_root_url = "https://docs.rs/num-rational/0.4")]
-#![no_std]
-// Ratio ops often use other "suspicious" ops
-#![allow(clippy::suspicious_arithmetic_impl)]
-#![allow(clippy::suspicious_op_assign_impl)]
-
-#[cfg(feature = "std")]
-#[macro_use]
-extern crate std;
-
-use core::cmp;
-use core::fmt;
-use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex};
-use core::hash::{Hash, Hasher};
-use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub};
-use core::str::FromStr;
-#[cfg(feature = "std")]
-use std::error::Error;
-
-#[cfg(feature = "num-bigint")]
-use num_bigint::{BigInt, BigUint, Sign, ToBigInt};
-
-use num_integer::Integer;
-use num_traits::float::FloatCore;
-use num_traits::ToPrimitive;
-use num_traits::{
- Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Inv, Num, NumCast, One,
- Pow, Signed, Zero,
-};
-
-mod pow;
-
-/// Represents the ratio between two numbers.
-#[derive(Copy, Clone, Debug)]
-#[allow(missing_docs)]
-pub struct Ratio<T> {
- /// Numerator.
- numer: T,
- /// Denominator.
- denom: T,
-}
-
-/// Alias for a `Ratio` of machine-sized integers.
-#[deprecated(
- since = "0.4.0",
- note = "it's better to use a specific size, like `Rational32` or `Rational64`"
-)]
-pub type Rational = Ratio<isize>;
-/// Alias for a `Ratio` of 32-bit-sized integers.
-pub type Rational32 = Ratio<i32>;
-/// Alias for a `Ratio` of 64-bit-sized integers.
-pub type Rational64 = Ratio<i64>;
-
-#[cfg(feature = "num-bigint")]
-/// Alias for arbitrary precision rationals.
-pub type BigRational = Ratio<BigInt>;
-
-/// These method are `const` for Rust 1.31 and later.
-impl<T> Ratio<T> {
- /// Creates a `Ratio` without checking for `denom == 0` or reducing.
- ///
- /// **There are several methods that will panic if used on a `Ratio` with
- /// `denom == 0`.**
- #[inline]
- pub const fn new_raw(numer: T, denom: T) -> Ratio<T> {
- Ratio { numer, denom }
- }
-
- /// Gets an immutable reference to the numerator.
- #[inline]
- pub const fn numer(&self) -> &T {
- &self.numer
- }
-
- /// Gets an immutable reference to the denominator.
- #[inline]
- pub const fn denom(&self) -> &T {
- &self.denom
- }
-}
-
-impl<T: Clone + Integer> Ratio<T> {
- /// Creates a new `Ratio`.
- ///
- /// **Panics if `denom` is zero.**
- #[inline]
- pub fn new(numer: T, denom: T) -> Ratio<T> {
- let mut ret = Ratio::new_raw(numer, denom);
- ret.reduce();
- ret
- }
-
- /// Creates a `Ratio` representing the integer `t`.
- #[inline]
- pub fn from_integer(t: T) -> Ratio<T> {
- Ratio::new_raw(t, One::one())
- }
-
- /// Converts to an integer, rounding towards zero.
- #[inline]
- pub fn to_integer(&self) -> T {
- self.trunc().numer
- }
-
- /// Returns true if the rational number is an integer (denominator is 1).
- #[inline]
- pub fn is_integer(&self) -> bool {
- self.denom.is_one()
- }
-
- /// Puts self into lowest terms, with `denom` > 0.
- ///
- /// **Panics if `denom` is zero.**
- fn reduce(&mut self) {
- if self.denom.is_zero() {
- panic!("denominator == 0");
- }
- if self.numer.is_zero() {
- self.denom.set_one();
- return;
- }
- if self.numer == self.denom {
- self.set_one();
- return;
- }
- let g: T = self.numer.gcd(&self.denom);
-
- // FIXME(#5992): assignment operator overloads
- // T: Clone + Integer != T: Clone + NumAssign
-
- #[inline]
- fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) {
- let y = core::mem::replace(x, T::zero());
- *x = f(y);
- }
-
- // self.numer /= g;
- replace_with(&mut self.numer, |x| x / g.clone());
-
- // self.denom /= g;
- replace_with(&mut self.denom, |x| x / g);
-
- // keep denom positive!
- if self.denom < T::zero() {
- replace_with(&mut self.numer, |x| T::zero() - x);
- replace_with(&mut self.denom, |x| T::zero() - x);
- }
- }
-
- /// Returns a reduced copy of self.
- ///
- /// In general, it is not necessary to use this method, as the only
- /// method of procuring a non-reduced fraction is through `new_raw`.
- ///
- /// **Panics if `denom` is zero.**
- pub fn reduced(&self) -> Ratio<T> {
- let mut ret = self.clone();
- ret.reduce();
- ret
- }
-
- /// Returns the reciprocal.
- ///
- /// **Panics if the `Ratio` is zero.**
- #[inline]
- pub fn recip(&self) -> Ratio<T> {
- self.clone().into_recip()
- }
-
- #[inline]
- fn into_recip(self) -> Ratio<T> {
- match self.numer.cmp(&T::zero()) {
- cmp::Ordering::Equal => panic!("division by zero"),
- cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer),
- cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer),
- }
- }
-
- /// Rounds towards minus infinity.
- #[inline]
- pub fn floor(&self) -> Ratio<T> {
- if *self < Zero::zero() {
- let one: T = One::one();
- Ratio::from_integer(
- (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(),
- )
- } else {
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
- }
- }
-
- /// Rounds towards plus infinity.
- #[inline]
- pub fn ceil(&self) -> Ratio<T> {
- if *self < Zero::zero() {
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
- } else {
- let one: T = One::one();
- Ratio::from_integer(
- (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(),
- )
- }
- }
-
- /// Rounds to the nearest integer. Rounds half-way cases away from zero.
- #[inline]
- pub fn round(&self) -> Ratio<T> {
- let zero: Ratio<T> = Zero::zero();
- let one: T = One::one();
- let two: T = one.clone() + one.clone();
-
- // Find unsigned fractional part of rational number
- let mut fractional = self.fract();
- if fractional < zero {
- fractional = zero - fractional
- };
-
- // The algorithm compares the unsigned fractional part with 1/2, that
- // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
- // a >= (b/2)+1. This avoids overflow issues.
- let half_or_larger = if fractional.denom.is_even() {
- fractional.numer >= fractional.denom / two
- } else {
- fractional.numer >= (fractional.denom / two) + one
- };
-
- if half_or_larger {
- let one: Ratio<T> = One::one();
- if *self >= Zero::zero() {
- self.trunc() + one
- } else {
- self.trunc() - one
- }
- } else {
- self.trunc()
- }
- }
-
- /// Rounds towards zero.
- #[inline]
- pub fn trunc(&self) -> Ratio<T> {
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
- }
-
- /// Returns the fractional part of a number, with division rounded towards zero.
- ///
- /// Satisfies `self == self.trunc() + self.fract()`.
- #[inline]
- pub fn fract(&self) -> Ratio<T> {
- Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
- }
-
- /// Raises the `Ratio` to the power of an exponent.
- #[inline]
- pub fn pow(&self, expon: i32) -> Ratio<T>
- where
- for<'a> &'a T: Pow<u32, Output = T>,
- {
- Pow::pow(self, expon)
- }
-}
-
-#[cfg(feature = "num-bigint")]
-impl Ratio<BigInt> {
- /// Converts a float into a rational number.
- pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> {
- if !f.is_finite() {
- return None;
- }
- let (mantissa, exponent, sign) = f.integer_decode();
- let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };
- if exponent < 0 {
- let one: BigInt = One::one();
- let denom: BigInt = one << ((-exponent) as usize);
- let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
- Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
- } else {
- let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
- numer <<= exponent as usize;
- Some(Ratio::from_integer(BigInt::from_biguint(
- bigint_sign,
- numer,
- )))
- }
- }
-}
-
-impl<T: Clone + Integer> Default for Ratio<T> {
- /// Returns zero
- fn default() -> Self {
- Ratio::zero()
- }
-}
-
-// From integer
-impl<T> From<T> for Ratio<T>
-where
- T: Clone + Integer,
-{
- fn from(x: T) -> Ratio<T> {
- Ratio::from_integer(x)
- }
-}
-
-// From pair (through the `new` constructor)
-impl<T> From<(T, T)> for Ratio<T>
-where
- T: Clone + Integer,
-{
- fn from(pair: (T, T)) -> Ratio<T> {
- Ratio::new(pair.0, pair.1)
- }
-}
-
-// Comparisons
-
-// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
-// for those multiplications to overflow fixed-size integers, so we need to take care.
-
-impl<T: Clone + Integer> Ord for Ratio<T> {
- #[inline]
- fn cmp(&self, other: &Self) -> cmp::Ordering {
- // With equal denominators, the numerators can be directly compared
- if self.denom == other.denom {
- let ord = self.numer.cmp(&other.numer);
- return if self.denom < T::zero() {
- ord.reverse()
- } else {
- ord
- };
- }
-
- // With equal numerators, the denominators can be inversely compared
- if self.numer == other.numer {
- if self.numer.is_zero() {
- return cmp::Ordering::Equal;
- }
- let ord = self.denom.cmp(&other.denom);
- return if self.numer < T::zero() {
- ord
- } else {
- ord.reverse()
- };
- }
-
- // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the
- // division below, or even always avoid it for BigInt and BigUint.
- // FIXME- future breaking change to add Checked* to Integer?
-
- // Compare as floored integers and remainders
- let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
- let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
- match self_int.cmp(&other_int) {
- cmp::Ordering::Greater => cmp::Ordering::Greater,
- cmp::Ordering::Less => cmp::Ordering::Less,
- cmp::Ordering::Equal => {
- match (self_rem.is_zero(), other_rem.is_zero()) {
- (true, true) => cmp::Ordering::Equal,
- (true, false) => cmp::Ordering::Less,
- (false, true) => cmp::Ordering::Greater,
- (false, false) => {
- // Compare the reciprocals of the remaining fractions in reverse
- let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
- let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
- self_recip.cmp(&other_recip).reverse()
- }
- }
- }
- }
- }
-}
-
-impl<T: Clone + Integer> PartialOrd for Ratio<T> {
- #[inline]
- fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
- Some(self.cmp(other))
- }
-}
-
-impl<T: Clone + Integer> PartialEq for Ratio<T> {
- #[inline]
- fn eq(&self, other: &Self) -> bool {
- self.cmp(other) == cmp::Ordering::Equal
- }
-}
-
-impl<T: Clone + Integer> Eq for Ratio<T> {}
-
-// NB: We can't just `#[derive(Hash)]`, because it needs to agree
-// with `Eq` even for non-reduced ratios.
-impl<T: Clone + Integer + Hash> Hash for Ratio<T> {
- fn hash<H: Hasher>(&self, state: &mut H) {
- recurse(&self.numer, &self.denom, state);
-
- fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) {
- if !denom.is_zero() {
- let (int, rem) = numer.div_mod_floor(denom);
- int.hash(state);
- recurse(denom, &rem, state);
- } else {
- denom.hash(state);
- }
- }
- }
-}
-
-mod iter_sum_product {
- use crate::Ratio;
- use core::iter::{Product, Sum};
- use num_integer::Integer;
- use num_traits::{One, Zero};
-
- impl<T: Integer + Clone> Sum for Ratio<T> {
- fn sum<I>(iter: I) -> Self
- where
- I: Iterator<Item = Ratio<T>>,
- {
- iter.fold(Self::zero(), |sum, num| sum + num)
- }
- }
-
- impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> {
- fn sum<I>(iter: I) -> Self
- where
- I: Iterator<Item = &'a Ratio<T>>,
- {
- iter.fold(Self::zero(), |sum, num| sum + num)
- }
- }
-
- impl<T: Integer + Clone> Product for Ratio<T> {
- fn product<I>(iter: I) -> Self
- where
- I: Iterator<Item = Ratio<T>>,
- {
- iter.fold(Self::one(), |prod, num| prod * num)
- }
- }
-
- impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> {
- fn product<I>(iter: I) -> Self
- where
- I: Iterator<Item = &'a Ratio<T>>,
- {
- iter.fold(Self::one(), |prod, num| prod * num)
- }
- }
-}
-
-mod opassign {
- use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
-
- use crate::Ratio;
- use num_integer::Integer;
- use num_traits::NumAssign;
-
- impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> {
- fn add_assign(&mut self, other: Ratio<T>) {
- if self.denom == other.denom {
- self.numer += other.numer
- } else {
- let lcm = self.denom.lcm(&other.denom);
- let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
- let rhs_numer = other.numer * (lcm.clone() / other.denom);
- self.numer = lhs_numer + rhs_numer;
- self.denom = lcm;
- }
- self.reduce();
- }
- }
-
- // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd))
- impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> {
- fn div_assign(&mut self, other: Ratio<T>) {
- let gcd_ac = self.numer.gcd(&other.numer);
- let gcd_bd = self.denom.gcd(&other.denom);
- self.numer /= gcd_ac.clone();
- self.numer *= other.denom / gcd_bd.clone();
- self.denom /= gcd_bd;
- self.denom *= other.numer / gcd_ac;
- self.reduce(); // TODO: remove this line. see #8.
- }
- }
-
- // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc))
- impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> {
- fn mul_assign(&mut self, other: Ratio<T>) {
- let gcd_ad = self.numer.gcd(&other.denom);
- let gcd_bc = self.denom.gcd(&other.numer);
- self.numer /= gcd_ad.clone();
- self.numer *= other.numer / gcd_bc.clone();
- self.denom /= gcd_bc;
- self.denom *= other.denom / gcd_ad;
- self.reduce(); // TODO: remove this line. see #8.
- }
- }
-
- impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> {
- fn rem_assign(&mut self, other: Ratio<T>) {
- if self.denom == other.denom {
- self.numer %= other.numer
- } else {
- let lcm = self.denom.lcm(&other.denom);
- let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
- let rhs_numer = other.numer * (lcm.clone() / other.denom);
- self.numer = lhs_numer % rhs_numer;
- self.denom = lcm;
- }
- self.reduce();
- }
- }
-
- impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> {
- fn sub_assign(&mut self, other: Ratio<T>) {
- if self.denom == other.denom {
- self.numer -= other.numer
- } else {
- let lcm = self.denom.lcm(&other.denom);
- let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
- let rhs_numer = other.numer * (lcm.clone() / other.denom);
- self.numer = lhs_numer - rhs_numer;
- self.denom = lcm;
- }
- self.reduce();
- }
- }
-
- // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b
- impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> {
- fn add_assign(&mut self, other: T) {
- self.numer += self.denom.clone() * other;
- self.reduce();
- }
- }
-
- impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> {
- fn div_assign(&mut self, other: T) {
- let gcd = self.numer.gcd(&other);
- self.numer /= gcd.clone();
- self.denom *= other / gcd;
- self.reduce(); // TODO: remove this line. see #8.
- }
- }
-
- impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> {
- fn mul_assign(&mut self, other: T) {
- let gcd = self.denom.gcd(&other);
- self.denom /= gcd.clone();
- self.numer *= other / gcd;
- self.reduce(); // TODO: remove this line. see #8.
- }
- }
-
- // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b
- impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> {
- fn rem_assign(&mut self, other: T) {
- self.numer %= self.denom.clone() * other;
- self.reduce();
- }
- }
-
- // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b
- impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> {
- fn sub_assign(&mut self, other: T) {
- self.numer -= self.denom.clone() * other;
- self.reduce();
- }
- }
-
- macro_rules! forward_op_assign {
- (impl $imp:ident, $method:ident) => {
- impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> {
- #[inline]
- fn $method(&mut self, other: &Ratio<T>) {
- self.$method(other.clone())
- }
- }
- impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> {
- #[inline]
- fn $method(&mut self, other: &T) {
- self.$method(other.clone())
- }
- }
- };
- }
-
- forward_op_assign!(impl AddAssign, add_assign);
- forward_op_assign!(impl DivAssign, div_assign);
- forward_op_assign!(impl MulAssign, mul_assign);
- forward_op_assign!(impl RemAssign, rem_assign);
- forward_op_assign!(impl SubAssign, sub_assign);
-}
-
-macro_rules! forward_ref_ref_binop {
- (impl $imp:ident, $method:ident) => {
- impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> {
- type Output = Ratio<T>;
-
- #[inline]
- fn $method(self, other: &'b Ratio<T>) -> Ratio<T> {
- self.clone().$method(other.clone())
- }
- }
- impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> {
- type Output = Ratio<T>;
-
- #[inline]
- fn $method(self, other: &'b T) -> Ratio<T> {
- self.clone().$method(other.clone())
- }
- }
- };
-}
-
-macro_rules! forward_ref_val_binop {
- (impl $imp:ident, $method:ident) => {
- impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T>
- where
- T: Clone + Integer,
- {
- type Output = Ratio<T>;
-
- #[inline]
- fn $method(self, other: Ratio<T>) -> Ratio<T> {
- self.clone().$method(other)
- }
- }
- impl<'a, T> $imp<T> for &'a Ratio<T>
- where
- T: Clone + Integer,
- {
- type Output = Ratio<T>;
-
- #[inline]
- fn $method(self, other: T) -> Ratio<T> {
- self.clone().$method(other)
- }
- }
- };
-}
-
-macro_rules! forward_val_ref_binop {
- (impl $imp:ident, $method:ident) => {
- impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T>
- where
- T: Clone + Integer,
- {
- type Output = Ratio<T>;
-
- #[inline]
- fn $method(self, other: &Ratio<T>) -> Ratio<T> {
- self.$method(other.clone())
- }
- }
- impl<'a, T> $imp<&'a T> for Ratio<T>
- where
- T: Clone + Integer,
- {
- type Output = Ratio<T>;
-
- #[inline]
- fn $method(self, other: &T) -> Ratio<T> {
- self.$method(other.clone())
- }
- }
- };
-}
-
-macro_rules! forward_all_binop {
- (impl $imp:ident, $method:ident) => {
- forward_ref_ref_binop!(impl $imp, $method);
- forward_ref_val_binop!(impl $imp, $method);
- forward_val_ref_binop!(impl $imp, $method);
- };
-}
-
-// Arithmetic
-forward_all_binop!(impl Mul, mul);
-// a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc))
-impl<T> Mul<Ratio<T>> for Ratio<T>
-where
- T: Clone + Integer,
-{
- type Output = Ratio<T>;
- #[inline]
- fn mul(self, rhs: Ratio<T>) -> Ratio<T> {
- let gcd_ad = self.numer.gcd(&rhs.denom);
- let gcd_bc = self.denom.gcd(&rhs.numer);
- Ratio::new(
- self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()),
- self.denom / gcd_bc * (rhs.denom / gcd_ad),
- )
- }
-}
-// a/b * c/1 = (a*c) / (b*1) = (a*c) / b
-impl<T> Mul<T> for Ratio<T>
-where
- T: Clone + Integer,
-{
- type Output = Ratio<T>;
- #[inline]
- fn mul(self, rhs: T) -> Ratio<T> {
- let gcd = self.denom.gcd(&rhs);
- Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd)
- }
-}
-
-forward_all_binop!(impl Div, div);
-// (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd))
-impl<T> Div<Ratio<T>> for Ratio<T>
-where
- T: Clone + Integer,
-{
- type Output = Ratio<T>;
-
- #[inline]
- fn div(self, rhs: Ratio<T>) -> Ratio<T> {
- let gcd_ac = self.numer.gcd(&rhs.numer);
- let gcd_bd = self.denom.gcd(&rhs.denom);
- Ratio::new(
- self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()),
- self.denom / gcd_bd * (rhs.numer / gcd_ac),
- )
- }
-}
-// (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c)
-impl<T> Div<T> for Ratio<T>
-where
- T: Clone + Integer,
-{
- type Output = Ratio<T>;
-
- #[inline]
- fn div(self, rhs: T) -> Ratio<T> {
- let gcd = self.numer.gcd(&rhs);
- Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd))
- }
-}
-
-macro_rules! arith_impl {
- (impl $imp:ident, $method:ident) => {
- forward_all_binop!(impl $imp, $method);
- // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d)
- impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn $method(self, rhs: Ratio<T>) -> Ratio<T> {
- if self.denom == rhs.denom {
- return Ratio::new(self.numer.$method(rhs.numer), rhs.denom);
- }
- let lcm = self.denom.lcm(&rhs.denom);
- let lhs_numer = self.numer * (lcm.clone() / self.denom);
- let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom);
- Ratio::new(lhs_numer.$method(rhs_numer), lcm)
- }
- }
- // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern
- impl<T: Clone + Integer> $imp<T> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn $method(self, rhs: T) -> Ratio<T> {
- Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom)
- }
- }
- };
-}
-
-arith_impl!(impl Add, add);
-arith_impl!(impl Sub, sub);
-arith_impl!(impl Rem, rem);
-
-// a/b * c/d = (a*c)/(b*d)
-impl<T> CheckedMul for Ratio<T>
-where
- T: Clone + Integer + CheckedMul,
-{
- #[inline]
- fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
- let gcd_ad = self.numer.gcd(&rhs.denom);
- let gcd_bc = self.denom.gcd(&rhs.numer);
- Some(Ratio::new(
- (self.numer.clone() / gcd_ad.clone())
- .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?,
- (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?,
- ))
- }
-}
-
-// (a/b) / (c/d) = (a*d)/(b*c)
-impl<T> CheckedDiv for Ratio<T>
-where
- T: Clone + Integer + CheckedMul,
-{
- #[inline]
- fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
- if rhs.is_zero() {
- return None;
- }
- let (numer, denom) = if self.denom == rhs.denom {
- (self.numer.clone(), rhs.numer.clone())
- } else if self.numer == rhs.numer {
- (rhs.denom.clone(), self.denom.clone())
- } else {
- let gcd_ac = self.numer.gcd(&rhs.numer);
- let gcd_bd = self.denom.gcd(&rhs.denom);
- (
- (self.numer.clone() / gcd_ac.clone())
- .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?,
- (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?,
- )
- };
- // Manual `reduce()`, avoiding sharp edges
- if denom.is_zero() {
- None
- } else if numer.is_zero() {
- Some(Self::zero())
- } else if numer == denom {
- Some(Self::one())
- } else {
- let g = numer.gcd(&denom);
- let numer = numer / g.clone();
- let denom = denom / g;
- let raw = if denom < T::zero() {
- // We need to keep denom positive, but 2's-complement MIN may
- // overflow negation -- instead we can check multiplying -1.
- let n1 = T::zero() - T::one();
- Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?)
- } else {
- Ratio::new_raw(numer, denom)
- };
- Some(raw)
- }
- }
-}
-
-// As arith_impl! but for Checked{Add,Sub} traits
-macro_rules! checked_arith_impl {
- (impl $imp:ident, $method:ident) => {
- impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> {
- #[inline]
- fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
- let gcd = self.denom.clone().gcd(&rhs.denom);
- let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?;
- let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?;
- let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?;
- Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm))
- }
- }
- };
-}
-
-// a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d)
-checked_arith_impl!(impl CheckedAdd, checked_add);
-
-// a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d)
-checked_arith_impl!(impl CheckedSub, checked_sub);
-
-impl<T> Neg for Ratio<T>
-where
- T: Clone + Integer + Neg<Output = T>,
-{
- type Output = Ratio<T>;
-
- #[inline]
- fn neg(self) -> Ratio<T> {
- Ratio::new_raw(-self.numer, self.denom)
- }
-}
-
-impl<'a, T> Neg for &'a Ratio<T>
-where
- T: Clone + Integer + Neg<Output = T>,
-{
- type Output = Ratio<T>;
-
- #[inline]
- fn neg(self) -> Ratio<T> {
- -self.clone()
- }
-}
-
-impl<T> Inv for Ratio<T>
-where
- T: Clone + Integer,
-{
- type Output = Ratio<T>;
-
- #[inline]
- fn inv(self) -> Ratio<T> {
- self.recip()
- }
-}
-
-impl<'a, T> Inv for &'a Ratio<T>
-where
- T: Clone + Integer,
-{
- type Output = Ratio<T>;
-
- #[inline]
- fn inv(self) -> Ratio<T> {
- self.recip()
- }
-}
-
-// Constants
-impl<T: Clone + Integer> Zero for Ratio<T> {
- #[inline]
- fn zero() -> Ratio<T> {
- Ratio::new_raw(Zero::zero(), One::one())
- }
-
- #[inline]
- fn is_zero(&self) -> bool {
- self.numer.is_zero()
- }
-
- #[inline]
- fn set_zero(&mut self) {
- self.numer.set_zero();
- self.denom.set_one();
- }
-}
-
-impl<T: Clone + Integer> One for Ratio<T> {
- #[inline]
- fn one() -> Ratio<T> {
- Ratio::new_raw(One::one(), One::one())
- }
-
- #[inline]
- fn is_one(&self) -> bool {
- self.numer == self.denom
- }
-
- #[inline]
- fn set_one(&mut self) {
- self.numer.set_one();
- self.denom.set_one();
- }
-}
-
-impl<T: Clone + Integer> Num for Ratio<T> {
- type FromStrRadixErr = ParseRatioError;
-
- /// Parses `numer/denom` where the numbers are in base `radix`.
- fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
- if s.splitn(2, '/').count() == 2 {
- let mut parts = s.splitn(2, '/').map(|ss| {
- T::from_str_radix(ss, radix).map_err(|_| ParseRatioError {
- kind: RatioErrorKind::ParseError,
- })
- });
- let numer: T = parts.next().unwrap()?;
- let denom: T = parts.next().unwrap()?;
- if denom.is_zero() {
- Err(ParseRatioError {
- kind: RatioErrorKind::ZeroDenominator,
- })
- } else {
- Ok(Ratio::new(numer, denom))
- }
- } else {
- Err(ParseRatioError {
- kind: RatioErrorKind::ParseError,
- })
- }
- }
-}
-
-impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
- #[inline]
- fn abs(&self) -> Ratio<T> {
- if self.is_negative() {
- -self.clone()
- } else {
- self.clone()
- }
- }
-
- #[inline]
- fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
- if *self <= *other {
- Zero::zero()
- } else {
- self - other
- }
- }
-
- #[inline]
- fn signum(&self) -> Ratio<T> {
- if self.is_positive() {
- Self::one()
- } else if self.is_zero() {
- Self::zero()
- } else {
- -Self::one()
- }
- }
-
- #[inline]
- fn is_positive(&self) -> bool {
- (self.numer.is_positive() && self.denom.is_positive())
- || (self.numer.is_negative() && self.denom.is_negative())
- }
-
- #[inline]
- fn is_negative(&self) -> bool {
- (self.numer.is_negative() && self.denom.is_positive())
- || (self.numer.is_positive() && self.denom.is_negative())
- }
-}
-
-// String conversions
-macro_rules! impl_formatting {
- ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => {
- impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> {
- #[cfg(feature = "std")]
- fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
- let pre_pad = if self.denom.is_one() {
- format!($fmt_str, self.numer)
- } else {
- if f.alternate() {
- format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom)
- } else {
- format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom)
- }
- };
- // TODO: replace with strip_prefix, when stabalized
- let (pre_pad, non_negative) = {
- if pre_pad.starts_with("-") {
- (&pre_pad[1..], false)
- } else {
- (&pre_pad[..], true)
- }
- };
- f.pad_integral(non_negative, $prefix, pre_pad)
- }
- #[cfg(not(feature = "std"))]
- fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
- let plus = if f.sign_plus() && self.numer >= T::zero() {
- "+"
- } else {
- ""
- };
- if self.denom.is_one() {
- if f.alternate() {
- write!(f, concat!("{}", $fmt_alt), plus, self.numer)
- } else {
- write!(f, concat!("{}", $fmt_str), plus, self.numer)
- }
- } else {
- if f.alternate() {
- write!(
- f,
- concat!("{}", $fmt_alt, "/", $fmt_alt),
- plus, self.numer, self.denom
- )
- } else {
- write!(
- f,
- concat!("{}", $fmt_str, "/", $fmt_str),
- plus, self.numer, self.denom
- )
- }
- }
- }
- }
- };
-}
-
-impl_formatting!(Display, "", "{}", "{:#}");
-impl_formatting!(Octal, "0o", "{:o}", "{:#o}");
-impl_formatting!(Binary, "0b", "{:b}", "{:#b}");
-impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}");
-impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}");
-impl_formatting!(LowerExp, "", "{:e}", "{:#e}");
-impl_formatting!(UpperExp, "", "{:E}", "{:#E}");
-
-impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
- type Err = ParseRatioError;
-
- /// Parses `numer/denom` or just `numer`.
- fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
- let mut split = s.splitn(2, '/');
-
- let n = split.next().ok_or(ParseRatioError {
- kind: RatioErrorKind::ParseError,
- })?;
- let num = FromStr::from_str(n).map_err(|_| ParseRatioError {
- kind: RatioErrorKind::ParseError,
- })?;
-
- let d = split.next().unwrap_or("1");
- let den = FromStr::from_str(d).map_err(|_| ParseRatioError {
- kind: RatioErrorKind::ParseError,
- })?;
-
- if Zero::is_zero(&den) {
- Err(ParseRatioError {
- kind: RatioErrorKind::ZeroDenominator,
- })
- } else {
- Ok(Ratio::new(num, den))
- }
- }
-}
-
-impl<T> Into<(T, T)> for Ratio<T> {
- fn into(self) -> (T, T) {
- (self.numer, self.denom)
- }
-}
-
-#[cfg(feature = "serde")]
-impl<T> serde::Serialize for Ratio<T>
-where
- T: serde::Serialize + Clone + Integer + PartialOrd,
-{
- fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
- where
- S: serde::Serializer,
- {
- (self.numer(), self.denom()).serialize(serializer)
- }
-}
-
-#[cfg(feature = "serde")]
-impl<'de, T> serde::Deserialize<'de> for Ratio<T>
-where
- T: serde::Deserialize<'de> + Clone + Integer + PartialOrd,
-{
- fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
- where
- D: serde::Deserializer<'de>,
- {
- use serde::de::Error;
- use serde::de::Unexpected;
- let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?;
- if denom.is_zero() {
- Err(Error::invalid_value(
- Unexpected::Signed(0),
- &"a ratio with non-zero denominator",
- ))
- } else {
- Ok(Ratio::new_raw(numer, denom))
- }
- }
-}
-
-// FIXME: Bubble up specific errors
-#[derive(Copy, Clone, Debug, PartialEq)]
-pub struct ParseRatioError {
- kind: RatioErrorKind,
-}
-
-#[derive(Copy, Clone, Debug, PartialEq)]
-enum RatioErrorKind {
- ParseError,
- ZeroDenominator,
-}
-
-impl fmt::Display for ParseRatioError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- self.kind.description().fmt(f)
- }
-}
-
-#[cfg(feature = "std")]
-impl Error for ParseRatioError {
- #[allow(deprecated)]
- fn description(&self) -> &str {
- self.kind.description()
- }
-}
-
-impl RatioErrorKind {
- fn description(&self) -> &'static str {
- match *self {
- RatioErrorKind::ParseError => "failed to parse integer",
- RatioErrorKind::ZeroDenominator => "zero value denominator",
- }
- }
-}
-
-#[cfg(feature = "num-bigint")]
-impl FromPrimitive for Ratio<BigInt> {
- fn from_i64(n: i64) -> Option<Self> {
- Some(Ratio::from_integer(n.into()))
- }
-
- fn from_i128(n: i128) -> Option<Self> {
- Some(Ratio::from_integer(n.into()))
- }
-
- fn from_u64(n: u64) -> Option<Self> {
- Some(Ratio::from_integer(n.into()))
- }
-
- fn from_u128(n: u128) -> Option<Self> {
- Some(Ratio::from_integer(n.into()))
- }
-
- fn from_f32(n: f32) -> Option<Self> {
- Ratio::from_float(n)
- }
-
- fn from_f64(n: f64) -> Option<Self> {
- Ratio::from_float(n)
- }
-}
-
-macro_rules! from_primitive_integer {
- ($typ:ty, $approx:ident) => {
- impl FromPrimitive for Ratio<$typ> {
- fn from_i64(n: i64) -> Option<Self> {
- <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer)
- }
-
- fn from_i128(n: i128) -> Option<Self> {
- <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer)
- }
-
- fn from_u64(n: u64) -> Option<Self> {
- <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer)
- }
-
- fn from_u128(n: u128) -> Option<Self> {
- <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer)
- }
-
- fn from_f32(n: f32) -> Option<Self> {
- $approx(n, 10e-20, 30)
- }
-
- fn from_f64(n: f64) -> Option<Self> {
- $approx(n, 10e-20, 30)
- }
- }
- };
-}
-
-from_primitive_integer!(i8, approximate_float);
-from_primitive_integer!(i16, approximate_float);
-from_primitive_integer!(i32, approximate_float);
-from_primitive_integer!(i64, approximate_float);
-from_primitive_integer!(i128, approximate_float);
-from_primitive_integer!(isize, approximate_float);
-
-from_primitive_integer!(u8, approximate_float_unsigned);
-from_primitive_integer!(u16, approximate_float_unsigned);
-from_primitive_integer!(u32, approximate_float_unsigned);
-from_primitive_integer!(u64, approximate_float_unsigned);
-from_primitive_integer!(u128, approximate_float_unsigned);
-from_primitive_integer!(usize, approximate_float_unsigned);
-
-impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> {
- pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> {
- // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems
- // to work well. Might want to choose something based on the types in the future, e.g.
- // T::max().recip() and T::bits() or something similar.
- let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20");
- approximate_float(f, epsilon, 30)
- }
-}
-
-fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
-where
- T: Integer + Signed + Bounded + NumCast + Clone,
- F: FloatCore + NumCast,
-{
- let negative = val.is_sign_negative();
- let abs_val = val.abs();
-
- let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?;
-
- // Make negative again if needed
- Some(if negative { r.neg() } else { r })
-}
-
-// No Unsigned constraint because this also works on positive integers and is called
-// like that, see above
-fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
-where
- T: Integer + Bounded + NumCast + Clone,
- F: FloatCore + NumCast,
-{
- // Continued fractions algorithm
- // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac
-
- if val < F::zero() || val.is_nan() {
- return None;
- }
-
- let mut q = val;
- let mut n0 = T::zero();
- let mut d0 = T::one();
- let mut n1 = T::one();
- let mut d1 = T::zero();
-
- let t_max = T::max_value();
- let t_max_f = <F as NumCast>::from(t_max.clone())?;
-
- // 1/epsilon > T::MAX
- let epsilon = t_max_f.recip();
-
- // Overflow
- if q > t_max_f {
- return None;
- }
-
- for _ in 0..max_iterations {
- let a = match <T as NumCast>::from(q) {
- None => break,
- Some(a) => a,
- };
-
- let a_f = match <F as NumCast>::from(a.clone()) {
- None => break,
- Some(a_f) => a_f,
- };
- let f = q - a_f;
-
- // Prevent overflow
- if !a.is_zero()
- && (n1 > t_max.clone() / a.clone()
- || d1 > t_max.clone() / a.clone()
- || a.clone() * n1.clone() > t_max.clone() - n0.clone()
- || a.clone() * d1.clone() > t_max.clone() - d0.clone())
- {
- break;
- }
-
- let n = a.clone() * n1.clone() + n0.clone();
- let d = a.clone() * d1.clone() + d0.clone();
-
- n0 = n1;
- d0 = d1;
- n1 = n.clone();
- d1 = d.clone();
-
- // Simplify fraction. Doing so here instead of at the end
- // allows us to get closer to the target value without overflows
- let g = Integer::gcd(&n1, &d1);
- if !g.is_zero() {
- n1 = n1 / g.clone();
- d1 = d1 / g.clone();
- }
-
- // Close enough?
- let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) {
- (Some(n_f), Some(d_f)) => (n_f, d_f),
- _ => break,
- };
- if (n_f / d_f - val).abs() < max_error {
- break;
- }
-
- // Prevent division by ~0
- if f < epsilon {
- break;
- }
- q = f.recip();
- }
-
- // Overflow
- if d1.is_zero() {
- return None;
- }
-
- Some(Ratio::new(n1, d1))
-}
-
-#[cfg(not(feature = "num-bigint"))]
-macro_rules! to_primitive_small {
- ($($type_name:ty)*) => ($(
- impl ToPrimitive for Ratio<$type_name> {
- fn to_i64(&self) -> Option<i64> {
- self.to_integer().to_i64()
- }
-
- fn to_i128(&self) -> Option<i128> {
- self.to_integer().to_i128()
- }
-
- fn to_u64(&self) -> Option<u64> {
- self.to_integer().to_u64()
- }
-
- fn to_u128(&self) -> Option<u128> {
- self.to_integer().to_u128()
- }
-
- fn to_f64(&self) -> Option<f64> {
- let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap();
- if float.is_nan() {
- None
- } else {
- Some(float)
- }
- }
- }
- )*)
-}
-
-#[cfg(not(feature = "num-bigint"))]
-to_primitive_small!(u8 i8 u16 i16 u32 i32);
-
-#[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))]
-to_primitive_small!(usize isize);
-
-#[cfg(not(feature = "num-bigint"))]
-macro_rules! to_primitive_64 {
- ($($type_name:ty)*) => ($(
- impl ToPrimitive for Ratio<$type_name> {
- fn to_i64(&self) -> Option<i64> {
- self.to_integer().to_i64()
- }
-
- fn to_i128(&self) -> Option<i128> {
- self.to_integer().to_i128()
- }
-
- fn to_u64(&self) -> Option<u64> {
- self.to_integer().to_u64()
- }
-
- fn to_u128(&self) -> Option<u128> {
- self.to_integer().to_u128()
- }
-
- fn to_f64(&self) -> Option<f64> {
- let float = ratio_to_f64(
- self.numer as i128,
- self.denom as i128
- );
- if float.is_nan() {
- None
- } else {
- Some(float)
- }
- }
- }
- )*)
-}
-
-#[cfg(not(feature = "num-bigint"))]
-to_primitive_64!(u64 i64);
-
-#[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))]
-to_primitive_64!(usize isize);
-
-#[cfg(feature = "num-bigint")]
-impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> {
- fn to_i64(&self) -> Option<i64> {
- self.to_integer().to_i64()
- }
-
- fn to_i128(&self) -> Option<i128> {
- self.to_integer().to_i128()
- }
-
- fn to_u64(&self) -> Option<u64> {
- self.to_integer().to_u64()
- }
-
- fn to_u128(&self) -> Option<u128> {
- self.to_integer().to_u128()
- }
-
- fn to_f64(&self) -> Option<f64> {
- let float = match (self.numer.to_i64(), self.denom.to_i64()) {
- (Some(numer), Some(denom)) => ratio_to_f64(
- <i128 as From<_>>::from(numer),
- <i128 as From<_>>::from(denom),
- ),
- _ => {
- let numer: BigInt = self.numer.to_bigint()?;
- let denom: BigInt = self.denom.to_bigint()?;
- ratio_to_f64(numer, denom)
- }
- };
- if float.is_nan() {
- None
- } else {
- Some(float)
- }
- }
-}
-
-trait Bits {
- fn bits(&self) -> u64;
-}
-
-#[cfg(feature = "num-bigint")]
-impl Bits for BigInt {
- fn bits(&self) -> u64 {
- self.bits()
- }
-}
-
-impl Bits for i128 {
- fn bits(&self) -> u64 {
- (128 - self.wrapping_abs().leading_zeros()).into()
- }
-}
-
-/// Converts a ratio of `T` to an f64.
-///
-/// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than
-/// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`.
-fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>(
- numer: T,
- denom: T,
-) -> f64 {
- use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX};
-
- assert_eq!(
- RADIX, 2,
- "only floating point implementations with radix 2 are supported"
- );
-
- // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64.
- const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS;
- const MIN_EXACT_INT: i64 = -MAX_EXACT_INT;
-
- let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap();
- if !flo_sign.is_normal() {
- return flo_sign;
- }
-
- // Fast track: both sides can losslessly be converted to f64s. In this case, letting the
- // FPU do the job is faster and easier. In any other case, converting to f64s may lead
- // to an inexact result: https://stackoverflow.com/questions/56641441/.
- if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) {
- if MIN_EXACT_INT <= n && n <= MAX_EXACT_INT && MIN_EXACT_INT <= d && d <= MAX_EXACT_INT {
- return n.to_f64().unwrap() / d.to_f64().unwrap();
- }
- }
-
- // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will
- // be used as the mantissa of the resulting float, and the remaining two are for rounding.
- // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or
- // 56 bits.
- let mut numer = numer.abs();
- let mut denom = denom.abs();
- let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) {
- Some(diff) => (true, diff),
- None => (false, denom.bits() - numer.bits()),
- };
-
- // Filter out overflows and underflows. After this step, the signed difference fits in an
- // isize.
- if is_diff_positive && absolute_diff > MAX_EXP as u64 {
- return INFINITY * flo_sign;
- }
- if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 {
- return 0.0 * flo_sign;
- }
- let diff = if is_diff_positive {
- absolute_diff.to_isize().unwrap()
- } else {
- -absolute_diff.to_isize().unwrap()
- };
-
- // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the
- // quotient is going to be subnormal, in which case it may have fewer bits.
- let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2;
- if shift >= 0 {
- denom <<= shift as usize
- } else {
- numer <<= -shift as usize
- };
-
- let (quotient, remainder) = numer.div_rem(&denom);
-
- // This is guaranteed to fit since we've set up quotient to be at most 56 bits.
- let mut quotient = quotient.to_u64().unwrap();
- let n_rounding_bits = {
- let quotient_bits = 64 - quotient.leading_zeros() as isize;
- let subnormal_bits = MIN_EXP as isize - shift;
- quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize
- } as usize;
- debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3);
- let rounding_bit_mask = (1u64 << n_rounding_bits) - 1;
-
- // Round to 53 bits with round-to-even. For rounding, we need to take into account both
- // our rounding bits and the division's remainder.
- let ls_bit = quotient & (1u64 << n_rounding_bits) != 0;
- let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0;
- let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0;
- if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) {
- quotient += 1u64 << n_rounding_bits;
- }
- quotient &= !rounding_bit_mask;
-
- // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3
- // trailing zeros, so there is no risk of a rounding error here.
- let q_float = quotient as f64 * flo_sign;
- ldexp(q_float, shift as i32)
-}
-
-/// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not
-/// representable.
-fn ldexp(x: f64, exp: i32) -> f64 {
- use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX};
-
- assert_eq!(
- RADIX, 2,
- "only floating point implementations with radix 2 are supported"
- );
-
- const EXPONENT_MASK: u64 = 0x7ff << 52;
- const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe;
- const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32;
-
- if x.is_zero() || x.is_infinite() || x.is_nan() {
- return x;
- }
-
- // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize.
- if exp > 3 * MAX_EXP {
- return INFINITY * x.signum();
- } else if exp < -3 * MAX_EXP {
- return 0.0 * x.signum();
- }
-
- // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range.
- let (bits, curr_exp) = if !x.is_normal() {
- // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of
- // precision or rounding.
- let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER);
- let bits = normal_x.to_bits();
- // This cast is safe because the exponent is at most 0x7fe, which fits in an i32.
- (
- bits,
- ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER,
- )
- } else {
- let bits = x.to_bits();
- let curr_exp = (bits & EXPONENT_MASK) >> 52;
- // This cast is safe because the exponent is at most 0x7fe, which fits in an i32.
- (bits, curr_exp as i32)
- };
-
- // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between
- // -2*MAX_EXP and 2*MAX_EXP.
- let new_exp = curr_exp + exp;
-
- if new_exp > MAX_UNSIGNED_EXPONENT {
- INFINITY * x.signum()
- } else if new_exp > 0 {
- // Normal case: exponent is not too large nor subnormal.
- let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52);
- f64::from_bits(new_bits)
- } else if new_exp >= -(MANTISSA_DIGITS as i32) {
- // Result is subnormal but may not be zero.
- // In this case, we increase the exponent by 54 to make it normal, then multiply the end
- // result by 2^-53. This results in a single multiplication with no prior rounding error,
- // so there is no risk of double rounding.
- let new_exp = new_exp + MIN_SUBNORMAL_POWER;
- debug_assert!(new_exp >= 0);
- let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52);
- f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER)
- } else {
- // Result is zero.
- return 0.0 * x.signum();
- }
-}
-
-#[cfg(test)]
-#[cfg(feature = "std")]
-fn hash<T: Hash>(x: &T) -> u64 {
- use std::collections::hash_map::RandomState;
- use std::hash::BuildHasher;
- let mut hasher = <RandomState as BuildHasher>::Hasher::new();
- x.hash(&mut hasher);
- hasher.finish()
-}
-
-#[cfg(test)]
-mod test {
- use super::ldexp;
- #[cfg(all(feature = "num-bigint"))]
- use super::BigInt;
- #[cfg(feature = "num-bigint")]
- use super::BigRational;
- use super::{Ratio, Rational64};
-
- use core::f64;
- use core::i32;
- use core::i64;
- use core::str::FromStr;
- use num_integer::Integer;
- use num_traits::ToPrimitive;
- use num_traits::{FromPrimitive, One, Pow, Signed, Zero};
-
- pub const _0: Rational64 = Ratio { numer: 0, denom: 1 };
- pub const _1: Rational64 = Ratio { numer: 1, denom: 1 };
- pub const _2: Rational64 = Ratio { numer: 2, denom: 1 };
- pub const _NEG2: Rational64 = Ratio {
- numer: -2,
- denom: 1,
- };
- pub const _8: Rational64 = Ratio { numer: 8, denom: 1 };
- pub const _15: Rational64 = Ratio {
- numer: 15,
- denom: 1,
- };
- pub const _16: Rational64 = Ratio {
- numer: 16,
- denom: 1,
- };
-
- pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 };
- pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 };
- pub const _1_15: Rational64 = Ratio {
- numer: 1,
- denom: 15,
- };
- pub const _1_16: Rational64 = Ratio {
- numer: 1,
- denom: 16,
- };
- pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 };
- pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 };
- pub const _NEG1_2: Rational64 = Ratio {
- numer: -1,
- denom: 2,
- };
- pub const _1_NEG2: Rational64 = Ratio {
- numer: 1,
- denom: -2,
- };
- pub const _NEG1_NEG2: Rational64 = Ratio {
- numer: -1,
- denom: -2,
- };
- pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 };
- pub const _NEG1_3: Rational64 = Ratio {
- numer: -1,
- denom: 3,
- };
- pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 };
- pub const _NEG2_3: Rational64 = Ratio {
- numer: -2,
- denom: 3,
- };
- pub const _MIN: Rational64 = Ratio {
- numer: i64::MIN,
- denom: 1,
- };
- pub const _MIN_P1: Rational64 = Ratio {
- numer: i64::MIN + 1,
- denom: 1,
- };
- pub const _MAX: Rational64 = Ratio {
- numer: i64::MAX,
- denom: 1,
- };
- pub const _MAX_M1: Rational64 = Ratio {
- numer: i64::MAX - 1,
- denom: 1,
- };
- pub const _BILLION: Rational64 = Ratio {
- numer: 1_000_000_000,
- denom: 1,
- };
-
- #[cfg(feature = "num-bigint")]
- pub fn to_big(n: Rational64) -> BigRational {
- Ratio::new(
- FromPrimitive::from_i64(n.numer).unwrap(),
- FromPrimitive::from_i64(n.denom).unwrap(),
- )
- }
- #[cfg(not(feature = "num-bigint"))]
- pub fn to_big(n: Rational64) -> Rational64 {
- Ratio::new(
- FromPrimitive::from_i64(n.numer).unwrap(),
- FromPrimitive::from_i64(n.denom).unwrap(),
- )
- }
-
- #[test]
- fn test_test_constants() {
- // check our constants are what Ratio::new etc. would make.
- assert_eq!(_0, Zero::zero());
- assert_eq!(_1, One::one());
- assert_eq!(_2, Ratio::from_integer(2));
- assert_eq!(_1_2, Ratio::new(1, 2));
- assert_eq!(_3_2, Ratio::new(3, 2));
- assert_eq!(_NEG1_2, Ratio::new(-1, 2));
- assert_eq!(_2, From::from(2));
- }
-
- #[test]
- fn test_new_reduce() {
- assert_eq!(Ratio::new(2, 2), One::one());
- assert_eq!(Ratio::new(0, i32::MIN), Zero::zero());
- assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one());
- }
- #[test]
- #[should_panic]
- fn test_new_zero() {
- let _a = Ratio::new(1, 0);
- }
-
- #[test]
- fn test_approximate_float() {
- assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2)));
- assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2)));
- assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1)));
- assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1)));
- assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100)));
- assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100)));
-
- assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2)));
- assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1)));
- assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1)));
- assert_eq!(Ratio::<i8>::from_f32(127.5f32), None);
- assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2)));
- assert_eq!(
- Ratio::<i8>::from_f32(-126.5f32),
- Some(Ratio::new(-126i8, 1))
- );
- assert_eq!(
- Ratio::<i8>::from_f32(-127.0f32),
- Some(Ratio::new(-127i8, 1))
- );
- assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None);
-
- assert_eq!(Ratio::<u8>::from_f32(-127f32), None);
- assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1)));
- assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2)));
- assert_eq!(Ratio::<u8>::from_f32(256f32), None);
-
- assert_eq!(Ratio::<i64>::from_f64(-10e200), None);
- assert_eq!(Ratio::<i64>::from_f64(10e200), None);
- assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None);
- assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None);
- assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None);
- assert_eq!(
- Ratio::<i64>::from_f64(f64::EPSILON),
- Some(Ratio::new(1, 4503599627370496))
- );
- assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1)));
- assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1)));
- }
-
- #[test]
- #[allow(clippy::eq_op)]
- fn test_cmp() {
- assert!(_0 == _0 && _1 == _1);
- assert!(_0 != _1 && _1 != _0);
- assert!(_0 < _1 && !(_1 < _0));
- assert!(_1 > _0 && !(_0 > _1));
-
- assert!(_0 <= _0 && _1 <= _1);
- assert!(_0 <= _1 && !(_1 <= _0));
-
- assert!(_0 >= _0 && _1 >= _1);
- assert!(_1 >= _0 && !(_0 >= _1));
-
- let _0_2: Rational64 = Ratio::new_raw(0, 2);
- assert_eq!(_0, _0_2);
- }
-
- #[test]
- fn test_cmp_overflow() {
- use core::cmp::Ordering;
-
- // issue #7 example:
- let big = Ratio::new(128u8, 1);
- let small = big.recip();
- assert!(big > small);
-
- // try a few that are closer together
- // (some matching numer, some matching denom, some neither)
- let ratios = [
- Ratio::new(125_i8, 127_i8),
- Ratio::new(63_i8, 64_i8),
- Ratio::new(124_i8, 125_i8),
- Ratio::new(125_i8, 126_i8),
- Ratio::new(126_i8, 127_i8),
- Ratio::new(127_i8, 126_i8),
- ];
-
- fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
- #[cfg(feature = "std")]
- println!("comparing {} and {}", a, b);
- assert_eq!(a.cmp(&b), ord);
- assert_eq!(b.cmp(&a), ord.reverse());
- }
-
- for (i, &a) in ratios.iter().enumerate() {
- check_cmp(a, a, Ordering::Equal);
- check_cmp(-a, a, Ordering::Less);
- for &b in &ratios[i + 1..] {
- check_cmp(a, b, Ordering::Less);
- check_cmp(-a, -b, Ordering::Greater);
- check_cmp(a.recip(), b.recip(), Ordering::Greater);
- check_cmp(-a.recip(), -b.recip(), Ordering::Less);
- }
- }
- }
-
- #[test]
- fn test_to_integer() {
- assert_eq!(_0.to_integer(), 0);
- assert_eq!(_1.to_integer(), 1);
- assert_eq!(_2.to_integer(), 2);
- assert_eq!(_1_2.to_integer(), 0);
- assert_eq!(_3_2.to_integer(), 1);
- assert_eq!(_NEG1_2.to_integer(), 0);
- }
-
- #[test]
- fn test_numer() {
- assert_eq!(_0.numer(), &0);
- assert_eq!(_1.numer(), &1);
- assert_eq!(_2.numer(), &2);
- assert_eq!(_1_2.numer(), &1);
- assert_eq!(_3_2.numer(), &3);
- assert_eq!(_NEG1_2.numer(), &(-1));
- }
- #[test]
- fn test_denom() {
- assert_eq!(_0.denom(), &1);
- assert_eq!(_1.denom(), &1);
- assert_eq!(_2.denom(), &1);
- assert_eq!(_1_2.denom(), &2);
- assert_eq!(_3_2.denom(), &2);
- assert_eq!(_NEG1_2.denom(), &2);
- }
-
- #[test]
- fn test_is_integer() {
- assert!(_0.is_integer());
- assert!(_1.is_integer());
- assert!(_2.is_integer());
- assert!(!_1_2.is_integer());
- assert!(!_3_2.is_integer());
- assert!(!_NEG1_2.is_integer());
- }
-
- #[cfg(not(feature = "std"))]
- use core::fmt::{self, Write};
- #[cfg(not(feature = "std"))]
- #[derive(Debug)]
- struct NoStdTester {
- cursor: usize,
- buf: [u8; NoStdTester::BUF_SIZE],
- }
-
- #[cfg(not(feature = "std"))]
- impl NoStdTester {
- fn new() -> NoStdTester {
- NoStdTester {
- buf: [0; Self::BUF_SIZE],
- cursor: 0,
- }
- }
-
- fn clear(&mut self) {
- self.buf = [0; Self::BUF_SIZE];
- self.cursor = 0;
- }
-
- const WRITE_ERR: &'static str = "Formatted output too long";
- const BUF_SIZE: usize = 32;
- }
-
- #[cfg(not(feature = "std"))]
- impl Write for NoStdTester {
- fn write_str(&mut self, s: &str) -> fmt::Result {
- for byte in s.bytes() {
- self.buf[self.cursor] = byte;
- self.cursor += 1;
- if self.cursor >= self.buf.len() {
- return Err(fmt::Error {});
- }
- }
- Ok(())
- }
- }
-
- #[cfg(not(feature = "std"))]
- impl PartialEq<str> for NoStdTester {
- fn eq(&self, other: &str) -> bool {
- let other = other.as_bytes();
- for index in 0..self.cursor {
- if self.buf.get(index) != other.get(index) {
- return false;
- }
- }
- true
- }
- }
-
- macro_rules! assert_fmt_eq {
- ($fmt_args:expr, $string:expr) => {
- #[cfg(not(feature = "std"))]
- {
- let mut tester = NoStdTester::new();
- write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR);
- assert_eq!(tester, *$string);
- tester.clear();
- }
- #[cfg(feature = "std")]
- {
- assert_eq!(std::fmt::format($fmt_args), $string);
- }
- };
- }
-
- #[test]
- fn test_show() {
- // Test:
- // :b :o :x, :X, :?
- // alternate or not (#)
- // positive and negative
- // padding
- // does not test precision (i.e. truncation)
- assert_fmt_eq!(format_args!("{}", _2), "2");
- assert_fmt_eq!(format_args!("{:+}", _2), "+2");
- assert_fmt_eq!(format_args!("{:-}", _2), "2");
- assert_fmt_eq!(format_args!("{}", _1_2), "1/2");
- assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); // test negatives
- assert_fmt_eq!(format_args!("{}", _0), "0");
- assert_fmt_eq!(format_args!("{}", -_2), "-2");
- assert_fmt_eq!(format_args!("{:+}", -_2), "-2");
- assert_fmt_eq!(format_args!("{:b}", _2), "10");
- assert_fmt_eq!(format_args!("{:#b}", _2), "0b10");
- assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10");
- assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10");
- assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10");
- assert_fmt_eq!(format_args!("{:b}", _0), "0");
- assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10");
- // no std does not support padding
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:010b}", _1_2), "0000001/10");
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10");
- let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8);
- assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10");
- assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10");
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001");
-
- assert_fmt_eq!(format_args!("{:o}", _8), "10");
- assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10");
- assert_fmt_eq!(format_args!("{:o}", _0), "0");
- assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10");
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:010o}", _1_8), "0000001/10");
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10");
- assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2");
- assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2");
-
- assert_fmt_eq!(format_args!("{:x}", _16), "10");
- assert_fmt_eq!(format_args!("{:x}", _15), "f");
- assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10");
- assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f");
- assert_fmt_eq!(format_args!("{:x}", _0), "0");
- assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10");
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:010x}", _1_16), "0000001/10");
- #[cfg(feature = "std")]
- assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10");
- assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2");
- assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2");
-
- assert_fmt_eq!(format_args!("{:X}", _16), "10");
- assert_fmt_eq!(format_args!("{:X}", _15), "F");
- assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10");
- assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F");
- assert_fmt_eq!(format_args!("{:X}", _0), "0");
- assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10");
- #[cfg(feature = "std")]
- assert_eq!(format!("{:010X}", _1_16), "0000001/10");
- #[cfg(feature = "std")]
- assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10");
- assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2");
- assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2");
-
- #[cfg(has_int_exp_fmt)]
- {
- assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0");
- assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0");
- assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0");
- assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9");
- assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9");
- assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9");
- assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9");
-
- assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0");
- assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0");
- assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0");
- assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9");
- assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9");
- assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9");
- assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9");
- }
- }
-
- mod arith {
- use super::super::{Ratio, Rational64};
- use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2};
- use core::fmt::Debug;
- use num_integer::Integer;
- use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign};
-
- #[test]
- fn test_add() {
- fn test(a: Rational64, b: Rational64, c: Rational64) {
- assert_eq!(a + b, c);
- assert_eq!(
- {
- let mut x = a;
- x += b;
- x
- },
- c
- );
- assert_eq!(to_big(a) + to_big(b), to_big(c));
- assert_eq!(a.checked_add(&b), Some(c));
- assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c)));
- }
- fn test_assign(a: Rational64, b: i64, c: Rational64) {
- assert_eq!(a + b, c);
- assert_eq!(
- {
- let mut x = a;
- x += b;
- x
- },
- c
- );
- }
-
- test(_1, _1_2, _3_2);
- test(_1, _1, _2);
- test(_1_2, _3_2, _2);
- test(_1_2, _NEG1_2, _0);
- test_assign(_1_2, 1, _3_2);
- }
-
- #[test]
- fn test_add_overflow() {
- // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value())
- // to Ratio(1+1, T::max_value()) for each integer type.
- // Previously, this calculation would overflow.
- fn test_add_typed_overflow<T>()
- where
- T: Integer + Bounded + Clone + Debug + NumAssign,
- {
- let _1_max = Ratio::new(T::one(), T::max_value());
- let _2_max = Ratio::new(T::one() + T::one(), T::max_value());
- assert_eq!(_1_max.clone() + _1_max.clone(), _2_max);
- assert_eq!(
- {
- let mut tmp = _1_max.clone();
- tmp += _1_max;
- tmp
- },
- _2_max
- );
- }
- test_add_typed_overflow::<u8>();
- test_add_typed_overflow::<u16>();
- test_add_typed_overflow::<u32>();
- test_add_typed_overflow::<u64>();
- test_add_typed_overflow::<usize>();
- test_add_typed_overflow::<u128>();
-
- test_add_typed_overflow::<i8>();
- test_add_typed_overflow::<i16>();
- test_add_typed_overflow::<i32>();
- test_add_typed_overflow::<i64>();
- test_add_typed_overflow::<isize>();
- test_add_typed_overflow::<i128>();
- }
-
- #[test]
- fn test_sub() {
- fn test(a: Rational64, b: Rational64, c: Rational64) {
- assert_eq!(a - b, c);
- assert_eq!(
- {
- let mut x = a;
- x -= b;
- x
- },
- c
- );
- assert_eq!(to_big(a) - to_big(b), to_big(c));
- assert_eq!(a.checked_sub(&b), Some(c));
- assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c)));
- }
- fn test_assign(a: Rational64, b: i64, c: Rational64) {
- assert_eq!(a - b, c);
- assert_eq!(
- {
- let mut x = a;
- x -= b;
- x
- },
- c
- );
- }
-
- test(_1, _1_2, _1_2);
- test(_3_2, _1_2, _1);
- test(_1, _NEG1_2, _3_2);
- test_assign(_1_2, 1, _NEG1_2);
- }
-
- #[test]
- fn test_sub_overflow() {
- // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero()
- // for each integer type. Previously, this calculation would overflow.
- fn test_sub_typed_overflow<T>()
- where
- T: Integer + Bounded + Clone + Debug + NumAssign,
- {
- let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value());
- assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer));
- {
- let mut tmp: Ratio<T> = _1_max.clone();
- tmp -= _1_max;
- assert!(T::is_zero(&tmp.numer));
- }
- }
- test_sub_typed_overflow::<u8>();
- test_sub_typed_overflow::<u16>();
- test_sub_typed_overflow::<u32>();
- test_sub_typed_overflow::<u64>();
- test_sub_typed_overflow::<usize>();
- test_sub_typed_overflow::<u128>();
-
- test_sub_typed_overflow::<i8>();
- test_sub_typed_overflow::<i16>();
- test_sub_typed_overflow::<i32>();
- test_sub_typed_overflow::<i64>();
- test_sub_typed_overflow::<isize>();
- test_sub_typed_overflow::<i128>();
- }
-
- #[test]
- fn test_mul() {
- fn test(a: Rational64, b: Rational64, c: Rational64) {
- assert_eq!(a * b, c);
- assert_eq!(
- {
- let mut x = a;
- x *= b;
- x
- },
- c
- );
- assert_eq!(to_big(a) * to_big(b), to_big(c));
- assert_eq!(a.checked_mul(&b), Some(c));
- assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c)));
- }
- fn test_assign(a: Rational64, b: i64, c: Rational64) {
- assert_eq!(a * b, c);
- assert_eq!(
- {
- let mut x = a;
- x *= b;
- x
- },
- c
- );
- }
-
- test(_1, _1_2, _1_2);
- test(_1_2, _3_2, Ratio::new(3, 4));
- test(_1_2, _NEG1_2, Ratio::new(-1, 4));
- test_assign(_1_2, 2, _1);
- }
-
- #[test]
- fn test_mul_overflow() {
- fn test_mul_typed_overflow<T>()
- where
- T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul,
- {
- let two = T::one() + T::one();
- let _3 = T::one() + T::one() + T::one();
-
- // 1/big * 2/3 = 1/(max/4*3), where big is max/2
- // make big = max/2, but also divisible by 2
- let big = T::max_value() / two.clone() / two.clone() * two.clone();
- let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone());
- let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone());
- assert_eq!(None, big.clone().checked_mul(&_3.clone()));
- let expected = Ratio::new(T::one(), big / two.clone() * _3.clone());
- assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone());
- assert_eq!(
- Some(expected.clone()),
- _1_big.clone().checked_mul(&_2_3.clone())
- );
- assert_eq!(expected, {
- let mut tmp = _1_big;
- tmp *= _2_3;
- tmp
- });
-
- // big/3 * 3 = big/1
- // make big = max/2, but make it indivisible by 3
- let big = T::max_value() / two / _3.clone() * _3.clone() + T::one();
- assert_eq!(None, big.clone().checked_mul(&_3.clone()));
- let big_3 = Ratio::new(big.clone(), _3.clone());
- let expected = Ratio::new(big, T::one());
- assert_eq!(expected, big_3.clone() * _3.clone());
- assert_eq!(expected, {
- let mut tmp = big_3;
- tmp *= _3;
- tmp
- });
- }
- test_mul_typed_overflow::<u16>();
- test_mul_typed_overflow::<u8>();
- test_mul_typed_overflow::<u32>();
- test_mul_typed_overflow::<u64>();
- test_mul_typed_overflow::<usize>();
- test_mul_typed_overflow::<u128>();
-
- test_mul_typed_overflow::<i8>();
- test_mul_typed_overflow::<i16>();
- test_mul_typed_overflow::<i32>();
- test_mul_typed_overflow::<i64>();
- test_mul_typed_overflow::<isize>();
- test_mul_typed_overflow::<i128>();
- }
-
- #[test]
- fn test_div() {
- fn test(a: Rational64, b: Rational64, c: Rational64) {
- assert_eq!(a / b, c);
- assert_eq!(
- {
- let mut x = a;
- x /= b;
- x
- },
- c
- );
- assert_eq!(to_big(a) / to_big(b), to_big(c));
- assert_eq!(a.checked_div(&b), Some(c));
- assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c)));
- }
- fn test_assign(a: Rational64, b: i64, c: Rational64) {
- assert_eq!(a / b, c);
- assert_eq!(
- {
- let mut x = a;
- x /= b;
- x
- },
- c
- );
- }
-
- test(_1, _1_2, _2);
- test(_3_2, _1_2, _1 + _2);
- test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
- test_assign(_1, 2, _1_2);
- }
-
- #[test]
- fn test_div_overflow() {
- fn test_div_typed_overflow<T>()
- where
- T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul,
- {
- let two = T::one() + T::one();
- let _3 = T::one() + T::one() + T::one();
-
- // 1/big / 3/2 = 1/(max/4*3), where big is max/2
- // big ~ max/2, and big is divisible by 2
- let big = T::max_value() / two.clone() / two.clone() * two.clone();
- assert_eq!(None, big.clone().checked_mul(&_3.clone()));
- let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone());
- let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone());
- let expected = Ratio::new(T::one(), big / two.clone() * _3.clone());
- assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone());
- assert_eq!(
- Some(expected.clone()),
- _1_big.clone().checked_div(&_3_two.clone())
- );
- assert_eq!(expected, {
- let mut tmp = _1_big;
- tmp /= _3_two;
- tmp
- });
-
- // 3/big / 3 = 1/big where big is max/2
- // big ~ max/2, and big is not divisible by 3
- let big = T::max_value() / two / _3.clone() * _3.clone() + T::one();
- assert_eq!(None, big.clone().checked_mul(&_3.clone()));
- let _3_big = Ratio::new(_3.clone(), big.clone());
- let expected = Ratio::new(T::one(), big);
- assert_eq!(expected, _3_big.clone() / _3.clone());
- assert_eq!(expected, {
- let mut tmp = _3_big;
- tmp /= _3;
- tmp
- });
- }
- test_div_typed_overflow::<u8>();
- test_div_typed_overflow::<u16>();
- test_div_typed_overflow::<u32>();
- test_div_typed_overflow::<u64>();
- test_div_typed_overflow::<usize>();
- test_div_typed_overflow::<u128>();
-
- test_div_typed_overflow::<i8>();
- test_div_typed_overflow::<i16>();
- test_div_typed_overflow::<i32>();
- test_div_typed_overflow::<i64>();
- test_div_typed_overflow::<isize>();
- test_div_typed_overflow::<i128>();
- }
-
- #[test]
- fn test_rem() {
- fn test(a: Rational64, b: Rational64, c: Rational64) {
- assert_eq!(a % b, c);
- assert_eq!(
- {
- let mut x = a;
- x %= b;
- x
- },
- c
- );
- assert_eq!(to_big(a) % to_big(b), to_big(c))
- }
- fn test_assign(a: Rational64, b: i64, c: Rational64) {
- assert_eq!(a % b, c);
- assert_eq!(
- {
- let mut x = a;
- x %= b;
- x
- },
- c
- );
- }
-
- test(_3_2, _1, _1_2);
- test(_3_2, _1_2, _0);
- test(_5_2, _3_2, _1);
- test(_2, _NEG1_2, _0);
- test(_1_2, _2, _1_2);
- test_assign(_3_2, 1, _1_2);
- }
-
- #[test]
- fn test_rem_overflow() {
- // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0
- // for each integer type. Previously, this calculation would overflow.
- fn test_rem_typed_overflow<T>()
- where
- T: Integer + Bounded + Clone + Debug + NumAssign,
- {
- let two = T::one() + T::one();
- // value near to maximum, but divisible by two
- let max_div2 = T::max_value() / two.clone() * two.clone();
- let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2);
- let _1_two: Ratio<T> = Ratio::new(T::one(), two);
- assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer));
- {
- let mut tmp: Ratio<T> = _1_two;
- tmp %= _1_max;
- assert!(T::is_zero(&tmp.numer));
- }
- }
- test_rem_typed_overflow::<u8>();
- test_rem_typed_overflow::<u16>();
- test_rem_typed_overflow::<u32>();
- test_rem_typed_overflow::<u64>();
- test_rem_typed_overflow::<usize>();
- test_rem_typed_overflow::<u128>();
-
- test_rem_typed_overflow::<i8>();
- test_rem_typed_overflow::<i16>();
- test_rem_typed_overflow::<i32>();
- test_rem_typed_overflow::<i64>();
- test_rem_typed_overflow::<isize>();
- test_rem_typed_overflow::<i128>();
- }
-
- #[test]
- fn test_neg() {
- fn test(a: Rational64, b: Rational64) {
- assert_eq!(-a, b);
- assert_eq!(-to_big(a), to_big(b))
- }
-
- test(_0, _0);
- test(_1_2, _NEG1_2);
- test(-_1, _1);
- }
- #[test]
- #[allow(clippy::eq_op)]
- fn test_zero() {
- assert_eq!(_0 + _0, _0);
- assert_eq!(_0 * _0, _0);
- assert_eq!(_0 * _1, _0);
- assert_eq!(_0 / _NEG1_2, _0);
- assert_eq!(_0 - _0, _0);
- }
- #[test]
- #[should_panic]
- fn test_div_0() {
- let _a = _1 / _0;
- }
-
- #[test]
- fn test_checked_failures() {
- let big = Ratio::new(128u8, 1);
- let small = Ratio::new(1, 128u8);
- assert_eq!(big.checked_add(&big), None);
- assert_eq!(small.checked_sub(&big), None);
- assert_eq!(big.checked_mul(&big), None);
- assert_eq!(small.checked_div(&big), None);
- assert_eq!(_1.checked_div(&_0), None);
- }
-
- #[test]
- fn test_checked_zeros() {
- assert_eq!(_0.checked_add(&_0), Some(_0));
- assert_eq!(_0.checked_sub(&_0), Some(_0));
- assert_eq!(_0.checked_mul(&_0), Some(_0));
- assert_eq!(_0.checked_div(&_0), None);
- }
-
- #[test]
- fn test_checked_min() {
- assert_eq!(_MIN.checked_add(&_MIN), None);
- assert_eq!(_MIN.checked_sub(&_MIN), Some(_0));
- assert_eq!(_MIN.checked_mul(&_MIN), None);
- assert_eq!(_MIN.checked_div(&_MIN), Some(_1));
- assert_eq!(_0.checked_add(&_MIN), Some(_MIN));
- assert_eq!(_0.checked_sub(&_MIN), None);
- assert_eq!(_0.checked_mul(&_MIN), Some(_0));
- assert_eq!(_0.checked_div(&_MIN), Some(_0));
- assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1));
- assert_eq!(_1.checked_sub(&_MIN), None);
- assert_eq!(_1.checked_mul(&_MIN), Some(_MIN));
- assert_eq!(_1.checked_div(&_MIN), None);
- assert_eq!(_MIN.checked_add(&_0), Some(_MIN));
- assert_eq!(_MIN.checked_sub(&_0), Some(_MIN));
- assert_eq!(_MIN.checked_mul(&_0), Some(_0));
- assert_eq!(_MIN.checked_div(&_0), None);
- assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1));
- assert_eq!(_MIN.checked_sub(&_1), None);
- assert_eq!(_MIN.checked_mul(&_1), Some(_MIN));
- assert_eq!(_MIN.checked_div(&_1), Some(_MIN));
- }
-
- #[test]
- fn test_checked_max() {
- assert_eq!(_MAX.checked_add(&_MAX), None);
- assert_eq!(_MAX.checked_sub(&_MAX), Some(_0));
- assert_eq!(_MAX.checked_mul(&_MAX), None);
- assert_eq!(_MAX.checked_div(&_MAX), Some(_1));
- assert_eq!(_0.checked_add(&_MAX), Some(_MAX));
- assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1));
- assert_eq!(_0.checked_mul(&_MAX), Some(_0));
- assert_eq!(_0.checked_div(&_MAX), Some(_0));
- assert_eq!(_1.checked_add(&_MAX), None);
- assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1));
- assert_eq!(_1.checked_mul(&_MAX), Some(_MAX));
- assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip()));
- assert_eq!(_MAX.checked_add(&_0), Some(_MAX));
- assert_eq!(_MAX.checked_sub(&_0), Some(_MAX));
- assert_eq!(_MAX.checked_mul(&_0), Some(_0));
- assert_eq!(_MAX.checked_div(&_0), None);
- assert_eq!(_MAX.checked_add(&_1), None);
- assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1));
- assert_eq!(_MAX.checked_mul(&_1), Some(_MAX));
- assert_eq!(_MAX.checked_div(&_1), Some(_MAX));
- }
-
- #[test]
- fn test_checked_min_max() {
- assert_eq!(_MIN.checked_add(&_MAX), Some(-_1));
- assert_eq!(_MIN.checked_sub(&_MAX), None);
- assert_eq!(_MIN.checked_mul(&_MAX), None);
- assert_eq!(
- _MIN.checked_div(&_MAX),
- Some(Ratio::new(_MIN.numer, _MAX.numer))
- );
- assert_eq!(_MAX.checked_add(&_MIN), Some(-_1));
- assert_eq!(_MAX.checked_sub(&_MIN), None);
- assert_eq!(_MAX.checked_mul(&_MIN), None);
- assert_eq!(_MAX.checked_div(&_MIN), None);
- }
- }
-
- #[test]
- fn test_round() {
- assert_eq!(_1_3.ceil(), _1);
- assert_eq!(_1_3.floor(), _0);
- assert_eq!(_1_3.round(), _0);
- assert_eq!(_1_3.trunc(), _0);
-
- assert_eq!(_NEG1_3.ceil(), _0);
- assert_eq!(_NEG1_3.floor(), -_1);
- assert_eq!(_NEG1_3.round(), _0);
- assert_eq!(_NEG1_3.trunc(), _0);
-
- assert_eq!(_2_3.ceil(), _1);
- assert_eq!(_2_3.floor(), _0);
- assert_eq!(_2_3.round(), _1);
- assert_eq!(_2_3.trunc(), _0);
-
- assert_eq!(_NEG2_3.ceil(), _0);
- assert_eq!(_NEG2_3.floor(), -_1);
- assert_eq!(_NEG2_3.round(), -_1);
- assert_eq!(_NEG2_3.trunc(), _0);
-
- assert_eq!(_1_2.ceil(), _1);
- assert_eq!(_1_2.floor(), _0);
- assert_eq!(_1_2.round(), _1);
- assert_eq!(_1_2.trunc(), _0);
-
- assert_eq!(_NEG1_2.ceil(), _0);
- assert_eq!(_NEG1_2.floor(), -_1);
- assert_eq!(_NEG1_2.round(), -_1);
- assert_eq!(_NEG1_2.trunc(), _0);
-
- assert_eq!(_1.ceil(), _1);
- assert_eq!(_1.floor(), _1);
- assert_eq!(_1.round(), _1);
- assert_eq!(_1.trunc(), _1);
-
- // Overflow checks
-
- let _neg1 = Ratio::from_integer(-1);
- let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1);
- let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX);
- let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1);
- let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2);
- let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX);
- let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2);
- let _large_rat7 = Ratio::new(1, i32::MIN + 1);
- let _large_rat8 = Ratio::new(1, i32::MAX);
-
- assert_eq!(_large_rat1.round(), One::one());
- assert_eq!(_large_rat2.round(), One::one());
- assert_eq!(_large_rat3.round(), One::one());
- assert_eq!(_large_rat4.round(), One::one());
- assert_eq!(_large_rat5.round(), _neg1);
- assert_eq!(_large_rat6.round(), _neg1);
- assert_eq!(_large_rat7.round(), Zero::zero());
- assert_eq!(_large_rat8.round(), Zero::zero());
- }
-
- #[test]
- fn test_fract() {
- assert_eq!(_1.fract(), _0);
- assert_eq!(_NEG1_2.fract(), _NEG1_2);
- assert_eq!(_1_2.fract(), _1_2);
- assert_eq!(_3_2.fract(), _1_2);
- }
-
- #[test]
- fn test_recip() {
- assert_eq!(_1 * _1.recip(), _1);
- assert_eq!(_2 * _2.recip(), _1);
- assert_eq!(_1_2 * _1_2.recip(), _1);
- assert_eq!(_3_2 * _3_2.recip(), _1);
- assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
-
- assert_eq!(_3_2.recip(), _2_3);
- assert_eq!(_NEG1_2.recip(), _NEG2);
- assert_eq!(_NEG1_2.recip().denom(), &1);
- }
-
- #[test]
- #[should_panic(expected = "division by zero")]
- fn test_recip_fail() {
- let _a = Ratio::new(0, 1).recip();
- }
-
- #[test]
- fn test_pow() {
- fn test(r: Rational64, e: i32, expected: Rational64) {
- assert_eq!(r.pow(e), expected);
- assert_eq!(Pow::pow(r, e), expected);
- assert_eq!(Pow::pow(r, &e), expected);
- assert_eq!(Pow::pow(&r, e), expected);
- assert_eq!(Pow::pow(&r, &e), expected);
- #[cfg(feature = "num-bigint")]
- test_big(r, e, expected);
- }
-
- #[cfg(feature = "num-bigint")]
- fn test_big(r: Rational64, e: i32, expected: Rational64) {
- let r = BigRational::new_raw(r.numer.into(), r.denom.into());
- let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into());
- assert_eq!((&r).pow(e), expected);
- assert_eq!(Pow::pow(r.clone(), e), expected);
- assert_eq!(Pow::pow(r.clone(), &e), expected);
- assert_eq!(Pow::pow(&r, e), expected);
- assert_eq!(Pow::pow(&r, &e), expected);
- }
-
- test(_1_2, 2, Ratio::new(1, 4));
- test(_1_2, -2, Ratio::new(4, 1));
- test(_1, 1, _1);
- test(_1, i32::MAX, _1);
- test(_1, i32::MIN, _1);
- test(_NEG1_2, 2, _1_2.pow(2i32));
- test(_NEG1_2, 3, -_1_2.pow(3i32));
- test(_3_2, 0, _1);
- test(_3_2, -1, _3_2.recip());
- test(_3_2, 3, Ratio::new(27, 8));
- }
-
- #[test]
- #[cfg(feature = "std")]
- fn test_to_from_str() {
- use std::string::{String, ToString};
- fn test(r: Rational64, s: String) {
- assert_eq!(FromStr::from_str(&s), Ok(r));
- assert_eq!(r.to_string(), s);
- }
- test(_1, "1".to_string());
- test(_0, "0".to_string());
- test(_1_2, "1/2".to_string());
- test(_3_2, "3/2".to_string());
- test(_2, "2".to_string());
- test(_NEG1_2, "-1/2".to_string());
- }
- #[test]
- fn test_from_str_fail() {
- fn test(s: &str) {
- let rational: Result<Rational64, _> = FromStr::from_str(s);
- assert!(rational.is_err());
- }
-
- let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"];
- for &s in xs.iter() {
- test(s);
- }
- }
-
- #[cfg(feature = "num-bigint")]
- #[test]
- fn test_from_float() {
- use num_traits::float::FloatCore;
- fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) {
- let ratio: BigRational = Ratio::from_float(given).unwrap();
- assert_eq!(
- ratio,
- Ratio::new(
- FromStr::from_str(numer).unwrap(),
- FromStr::from_str(denom).unwrap()
- )
- );
- }
-
- // f32
- test(core::f32::consts::PI, ("13176795", "4194304"));
- test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
- test(
- -(2f32.powf(100.)),
- ("-1267650600228229401496703205376", "1"),
- );
- test(
- 1.0 / 2f32.powf(100.),
- ("1", "1267650600228229401496703205376"),
- );
- test(684729.48391f32, ("1369459", "2"));
- test(-8573.5918555f32, ("-4389679", "512"));
-
- // f64
- test(
- core::f64::consts::PI,
- ("884279719003555", "281474976710656"),
- );
- test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
- test(
- -(2f64.powf(100.)),
- ("-1267650600228229401496703205376", "1"),
- );
- test(684729.48391f64, ("367611342500051", "536870912"));
- test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
- test(
- 1.0 / 2f64.powf(100.),
- ("1", "1267650600228229401496703205376"),
- );
- }
-
- #[cfg(feature = "num-bigint")]
- #[test]
- fn test_from_float_fail() {
- use core::{f32, f64};
-
- assert_eq!(Ratio::from_float(f32::NAN), None);
- assert_eq!(Ratio::from_float(f32::INFINITY), None);
- assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
- assert_eq!(Ratio::from_float(f64::NAN), None);
- assert_eq!(Ratio::from_float(f64::INFINITY), None);
- assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
- }
-
- #[test]
- fn test_signed() {
- assert_eq!(_NEG1_2.abs(), _1_2);
- assert_eq!(_3_2.abs_sub(&_1_2), _1);
- assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
- assert_eq!(_1_2.signum(), One::one());
- assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one());
- assert_eq!(_0.signum(), Zero::zero());
- assert!(_NEG1_2.is_negative());
- assert!(_1_NEG2.is_negative());
- assert!(!_NEG1_2.is_positive());
- assert!(!_1_NEG2.is_positive());
- assert!(_1_2.is_positive());
- assert!(_NEG1_NEG2.is_positive());
- assert!(!_1_2.is_negative());
- assert!(!_NEG1_NEG2.is_negative());
- assert!(!_0.is_positive());
- assert!(!_0.is_negative());
- }
-
- #[test]
- #[cfg(feature = "std")]
- fn test_hash() {
- assert!(crate::hash(&_0) != crate::hash(&_1));
- assert!(crate::hash(&_0) != crate::hash(&_3_2));
-
- // a == b -> hash(a) == hash(b)
- let a = Rational64::new_raw(4, 2);
- let b = Rational64::new_raw(6, 3);
- assert_eq!(a, b);
- assert_eq!(crate::hash(&a), crate::hash(&b));
-
- let a = Rational64::new_raw(123456789, 1000);
- let b = Rational64::new_raw(123456789 * 5, 5000);
- assert_eq!(a, b);
- assert_eq!(crate::hash(&a), crate::hash(&b));
- }
-
- #[test]
- fn test_into_pair() {
- assert_eq!((0, 1), _0.into());
- assert_eq!((-2, 1), _NEG2.into());
- assert_eq!((1, -2), _1_NEG2.into());
- }
-
- #[test]
- fn test_from_pair() {
- assert_eq!(_0, Ratio::from((0, 1)));
- assert_eq!(_1, Ratio::from((1, 1)));
- assert_eq!(_NEG2, Ratio::from((-2, 1)));
- assert_eq!(_1_NEG2, Ratio::from((1, -2)));
- }
-
- #[test]
- fn ratio_iter_sum() {
- // generic function to assure the iter method can be called
- // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer>
- fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] {
- let mut manual_sum = Ratio::new(T::zero(), T::one());
- for ratio in slice {
- manual_sum = manual_sum + ratio;
- }
- [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()]
- }
- // collect into array so test works on no_std
- let mut nums = [Ratio::new(0, 1); 1000];
- for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() {
- nums[i] = r;
- }
- let sums = iter_sums(&nums[..]);
- assert_eq!(sums[0], sums[1]);
- assert_eq!(sums[0], sums[2]);
- }
-
- #[test]
- fn ratio_iter_product() {
- // generic function to assure the iter method can be called
- // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer>
- fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] {
- let mut manual_prod = Ratio::new(T::one(), T::one());
- for ratio in slice {
- manual_prod = manual_prod * ratio;
- }
- [
- manual_prod,
- slice.iter().product(),
- slice.iter().cloned().product(),
- ]
- }
-
- // collect into array so test works on no_std
- let mut nums = [Ratio::new(0, 1); 1000];
- for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() {
- nums[i] = r;
- }
- let products = iter_products(&nums[..]);
- assert_eq!(products[0], products[1]);
- assert_eq!(products[0], products[2]);
- }
-
- #[test]
- fn test_num_zero() {
- let zero = Rational64::zero();
- assert!(zero.is_zero());
-
- let mut r = Rational64::new(123, 456);
- assert!(!r.is_zero());
- assert_eq!(r + zero, r);
-
- r.set_zero();
- assert!(r.is_zero());
- }
-
- #[test]
- fn test_num_one() {
- let one = Rational64::one();
- assert!(one.is_one());
-
- let mut r = Rational64::new(123, 456);
- assert!(!r.is_one());
- assert_eq!(r * one, r);
-
- r.set_one();
- assert!(r.is_one());
- }
-
- #[test]
- fn test_const() {
- const N: Ratio<i32> = Ratio::new_raw(123, 456);
- const N_NUMER: &i32 = N.numer();
- const N_DENOM: &i32 = N.denom();
-
- assert_eq!(N_NUMER, &123);
- assert_eq!(N_DENOM, &456);
-
- let r = N.reduced();
- assert_eq!(r.numer(), &(123 / 3));
- assert_eq!(r.denom(), &(456 / 3));
- }
-
- #[test]
- fn test_ratio_to_i64() {
- assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap());
- assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap());
- assert_eq!(None, Rational64::new(-31, 8).to_u64());
- }
-
- #[test]
- #[cfg(feature = "num-bigint")]
- fn test_ratio_to_i128() {
- assert_eq!(
- 1i128 << 70,
- Ratio::<i128>::new(1i128 << 77, 1i128 << 7)
- .to_i128()
- .unwrap()
- );
- }
-
- #[test]
- #[cfg(feature = "num-bigint")]
- fn test_big_ratio_to_f64() {
- assert_eq!(
- BigRational::new(
- "1234567890987654321234567890987654321234567890"
- .parse()
- .unwrap(),
- "3".parse().unwrap()
- )
- .to_f64(),
- Some(411522630329218100000000000000000000000000000f64)
- );
- assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324));
- assert_eq!(
- // subnormal
- BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(),
- Some(2.0f64.powi(-50).powi(21))
- );
- assert_eq!(
- // definite underflow
- BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(),
- Some(0.0)
- );
- assert_eq!(
- BigRational::from(BigInt::one() << 1050).to_f64(),
- Some(core::f64::INFINITY)
- );
- assert_eq!(
- BigRational::from((-BigInt::one()) << 1050).to_f64(),
- Some(core::f64::NEG_INFINITY)
- );
- assert_eq!(
- BigRational::new(
- "1234567890987654321234567890".parse().unwrap(),
- "987654321234567890987654321".parse().unwrap()
- )
- .to_f64(),
- Some(1.2499999893125f64)
- );
- assert_eq!(
- BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(),
- Some(core::f64::INFINITY)
- );
- assert_eq!(
- BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(),
- Some(core::f64::NEG_INFINITY)
- );
- assert_eq!(
- BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(),
- None
- );
- }
-
- #[test]
- fn test_ratio_to_f64() {
- assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64));
- assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64));
- assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64));
- assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64));
- assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64));
- assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64));
- assert_eq!(
- Rational64::new((1 << 52) + 1, 1 << 52).to_f64(),
- Some(1.0000000000000002f64),
- );
- assert_eq!(
- Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(),
- Some(1.0000000000000002f64),
- );
- assert_eq!(
- Ratio::<i32>::new_raw(1, 0).to_f64(),
- Some(core::f64::INFINITY)
- );
- assert_eq!(
- Ratio::<i32>::new_raw(-1, 0).to_f64(),
- Some(core::f64::NEG_INFINITY)
- );
- assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None);
- }
-
- #[test]
- fn test_ldexp() {
- use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY};
- assert_eq!(ldexp(1.0, 0), 1.0);
- assert_eq!(ldexp(1.0, 1), 2.0);
- assert_eq!(ldexp(0.0, 1), 0.0);
- assert_eq!(ldexp(-0.0, 1), -0.0);
-
- // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or
- // underflow.
- assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5));
- assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1));
- assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3));
-
- // Case where initial value is subnormal
- assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4));
- assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200));
-
- // Near underflow (2^exp is too small to represent, but not x*2^exp)
- assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1));
-
- // Near overflow
- assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP));
-
- // Overflow and underflow cases
- assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0);
- assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0);
- assert_eq!(ldexp(1.0, MAX_EXP), INFINITY);
- assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY);
-
- // Special values
- assert_eq!(ldexp(INFINITY, 1), INFINITY);
- assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY);
- assert!(ldexp(NAN, 1).is_nan());
- }
-}
diff --git a/vendor/num-rational/src/pow.rs b/vendor/num-rational/src/pow.rs
deleted file mode 100644
index 3325332..0000000
--- a/vendor/num-rational/src/pow.rs
+++ /dev/null
@@ -1,173 +0,0 @@
-use crate::Ratio;
-
-use core::cmp;
-use num_integer::Integer;
-use num_traits::{One, Pow};
-
-macro_rules! pow_unsigned_impl {
- (@ $exp:ty) => {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: $exp) -> Ratio<T> {
- Ratio::new_raw(self.numer.pow(expon), self.denom.pow(expon))
- }
- };
- ($exp:ty) => {
- impl<T: Clone + Integer + Pow<$exp, Output = T>> Pow<$exp> for Ratio<T> {
- pow_unsigned_impl!(@ $exp);
- }
- impl<'a, T: Clone + Integer> Pow<$exp> for &'a Ratio<T>
- where
- &'a T: Pow<$exp, Output = T>,
- {
- pow_unsigned_impl!(@ $exp);
- }
- impl<'b, T: Clone + Integer + Pow<$exp, Output = T>> Pow<&'b $exp> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: &'b $exp) -> Ratio<T> {
- Pow::pow(self, *expon)
- }
- }
- impl<'a, 'b, T: Clone + Integer> Pow<&'b $exp> for &'a Ratio<T>
- where
- &'a T: Pow<$exp, Output = T>,
- {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: &'b $exp) -> Ratio<T> {
- Pow::pow(self, *expon)
- }
- }
- };
-}
-pow_unsigned_impl!(u8);
-pow_unsigned_impl!(u16);
-pow_unsigned_impl!(u32);
-pow_unsigned_impl!(u64);
-pow_unsigned_impl!(u128);
-pow_unsigned_impl!(usize);
-
-macro_rules! pow_signed_impl {
- (@ &'b BigInt, BigUint) => {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: &'b BigInt) -> Ratio<T> {
- match expon.sign() {
- Sign::NoSign => One::one(),
- Sign::Minus => {
- Pow::pow(self, expon.magnitude()).into_recip()
- }
- Sign::Plus => Pow::pow(self, expon.magnitude()),
- }
- }
- };
- (@ $exp:ty, $unsigned:ty) => {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: $exp) -> Ratio<T> {
- match expon.cmp(&0) {
- cmp::Ordering::Equal => One::one(),
- cmp::Ordering::Less => {
- let expon = expon.wrapping_abs() as $unsigned;
- Pow::pow(self, expon).into_recip()
- }
- cmp::Ordering::Greater => Pow::pow(self, expon as $unsigned),
- }
- }
- };
- ($exp:ty, $unsigned:ty) => {
- impl<T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<$exp> for Ratio<T> {
- pow_signed_impl!(@ $exp, $unsigned);
- }
- impl<'a, T: Clone + Integer> Pow<$exp> for &'a Ratio<T>
- where
- &'a T: Pow<$unsigned, Output = T>,
- {
- pow_signed_impl!(@ $exp, $unsigned);
- }
- impl<'b, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<&'b $exp> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: &'b $exp) -> Ratio<T> {
- Pow::pow(self, *expon)
- }
- }
- impl<'a, 'b, T: Clone + Integer> Pow<&'b $exp> for &'a Ratio<T>
- where
- &'a T: Pow<$unsigned, Output = T>,
- {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: &'b $exp) -> Ratio<T> {
- Pow::pow(self, *expon)
- }
- }
- };
-}
-pow_signed_impl!(i8, u8);
-pow_signed_impl!(i16, u16);
-pow_signed_impl!(i32, u32);
-pow_signed_impl!(i64, u64);
-pow_signed_impl!(i128, u128);
-pow_signed_impl!(isize, usize);
-
-#[cfg(feature = "num-bigint")]
-mod bigint {
- use super::*;
- use num_bigint::{BigInt, BigUint, Sign};
-
- impl<T: Clone + Integer + for<'b> Pow<&'b BigUint, Output = T>> Pow<BigUint> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: BigUint) -> Ratio<T> {
- Pow::pow(self, &expon)
- }
- }
- impl<'a, T: Clone + Integer> Pow<BigUint> for &'a Ratio<T>
- where
- &'a T: for<'b> Pow<&'b BigUint, Output = T>,
- {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: BigUint) -> Ratio<T> {
- Pow::pow(self, &expon)
- }
- }
- impl<'b, T: Clone + Integer + Pow<&'b BigUint, Output = T>> Pow<&'b BigUint> for Ratio<T> {
- pow_unsigned_impl!(@ &'b BigUint);
- }
- impl<'a, 'b, T: Clone + Integer> Pow<&'b BigUint> for &'a Ratio<T>
- where
- &'a T: Pow<&'b BigUint, Output = T>,
- {
- pow_unsigned_impl!(@ &'b BigUint);
- }
-
- impl<T: Clone + Integer + for<'b> Pow<&'b BigUint, Output = T>> Pow<BigInt> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: BigInt) -> Ratio<T> {
- Pow::pow(self, &expon)
- }
- }
- impl<'a, T: Clone + Integer> Pow<BigInt> for &'a Ratio<T>
- where
- &'a T: for<'b> Pow<&'b BigUint, Output = T>,
- {
- type Output = Ratio<T>;
- #[inline]
- fn pow(self, expon: BigInt) -> Ratio<T> {
- Pow::pow(self, &expon)
- }
- }
- impl<'b, T: Clone + Integer + Pow<&'b BigUint, Output = T>> Pow<&'b BigInt> for Ratio<T> {
- pow_signed_impl!(@ &'b BigInt, BigUint);
- }
- impl<'a, 'b, T: Clone + Integer> Pow<&'b BigInt> for &'a Ratio<T>
- where
- &'a T: Pow<&'b BigUint, Output = T>,
- {
- pow_signed_impl!(@ &'b BigInt, BigUint);
- }
-}