diff options
Diffstat (limited to 'vendor/png/src/decoder/mod.rs')
-rw-r--r-- | vendor/png/src/decoder/mod.rs | 961 |
1 files changed, 0 insertions, 961 deletions
diff --git a/vendor/png/src/decoder/mod.rs b/vendor/png/src/decoder/mod.rs deleted file mode 100644 index 09772fe..0000000 --- a/vendor/png/src/decoder/mod.rs +++ /dev/null @@ -1,961 +0,0 @@ -mod stream; -mod zlib; - -pub use self::stream::{DecodeOptions, Decoded, DecodingError, StreamingDecoder}; -use self::stream::{FormatErrorInner, CHUNCK_BUFFER_SIZE}; - -use std::io::{BufRead, BufReader, Read}; -use std::mem; -use std::ops::Range; - -use crate::chunk; -use crate::common::{ - BitDepth, BytesPerPixel, ColorType, Info, ParameterErrorKind, Transformations, -}; -use crate::filter::{unfilter, FilterType}; -use crate::utils; - -/* -pub enum InterlaceHandling { - /// Outputs the raw rows - RawRows, - /// Fill missing the pixels from the existing ones - Rectangle, - /// Only fill the needed pixels - Sparkle -} -*/ - -/// Output info. -/// -/// This describes one particular frame of the image that was written into the output buffer. -#[derive(Debug, PartialEq, Eq)] -pub struct OutputInfo { - /// The pixel width of this frame. - pub width: u32, - /// The pixel height of this frame. - pub height: u32, - /// The chosen output color type. - pub color_type: ColorType, - /// The chosen output bit depth. - pub bit_depth: BitDepth, - /// The byte count of each scan line in the image. - pub line_size: usize, -} - -impl OutputInfo { - /// Returns the size needed to hold a decoded frame - /// If the output buffer was larger then bytes after this count should be ignored. They may - /// still have been changed. - pub fn buffer_size(&self) -> usize { - self.line_size * self.height as usize - } -} - -#[derive(Clone, Copy, Debug)] -/// Limits on the resources the `Decoder` is allowed too use -pub struct Limits { - /// maximum number of bytes the decoder is allowed to allocate, default is 64Mib - pub bytes: usize, -} - -impl Default for Limits { - fn default() -> Limits { - Limits { - bytes: 1024 * 1024 * 64, - } - } -} - -/// PNG Decoder -pub struct Decoder<R: Read> { - read_decoder: ReadDecoder<R>, - /// Output transformations - transform: Transformations, - /// Limits on resources the Decoder is allowed to use - limits: Limits, -} - -/// A row of data with interlace information attached. -#[derive(Clone, Copy, Debug)] -pub struct InterlacedRow<'data> { - data: &'data [u8], - interlace: InterlaceInfo, -} - -impl<'data> InterlacedRow<'data> { - pub fn data(&self) -> &'data [u8] { - self.data - } - - pub fn interlace(&self) -> InterlaceInfo { - self.interlace - } -} - -/// PNG (2003) specifies two interlace modes, but reserves future extensions. -#[derive(Clone, Copy, Debug)] -pub enum InterlaceInfo { - /// the null method means no interlacing - Null, - /// Adam7 derives its name from doing 7 passes over the image, only decoding a subset of all pixels in each pass. - /// The following table shows pictorially what parts of each 8x8 area of the image is found in each pass: - /// - /// 1 6 4 6 2 6 4 6 - /// 7 7 7 7 7 7 7 7 - /// 5 6 5 6 5 6 5 6 - /// 7 7 7 7 7 7 7 7 - /// 3 6 4 6 3 6 4 6 - /// 7 7 7 7 7 7 7 7 - /// 5 6 5 6 5 6 5 6 - /// 7 7 7 7 7 7 7 7 - Adam7 { pass: u8, line: u32, width: u32 }, -} - -/// A row of data without interlace information. -#[derive(Clone, Copy, Debug)] -pub struct Row<'data> { - data: &'data [u8], -} - -impl<'data> Row<'data> { - pub fn data(&self) -> &'data [u8] { - self.data - } -} - -impl<R: Read> Decoder<R> { - /// Create a new decoder configuration with default limits. - pub fn new(r: R) -> Decoder<R> { - Decoder::new_with_limits(r, Limits::default()) - } - - /// Create a new decoder configuration with custom limits. - pub fn new_with_limits(r: R, limits: Limits) -> Decoder<R> { - Decoder { - read_decoder: ReadDecoder { - reader: BufReader::with_capacity(CHUNCK_BUFFER_SIZE, r), - decoder: StreamingDecoder::new(), - at_eof: false, - }, - transform: Transformations::IDENTITY, - limits, - } - } - - /// Create a new decoder configuration with custom `DecodeOptions`. - pub fn new_with_options(r: R, decode_options: DecodeOptions) -> Decoder<R> { - Decoder { - read_decoder: ReadDecoder { - reader: BufReader::with_capacity(CHUNCK_BUFFER_SIZE, r), - decoder: StreamingDecoder::new_with_options(decode_options), - at_eof: false, - }, - transform: Transformations::IDENTITY, - limits: Limits::default(), - } - } - - /// Limit resource usage. - /// - /// Note that your allocations, e.g. when reading into a pre-allocated buffer, are __NOT__ - /// considered part of the limits. Nevertheless, required intermediate buffers such as for - /// singular lines is checked against the limit. - /// - /// Note that this is a best-effort basis. - /// - /// ``` - /// use std::fs::File; - /// use png::{Decoder, Limits}; - /// // This image is 32×32, 1bit per pixel. The reader buffers one row which requires 4 bytes. - /// let mut limits = Limits::default(); - /// limits.bytes = 3; - /// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits); - /// assert!(decoder.read_info().is_err()); - /// - /// // This image is 32x32 pixels, so the decoder will allocate less than 10Kib - /// let mut limits = Limits::default(); - /// limits.bytes = 10*1024; - /// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits); - /// assert!(decoder.read_info().is_ok()); - /// ``` - pub fn set_limits(&mut self, limits: Limits) { - self.limits = limits; - } - - /// Read the PNG header and return the information contained within. - /// - /// Most image metadata will not be read until `read_info` is called, so those fields will be - /// None or empty. - pub fn read_header_info(&mut self) -> Result<&Info, DecodingError> { - let mut buf = Vec::new(); - while self.read_decoder.info().is_none() { - buf.clear(); - if self.read_decoder.decode_next(&mut buf)?.is_none() { - return Err(DecodingError::Format( - FormatErrorInner::UnexpectedEof.into(), - )); - } - } - Ok(self.read_decoder.info().unwrap()) - } - - /// Reads all meta data until the first IDAT chunk - pub fn read_info(mut self) -> Result<Reader<R>, DecodingError> { - self.read_header_info()?; - - let mut reader = Reader { - decoder: self.read_decoder, - bpp: BytesPerPixel::One, - subframe: SubframeInfo::not_yet_init(), - fctl_read: 0, - next_frame: SubframeIdx::Initial, - prev: Vec::new(), - current: Vec::new(), - scan_start: 0, - transform: self.transform, - scratch_buffer: Vec::new(), - limits: self.limits, - }; - - // Check if the decoding buffer of a single raw line has a valid size. - if reader.info().checked_raw_row_length().is_none() { - return Err(DecodingError::LimitsExceeded); - } - - // Check if the output buffer has a valid size. - let (width, height) = reader.info().size(); - let (color, depth) = reader.output_color_type(); - let rowlen = color - .checked_raw_row_length(depth, width) - .ok_or(DecodingError::LimitsExceeded)? - - 1; - let height: usize = - std::convert::TryFrom::try_from(height).map_err(|_| DecodingError::LimitsExceeded)?; - if rowlen.checked_mul(height).is_none() { - return Err(DecodingError::LimitsExceeded); - } - - reader.read_until_image_data()?; - Ok(reader) - } - - /// Set the allowed and performed transformations. - /// - /// A transformation is a pre-processing on the raw image data modifying content or encoding. - /// Many options have an impact on memory or CPU usage during decoding. - pub fn set_transformations(&mut self, transform: Transformations) { - self.transform = transform; - } - - /// Set the decoder to ignore all text chunks while parsing. - /// - /// eg. - /// ``` - /// use std::fs::File; - /// use png::Decoder; - /// let mut decoder = Decoder::new(File::open("tests/pngsuite/basi0g01.png").unwrap()); - /// decoder.set_ignore_text_chunk(true); - /// assert!(decoder.read_info().is_ok()); - /// ``` - pub fn set_ignore_text_chunk(&mut self, ignore_text_chunk: bool) { - self.read_decoder - .decoder - .set_ignore_text_chunk(ignore_text_chunk); - } - - /// Set the decoder to ignore and not verify the Adler-32 checksum - /// and CRC code. - pub fn ignore_checksums(&mut self, ignore_checksums: bool) { - self.read_decoder - .decoder - .set_ignore_adler32(ignore_checksums); - self.read_decoder.decoder.set_ignore_crc(ignore_checksums); - } -} - -struct ReadDecoder<R: Read> { - reader: BufReader<R>, - decoder: StreamingDecoder, - at_eof: bool, -} - -impl<R: Read> ReadDecoder<R> { - /// Returns the next decoded chunk. If the chunk is an ImageData chunk, its contents are written - /// into image_data. - fn decode_next(&mut self, image_data: &mut Vec<u8>) -> Result<Option<Decoded>, DecodingError> { - while !self.at_eof { - let (consumed, result) = { - let buf = self.reader.fill_buf()?; - if buf.is_empty() { - return Err(DecodingError::Format( - FormatErrorInner::UnexpectedEof.into(), - )); - } - self.decoder.update(buf, image_data)? - }; - self.reader.consume(consumed); - match result { - Decoded::Nothing => (), - Decoded::ImageEnd => self.at_eof = true, - result => return Ok(Some(result)), - } - } - Ok(None) - } - - fn finish_decoding(&mut self) -> Result<(), DecodingError> { - while !self.at_eof { - let buf = self.reader.fill_buf()?; - if buf.is_empty() { - return Err(DecodingError::Format( - FormatErrorInner::UnexpectedEof.into(), - )); - } - let (consumed, event) = self.decoder.update(buf, &mut vec![])?; - self.reader.consume(consumed); - match event { - Decoded::Nothing => (), - Decoded::ImageEnd => self.at_eof = true, - // ignore more data - Decoded::ChunkComplete(_, _) | Decoded::ChunkBegin(_, _) | Decoded::ImageData => {} - Decoded::ImageDataFlushed => return Ok(()), - Decoded::PartialChunk(_) => {} - new => unreachable!("{:?}", new), - } - } - - Err(DecodingError::Format( - FormatErrorInner::UnexpectedEof.into(), - )) - } - - fn info(&self) -> Option<&Info> { - self.decoder.info.as_ref() - } -} - -/// PNG reader (mostly high-level interface) -/// -/// Provides a high level that iterates over lines or whole images. -pub struct Reader<R: Read> { - decoder: ReadDecoder<R>, - bpp: BytesPerPixel, - subframe: SubframeInfo, - /// Number of frame control chunks read. - /// By the APNG specification the total number must equal the count specified in the animation - /// control chunk. The IDAT image _may_ have such a chunk applying to it. - fctl_read: u32, - next_frame: SubframeIdx, - /// Previous raw line - prev: Vec<u8>, - /// Current raw line - current: Vec<u8>, - /// Start index of the current scan line. - scan_start: usize, - /// Output transformations - transform: Transformations, - /// This buffer is only used so that `next_row` and `next_interlaced_row` can return reference - /// to a byte slice. In a future version of this library, this buffer will be removed and - /// `next_row` and `next_interlaced_row` will write directly into a user provided output buffer. - scratch_buffer: Vec<u8>, - /// How resources we can spend (for example, on allocation). - limits: Limits, -} - -/// The subframe specific information. -/// -/// In APNG the frames are constructed by combining previous frame and a new subframe (through a -/// combination of `dispose_op` and `overlay_op`). These sub frames specify individual dimension -/// information and reuse the global interlace options. This struct encapsulates the state of where -/// in a particular IDAT-frame or subframe we are. -struct SubframeInfo { - width: u32, - height: u32, - rowlen: usize, - interlace: InterlaceIter, - consumed_and_flushed: bool, -} - -#[derive(Clone)] -enum InterlaceIter { - None(Range<u32>), - Adam7(utils::Adam7Iterator), -} - -/// Denote a frame as given by sequence numbers. -#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] -enum SubframeIdx { - /// The initial frame in an IDAT chunk without fcTL chunk applying to it. - /// Note that this variant precedes `Some` as IDAT frames precede fdAT frames and all fdAT - /// frames must have a fcTL applying to it. - Initial, - /// An IDAT frame with fcTL or an fdAT frame. - Some(u32), - /// The past-the-end index. - End, -} - -impl<R: Read> Reader<R> { - /// Reads all meta data until the next frame data starts. - /// Requires IHDR before the IDAT and fcTL before fdAT. - fn read_until_image_data(&mut self) -> Result<(), DecodingError> { - loop { - // This is somewhat ugly. The API requires us to pass a buffer to decode_next but we - // know that we will stop before reading any image data from the stream. Thus pass an - // empty buffer and assert that remains empty. - let mut buf = Vec::new(); - let state = self.decoder.decode_next(&mut buf)?; - assert!(buf.is_empty()); - - match state { - Some(Decoded::ChunkBegin(_, chunk::IDAT)) - | Some(Decoded::ChunkBegin(_, chunk::fdAT)) => break, - Some(Decoded::FrameControl(_)) => { - self.subframe = SubframeInfo::new(self.info()); - // The next frame is the one to which this chunk applies. - self.next_frame = SubframeIdx::Some(self.fctl_read); - // TODO: what about overflow here? That would imply there are more fctl chunks - // than can be specified in the animation control but also that we have read - // several gigabytes of data. - self.fctl_read += 1; - } - None => { - return Err(DecodingError::Format( - FormatErrorInner::MissingImageData.into(), - )) - } - // Ignore all other chunk events. Any other chunk may be between IDAT chunks, fdAT - // chunks and their control chunks. - _ => {} - } - } - - let info = self - .decoder - .info() - .ok_or(DecodingError::Format(FormatErrorInner::MissingIhdr.into()))?; - self.bpp = info.bpp_in_prediction(); - self.subframe = SubframeInfo::new(info); - - // Allocate output buffer. - let buflen = self.output_line_size(self.subframe.width); - if buflen > self.limits.bytes { - return Err(DecodingError::LimitsExceeded); - } - - self.prev.clear(); - self.prev.resize(self.subframe.rowlen, 0); - - Ok(()) - } - - /// Get information on the image. - /// - /// The structure will change as new frames of an animated image are decoded. - pub fn info(&self) -> &Info { - self.decoder.info().unwrap() - } - - /// Decodes the next frame into `buf`. - /// - /// Note that this decodes raw subframes that need to be mixed according to blend-op and - /// dispose-op by the caller. - /// - /// The caller must always provide a buffer large enough to hold a complete frame (the APNG - /// specification restricts subframes to the dimensions given in the image header). The region - /// that has been written be checked afterwards by calling `info` after a successful call and - /// inspecting the `frame_control` data. This requirement may be lifted in a later version of - /// `png`. - /// - /// Output lines will be written in row-major, packed matrix with width and height of the read - /// frame (or subframe), all samples are in big endian byte order where this matters. - pub fn next_frame(&mut self, buf: &mut [u8]) -> Result<OutputInfo, DecodingError> { - let subframe_idx = match self.decoder.info().unwrap().frame_control() { - None => SubframeIdx::Initial, - Some(_) => SubframeIdx::Some(self.fctl_read - 1), - }; - - if self.next_frame == SubframeIdx::End { - return Err(DecodingError::Parameter( - ParameterErrorKind::PolledAfterEndOfImage.into(), - )); - } else if self.next_frame != subframe_idx { - // Advance until we've read the info / fcTL for this frame. - self.read_until_image_data()?; - } - - if buf.len() < self.output_buffer_size() { - return Err(DecodingError::Parameter( - ParameterErrorKind::ImageBufferSize { - expected: buf.len(), - actual: self.output_buffer_size(), - } - .into(), - )); - } - - let (color_type, bit_depth) = self.output_color_type(); - let output_info = OutputInfo { - width: self.subframe.width, - height: self.subframe.height, - color_type, - bit_depth, - line_size: self.output_line_size(self.subframe.width), - }; - - self.current.clear(); - self.scan_start = 0; - let width = self.info().width; - if self.info().interlaced { - while let Some(InterlacedRow { - data: row, - interlace, - .. - }) = self.next_interlaced_row()? - { - let (line, pass) = match interlace { - InterlaceInfo::Adam7 { line, pass, .. } => (line, pass), - InterlaceInfo::Null => unreachable!("expected interlace information"), - }; - let samples = color_type.samples() as u8; - utils::expand_pass(buf, width, row, pass, line, samples * (bit_depth as u8)); - } - } else { - for row in buf - .chunks_exact_mut(output_info.line_size) - .take(self.subframe.height as usize) - { - self.next_interlaced_row_impl(self.subframe.rowlen, row)?; - } - } - - // Advance over the rest of data for this (sub-)frame. - if !self.subframe.consumed_and_flushed { - self.decoder.finish_decoding()?; - } - - // Advance our state to expect the next frame. - let past_end_subframe = self - .info() - .animation_control() - .map(|ac| ac.num_frames) - .unwrap_or(0); - self.next_frame = match self.next_frame { - SubframeIdx::End => unreachable!("Next frame called when already at image end"), - // Reached the end of non-animated image. - SubframeIdx::Initial if past_end_subframe == 0 => SubframeIdx::End, - // An animated image, expecting first subframe. - SubframeIdx::Initial => SubframeIdx::Some(0), - // This was the last subframe, slightly fuzzy condition in case of programmer error. - SubframeIdx::Some(idx) if past_end_subframe <= idx + 1 => SubframeIdx::End, - // Expecting next subframe. - SubframeIdx::Some(idx) => SubframeIdx::Some(idx + 1), - }; - - Ok(output_info) - } - - /// Returns the next processed row of the image - pub fn next_row(&mut self) -> Result<Option<Row>, DecodingError> { - self.next_interlaced_row() - .map(|v| v.map(|v| Row { data: v.data })) - } - - /// Returns the next processed row of the image - pub fn next_interlaced_row(&mut self) -> Result<Option<InterlacedRow>, DecodingError> { - let (rowlen, interlace) = match self.next_pass() { - Some((rowlen, interlace)) => (rowlen, interlace), - None => return Ok(None), - }; - - let width = if let InterlaceInfo::Adam7 { width, .. } = interlace { - width - } else { - self.subframe.width - }; - let output_line_size = self.output_line_size(width); - - // TODO: change the interface of `next_interlaced_row` to take an output buffer instead of - // making us return a reference to a buffer that we own. - let mut output_buffer = mem::take(&mut self.scratch_buffer); - output_buffer.resize(output_line_size, 0u8); - let ret = self.next_interlaced_row_impl(rowlen, &mut output_buffer); - self.scratch_buffer = output_buffer; - ret?; - - Ok(Some(InterlacedRow { - data: &self.scratch_buffer[..output_line_size], - interlace, - })) - } - - /// Fetch the next interlaced row and filter it according to our own transformations. - fn next_interlaced_row_impl( - &mut self, - rowlen: usize, - output_buffer: &mut [u8], - ) -> Result<(), DecodingError> { - self.next_raw_interlaced_row(rowlen)?; - let row = &self.prev[1..rowlen]; - - // Apply transformations and write resulting data to buffer. - let (color_type, bit_depth, trns) = { - let info = self.info(); - ( - info.color_type, - info.bit_depth as u8, - info.trns.is_some() || self.transform.contains(Transformations::ALPHA), - ) - }; - let expand = self.transform.contains(Transformations::EXPAND) - || self.transform.contains(Transformations::ALPHA); - let strip16 = bit_depth == 16 && self.transform.contains(Transformations::STRIP_16); - let info = self.decoder.info().unwrap(); - let trns = if trns { - Some(info.trns.as_deref()) - } else { - None - }; - match (color_type, trns) { - (ColorType::Indexed, _) if expand => { - output_buffer[..row.len()].copy_from_slice(row); - expand_paletted(output_buffer, info, trns)?; - } - (ColorType::Grayscale | ColorType::GrayscaleAlpha, _) if bit_depth < 8 && expand => { - output_buffer[..row.len()].copy_from_slice(row); - expand_gray_u8(output_buffer, info, trns) - } - (ColorType::Grayscale | ColorType::Rgb, Some(trns)) if expand => { - let channels = color_type.samples(); - if bit_depth == 8 { - utils::expand_trns_line(row, output_buffer, trns, channels); - } else if strip16 { - utils::expand_trns_and_strip_line16(row, output_buffer, trns, channels); - } else { - assert_eq!(bit_depth, 16); - utils::expand_trns_line16(row, output_buffer, trns, channels); - } - } - ( - ColorType::Grayscale | ColorType::GrayscaleAlpha | ColorType::Rgb | ColorType::Rgba, - _, - ) if strip16 => { - for i in 0..row.len() / 2 { - output_buffer[i] = row[2 * i]; - } - } - _ => output_buffer.copy_from_slice(row), - } - - Ok(()) - } - - /// Returns the color type and the number of bits per sample - /// of the data returned by `Reader::next_row` and Reader::frames`. - pub fn output_color_type(&self) -> (ColorType, BitDepth) { - use crate::common::ColorType::*; - let t = self.transform; - let info = self.info(); - if t == Transformations::IDENTITY { - (info.color_type, info.bit_depth) - } else { - let bits = match info.bit_depth as u8 { - 16 if t.intersects(Transformations::STRIP_16) => 8, - n if n < 8 - && (t.contains(Transformations::EXPAND) - || t.contains(Transformations::ALPHA)) => - { - 8 - } - n => n, - }; - let color_type = - if t.contains(Transformations::EXPAND) || t.contains(Transformations::ALPHA) { - let has_trns = info.trns.is_some() || t.contains(Transformations::ALPHA); - match info.color_type { - Grayscale if has_trns => GrayscaleAlpha, - Rgb if has_trns => Rgba, - Indexed if has_trns => Rgba, - Indexed => Rgb, - ct => ct, - } - } else { - info.color_type - }; - (color_type, BitDepth::from_u8(bits).unwrap()) - } - } - - /// Returns the number of bytes required to hold a deinterlaced image frame - /// that is decoded using the given input transformations. - pub fn output_buffer_size(&self) -> usize { - let (width, height) = self.info().size(); - let size = self.output_line_size(width); - size * height as usize - } - - /// Returns the number of bytes required to hold a deinterlaced row. - pub fn output_line_size(&self, width: u32) -> usize { - let (color, depth) = self.output_color_type(); - color.raw_row_length_from_width(depth, width) - 1 - } - - fn next_pass(&mut self) -> Option<(usize, InterlaceInfo)> { - match self.subframe.interlace { - InterlaceIter::Adam7(ref mut adam7) => { - let last_pass = adam7.current_pass(); - let (pass, line, width) = adam7.next()?; - let rowlen = self.info().raw_row_length_from_width(width); - if last_pass != pass { - self.prev.clear(); - self.prev.resize(rowlen, 0u8); - } - Some((rowlen, InterlaceInfo::Adam7 { pass, line, width })) - } - InterlaceIter::None(ref mut height) => { - let _ = height.next()?; - Some((self.subframe.rowlen, InterlaceInfo::Null)) - } - } - } - - /// Write the next raw interlaced row into `self.prev`. - /// - /// The scanline is filtered against the previous scanline according to the specification. - fn next_raw_interlaced_row(&mut self, rowlen: usize) -> Result<(), DecodingError> { - // Read image data until we have at least one full row (but possibly more than one). - while self.current.len() - self.scan_start < rowlen { - if self.subframe.consumed_and_flushed { - return Err(DecodingError::Format( - FormatErrorInner::NoMoreImageData.into(), - )); - } - - // Clear the current buffer before appending more data. - if self.scan_start > 0 { - self.current.drain(..self.scan_start).for_each(drop); - self.scan_start = 0; - } - - match self.decoder.decode_next(&mut self.current)? { - Some(Decoded::ImageData) => {} - Some(Decoded::ImageDataFlushed) => { - self.subframe.consumed_and_flushed = true; - } - None => { - return Err(DecodingError::Format( - if self.current.is_empty() { - FormatErrorInner::NoMoreImageData - } else { - FormatErrorInner::UnexpectedEndOfChunk - } - .into(), - )); - } - _ => (), - } - } - - // Get a reference to the current row and point scan_start to the next one. - let row = &mut self.current[self.scan_start..]; - self.scan_start += rowlen; - - // Unfilter the row. - let filter = FilterType::from_u8(row[0]).ok_or(DecodingError::Format( - FormatErrorInner::UnknownFilterMethod(row[0]).into(), - ))?; - unfilter(filter, self.bpp, &self.prev[1..rowlen], &mut row[1..rowlen]); - - // Save the current row for the next pass. - self.prev[..rowlen].copy_from_slice(&row[..rowlen]); - - Ok(()) - } -} - -impl SubframeInfo { - fn not_yet_init() -> Self { - SubframeInfo { - width: 0, - height: 0, - rowlen: 0, - interlace: InterlaceIter::None(0..0), - consumed_and_flushed: false, - } - } - - fn new(info: &Info) -> Self { - // The apng fctnl overrides width and height. - // All other data is set by the main info struct. - let (width, height) = if let Some(fc) = info.frame_control { - (fc.width, fc.height) - } else { - (info.width, info.height) - }; - - let interlace = if info.interlaced { - InterlaceIter::Adam7(utils::Adam7Iterator::new(width, height)) - } else { - InterlaceIter::None(0..height) - }; - - SubframeInfo { - width, - height, - rowlen: info.raw_row_length_from_width(width), - interlace, - consumed_and_flushed: false, - } - } -} - -fn expand_paletted( - buffer: &mut [u8], - info: &Info, - trns: Option<Option<&[u8]>>, -) -> Result<(), DecodingError> { - if let Some(palette) = info.palette.as_ref() { - if let BitDepth::Sixteen = info.bit_depth { - // This should have been caught earlier but let's check again. Can't hurt. - Err(DecodingError::Format( - FormatErrorInner::InvalidColorBitDepth { - color_type: ColorType::Indexed, - bit_depth: BitDepth::Sixteen, - } - .into(), - )) - } else { - let black = [0, 0, 0]; - if let Some(trns) = trns { - let trns = trns.unwrap_or(&[]); - // > The tRNS chunk shall not contain more alpha values than there are palette - // entries, but a tRNS chunk may contain fewer values than there are palette - // entries. In this case, the alpha value for all remaining palette entries is - // assumed to be 255. - // - // It seems, accepted reading is to fully *ignore* an invalid tRNS as if it were - // completely empty / all pixels are non-transparent. - let trns = if trns.len() <= palette.len() / 3 { - trns - } else { - &[] - }; - - utils::unpack_bits(buffer, 4, info.bit_depth as u8, |i, chunk| { - let (rgb, a) = ( - palette - .get(3 * i as usize..3 * i as usize + 3) - .unwrap_or(&black), - *trns.get(i as usize).unwrap_or(&0xFF), - ); - chunk[0] = rgb[0]; - chunk[1] = rgb[1]; - chunk[2] = rgb[2]; - chunk[3] = a; - }); - } else { - utils::unpack_bits(buffer, 3, info.bit_depth as u8, |i, chunk| { - let rgb = palette - .get(3 * i as usize..3 * i as usize + 3) - .unwrap_or(&black); - chunk[0] = rgb[0]; - chunk[1] = rgb[1]; - chunk[2] = rgb[2]; - }) - } - Ok(()) - } - } else { - Err(DecodingError::Format( - FormatErrorInner::PaletteRequired.into(), - )) - } -} - -fn expand_gray_u8(buffer: &mut [u8], info: &Info, trns: Option<Option<&[u8]>>) { - let rescale = true; - let scaling_factor = if rescale { - (255) / ((1u16 << info.bit_depth as u8) - 1) as u8 - } else { - 1 - }; - if let Some(trns) = trns { - utils::unpack_bits(buffer, 2, info.bit_depth as u8, |pixel, chunk| { - chunk[1] = if let Some(trns) = trns { - if pixel == trns[0] { - 0 - } else { - 0xFF - } - } else { - 0xFF - }; - chunk[0] = pixel * scaling_factor - }) - } else { - utils::unpack_bits(buffer, 1, info.bit_depth as u8, |val, chunk| { - chunk[0] = val * scaling_factor - }) - } -} - -#[cfg(test)] -mod tests { - use super::Decoder; - use std::io::{BufRead, Read, Result}; - use std::mem::discriminant; - - /// A reader that reads at most `n` bytes. - struct SmalBuf<R: BufRead> { - inner: R, - cap: usize, - } - - impl<R: BufRead> SmalBuf<R> { - fn new(inner: R, cap: usize) -> Self { - SmalBuf { inner, cap } - } - } - - impl<R: BufRead> Read for SmalBuf<R> { - fn read(&mut self, buf: &mut [u8]) -> Result<usize> { - let len = buf.len().min(self.cap); - self.inner.read(&mut buf[..len]) - } - } - - impl<R: BufRead> BufRead for SmalBuf<R> { - fn fill_buf(&mut self) -> Result<&[u8]> { - let buf = self.inner.fill_buf()?; - let len = buf.len().min(self.cap); - Ok(&buf[..len]) - } - - fn consume(&mut self, amt: usize) { - assert!(amt <= self.cap); - self.inner.consume(amt) - } - } - - #[test] - fn no_data_dup_on_finish() { - const IMG: &[u8] = include_bytes!(concat!( - env!("CARGO_MANIFEST_DIR"), - "/tests/bugfixes/x_issue#214.png" - )); - - let mut normal = Decoder::new(IMG).read_info().unwrap(); - - let mut buffer = vec![0; normal.output_buffer_size()]; - let normal = normal.next_frame(&mut buffer).unwrap_err(); - - let smal = Decoder::new(SmalBuf::new(IMG, 1)) - .read_info() - .unwrap() - .next_frame(&mut buffer) - .unwrap_err(); - - assert_eq!(discriminant(&normal), discriminant(&smal)); - } -} |