diff options
Diffstat (limited to 'vendor/rand/src/distributions/gamma.rs')
-rw-r--r-- | vendor/rand/src/distributions/gamma.rs | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/vendor/rand/src/distributions/gamma.rs b/vendor/rand/src/distributions/gamma.rs new file mode 100644 index 0000000..2806495 --- /dev/null +++ b/vendor/rand/src/distributions/gamma.rs @@ -0,0 +1,386 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. +// +// ignore-lexer-test FIXME #15679 + +//! The Gamma and derived distributions. + +use self::GammaRepr::*; +use self::ChiSquaredRepr::*; + +use {Rng, Open01}; +use super::normal::StandardNormal; +use super::{IndependentSample, Sample, Exp}; + +/// The Gamma distribution `Gamma(shape, scale)` distribution. +/// +/// The density function of this distribution is +/// +/// ```text +/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k) +/// ``` +/// +/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the +/// scale and both `k` and `θ` are strictly positive. +/// +/// The algorithm used is that described by Marsaglia & Tsang 2000[1], +/// falling back to directly sampling from an Exponential for `shape +/// == 1`, and using the boosting technique described in [1] for +/// `shape < 1`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{IndependentSample, Gamma}; +/// +/// let gamma = Gamma::new(2.0, 5.0); +/// let v = gamma.ind_sample(&mut rand::thread_rng()); +/// println!("{} is from a Gamma(2, 5) distribution", v); +/// ``` +/// +/// [1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method +/// for Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3 +/// (September 2000), +/// 363-372. DOI:[10.1145/358407.358414](http://doi.acm.org/10.1145/358407.358414) +#[derive(Clone, Copy, Debug)] +pub struct Gamma { + repr: GammaRepr, +} + +#[derive(Clone, Copy, Debug)] +enum GammaRepr { + Large(GammaLargeShape), + One(Exp), + Small(GammaSmallShape) +} + +// These two helpers could be made public, but saving the +// match-on-Gamma-enum branch from using them directly (e.g. if one +// knows that the shape is always > 1) doesn't appear to be much +// faster. + +/// Gamma distribution where the shape parameter is less than 1. +/// +/// Note, samples from this require a compulsory floating-point `pow` +/// call, which makes it significantly slower than sampling from a +/// gamma distribution where the shape parameter is greater than or +/// equal to 1. +/// +/// See `Gamma` for sampling from a Gamma distribution with general +/// shape parameters. +#[derive(Clone, Copy, Debug)] +struct GammaSmallShape { + inv_shape: f64, + large_shape: GammaLargeShape +} + +/// Gamma distribution where the shape parameter is larger than 1. +/// +/// See `Gamma` for sampling from a Gamma distribution with general +/// shape parameters. +#[derive(Clone, Copy, Debug)] +struct GammaLargeShape { + scale: f64, + c: f64, + d: f64 +} + +impl Gamma { + /// Construct an object representing the `Gamma(shape, scale)` + /// distribution. + /// + /// Panics if `shape <= 0` or `scale <= 0`. + #[inline] + pub fn new(shape: f64, scale: f64) -> Gamma { + assert!(shape > 0.0, "Gamma::new called with shape <= 0"); + assert!(scale > 0.0, "Gamma::new called with scale <= 0"); + + let repr = if shape == 1.0 { + One(Exp::new(1.0 / scale)) + } else if shape < 1.0 { + Small(GammaSmallShape::new_raw(shape, scale)) + } else { + Large(GammaLargeShape::new_raw(shape, scale)) + }; + Gamma { repr: repr } + } +} + +impl GammaSmallShape { + fn new_raw(shape: f64, scale: f64) -> GammaSmallShape { + GammaSmallShape { + inv_shape: 1. / shape, + large_shape: GammaLargeShape::new_raw(shape + 1.0, scale) + } + } +} + +impl GammaLargeShape { + fn new_raw(shape: f64, scale: f64) -> GammaLargeShape { + let d = shape - 1. / 3.; + GammaLargeShape { + scale: scale, + c: 1. / (9. * d).sqrt(), + d: d + } + } +} + +impl Sample<f64> for Gamma { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } +} +impl Sample<f64> for GammaSmallShape { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } +} +impl Sample<f64> for GammaLargeShape { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } +} + +impl IndependentSample<f64> for Gamma { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + match self.repr { + Small(ref g) => g.ind_sample(rng), + One(ref g) => g.ind_sample(rng), + Large(ref g) => g.ind_sample(rng), + } + } +} +impl IndependentSample<f64> for GammaSmallShape { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + let Open01(u) = rng.gen::<Open01<f64>>(); + + self.large_shape.ind_sample(rng) * u.powf(self.inv_shape) + } +} +impl IndependentSample<f64> for GammaLargeShape { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + loop { + let StandardNormal(x) = rng.gen::<StandardNormal>(); + let v_cbrt = 1.0 + self.c * x; + if v_cbrt <= 0.0 { // a^3 <= 0 iff a <= 0 + continue + } + + let v = v_cbrt * v_cbrt * v_cbrt; + let Open01(u) = rng.gen::<Open01<f64>>(); + + let x_sqr = x * x; + if u < 1.0 - 0.0331 * x_sqr * x_sqr || + u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) { + return self.d * v * self.scale + } + } + } +} + +/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of +/// freedom. +/// +/// For `k > 0` integral, this distribution is the sum of the squares +/// of `k` independent standard normal random variables. For other +/// `k`, this uses the equivalent characterisation +/// `χ²(k) = Gamma(k/2, 2)`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{ChiSquared, IndependentSample}; +/// +/// let chi = ChiSquared::new(11.0); +/// let v = chi.ind_sample(&mut rand::thread_rng()); +/// println!("{} is from a χ²(11) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct ChiSquared { + repr: ChiSquaredRepr, +} + +#[derive(Clone, Copy, Debug)] +enum ChiSquaredRepr { + // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1, + // e.g. when alpha = 1/2 as it would be for this case, so special- + // casing and using the definition of N(0,1)^2 is faster. + DoFExactlyOne, + DoFAnythingElse(Gamma), +} + +impl ChiSquared { + /// Create a new chi-squared distribution with degrees-of-freedom + /// `k`. Panics if `k < 0`. + pub fn new(k: f64) -> ChiSquared { + let repr = if k == 1.0 { + DoFExactlyOne + } else { + assert!(k > 0.0, "ChiSquared::new called with `k` < 0"); + DoFAnythingElse(Gamma::new(0.5 * k, 2.0)) + }; + ChiSquared { repr: repr } + } +} +impl Sample<f64> for ChiSquared { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } +} +impl IndependentSample<f64> for ChiSquared { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + match self.repr { + DoFExactlyOne => { + // k == 1 => N(0,1)^2 + let StandardNormal(norm) = rng.gen::<StandardNormal>(); + norm * norm + } + DoFAnythingElse(ref g) => g.ind_sample(rng) + } + } +} + +/// The Fisher F distribution `F(m, n)`. +/// +/// This distribution is equivalent to the ratio of two normalised +/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) / +/// (χ²(n)/n)`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{FisherF, IndependentSample}; +/// +/// let f = FisherF::new(2.0, 32.0); +/// let v = f.ind_sample(&mut rand::thread_rng()); +/// println!("{} is from an F(2, 32) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct FisherF { + numer: ChiSquared, + denom: ChiSquared, + // denom_dof / numer_dof so that this can just be a straight + // multiplication, rather than a division. + dof_ratio: f64, +} + +impl FisherF { + /// Create a new `FisherF` distribution, with the given + /// parameter. Panics if either `m` or `n` are not positive. + pub fn new(m: f64, n: f64) -> FisherF { + assert!(m > 0.0, "FisherF::new called with `m < 0`"); + assert!(n > 0.0, "FisherF::new called with `n < 0`"); + + FisherF { + numer: ChiSquared::new(m), + denom: ChiSquared::new(n), + dof_ratio: n / m + } + } +} +impl Sample<f64> for FisherF { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } +} +impl IndependentSample<f64> for FisherF { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + self.numer.ind_sample(rng) / self.denom.ind_sample(rng) * self.dof_ratio + } +} + +/// The Student t distribution, `t(nu)`, where `nu` is the degrees of +/// freedom. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{StudentT, IndependentSample}; +/// +/// let t = StudentT::new(11.0); +/// let v = t.ind_sample(&mut rand::thread_rng()); +/// println!("{} is from a t(11) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct StudentT { + chi: ChiSquared, + dof: f64 +} + +impl StudentT { + /// Create a new Student t distribution with `n` degrees of + /// freedom. Panics if `n <= 0`. + pub fn new(n: f64) -> StudentT { + assert!(n > 0.0, "StudentT::new called with `n <= 0`"); + StudentT { + chi: ChiSquared::new(n), + dof: n + } + } +} +impl Sample<f64> for StudentT { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } +} +impl IndependentSample<f64> for StudentT { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + let StandardNormal(norm) = rng.gen::<StandardNormal>(); + norm * (self.dof / self.chi.ind_sample(rng)).sqrt() + } +} + +#[cfg(test)] +mod test { + use distributions::{Sample, IndependentSample}; + use super::{ChiSquared, StudentT, FisherF}; + + #[test] + fn test_chi_squared_one() { + let mut chi = ChiSquared::new(1.0); + let mut rng = ::test::rng(); + for _ in 0..1000 { + chi.sample(&mut rng); + chi.ind_sample(&mut rng); + } + } + #[test] + fn test_chi_squared_small() { + let mut chi = ChiSquared::new(0.5); + let mut rng = ::test::rng(); + for _ in 0..1000 { + chi.sample(&mut rng); + chi.ind_sample(&mut rng); + } + } + #[test] + fn test_chi_squared_large() { + let mut chi = ChiSquared::new(30.0); + let mut rng = ::test::rng(); + for _ in 0..1000 { + chi.sample(&mut rng); + chi.ind_sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_chi_squared_invalid_dof() { + ChiSquared::new(-1.0); + } + + #[test] + fn test_f() { + let mut f = FisherF::new(2.0, 32.0); + let mut rng = ::test::rng(); + for _ in 0..1000 { + f.sample(&mut rng); + f.ind_sample(&mut rng); + } + } + + #[test] + fn test_t() { + let mut t = StudentT::new(11.0); + let mut rng = ::test::rng(); + for _ in 0..1000 { + t.sample(&mut rng); + t.ind_sample(&mut rng); + } + } +} |