summaryrefslogtreecommitdiff
path: root/vendor/rayon/src/iter/plumbing/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/rayon/src/iter/plumbing/mod.rs')
-rw-r--r--vendor/rayon/src/iter/plumbing/mod.rs484
1 files changed, 484 insertions, 0 deletions
diff --git a/vendor/rayon/src/iter/plumbing/mod.rs b/vendor/rayon/src/iter/plumbing/mod.rs
new file mode 100644
index 0000000..71d4fb4
--- /dev/null
+++ b/vendor/rayon/src/iter/plumbing/mod.rs
@@ -0,0 +1,484 @@
+//! Traits and functions used to implement parallel iteration. These are
+//! low-level details -- users of parallel iterators should not need to
+//! interact with them directly. See [the `plumbing` README][r] for a general overview.
+//!
+//! [r]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
+
+use crate::join_context;
+
+use super::IndexedParallelIterator;
+
+use std::cmp;
+use std::usize;
+
+/// The `ProducerCallback` trait is a kind of generic closure,
+/// [analogous to `FnOnce`][FnOnce]. See [the corresponding section in
+/// the plumbing README][r] for more details.
+///
+/// [r]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md#producer-callback
+/// [FnOnce]: https://doc.rust-lang.org/std/ops/trait.FnOnce.html
+pub trait ProducerCallback<T> {
+ /// The type of value returned by this callback. Analogous to
+ /// [`Output` from the `FnOnce` trait][Output].
+ ///
+ /// [Output]: https://doc.rust-lang.org/std/ops/trait.FnOnce.html#associatedtype.Output
+ type Output;
+
+ /// Invokes the callback with the given producer as argument. The
+ /// key point of this trait is that this method is generic over
+ /// `P`, and hence implementors must be defined for any producer.
+ fn callback<P>(self, producer: P) -> Self::Output
+ where
+ P: Producer<Item = T>;
+}
+
+/// A `Producer` is effectively a "splittable `IntoIterator`". That
+/// is, a producer is a value which can be converted into an iterator
+/// at any time: at that point, it simply produces items on demand,
+/// like any iterator. But what makes a `Producer` special is that,
+/// *before* we convert to an iterator, we can also **split** it at a
+/// particular point using the `split_at` method. This will yield up
+/// two producers, one producing the items before that point, and one
+/// producing the items after that point (these two producers can then
+/// independently be split further, or be converted into iterators).
+/// In Rayon, this splitting is used to divide between threads.
+/// See [the `plumbing` README][r] for further details.
+///
+/// Note that each producer will always produce a fixed number of
+/// items N. However, this number N is not queryable through the API;
+/// the consumer is expected to track it.
+///
+/// NB. You might expect `Producer` to extend the `IntoIterator`
+/// trait. However, [rust-lang/rust#20671][20671] prevents us from
+/// declaring the DoubleEndedIterator and ExactSizeIterator
+/// constraints on a required IntoIterator trait, so we inline
+/// IntoIterator here until that issue is fixed.
+///
+/// [r]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
+/// [20671]: https://github.com/rust-lang/rust/issues/20671
+pub trait Producer: Send + Sized {
+ /// The type of item that will be produced by this producer once
+ /// it is converted into an iterator.
+ type Item;
+
+ /// The type of iterator we will become.
+ type IntoIter: Iterator<Item = Self::Item> + DoubleEndedIterator + ExactSizeIterator;
+
+ /// Convert `self` into an iterator; at this point, no more parallel splits
+ /// are possible.
+ fn into_iter(self) -> Self::IntoIter;
+
+ /// The minimum number of items that we will process
+ /// sequentially. Defaults to 1, which means that we will split
+ /// all the way down to a single item. This can be raised higher
+ /// using the [`with_min_len`] method, which will force us to
+ /// create sequential tasks at a larger granularity. Note that
+ /// Rayon automatically normally attempts to adjust the size of
+ /// parallel splits to reduce overhead, so this should not be
+ /// needed.
+ ///
+ /// [`with_min_len`]: ../trait.IndexedParallelIterator.html#method.with_min_len
+ fn min_len(&self) -> usize {
+ 1
+ }
+
+ /// The maximum number of items that we will process
+ /// sequentially. Defaults to MAX, which means that we can choose
+ /// not to split at all. This can be lowered using the
+ /// [`with_max_len`] method, which will force us to create more
+ /// parallel tasks. Note that Rayon automatically normally
+ /// attempts to adjust the size of parallel splits to reduce
+ /// overhead, so this should not be needed.
+ ///
+ /// [`with_max_len`]: ../trait.IndexedParallelIterator.html#method.with_max_len
+ fn max_len(&self) -> usize {
+ usize::MAX
+ }
+
+ /// Split into two producers; one produces items `0..index`, the
+ /// other `index..N`. Index must be less than or equal to `N`.
+ fn split_at(self, index: usize) -> (Self, Self);
+
+ /// Iterate the producer, feeding each element to `folder`, and
+ /// stop when the folder is full (or all elements have been consumed).
+ ///
+ /// The provided implementation is sufficient for most iterables.
+ fn fold_with<F>(self, folder: F) -> F
+ where
+ F: Folder<Self::Item>,
+ {
+ folder.consume_iter(self.into_iter())
+ }
+}
+
+/// A consumer is effectively a [generalized "fold" operation][fold],
+/// and in fact each consumer will eventually be converted into a
+/// [`Folder`]. What makes a consumer special is that, like a
+/// [`Producer`], it can be **split** into multiple consumers using
+/// the `split_at` method. When a consumer is split, it produces two
+/// consumers, as well as a **reducer**. The two consumers can be fed
+/// items independently, and when they are done the reducer is used to
+/// combine their two results into one. See [the `plumbing`
+/// README][r] for further details.
+///
+/// [r]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
+/// [fold]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.fold
+/// [`Folder`]: trait.Folder.html
+/// [`Producer`]: trait.Producer.html
+pub trait Consumer<Item>: Send + Sized {
+ /// The type of folder that this consumer can be converted into.
+ type Folder: Folder<Item, Result = Self::Result>;
+
+ /// The type of reducer that is produced if this consumer is split.
+ type Reducer: Reducer<Self::Result>;
+
+ /// The type of result that this consumer will ultimately produce.
+ type Result: Send;
+
+ /// Divide the consumer into two consumers, one processing items
+ /// `0..index` and one processing items from `index..`. Also
+ /// produces a reducer that can be used to reduce the results at
+ /// the end.
+ fn split_at(self, index: usize) -> (Self, Self, Self::Reducer);
+
+ /// Convert the consumer into a folder that can consume items
+ /// sequentially, eventually producing a final result.
+ fn into_folder(self) -> Self::Folder;
+
+ /// Hint whether this `Consumer` would like to stop processing
+ /// further items, e.g. if a search has been completed.
+ fn full(&self) -> bool;
+}
+
+/// The `Folder` trait encapsulates [the standard fold
+/// operation][fold]. It can be fed many items using the `consume`
+/// method. At the end, once all items have been consumed, it can then
+/// be converted (using `complete`) into a final value.
+///
+/// [fold]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.fold
+pub trait Folder<Item>: Sized {
+ /// The type of result that will ultimately be produced by the folder.
+ type Result;
+
+ /// Consume next item and return new sequential state.
+ fn consume(self, item: Item) -> Self;
+
+ /// Consume items from the iterator until full, and return new sequential state.
+ ///
+ /// This method is **optional**. The default simply iterates over
+ /// `iter`, invoking `consume` and checking after each iteration
+ /// whether `full` returns false.
+ ///
+ /// The main reason to override it is if you can provide a more
+ /// specialized, efficient implementation.
+ fn consume_iter<I>(mut self, iter: I) -> Self
+ where
+ I: IntoIterator<Item = Item>,
+ {
+ for item in iter {
+ self = self.consume(item);
+ if self.full() {
+ break;
+ }
+ }
+ self
+ }
+
+ /// Finish consuming items, produce final result.
+ fn complete(self) -> Self::Result;
+
+ /// Hint whether this `Folder` would like to stop processing
+ /// further items, e.g. if a search has been completed.
+ fn full(&self) -> bool;
+}
+
+/// The reducer is the final step of a `Consumer` -- after a consumer
+/// has been split into two parts, and each of those parts has been
+/// fully processed, we are left with two results. The reducer is then
+/// used to combine those two results into one. See [the `plumbing`
+/// README][r] for further details.
+///
+/// [r]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
+pub trait Reducer<Result> {
+ /// Reduce two final results into one; this is executed after a
+ /// split.
+ fn reduce(self, left: Result, right: Result) -> Result;
+}
+
+/// A stateless consumer can be freely copied. These consumers can be
+/// used like regular consumers, but they also support a
+/// `split_off_left` method that does not take an index to split, but
+/// simply splits at some arbitrary point (`for_each`, for example,
+/// produces an unindexed consumer).
+pub trait UnindexedConsumer<I>: Consumer<I> {
+ /// Splits off a "left" consumer and returns it. The `self`
+ /// consumer should then be used to consume the "right" portion of
+ /// the data. (The ordering matters for methods like find_first --
+ /// values produced by the returned value are given precedence
+ /// over values produced by `self`.) Once the left and right
+ /// halves have been fully consumed, you should reduce the results
+ /// with the result of `to_reducer`.
+ fn split_off_left(&self) -> Self;
+
+ /// Creates a reducer that can be used to combine the results from
+ /// a split consumer.
+ fn to_reducer(&self) -> Self::Reducer;
+}
+
+/// A variant on `Producer` which does not know its exact length or
+/// cannot represent it in a `usize`. These producers act like
+/// ordinary producers except that they cannot be told to split at a
+/// particular point. Instead, you just ask them to split 'somewhere'.
+///
+/// (In principle, `Producer` could extend this trait; however, it
+/// does not because to do so would require producers to carry their
+/// own length with them.)
+pub trait UnindexedProducer: Send + Sized {
+ /// The type of item returned by this producer.
+ type Item;
+
+ /// Split midway into a new producer if possible, otherwise return `None`.
+ fn split(self) -> (Self, Option<Self>);
+
+ /// Iterate the producer, feeding each element to `folder`, and
+ /// stop when the folder is full (or all elements have been consumed).
+ fn fold_with<F>(self, folder: F) -> F
+ where
+ F: Folder<Self::Item>;
+}
+
+/// A splitter controls the policy for splitting into smaller work items.
+///
+/// Thief-splitting is an adaptive policy that starts by splitting into
+/// enough jobs for every worker thread, and then resets itself whenever a
+/// job is actually stolen into a different thread.
+#[derive(Clone, Copy)]
+struct Splitter {
+ /// The `splits` tell us approximately how many remaining times we'd
+ /// like to split this job. We always just divide it by two though, so
+ /// the effective number of pieces will be `next_power_of_two()`.
+ splits: usize,
+}
+
+impl Splitter {
+ #[inline]
+ fn new() -> Splitter {
+ Splitter {
+ splits: crate::current_num_threads(),
+ }
+ }
+
+ #[inline]
+ fn try_split(&mut self, stolen: bool) -> bool {
+ let Splitter { splits } = *self;
+
+ if stolen {
+ // This job was stolen! Reset the number of desired splits to the
+ // thread count, if that's more than we had remaining anyway.
+ self.splits = cmp::max(crate::current_num_threads(), self.splits / 2);
+ true
+ } else if splits > 0 {
+ // We have splits remaining, make it so.
+ self.splits /= 2;
+ true
+ } else {
+ // Not stolen, and no more splits -- we're done!
+ false
+ }
+ }
+}
+
+/// The length splitter is built on thief-splitting, but additionally takes
+/// into account the remaining length of the iterator.
+#[derive(Clone, Copy)]
+struct LengthSplitter {
+ inner: Splitter,
+
+ /// The smallest we're willing to divide into. Usually this is just 1,
+ /// but you can choose a larger working size with `with_min_len()`.
+ min: usize,
+}
+
+impl LengthSplitter {
+ /// Creates a new splitter based on lengths.
+ ///
+ /// The `min` is a hard lower bound. We'll never split below that, but
+ /// of course an iterator might start out smaller already.
+ ///
+ /// The `max` is an upper bound on the working size, used to determine
+ /// the minimum number of times we need to split to get under that limit.
+ /// The adaptive algorithm may very well split even further, but never
+ /// smaller than the `min`.
+ #[inline]
+ fn new(min: usize, max: usize, len: usize) -> LengthSplitter {
+ let mut splitter = LengthSplitter {
+ inner: Splitter::new(),
+ min: cmp::max(min, 1),
+ };
+
+ // Divide the given length by the max working length to get the minimum
+ // number of splits we need to get under that max. This rounds down,
+ // but the splitter actually gives `next_power_of_two()` pieces anyway.
+ // e.g. len 12345 / max 100 = 123 min_splits -> 128 pieces.
+ let min_splits = len / cmp::max(max, 1);
+
+ // Only update the value if it's not splitting enough already.
+ if min_splits > splitter.inner.splits {
+ splitter.inner.splits = min_splits;
+ }
+
+ splitter
+ }
+
+ #[inline]
+ fn try_split(&mut self, len: usize, stolen: bool) -> bool {
+ // If splitting wouldn't make us too small, try the inner splitter.
+ len / 2 >= self.min && self.inner.try_split(stolen)
+ }
+}
+
+/// This helper function is used to "connect" a parallel iterator to a
+/// consumer. It will convert the `par_iter` into a producer P and
+/// then pull items from P and feed them to `consumer`, splitting and
+/// creating parallel threads as needed.
+///
+/// This is useful when you are implementing your own parallel
+/// iterators: it is often used as the definition of the
+/// [`drive_unindexed`] or [`drive`] methods.
+///
+/// [`drive_unindexed`]: ../trait.ParallelIterator.html#tymethod.drive_unindexed
+/// [`drive`]: ../trait.IndexedParallelIterator.html#tymethod.drive
+pub fn bridge<I, C>(par_iter: I, consumer: C) -> C::Result
+where
+ I: IndexedParallelIterator,
+ C: Consumer<I::Item>,
+{
+ let len = par_iter.len();
+ return par_iter.with_producer(Callback { len, consumer });
+
+ struct Callback<C> {
+ len: usize,
+ consumer: C,
+ }
+
+ impl<C, I> ProducerCallback<I> for Callback<C>
+ where
+ C: Consumer<I>,
+ {
+ type Output = C::Result;
+ fn callback<P>(self, producer: P) -> C::Result
+ where
+ P: Producer<Item = I>,
+ {
+ bridge_producer_consumer(self.len, producer, self.consumer)
+ }
+ }
+}
+
+/// This helper function is used to "connect" a producer and a
+/// consumer. You may prefer to call [`bridge`], which wraps this
+/// function. This function will draw items from `producer` and feed
+/// them to `consumer`, splitting and creating parallel tasks when
+/// needed.
+///
+/// This is useful when you are implementing your own parallel
+/// iterators: it is often used as the definition of the
+/// [`drive_unindexed`] or [`drive`] methods.
+///
+/// [`bridge`]: fn.bridge.html
+/// [`drive_unindexed`]: ../trait.ParallelIterator.html#tymethod.drive_unindexed
+/// [`drive`]: ../trait.IndexedParallelIterator.html#tymethod.drive
+pub fn bridge_producer_consumer<P, C>(len: usize, producer: P, consumer: C) -> C::Result
+where
+ P: Producer,
+ C: Consumer<P::Item>,
+{
+ let splitter = LengthSplitter::new(producer.min_len(), producer.max_len(), len);
+ return helper(len, false, splitter, producer, consumer);
+
+ fn helper<P, C>(
+ len: usize,
+ migrated: bool,
+ mut splitter: LengthSplitter,
+ producer: P,
+ consumer: C,
+ ) -> C::Result
+ where
+ P: Producer,
+ C: Consumer<P::Item>,
+ {
+ if consumer.full() {
+ consumer.into_folder().complete()
+ } else if splitter.try_split(len, migrated) {
+ let mid = len / 2;
+ let (left_producer, right_producer) = producer.split_at(mid);
+ let (left_consumer, right_consumer, reducer) = consumer.split_at(mid);
+ let (left_result, right_result) = join_context(
+ |context| {
+ helper(
+ mid,
+ context.migrated(),
+ splitter,
+ left_producer,
+ left_consumer,
+ )
+ },
+ |context| {
+ helper(
+ len - mid,
+ context.migrated(),
+ splitter,
+ right_producer,
+ right_consumer,
+ )
+ },
+ );
+ reducer.reduce(left_result, right_result)
+ } else {
+ producer.fold_with(consumer.into_folder()).complete()
+ }
+ }
+}
+
+/// A variant of [`bridge_producer_consumer`] where the producer is an unindexed producer.
+///
+/// [`bridge_producer_consumer`]: fn.bridge_producer_consumer.html
+pub fn bridge_unindexed<P, C>(producer: P, consumer: C) -> C::Result
+where
+ P: UnindexedProducer,
+ C: UnindexedConsumer<P::Item>,
+{
+ let splitter = Splitter::new();
+ bridge_unindexed_producer_consumer(false, splitter, producer, consumer)
+}
+
+fn bridge_unindexed_producer_consumer<P, C>(
+ migrated: bool,
+ mut splitter: Splitter,
+ producer: P,
+ consumer: C,
+) -> C::Result
+where
+ P: UnindexedProducer,
+ C: UnindexedConsumer<P::Item>,
+{
+ if consumer.full() {
+ consumer.into_folder().complete()
+ } else if splitter.try_split(migrated) {
+ match producer.split() {
+ (left_producer, Some(right_producer)) => {
+ let (reducer, left_consumer, right_consumer) =
+ (consumer.to_reducer(), consumer.split_off_left(), consumer);
+ let bridge = bridge_unindexed_producer_consumer;
+ let (left_result, right_result) = join_context(
+ |context| bridge(context.migrated(), splitter, left_producer, left_consumer),
+ |context| bridge(context.migrated(), splitter, right_producer, right_consumer),
+ );
+ reducer.reduce(left_result, right_result)
+ }
+ (producer, None) => producer.fold_with(consumer.into_folder()).complete(),
+ }
+ } else {
+ producer.fold_with(consumer.into_folder()).complete()
+ }
+}