aboutsummaryrefslogtreecommitdiff
path: root/vendor/rayon/src/iter/test.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/rayon/src/iter/test.rs')
-rw-r--r--vendor/rayon/src/iter/test.rs2188
1 files changed, 0 insertions, 2188 deletions
diff --git a/vendor/rayon/src/iter/test.rs b/vendor/rayon/src/iter/test.rs
deleted file mode 100644
index c72068d..0000000
--- a/vendor/rayon/src/iter/test.rs
+++ /dev/null
@@ -1,2188 +0,0 @@
-use std::sync::atomic::{AtomicUsize, Ordering};
-
-use super::*;
-use crate::prelude::*;
-use rayon_core::*;
-
-use rand::distributions::Standard;
-use rand::{Rng, SeedableRng};
-use rand_xorshift::XorShiftRng;
-use std::collections::LinkedList;
-use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
-use std::collections::{BinaryHeap, VecDeque};
-use std::f64;
-use std::fmt::Debug;
-use std::sync::mpsc;
-use std::usize;
-
-fn is_indexed<T: IndexedParallelIterator>(_: T) {}
-
-fn seeded_rng() -> XorShiftRng {
- let mut seed = <XorShiftRng as SeedableRng>::Seed::default();
- (0..).zip(seed.as_mut()).for_each(|(i, x)| *x = i);
- XorShiftRng::from_seed(seed)
-}
-
-#[test]
-fn execute() {
- let a: Vec<i32> = (0..1024).collect();
- let mut b = vec![];
- a.par_iter().map(|&i| i + 1).collect_into_vec(&mut b);
- let c: Vec<i32> = (0..1024).map(|i| i + 1).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn execute_cloned() {
- let a: Vec<i32> = (0..1024).collect();
- let mut b: Vec<i32> = vec![];
- a.par_iter().cloned().collect_into_vec(&mut b);
- let c: Vec<i32> = (0..1024).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn execute_range() {
- let a = 0i32..1024;
- let mut b = vec![];
- a.into_par_iter().map(|i| i + 1).collect_into_vec(&mut b);
- let c: Vec<i32> = (0..1024).map(|i| i + 1).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn execute_unindexed_range() {
- let a = 0i64..1024;
- let b: LinkedList<i64> = a.into_par_iter().map(|i| i + 1).collect();
- let c: LinkedList<i64> = (0..1024).map(|i| i + 1).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn execute_pseudo_indexed_range() {
- use std::i128::MAX;
- let range = MAX - 1024..MAX;
-
- // Given `Some` length, collecting `Vec` will try to act indexed.
- let a = range.clone().into_par_iter();
- assert_eq!(a.opt_len(), Some(1024));
-
- let b: Vec<i128> = a.map(|i| i + 1).collect();
- let c: Vec<i128> = range.map(|i| i + 1).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn check_map_indexed() {
- let a = [1, 2, 3];
- is_indexed(a.par_iter().map(|x| x));
-}
-
-#[test]
-fn map_sum() {
- let a: Vec<i32> = (0..1024).collect();
- let r1: i32 = a.par_iter().map(|&i| i + 1).sum();
- let r2 = a.iter().map(|&i| i + 1).sum();
- assert_eq!(r1, r2);
-}
-
-#[test]
-fn map_reduce() {
- let a: Vec<i32> = (0..1024).collect();
- let r1 = a.par_iter().map(|&i| i + 1).reduce(|| 0, |i, j| i + j);
- let r2 = a.iter().map(|&i| i + 1).sum();
- assert_eq!(r1, r2);
-}
-
-#[test]
-fn map_reduce_with() {
- let a: Vec<i32> = (0..1024).collect();
- let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j);
- let r2 = a.iter().map(|&i| i + 1).sum();
- assert_eq!(r1, Some(r2));
-}
-
-#[test]
-fn fold_map_reduce() {
- // Kind of a weird test, but it demonstrates various
- // transformations that are taking place. Relies on
- // `with_max_len(1).fold()` being equivalent to `map()`.
- //
- // Take each number from 0 to 32 and fold them by appending to a
- // vector. Because of `with_max_len(1)`, this will produce 32 vectors,
- // each with one item. We then collect all of these into an
- // individual vector by mapping each into their own vector (so we
- // have Vec<Vec<i32>>) and then reducing those into a single
- // vector.
- let r1 = (0_i32..32)
- .into_par_iter()
- .with_max_len(1)
- .fold(Vec::new, |mut v, e| {
- v.push(e);
- v
- })
- .map(|v| vec![v])
- .reduce_with(|mut v_a, v_b| {
- v_a.extend(v_b);
- v_a
- });
- assert_eq!(
- r1,
- Some(vec![
- vec![0],
- vec![1],
- vec![2],
- vec![3],
- vec![4],
- vec![5],
- vec![6],
- vec![7],
- vec![8],
- vec![9],
- vec![10],
- vec![11],
- vec![12],
- vec![13],
- vec![14],
- vec![15],
- vec![16],
- vec![17],
- vec![18],
- vec![19],
- vec![20],
- vec![21],
- vec![22],
- vec![23],
- vec![24],
- vec![25],
- vec![26],
- vec![27],
- vec![28],
- vec![29],
- vec![30],
- vec![31]
- ])
- );
-}
-
-#[test]
-fn fold_is_full() {
- let counter = AtomicUsize::new(0);
- let a = (0_i32..2048)
- .into_par_iter()
- .inspect(|_| {
- counter.fetch_add(1, Ordering::SeqCst);
- })
- .fold(|| 0, |a, b| a + b)
- .find_any(|_| true);
- assert!(a.is_some());
- assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one
-}
-
-#[test]
-fn check_step_by() {
- let a: Vec<i32> = (0..1024).step_by(2).collect();
- let b: Vec<i32> = (0..1024).into_par_iter().step_by(2).collect();
-
- assert_eq!(a, b);
-}
-
-#[test]
-fn check_step_by_unaligned() {
- let a: Vec<i32> = (0..1029).step_by(10).collect();
- let b: Vec<i32> = (0..1029).into_par_iter().step_by(10).collect();
-
- assert_eq!(a, b)
-}
-
-#[test]
-fn check_step_by_rev() {
- let a: Vec<i32> = (0..1024).step_by(2).rev().collect();
- let b: Vec<i32> = (0..1024).into_par_iter().step_by(2).rev().collect();
-
- assert_eq!(a, b);
-}
-
-#[test]
-fn check_enumerate() {
- let a: Vec<usize> = (0..1024).rev().collect();
-
- let mut b = vec![];
- a.par_iter()
- .enumerate()
- .map(|(i, &x)| i + x)
- .collect_into_vec(&mut b);
- assert!(b.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_enumerate_rev() {
- let a: Vec<usize> = (0..1024).rev().collect();
-
- let mut b = vec![];
- a.par_iter()
- .enumerate()
- .rev()
- .map(|(i, &x)| i + x)
- .collect_into_vec(&mut b);
- assert!(b.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_indices_after_enumerate_split() {
- let a: Vec<i32> = (0..1024).collect();
- a.par_iter().enumerate().with_producer(WithProducer);
-
- struct WithProducer;
- impl<'a> ProducerCallback<(usize, &'a i32)> for WithProducer {
- type Output = ();
- fn callback<P>(self, producer: P)
- where
- P: Producer<Item = (usize, &'a i32)>,
- {
- let (a, b) = producer.split_at(512);
- for ((index, value), trusted_index) in a.into_iter().zip(0..) {
- assert_eq!(index, trusted_index);
- assert_eq!(index, *value as usize);
- }
- for ((index, value), trusted_index) in b.into_iter().zip(512..) {
- assert_eq!(index, trusted_index);
- assert_eq!(index, *value as usize);
- }
- }
- }
-}
-
-#[test]
-fn check_increment() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
-
- a.par_iter_mut().enumerate().for_each(|(i, v)| *v += i);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_skip() {
- let a: Vec<usize> = (0..1024).collect();
-
- let mut v1 = Vec::new();
- a.par_iter().skip(16).collect_into_vec(&mut v1);
- let v2 = a.iter().skip(16).collect::<Vec<_>>();
- assert_eq!(v1, v2);
-
- let mut v1 = Vec::new();
- a.par_iter().skip(2048).collect_into_vec(&mut v1);
- let v2 = a.iter().skip(2048).collect::<Vec<_>>();
- assert_eq!(v1, v2);
-
- let mut v1 = Vec::new();
- a.par_iter().skip(0).collect_into_vec(&mut v1);
- let v2 = a.iter().skip(0).collect::<Vec<_>>();
- assert_eq!(v1, v2);
-
- // Check that the skipped elements side effects are executed
- use std::sync::atomic::{AtomicUsize, Ordering};
- let num = AtomicUsize::new(0);
- a.par_iter()
- .map(|&n| num.fetch_add(n, Ordering::Relaxed))
- .skip(512)
- .count();
- assert_eq!(num.load(Ordering::Relaxed), a.iter().sum::<usize>());
-}
-
-#[test]
-fn check_take() {
- let a: Vec<usize> = (0..1024).collect();
-
- let mut v1 = Vec::new();
- a.par_iter().take(16).collect_into_vec(&mut v1);
- let v2 = a.iter().take(16).collect::<Vec<_>>();
- assert_eq!(v1, v2);
-
- let mut v1 = Vec::new();
- a.par_iter().take(2048).collect_into_vec(&mut v1);
- let v2 = a.iter().take(2048).collect::<Vec<_>>();
- assert_eq!(v1, v2);
-
- let mut v1 = Vec::new();
- a.par_iter().take(0).collect_into_vec(&mut v1);
- let v2 = a.iter().take(0).collect::<Vec<_>>();
- assert_eq!(v1, v2);
-}
-
-#[test]
-fn check_inspect() {
- use std::sync::atomic::{AtomicUsize, Ordering};
-
- let a = AtomicUsize::new(0);
- let b: usize = (0_usize..1024)
- .into_par_iter()
- .inspect(|&i| {
- a.fetch_add(i, Ordering::Relaxed);
- })
- .sum();
-
- assert_eq!(a.load(Ordering::Relaxed), b);
-}
-
-#[test]
-fn check_move() {
- let a = vec![vec![1, 2, 3]];
- let ptr = a[0].as_ptr();
-
- let mut b = vec![];
- a.into_par_iter().collect_into_vec(&mut b);
-
- // a simple move means the inner vec will be completely unchanged
- assert_eq!(ptr, b[0].as_ptr());
-}
-
-#[test]
-fn check_drops() {
- use std::sync::atomic::{AtomicUsize, Ordering};
-
- let c = AtomicUsize::new(0);
- let a = vec![DropCounter(&c); 10];
-
- let mut b = vec![];
- a.clone().into_par_iter().collect_into_vec(&mut b);
- assert_eq!(c.load(Ordering::Relaxed), 0);
-
- b.into_par_iter();
- assert_eq!(c.load(Ordering::Relaxed), 10);
-
- a.into_par_iter().with_producer(Partial);
- assert_eq!(c.load(Ordering::Relaxed), 20);
-
- #[derive(Clone)]
- struct DropCounter<'a>(&'a AtomicUsize);
- impl<'a> Drop for DropCounter<'a> {
- fn drop(&mut self) {
- self.0.fetch_add(1, Ordering::Relaxed);
- }
- }
-
- struct Partial;
- impl<'a> ProducerCallback<DropCounter<'a>> for Partial {
- type Output = ();
- fn callback<P>(self, producer: P)
- where
- P: Producer<Item = DropCounter<'a>>,
- {
- let (a, _) = producer.split_at(5);
- a.into_iter().next();
- }
- }
-}
-
-#[test]
-fn check_slice_indexed() {
- let a = vec![1, 2, 3];
- is_indexed(a.par_iter());
-}
-
-#[test]
-fn check_slice_mut_indexed() {
- let mut a = vec![1, 2, 3];
- is_indexed(a.par_iter_mut());
-}
-
-#[test]
-fn check_vec_indexed() {
- let a = vec![1, 2, 3];
- is_indexed(a.into_par_iter());
-}
-
-#[test]
-fn check_range_indexed() {
- is_indexed((1..5).into_par_iter());
-}
-
-#[test]
-fn check_cmp_direct() {
- let a = (0..1024).into_par_iter();
- let b = (0..1024).into_par_iter();
-
- let result = a.cmp(b);
-
- assert!(result == ::std::cmp::Ordering::Equal);
-}
-
-#[test]
-fn check_cmp_to_seq() {
- assert_eq!(
- (0..1024).into_par_iter().cmp(0..1024),
- (0..1024).cmp(0..1024)
- );
-}
-
-#[test]
-fn check_cmp_rng_to_seq() {
- let mut rng = seeded_rng();
- let rng = &mut rng;
- let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect();
- let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect();
- for i in 0..a.len() {
- let par_result = a[i..].par_iter().cmp(b[i..].par_iter());
- let seq_result = a[i..].iter().cmp(b[i..].iter());
-
- assert_eq!(par_result, seq_result);
- }
-}
-
-#[test]
-fn check_cmp_lt_direct() {
- let a = (0..1024).into_par_iter();
- let b = (1..1024).into_par_iter();
-
- let result = a.cmp(b);
-
- assert!(result == ::std::cmp::Ordering::Less);
-}
-
-#[test]
-fn check_cmp_lt_to_seq() {
- assert_eq!(
- (0..1024).into_par_iter().cmp(1..1024),
- (0..1024).cmp(1..1024)
- )
-}
-
-#[test]
-fn check_cmp_gt_direct() {
- let a = (1..1024).into_par_iter();
- let b = (0..1024).into_par_iter();
-
- let result = a.cmp(b);
-
- assert!(result == ::std::cmp::Ordering::Greater);
-}
-
-#[test]
-fn check_cmp_gt_to_seq() {
- assert_eq!(
- (1..1024).into_par_iter().cmp(0..1024),
- (1..1024).cmp(0..1024)
- )
-}
-
-#[test]
-#[cfg_attr(any(target_os = "emscripten", target_family = "wasm"), ignore)]
-fn check_cmp_short_circuit() {
- // We only use a single thread in order to make the short-circuit behavior deterministic.
- let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
-
- let a = vec![0; 1024];
- let mut b = a.clone();
- b[42] = 1;
-
- pool.install(|| {
- let expected = ::std::cmp::Ordering::Less;
- assert_eq!(a.par_iter().cmp(&b), expected);
-
- for len in 1..10 {
- let counter = AtomicUsize::new(0);
- let result = a
- .par_iter()
- .with_max_len(len)
- .inspect(|_| {
- counter.fetch_add(1, Ordering::SeqCst);
- })
- .cmp(&b);
- assert_eq!(result, expected);
- // should not have visited every single one
- assert!(counter.into_inner() < a.len());
- }
- });
-}
-
-#[test]
-#[cfg_attr(any(target_os = "emscripten", target_family = "wasm"), ignore)]
-fn check_partial_cmp_short_circuit() {
- // We only use a single thread to make the short-circuit behavior deterministic.
- let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
-
- let a = vec![0; 1024];
- let mut b = a.clone();
- b[42] = 1;
-
- pool.install(|| {
- let expected = Some(::std::cmp::Ordering::Less);
- assert_eq!(a.par_iter().partial_cmp(&b), expected);
-
- for len in 1..10 {
- let counter = AtomicUsize::new(0);
- let result = a
- .par_iter()
- .with_max_len(len)
- .inspect(|_| {
- counter.fetch_add(1, Ordering::SeqCst);
- })
- .partial_cmp(&b);
- assert_eq!(result, expected);
- // should not have visited every single one
- assert!(counter.into_inner() < a.len());
- }
- });
-}
-
-#[test]
-#[cfg_attr(any(target_os = "emscripten", target_family = "wasm"), ignore)]
-fn check_partial_cmp_nan_short_circuit() {
- // We only use a single thread to make the short-circuit behavior deterministic.
- let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
-
- let a = vec![0.0; 1024];
- let mut b = a.clone();
- b[42] = f64::NAN;
-
- pool.install(|| {
- let expected = None;
- assert_eq!(a.par_iter().partial_cmp(&b), expected);
-
- for len in 1..10 {
- let counter = AtomicUsize::new(0);
- let result = a
- .par_iter()
- .with_max_len(len)
- .inspect(|_| {
- counter.fetch_add(1, Ordering::SeqCst);
- })
- .partial_cmp(&b);
- assert_eq!(result, expected);
- // should not have visited every single one
- assert!(counter.into_inner() < a.len());
- }
- });
-}
-
-#[test]
-fn check_partial_cmp_direct() {
- let a = (0..1024).into_par_iter();
- let b = (0..1024).into_par_iter();
-
- let result = a.partial_cmp(b);
-
- assert!(result == Some(::std::cmp::Ordering::Equal));
-}
-
-#[test]
-fn check_partial_cmp_to_seq() {
- let par_result = (0..1024).into_par_iter().partial_cmp(0..1024);
- let seq_result = (0..1024).partial_cmp(0..1024);
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_partial_cmp_rng_to_seq() {
- let mut rng = seeded_rng();
- let rng = &mut rng;
- let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect();
- let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect();
- for i in 0..a.len() {
- let par_result = a[i..].par_iter().partial_cmp(b[i..].par_iter());
- let seq_result = a[i..].iter().partial_cmp(b[i..].iter());
-
- assert_eq!(par_result, seq_result);
- }
-}
-
-#[test]
-fn check_partial_cmp_lt_direct() {
- let a = (0..1024).into_par_iter();
- let b = (1..1024).into_par_iter();
-
- let result = a.partial_cmp(b);
-
- assert!(result == Some(::std::cmp::Ordering::Less));
-}
-
-#[test]
-fn check_partial_cmp_lt_to_seq() {
- let par_result = (0..1024).into_par_iter().partial_cmp(1..1024);
- let seq_result = (0..1024).partial_cmp(1..1024);
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_partial_cmp_gt_direct() {
- let a = (1..1024).into_par_iter();
- let b = (0..1024).into_par_iter();
-
- let result = a.partial_cmp(b);
-
- assert!(result == Some(::std::cmp::Ordering::Greater));
-}
-
-#[test]
-fn check_partial_cmp_gt_to_seq() {
- let par_result = (1..1024).into_par_iter().partial_cmp(0..1024);
- let seq_result = (1..1024).partial_cmp(0..1024);
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_partial_cmp_none_direct() {
- let a = vec![f64::NAN, 0.0];
- let b = vec![0.0, 1.0];
-
- let result = a.par_iter().partial_cmp(b.par_iter());
-
- assert!(result == None);
-}
-
-#[test]
-fn check_partial_cmp_none_to_seq() {
- let a = vec![f64::NAN, 0.0];
- let b = vec![0.0, 1.0];
-
- let par_result = a.par_iter().partial_cmp(b.par_iter());
- let seq_result = a.iter().partial_cmp(b.iter());
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_partial_cmp_late_nan_direct() {
- let a = vec![0.0, f64::NAN];
- let b = vec![1.0, 1.0];
-
- let result = a.par_iter().partial_cmp(b.par_iter());
-
- assert!(result == Some(::std::cmp::Ordering::Less));
-}
-
-#[test]
-fn check_partial_cmp_late_nane_to_seq() {
- let a = vec![0.0, f64::NAN];
- let b = vec![1.0, 1.0];
-
- let par_result = a.par_iter().partial_cmp(b.par_iter());
- let seq_result = a.iter().partial_cmp(b.iter());
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_cmp_lengths() {
- // comparisons should consider length if they are otherwise equal
- let a = vec![0; 1024];
- let b = vec![0; 1025];
-
- assert_eq!(a.par_iter().cmp(&b), a.iter().cmp(&b));
- assert_eq!(a.par_iter().partial_cmp(&b), a.iter().partial_cmp(&b));
-}
-
-#[test]
-fn check_eq_direct() {
- let a = (0..1024).into_par_iter();
- let b = (0..1024).into_par_iter();
-
- let result = a.eq(b);
-
- assert!(result);
-}
-
-#[test]
-fn check_eq_to_seq() {
- let par_result = (0..1024).into_par_iter().eq((0..1024).into_par_iter());
- let seq_result = (0..1024).eq(0..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_ne_direct() {
- let a = (0..1024).into_par_iter();
- let b = (1..1024).into_par_iter();
-
- let result = a.ne(b);
-
- assert!(result);
-}
-
-#[test]
-fn check_ne_to_seq() {
- let par_result = (0..1024).into_par_iter().ne((1..1025).into_par_iter());
- let seq_result = (0..1024).ne(1..1025);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_ne_lengths() {
- // equality should consider length too
- let a = vec![0; 1024];
- let b = vec![0; 1025];
-
- assert_eq!(a.par_iter().eq(&b), a.iter().eq(&b));
- assert_eq!(a.par_iter().ne(&b), a.iter().ne(&b));
-}
-
-#[test]
-fn check_lt_direct() {
- assert!((0..1024).into_par_iter().lt(1..1024));
- assert!(!(1..1024).into_par_iter().lt(0..1024));
-}
-
-#[test]
-fn check_lt_to_seq() {
- let par_result = (0..1024).into_par_iter().lt((1..1024).into_par_iter());
- let seq_result = (0..1024).lt(1..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_le_equal_direct() {
- assert!((0..1024).into_par_iter().le((0..1024).into_par_iter()));
-}
-
-#[test]
-fn check_le_equal_to_seq() {
- let par_result = (0..1024).into_par_iter().le((0..1024).into_par_iter());
- let seq_result = (0..1024).le(0..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_le_less_direct() {
- assert!((0..1024).into_par_iter().le((1..1024).into_par_iter()));
-}
-
-#[test]
-fn check_le_less_to_seq() {
- let par_result = (0..1024).into_par_iter().le((1..1024).into_par_iter());
- let seq_result = (0..1024).le(1..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_gt_direct() {
- assert!((1..1024).into_par_iter().gt((0..1024).into_par_iter()));
-}
-
-#[test]
-fn check_gt_to_seq() {
- let par_result = (1..1024).into_par_iter().gt((0..1024).into_par_iter());
- let seq_result = (1..1024).gt(0..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_ge_equal_direct() {
- assert!((0..1024).into_par_iter().ge((0..1024).into_par_iter()));
-}
-
-#[test]
-fn check_ge_equal_to_seq() {
- let par_result = (0..1024).into_par_iter().ge((0..1024).into_par_iter());
- let seq_result = (0..1024).ge(0..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_ge_greater_direct() {
- assert!((1..1024).into_par_iter().ge((0..1024).into_par_iter()));
-}
-
-#[test]
-fn check_ge_greater_to_seq() {
- let par_result = (1..1024).into_par_iter().ge((0..1024).into_par_iter());
- let seq_result = (1..1024).ge(0..1024);
-
- assert_eq!(par_result, seq_result);
-}
-
-#[test]
-fn check_zip() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
- let b: Vec<usize> = (0..1024).collect();
-
- a.par_iter_mut().zip(&b[..]).for_each(|(a, &b)| *a += b);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_zip_into_par_iter() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
- let b: Vec<usize> = (0..1024).collect();
-
- a.par_iter_mut()
- .zip(&b) // here we rely on &b iterating over &usize
- .for_each(|(a, &b)| *a += b);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_zip_into_mut_par_iter() {
- let a: Vec<usize> = (0..1024).rev().collect();
- let mut b: Vec<usize> = (0..1024).collect();
-
- a.par_iter().zip(&mut b).for_each(|(&a, b)| *b += a);
-
- assert!(b.iter().all(|&x| x == b.len() - 1));
-}
-
-#[test]
-fn check_zip_range() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
-
- a.par_iter_mut()
- .zip(0usize..1024)
- .for_each(|(a, b)| *a += b);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_zip_eq() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
- let b: Vec<usize> = (0..1024).collect();
-
- a.par_iter_mut().zip_eq(&b[..]).for_each(|(a, &b)| *a += b);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_zip_eq_into_par_iter() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
- let b: Vec<usize> = (0..1024).collect();
-
- a.par_iter_mut()
- .zip_eq(&b) // here we rely on &b iterating over &usize
- .for_each(|(a, &b)| *a += b);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_zip_eq_into_mut_par_iter() {
- let a: Vec<usize> = (0..1024).rev().collect();
- let mut b: Vec<usize> = (0..1024).collect();
-
- a.par_iter().zip_eq(&mut b).for_each(|(&a, b)| *b += a);
-
- assert!(b.iter().all(|&x| x == b.len() - 1));
-}
-
-#[test]
-fn check_zip_eq_range() {
- let mut a: Vec<usize> = (0..1024).rev().collect();
-
- a.par_iter_mut()
- .zip_eq(0usize..1024)
- .for_each(|(a, b)| *a += b);
-
- assert!(a.iter().all(|&x| x == a.len() - 1));
-}
-
-#[test]
-fn check_sum_filtered_ints() {
- let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
- let par_sum_evens: i32 = a.par_iter().filter(|&x| (x & 1) == 0).sum();
- let seq_sum_evens = a.iter().filter(|&x| (x & 1) == 0).sum();
- assert_eq!(par_sum_evens, seq_sum_evens);
-}
-
-#[test]
-fn check_sum_filtermap_ints() {
- let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
- let par_sum_evens: u32 = a
- .par_iter()
- .filter_map(|&x| if (x & 1) == 0 { Some(x as u32) } else { None })
- .sum();
- let seq_sum_evens = a
- .iter()
- .filter_map(|&x| if (x & 1) == 0 { Some(x as u32) } else { None })
- .sum();
- assert_eq!(par_sum_evens, seq_sum_evens);
-}
-
-#[test]
-fn check_flat_map_nested_ranges() {
- // FIXME -- why are precise type hints required on the integers here?
-
- let v: i32 = (0_i32..10)
- .into_par_iter()
- .flat_map(|i| (0_i32..10).into_par_iter().map(move |j| (i, j)))
- .map(|(i, j)| i * j)
- .sum();
-
- let w = (0_i32..10)
- .flat_map(|i| (0_i32..10).map(move |j| (i, j)))
- .map(|(i, j)| i * j)
- .sum();
-
- assert_eq!(v, w);
-}
-
-#[test]
-fn check_empty_flat_map_sum() {
- let a: Vec<i32> = (0..1024).collect();
- let empty = &a[..0];
-
- // empty on the inside
- let b: i32 = a.par_iter().flat_map(|_| empty).sum();
- assert_eq!(b, 0);
-
- // empty on the outside
- let c: i32 = empty.par_iter().flat_map(|_| a.par_iter()).sum();
- assert_eq!(c, 0);
-}
-
-#[test]
-fn check_flatten_vec() {
- let a: Vec<i32> = (0..1024).collect();
- let b: Vec<Vec<i32>> = vec![a.clone(), a.clone(), a.clone(), a.clone()];
- let c: Vec<i32> = b.par_iter().flatten().cloned().collect();
- let mut d = a.clone();
- d.extend(&a);
- d.extend(&a);
- d.extend(&a);
-
- assert_eq!(d, c);
-}
-
-#[test]
-fn check_flatten_vec_empty() {
- let a: Vec<Vec<i32>> = vec![vec![]];
- let b: Vec<i32> = a.par_iter().flatten().cloned().collect();
-
- assert_eq!(vec![] as Vec<i32>, b);
-}
-
-#[test]
-fn check_slice_split() {
- let v: Vec<_> = (0..1000).collect();
- for m in 1..100 {
- let a: Vec<_> = v.split(|x| x % m == 0).collect();
- let b: Vec<_> = v.par_split(|x| x % m == 0).collect();
- assert_eq!(a, b);
- }
-
- // same as std::slice::split() examples
- let slice = [10, 40, 33, 20];
- let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect();
- assert_eq!(v, &[&slice[..2], &slice[3..]]);
-
- let slice = [10, 40, 33];
- let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect();
- assert_eq!(v, &[&slice[..2], &slice[..0]]);
-
- let slice = [10, 6, 33, 20];
- let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect();
- assert_eq!(v, &[&slice[..1], &slice[..0], &slice[3..]]);
-}
-
-#[test]
-fn check_slice_split_mut() {
- let mut v1: Vec<_> = (0..1000).collect();
- let mut v2 = v1.clone();
- for m in 1..100 {
- let a: Vec<_> = v1.split_mut(|x| x % m == 0).collect();
- let b: Vec<_> = v2.par_split_mut(|x| x % m == 0).collect();
- assert_eq!(a, b);
- }
-
- // same as std::slice::split_mut() example
- let mut v = [10, 40, 30, 20, 60, 50];
- v.par_split_mut(|num| num % 3 == 0).for_each(|group| {
- group[0] = 1;
- });
- assert_eq!(v, [1, 40, 30, 1, 60, 1]);
-}
-
-#[test]
-fn check_chunks() {
- let a: Vec<i32> = vec![1, 5, 10, 4, 100, 3, 1000, 2, 10000, 1];
- let par_sum_product_pairs: i32 = a.par_chunks(2).map(|c| c.iter().product::<i32>()).sum();
- let seq_sum_product_pairs = a.chunks(2).map(|c| c.iter().product::<i32>()).sum();
- assert_eq!(par_sum_product_pairs, 12345);
- assert_eq!(par_sum_product_pairs, seq_sum_product_pairs);
-
- let par_sum_product_triples: i32 = a.par_chunks(3).map(|c| c.iter().product::<i32>()).sum();
- let seq_sum_product_triples = a.chunks(3).map(|c| c.iter().product::<i32>()).sum();
- assert_eq!(par_sum_product_triples, 5_0 + 12_00 + 20_000_000 + 1);
- assert_eq!(par_sum_product_triples, seq_sum_product_triples);
-}
-
-#[test]
-fn check_chunks_mut() {
- let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
- let mut b: Vec<i32> = a.clone();
- a.par_chunks_mut(2).for_each(|c| c[0] = c.iter().sum());
- b.chunks_mut(2).for_each(|c| c[0] = c.iter().sum());
- assert_eq!(a, &[3, 2, 7, 4, 11, 6, 15, 8, 19, 10]);
- assert_eq!(a, b);
-
- let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
- let mut b: Vec<i32> = a.clone();
- a.par_chunks_mut(3).for_each(|c| c[0] = c.iter().sum());
- b.chunks_mut(3).for_each(|c| c[0] = c.iter().sum());
- assert_eq!(a, &[6, 2, 3, 15, 5, 6, 24, 8, 9, 10]);
- assert_eq!(a, b);
-}
-
-#[test]
-fn check_windows() {
- let a: Vec<i32> = (0..1024).collect();
- let par: Vec<_> = a.par_windows(2).collect();
- let seq: Vec<_> = a.windows(2).collect();
- assert_eq!(par, seq);
-
- let par: Vec<_> = a.par_windows(100).collect();
- let seq: Vec<_> = a.windows(100).collect();
- assert_eq!(par, seq);
-
- let par: Vec<_> = a.par_windows(1_000_000).collect();
- let seq: Vec<_> = a.windows(1_000_000).collect();
- assert_eq!(par, seq);
-
- let par: Vec<_> = a
- .par_windows(2)
- .chain(a.par_windows(1_000_000))
- .zip(a.par_windows(2))
- .collect();
- let seq: Vec<_> = a
- .windows(2)
- .chain(a.windows(1_000_000))
- .zip(a.windows(2))
- .collect();
- assert_eq!(par, seq);
-}
-
-#[test]
-fn check_options() {
- let mut a = vec![None, Some(1), None, None, Some(2), Some(4)];
-
- assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>());
- assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>());
-
- a.par_iter_mut()
- .flat_map(|opt| opt)
- .for_each(|x| *x = *x * *x);
-
- assert_eq!(21, a.into_par_iter().flat_map(|opt| opt).sum::<i32>());
-}
-
-#[test]
-fn check_results() {
- let mut a = vec![Err(()), Ok(1i32), Err(()), Err(()), Ok(2), Ok(4)];
-
- assert_eq!(7, a.par_iter().flat_map(|res| res).sum::<i32>());
-
- assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().sum());
- assert_eq!(Ok(7), a.par_iter().cloned().filter(Result::is_ok).sum());
-
- assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().product());
- assert_eq!(Ok(8), a.par_iter().cloned().filter(Result::is_ok).product());
-
- a.par_iter_mut()
- .flat_map(|res| res)
- .for_each(|x| *x = *x * *x);
-
- assert_eq!(21, a.into_par_iter().flat_map(|res| res).sum::<i32>());
-}
-
-#[test]
-fn check_binary_heap() {
- use std::collections::BinaryHeap;
-
- let a: BinaryHeap<i32> = (0..10).collect();
-
- assert_eq!(45, a.par_iter().sum::<i32>());
- assert_eq!(45, a.into_par_iter().sum::<i32>());
-}
-
-#[test]
-fn check_btree_map() {
- use std::collections::BTreeMap;
-
- let mut a: BTreeMap<i32, i32> = (0..10).map(|i| (i, -i)).collect();
-
- assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>());
- assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>());
-
- a.par_iter_mut().for_each(|(k, v)| *v += *k);
-
- assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>());
-}
-
-#[test]
-fn check_btree_set() {
- use std::collections::BTreeSet;
-
- let a: BTreeSet<i32> = (0..10).collect();
-
- assert_eq!(45, a.par_iter().sum::<i32>());
- assert_eq!(45, a.into_par_iter().sum::<i32>());
-}
-
-#[test]
-fn check_hash_map() {
- use std::collections::HashMap;
-
- let mut a: HashMap<i32, i32> = (0..10).map(|i| (i, -i)).collect();
-
- assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>());
- assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>());
-
- a.par_iter_mut().for_each(|(k, v)| *v += *k);
-
- assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>());
-}
-
-#[test]
-fn check_hash_set() {
- use std::collections::HashSet;
-
- let a: HashSet<i32> = (0..10).collect();
-
- assert_eq!(45, a.par_iter().sum::<i32>());
- assert_eq!(45, a.into_par_iter().sum::<i32>());
-}
-
-#[test]
-fn check_linked_list() {
- use std::collections::LinkedList;
-
- let mut a: LinkedList<i32> = (0..10).collect();
-
- assert_eq!(45, a.par_iter().sum::<i32>());
-
- a.par_iter_mut().for_each(|x| *x = -*x);
-
- assert_eq!(-45, a.into_par_iter().sum::<i32>());
-}
-
-#[test]
-fn check_vec_deque() {
- use std::collections::VecDeque;
-
- let mut a: VecDeque<i32> = (0..10).collect();
-
- // try to get it to wrap around
- a.drain(..5);
- a.extend(0..5);
-
- assert_eq!(45, a.par_iter().sum::<i32>());
-
- a.par_iter_mut().for_each(|x| *x = -*x);
-
- assert_eq!(-45, a.into_par_iter().sum::<i32>());
-}
-
-#[test]
-fn check_chain() {
- let mut res = vec![];
-
- // stays indexed in the face of madness
- Some(0)
- .into_par_iter()
- .chain(Ok::<_, ()>(1))
- .chain(1..4)
- .chain(Err("huh?"))
- .chain(None)
- .chain(vec![5, 8, 13])
- .map(|x| (x as u8 + b'a') as char)
- .chain(vec!['x', 'y', 'z'])
- .zip((0i32..1000).into_par_iter().map(|x| -x))
- .enumerate()
- .map(|(a, (b, c))| (a, b, c))
- .chain(None)
- .collect_into_vec(&mut res);
-
- assert_eq!(
- res,
- vec![
- (0, 'a', 0),
- (1, 'b', -1),
- (2, 'b', -2),
- (3, 'c', -3),
- (4, 'd', -4),
- (5, 'f', -5),
- (6, 'i', -6),
- (7, 'n', -7),
- (8, 'x', -8),
- (9, 'y', -9),
- (10, 'z', -10)
- ]
- );
-
- // unindexed is ok too
- let res: Vec<i32> = Some(1i32)
- .into_par_iter()
- .chain(
- (2i32..4)
- .into_par_iter()
- .chain(vec![5, 6, 7, 8, 9])
- .chain(Some((10, 100)).into_par_iter().flat_map(|(a, b)| a..b))
- .filter(|x| x & 1 == 1),
- )
- .collect();
- let other: Vec<i32> = (0..100).filter(|x| x & 1 == 1).collect();
- assert_eq!(res, other);
-
- // chain collect is ok with the "fake" specialization
- let res: Vec<i32> = Some(1i32).into_par_iter().chain(None).collect();
- assert_eq!(res, &[1]);
-}
-
-#[test]
-fn check_count() {
- let c0 = (0_u32..24 * 1024).filter(|i| i % 2 == 0).count();
- let c1 = (0_u32..24 * 1024)
- .into_par_iter()
- .filter(|i| i % 2 == 0)
- .count();
- assert_eq!(c0, c1);
-}
-
-#[test]
-fn find_any() {
- let a: Vec<i32> = (0..1024).collect();
-
- assert!(a.par_iter().find_any(|&&x| x % 42 == 41).is_some());
- assert_eq!(
- a.par_iter().find_any(|&&x| x % 19 == 1 && x % 53 == 0),
- Some(&742_i32)
- );
- assert_eq!(a.par_iter().find_any(|&&x| x < 0), None);
-
- assert!(a.par_iter().position_any(|&x| x % 42 == 41).is_some());
- assert_eq!(
- a.par_iter().position_any(|&x| x % 19 == 1 && x % 53 == 0),
- Some(742_usize)
- );
- assert_eq!(a.par_iter().position_any(|&x| x < 0), None);
-
- assert!(a.par_iter().any(|&x| x > 1000));
- assert!(!a.par_iter().any(|&x| x < 0));
-
- assert!(!a.par_iter().all(|&x| x > 1000));
- assert!(a.par_iter().all(|&x| x >= 0));
-}
-
-#[test]
-fn find_first_or_last() {
- let a: Vec<i32> = (0..1024).collect();
-
- assert_eq!(a.par_iter().find_first(|&&x| x % 42 == 41), Some(&41_i32));
- assert_eq!(
- a.par_iter().find_first(|&&x| x % 19 == 1 && x % 53 == 0),
- Some(&742_i32)
- );
- assert_eq!(a.par_iter().find_first(|&&x| x < 0), None);
-
- assert_eq!(
- a.par_iter().position_first(|&x| x % 42 == 41),
- Some(41_usize)
- );
- assert_eq!(
- a.par_iter().position_first(|&x| x % 19 == 1 && x % 53 == 0),
- Some(742_usize)
- );
- assert_eq!(a.par_iter().position_first(|&x| x < 0), None);
-
- assert_eq!(a.par_iter().find_last(|&&x| x % 42 == 41), Some(&1007_i32));
- assert_eq!(
- a.par_iter().find_last(|&&x| x % 19 == 1 && x % 53 == 0),
- Some(&742_i32)
- );
- assert_eq!(a.par_iter().find_last(|&&x| x < 0), None);
-
- assert_eq!(
- a.par_iter().position_last(|&x| x % 42 == 41),
- Some(1007_usize)
- );
- assert_eq!(
- a.par_iter().position_last(|&x| x % 19 == 1 && x % 53 == 0),
- Some(742_usize)
- );
- assert_eq!(a.par_iter().position_last(|&x| x < 0), None);
-}
-
-#[test]
-fn find_map_first_or_last_or_any() {
- let mut a: Vec<i32> = vec![];
-
- assert!(a.par_iter().find_map_any(half_if_positive).is_none());
- assert!(a.par_iter().find_map_first(half_if_positive).is_none());
- assert!(a.par_iter().find_map_last(half_if_positive).is_none());
-
- a = (-1024..-3).collect();
-
- assert!(a.par_iter().find_map_any(half_if_positive).is_none());
- assert!(a.par_iter().find_map_first(half_if_positive).is_none());
- assert!(a.par_iter().find_map_last(half_if_positive).is_none());
-
- assert!(a.par_iter().find_map_any(half_if_negative).is_some());
- assert_eq!(
- a.par_iter().find_map_first(half_if_negative),
- Some(-512_i32)
- );
- assert_eq!(a.par_iter().find_map_last(half_if_negative), Some(-2_i32));
-
- a.append(&mut (2..1025).collect());
-
- assert!(a.par_iter().find_map_any(half_if_positive).is_some());
- assert_eq!(a.par_iter().find_map_first(half_if_positive), Some(1_i32));
- assert_eq!(a.par_iter().find_map_last(half_if_positive), Some(512_i32));
-
- fn half_if_positive(x: &i32) -> Option<i32> {
- if *x > 0 {
- Some(x / 2)
- } else {
- None
- }
- }
-
- fn half_if_negative(x: &i32) -> Option<i32> {
- if *x < 0 {
- Some(x / 2)
- } else {
- None
- }
- }
-}
-
-#[test]
-fn check_find_not_present() {
- let counter = AtomicUsize::new(0);
- let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| {
- counter.fetch_add(1, Ordering::SeqCst);
- p >= 2048
- });
- assert!(value.is_none());
- assert!(counter.load(Ordering::SeqCst) == 2048); // should have visited every single one
-}
-
-#[test]
-fn check_find_is_present() {
- let counter = AtomicUsize::new(0);
- let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| {
- counter.fetch_add(1, Ordering::SeqCst);
- (1024..1096).contains(&p)
- });
- let q = value.unwrap();
- assert!((1024..1096).contains(&q));
- assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one
-}
-
-#[test]
-fn check_while_some() {
- let value = (0_i32..2048).into_par_iter().map(Some).while_some().max();
- assert_eq!(value, Some(2047));
-
- let counter = AtomicUsize::new(0);
- let value = (0_i32..2048)
- .into_par_iter()
- .map(|x| {
- counter.fetch_add(1, Ordering::SeqCst);
- if x < 1024 {
- Some(x)
- } else {
- None
- }
- })
- .while_some()
- .max();
- assert!(value < Some(1024));
- assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one
-}
-
-#[test]
-fn par_iter_collect_option() {
- let a: Option<Vec<_>> = (0_i32..2048).map(Some).collect();
- let b: Option<Vec<_>> = (0_i32..2048).into_par_iter().map(Some).collect();
- assert_eq!(a, b);
-
- let c: Option<Vec<_>> = (0_i32..2048)
- .into_par_iter()
- .map(|x| if x == 1234 { None } else { Some(x) })
- .collect();
- assert_eq!(c, None);
-}
-
-#[test]
-fn par_iter_collect_result() {
- let a: Result<Vec<_>, ()> = (0_i32..2048).map(Ok).collect();
- let b: Result<Vec<_>, ()> = (0_i32..2048).into_par_iter().map(Ok).collect();
- assert_eq!(a, b);
-
- let c: Result<Vec<_>, _> = (0_i32..2048)
- .into_par_iter()
- .map(|x| if x == 1234 { Err(x) } else { Ok(x) })
- .collect();
- assert_eq!(c, Err(1234));
-
- let d: Result<Vec<_>, _> = (0_i32..2048)
- .into_par_iter()
- .map(|x| if x % 100 == 99 { Err(x) } else { Ok(x) })
- .collect();
- assert_eq!(d.map_err(|x| x % 100), Err(99));
-}
-
-#[test]
-fn par_iter_collect() {
- let a: Vec<i32> = (0..1024).collect();
- let b: Vec<i32> = a.par_iter().map(|&i| i + 1).collect();
- let c: Vec<i32> = (0..1024).map(|i| i + 1).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn par_iter_collect_vecdeque() {
- let a: Vec<i32> = (0..1024).collect();
- let b: VecDeque<i32> = a.par_iter().cloned().collect();
- let c: VecDeque<i32> = a.iter().cloned().collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn par_iter_collect_binaryheap() {
- let a: Vec<i32> = (0..1024).collect();
- let mut b: BinaryHeap<i32> = a.par_iter().cloned().collect();
- assert_eq!(b.peek(), Some(&1023));
- assert_eq!(b.len(), 1024);
- for n in (0..1024).rev() {
- assert_eq!(b.pop(), Some(n));
- assert_eq!(b.len() as i32, n);
- }
-}
-
-#[test]
-fn par_iter_collect_hashmap() {
- let a: Vec<i32> = (0..1024).collect();
- let b: HashMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}", i))).collect();
- assert_eq!(&b[&3], "3");
- assert_eq!(b.len(), 1024);
-}
-
-#[test]
-fn par_iter_collect_hashset() {
- let a: Vec<i32> = (0..1024).collect();
- let b: HashSet<i32> = a.par_iter().cloned().collect();
- assert_eq!(b.len(), 1024);
-}
-
-#[test]
-fn par_iter_collect_btreemap() {
- let a: Vec<i32> = (0..1024).collect();
- let b: BTreeMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}", i))).collect();
- assert_eq!(&b[&3], "3");
- assert_eq!(b.len(), 1024);
-}
-
-#[test]
-fn par_iter_collect_btreeset() {
- let a: Vec<i32> = (0..1024).collect();
- let b: BTreeSet<i32> = a.par_iter().cloned().collect();
- assert_eq!(b.len(), 1024);
-}
-
-#[test]
-fn par_iter_collect_linked_list() {
- let a: Vec<i32> = (0..1024).collect();
- let b: LinkedList<_> = a.par_iter().map(|&i| (i, format!("{}", i))).collect();
- let c: LinkedList<_> = a.iter().map(|&i| (i, format!("{}", i))).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn par_iter_collect_linked_list_flat_map_filter() {
- let b: LinkedList<i32> = (0_i32..1024)
- .into_par_iter()
- .flat_map(|i| (0..i))
- .filter(|&i| i % 2 == 0)
- .collect();
- let c: LinkedList<i32> = (0_i32..1024)
- .flat_map(|i| (0..i))
- .filter(|&i| i % 2 == 0)
- .collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn par_iter_collect_cows() {
- use std::borrow::Cow;
-
- let s = "Fearless Concurrency with Rust";
-
- // Collects `i32` into a `Vec`
- let a: Cow<'_, [i32]> = (0..1024).collect();
- let b: Cow<'_, [i32]> = a.par_iter().cloned().collect();
- assert_eq!(a, b);
-
- // Collects `char` into a `String`
- let a: Cow<'_, str> = s.chars().collect();
- let b: Cow<'_, str> = s.par_chars().collect();
- assert_eq!(a, b);
-
- // Collects `str` into a `String`
- let a: Cow<'_, str> = s.split_whitespace().collect();
- let b: Cow<'_, str> = s.par_split_whitespace().collect();
- assert_eq!(a, b);
-
- // Collects `String` into a `String`
- let a: Cow<'_, str> = s.split_whitespace().map(str::to_owned).collect();
- let b: Cow<'_, str> = s.par_split_whitespace().map(str::to_owned).collect();
- assert_eq!(a, b);
-}
-
-#[test]
-fn par_iter_unindexed_flat_map() {
- let b: Vec<i64> = (0_i64..1024).into_par_iter().flat_map(Some).collect();
- let c: Vec<i64> = (0_i64..1024).flat_map(Some).collect();
- assert_eq!(b, c);
-}
-
-#[test]
-fn min_max() {
- let rng = seeded_rng();
- let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect();
- for i in 0..=a.len() {
- let slice = &a[..i];
- assert_eq!(slice.par_iter().min(), slice.iter().min());
- assert_eq!(slice.par_iter().max(), slice.iter().max());
- }
-}
-
-#[test]
-fn min_max_by() {
- let rng = seeded_rng();
- // Make sure there are duplicate keys, for testing sort stability
- let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect();
- let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect();
- for i in 0..=a.len() {
- let slice = &a[..i];
- assert_eq!(
- slice.par_iter().min_by(|x, y| x.0.cmp(&y.0)),
- slice.iter().min_by(|x, y| x.0.cmp(&y.0))
- );
- assert_eq!(
- slice.par_iter().max_by(|x, y| x.0.cmp(&y.0)),
- slice.iter().max_by(|x, y| x.0.cmp(&y.0))
- );
- }
-}
-
-#[test]
-fn min_max_by_key() {
- let rng = seeded_rng();
- // Make sure there are duplicate keys, for testing sort stability
- let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect();
- let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect();
- for i in 0..=a.len() {
- let slice = &a[..i];
- assert_eq!(
- slice.par_iter().min_by_key(|x| x.0),
- slice.iter().min_by_key(|x| x.0)
- );
- assert_eq!(
- slice.par_iter().max_by_key(|x| x.0),
- slice.iter().max_by_key(|x| x.0)
- );
- }
-}
-
-#[test]
-fn check_rev() {
- let a: Vec<usize> = (0..1024).rev().collect();
- let b: Vec<usize> = (0..1024).collect();
-
- assert!(a.par_iter().rev().zip(b).all(|(&a, b)| a == b));
-}
-
-#[test]
-fn scope_mix() {
- let counter_p = &AtomicUsize::new(0);
- scope(|s| {
- s.spawn(move |s| {
- divide_and_conquer(s, counter_p, 1024);
- });
- s.spawn(move |_| {
- let a: Vec<i32> = (0..1024).collect();
- let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j);
- let r2 = a.iter().map(|&i| i + 1).sum();
- assert_eq!(r1.unwrap(), r2);
- });
- });
-}
-
-fn divide_and_conquer<'scope>(scope: &Scope<'scope>, counter: &'scope AtomicUsize, size: usize) {
- if size > 1 {
- scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2));
- scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2));
- } else {
- // count the leaves
- counter.fetch_add(1, Ordering::SeqCst);
- }
-}
-
-#[test]
-fn check_split() {
- use std::ops::Range;
-
- let a = (0..1024).into_par_iter();
-
- let b = split(0..1024, |Range { start, end }| {
- let mid = (end - start) / 2;
- if mid > start {
- (start..mid, Some(mid..end))
- } else {
- (start..end, None)
- }
- })
- .flat_map(|range| range);
-
- assert_eq!(a.collect::<Vec<_>>(), b.collect::<Vec<_>>());
-}
-
-#[test]
-fn check_lengths() {
- fn check(min: usize, max: usize) {
- let range = 0..1024 * 1024;
-
- // Check against normalized values.
- let min_check = cmp::min(cmp::max(min, 1), range.len());
- let max_check = cmp::max(max, min_check.saturating_add(min_check - 1));
-
- assert!(
- range
- .into_par_iter()
- .with_min_len(min)
- .with_max_len(max)
- .fold(|| 0, |count, _| count + 1)
- .all(|c| c >= min_check && c <= max_check),
- "check_lengths failed {:?} -> {:?} ",
- (min, max),
- (min_check, max_check)
- );
- }
-
- let lengths = [0, 1, 10, 100, 1_000, 10_000, 100_000, 1_000_000, usize::MAX];
- for &min in &lengths {
- for &max in &lengths {
- check(min, max);
- }
- }
-}
-
-#[test]
-fn check_map_with() {
- let (sender, receiver) = mpsc::channel();
- let a: HashSet<_> = (0..1024).collect();
-
- a.par_iter()
- .cloned()
- .map_with(sender, |s, i| s.send(i).unwrap())
- .count();
-
- let b: HashSet<_> = receiver.iter().collect();
- assert_eq!(a, b);
-}
-
-#[test]
-fn check_fold_with() {
- let (sender, receiver) = mpsc::channel();
- let a: HashSet<_> = (0..1024).collect();
-
- a.par_iter()
- .cloned()
- .fold_with(sender, |s, i| {
- s.send(i).unwrap();
- s
- })
- .count();
-
- let b: HashSet<_> = receiver.iter().collect();
- assert_eq!(a, b);
-}
-
-#[test]
-fn check_for_each_with() {
- let (sender, receiver) = mpsc::channel();
- let a: HashSet<_> = (0..1024).collect();
-
- a.par_iter()
- .cloned()
- .for_each_with(sender, |s, i| s.send(i).unwrap());
-
- let b: HashSet<_> = receiver.iter().collect();
- assert_eq!(a, b);
-}
-
-#[test]
-fn check_extend_items() {
- fn check<C>()
- where
- C: Default
- + Eq
- + Debug
- + Extend<i32>
- + for<'a> Extend<&'a i32>
- + ParallelExtend<i32>
- + for<'a> ParallelExtend<&'a i32>,
- {
- let mut serial = C::default();
- let mut parallel = C::default();
-
- // extend with references
- let v: Vec<_> = (0..128).collect();
- serial.extend(&v);
- parallel.par_extend(&v);
- assert_eq!(serial, parallel);
-
- // extend with values
- serial.extend(-128..0);
- parallel.par_extend(-128..0);
- assert_eq!(serial, parallel);
- }
-
- check::<BTreeSet<_>>();
- check::<HashSet<_>>();
- check::<LinkedList<_>>();
- check::<Vec<_>>();
- check::<VecDeque<_>>();
-}
-
-#[test]
-fn check_extend_heap() {
- let mut serial: BinaryHeap<_> = Default::default();
- let mut parallel: BinaryHeap<_> = Default::default();
-
- // extend with references
- let v: Vec<_> = (0..128).collect();
- serial.extend(&v);
- parallel.par_extend(&v);
- assert_eq!(
- serial.clone().into_sorted_vec(),
- parallel.clone().into_sorted_vec()
- );
-
- // extend with values
- serial.extend(-128..0);
- parallel.par_extend(-128..0);
- assert_eq!(serial.into_sorted_vec(), parallel.into_sorted_vec());
-}
-
-#[test]
-fn check_extend_pairs() {
- fn check<C>()
- where
- C: Default
- + Eq
- + Debug
- + Extend<(usize, i32)>
- + for<'a> Extend<(&'a usize, &'a i32)>
- + ParallelExtend<(usize, i32)>
- + for<'a> ParallelExtend<(&'a usize, &'a i32)>,
- {
- let mut serial = C::default();
- let mut parallel = C::default();
-
- // extend with references
- let m: HashMap<_, _> = (0..128).enumerate().collect();
- serial.extend(&m);
- parallel.par_extend(&m);
- assert_eq!(serial, parallel);
-
- // extend with values
- let v: Vec<(_, _)> = (-128..0).enumerate().collect();
- serial.extend(v.clone());
- parallel.par_extend(v);
- assert_eq!(serial, parallel);
- }
-
- check::<BTreeMap<usize, i32>>();
- check::<HashMap<usize, i32>>();
-}
-
-#[test]
-fn check_unzip_into_vecs() {
- let mut a = vec![];
- let mut b = vec![];
- (0..1024)
- .into_par_iter()
- .map(|i| i * i)
- .enumerate()
- .unzip_into_vecs(&mut a, &mut b);
-
- let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip();
- assert_eq!(a, c);
- assert_eq!(b, d);
-}
-
-#[test]
-fn check_unzip() {
- // indexed, unindexed
- let (a, b): (Vec<_>, HashSet<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip();
- let (c, d): (Vec<_>, HashSet<_>) = (0..1024).map(|i| i * i).enumerate().unzip();
- assert_eq!(a, c);
- assert_eq!(b, d);
-
- // unindexed, indexed
- let (a, b): (HashSet<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip();
- let (c, d): (HashSet<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip();
- assert_eq!(a, c);
- assert_eq!(b, d);
-
- // indexed, indexed
- let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip();
- let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip();
- assert_eq!(a, c);
- assert_eq!(b, d);
-
- // unindexed producer
- let (a, b): (Vec<_>, Vec<_>) = (0..1024)
- .into_par_iter()
- .filter_map(|i| Some((i, i * i)))
- .unzip();
- let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| (i, i * i)).unzip();
- assert_eq!(a, c);
- assert_eq!(b, d);
-}
-
-#[test]
-fn check_partition() {
- let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().partition(|&i| i % 3 == 0);
- let (c, d): (Vec<_>, Vec<_>) = (0..1024).partition(|&i| i % 3 == 0);
- assert_eq!(a, c);
- assert_eq!(b, d);
-}
-
-#[test]
-fn check_partition_map() {
- let input = "a b c 1 2 3 x y z";
- let (a, b): (Vec<_>, String) =
- input
- .par_split_whitespace()
- .partition_map(|s| match s.parse::<i32>() {
- Ok(n) => Either::Left(n),
- Err(_) => Either::Right(s),
- });
- assert_eq!(a, vec![1, 2, 3]);
- assert_eq!(b, "abcxyz");
-}
-
-#[test]
-fn check_either() {
- type I = crate::vec::IntoIter<i32>;
- type E = Either<I, I>;
-
- let v: Vec<i32> = (0..1024).collect();
-
- // try iterating the left side
- let left: E = Either::Left(v.clone().into_par_iter());
- assert!(left.eq(v.clone()));
-
- // try iterating the right side
- let right: E = Either::Right(v.clone().into_par_iter());
- assert!(right.eq(v.clone()));
-
- // try an indexed iterator
- let left: E = Either::Left(v.clone().into_par_iter());
- assert!(left.enumerate().eq(v.into_par_iter().enumerate()));
-}
-
-#[test]
-fn check_either_extend() {
- type E = Either<Vec<i32>, HashSet<i32>>;
-
- let v: Vec<i32> = (0..1024).collect();
-
- // try extending the left side
- let mut left: E = Either::Left(vec![]);
- left.par_extend(v.clone());
- assert_eq!(left.as_ref(), Either::Left(&v));
-
- // try extending the right side
- let mut right: E = Either::Right(HashSet::default());
- right.par_extend(v.clone());
- assert_eq!(right, Either::Right(v.iter().cloned().collect()));
-}
-
-#[test]
-fn check_interleave_eq() {
- let xs: Vec<usize> = (0..10).collect();
- let ys: Vec<usize> = (10..20).collect();
-
- let mut actual = vec![];
- xs.par_iter()
- .interleave(&ys)
- .map(|&i| i)
- .collect_into_vec(&mut actual);
-
- let expected: Vec<usize> = (0..10)
- .zip(10..20)
- .flat_map(|(i, j)| vec![i, j].into_iter())
- .collect();
- assert_eq!(expected, actual);
-}
-
-#[test]
-fn check_interleave_uneven() {
- let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![
- (
- (0..9).collect(),
- vec![10],
- vec![0, 10, 1, 2, 3, 4, 5, 6, 7, 8],
- ),
- (
- vec![10],
- (0..9).collect(),
- vec![10, 0, 1, 2, 3, 4, 5, 6, 7, 8],
- ),
- (
- (0..5).collect(),
- (5..10).collect(),
- (0..5)
- .zip(5..10)
- .flat_map(|(i, j)| vec![i, j].into_iter())
- .collect(),
- ),
- (vec![], (0..9).collect(), (0..9).collect()),
- ((0..9).collect(), vec![], (0..9).collect()),
- (
- (0..50).collect(),
- (50..100).collect(),
- (0..50)
- .zip(50..100)
- .flat_map(|(i, j)| vec![i, j].into_iter())
- .collect(),
- ),
- ];
-
- for (i, (xs, ys, expected)) in cases.into_iter().enumerate() {
- let mut res = vec![];
- xs.par_iter()
- .interleave(&ys)
- .map(|&i| i)
- .collect_into_vec(&mut res);
- assert_eq!(expected, res, "Case {} failed", i);
-
- res.truncate(0);
- xs.par_iter()
- .interleave(&ys)
- .rev()
- .map(|&i| i)
- .collect_into_vec(&mut res);
- assert_eq!(
- expected.into_iter().rev().collect::<Vec<usize>>(),
- res,
- "Case {} reversed failed",
- i
- );
- }
-}
-
-#[test]
-fn check_interleave_shortest() {
- let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![
- ((0..9).collect(), vec![10], vec![0, 10, 1]),
- (vec![10], (0..9).collect(), vec![10, 0]),
- (
- (0..5).collect(),
- (5..10).collect(),
- (0..5)
- .zip(5..10)
- .flat_map(|(i, j)| vec![i, j].into_iter())
- .collect(),
- ),
- (vec![], (0..9).collect(), vec![]),
- ((0..9).collect(), vec![], vec![0]),
- (
- (0..50).collect(),
- (50..100).collect(),
- (0..50)
- .zip(50..100)
- .flat_map(|(i, j)| vec![i, j].into_iter())
- .collect(),
- ),
- ];
-
- for (i, (xs, ys, expected)) in cases.into_iter().enumerate() {
- let mut res = vec![];
- xs.par_iter()
- .interleave_shortest(&ys)
- .map(|&i| i)
- .collect_into_vec(&mut res);
- assert_eq!(expected, res, "Case {} failed", i);
-
- res.truncate(0);
- xs.par_iter()
- .interleave_shortest(&ys)
- .rev()
- .map(|&i| i)
- .collect_into_vec(&mut res);
- assert_eq!(
- expected.into_iter().rev().collect::<Vec<usize>>(),
- res,
- "Case {} reversed failed",
- i
- );
- }
-}
-
-#[test]
-#[should_panic(expected = "chunk_size must not be zero")]
-fn check_chunks_zero_size() {
- let _: Vec<Vec<i32>> = vec![1, 2, 3].into_par_iter().chunks(0).collect();
-}
-
-#[test]
-fn check_chunks_even_size() {
- assert_eq!(
- vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]],
- (1..10).into_par_iter().chunks(3).collect::<Vec<Vec<i32>>>()
- );
-}
-
-#[test]
-fn check_chunks_empty() {
- let v: Vec<i32> = vec![];
- let expected: Vec<Vec<i32>> = vec![];
- assert_eq!(
- expected,
- v.into_par_iter().chunks(2).collect::<Vec<Vec<i32>>>()
- );
-}
-
-#[test]
-fn check_chunks_len() {
- assert_eq!(4, (0..8).into_par_iter().chunks(2).len());
- assert_eq!(3, (0..9).into_par_iter().chunks(3).len());
- assert_eq!(3, (0..8).into_par_iter().chunks(3).len());
- assert_eq!(1, [1].par_iter().chunks(3).len());
- assert_eq!(0, (0..0).into_par_iter().chunks(3).len());
-}
-
-#[test]
-fn check_chunks_uneven() {
- let cases: Vec<(Vec<u32>, usize, Vec<Vec<u32>>)> = vec![
- ((0..5).collect(), 3, vec![vec![0, 1, 2], vec![3, 4]]),
- (vec![1], 5, vec![vec![1]]),
- ((0..4).collect(), 3, vec![vec![0, 1, 2], vec![3]]),
- ];
-
- for (i, (v, n, expected)) in cases.into_iter().enumerate() {
- let mut res: Vec<Vec<u32>> = vec![];
- v.par_iter()
- .chunks(n)
- .map(|v| v.into_iter().cloned().collect())
- .collect_into_vec(&mut res);
- assert_eq!(expected, res, "Case {} failed", i);
-
- res.truncate(0);
- v.into_par_iter().chunks(n).rev().collect_into_vec(&mut res);
- assert_eq!(
- expected.into_iter().rev().collect::<Vec<Vec<u32>>>(),
- res,
- "Case {} reversed failed",
- i
- );
- }
-}
-
-#[test]
-#[ignore] // it's quick enough on optimized 32-bit platforms, but otherwise... ... ...
-#[should_panic(expected = "overflow")]
-#[cfg(debug_assertions)]
-fn check_repeat_unbounded() {
- // use just one thread, so we don't get infinite adaptive splitting
- // (forever stealing and re-splitting jobs that will panic on overflow)
- let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
- pool.install(|| {
- println!("counted {} repeats", repeat(()).count());
- });
-}
-
-#[test]
-fn check_repeat_find_any() {
- let even = repeat(4).find_any(|&x| x % 2 == 0);
- assert_eq!(even, Some(4));
-}
-
-#[test]
-fn check_repeat_take() {
- let v: Vec<_> = repeat(4).take(4).collect();
- assert_eq!(v, [4, 4, 4, 4]);
-}
-
-#[test]
-fn check_repeat_zip() {
- let v = vec![4, 4, 4, 4];
- let mut fours: Vec<_> = repeat(4).zip(v).collect();
- assert_eq!(fours.len(), 4);
- while let Some(item) = fours.pop() {
- assert_eq!(item, (4, 4));
- }
-}
-
-#[test]
-fn check_repeatn_zip_left() {
- let v = vec![4, 4, 4, 4];
- let mut fours: Vec<_> = repeatn(4, usize::MAX).zip(v).collect();
- assert_eq!(fours.len(), 4);
- while let Some(item) = fours.pop() {
- assert_eq!(item, (4, 4));
- }
-}
-
-#[test]
-fn check_repeatn_zip_right() {
- let v = vec![4, 4, 4, 4];
- let mut fours: Vec<_> = v.into_par_iter().zip(repeatn(4, usize::MAX)).collect();
- assert_eq!(fours.len(), 4);
- while let Some(item) = fours.pop() {
- assert_eq!(item, (4, 4));
- }
-}
-
-#[test]
-fn check_empty() {
- // drive_unindexed
- let mut v: Vec<i32> = empty().filter(|_| unreachable!()).collect();
- assert!(v.is_empty());
-
- // drive (indexed)
- empty().collect_into_vec(&mut v);
- assert!(v.is_empty());
-
- // with_producer
- let v: Vec<(i32, i32)> = empty().zip(1..10).collect();
- assert!(v.is_empty());
-}
-
-#[test]
-fn check_once() {
- // drive_unindexed
- let mut v: Vec<i32> = once(42).filter(|_| true).collect();
- assert_eq!(v, &[42]);
-
- // drive (indexed)
- once(42).collect_into_vec(&mut v);
- assert_eq!(v, &[42]);
-
- // with_producer
- let v: Vec<(i32, i32)> = once(42).zip(1..10).collect();
- assert_eq!(v, &[(42, 1)]);
-}
-
-#[test]
-fn check_update() {
- let mut v: Vec<Vec<_>> = vec![vec![1], vec![3, 2, 1]];
- v.par_iter_mut().update(|v| v.push(0)).for_each(|_| ());
-
- assert_eq!(v, vec![vec![1, 0], vec![3, 2, 1, 0]]);
-}