aboutsummaryrefslogtreecommitdiff
path: root/vendor/rayon/src/slice/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/rayon/src/slice/mod.rs')
-rw-r--r--vendor/rayon/src/slice/mod.rs1041
1 files changed, 1041 insertions, 0 deletions
diff --git a/vendor/rayon/src/slice/mod.rs b/vendor/rayon/src/slice/mod.rs
new file mode 100644
index 0000000..dab56de
--- /dev/null
+++ b/vendor/rayon/src/slice/mod.rs
@@ -0,0 +1,1041 @@
+//! Parallel iterator types for [slices][std::slice]
+//!
+//! You will rarely need to interact with this module directly unless you need
+//! to name one of the iterator types.
+//!
+//! [std::slice]: https://doc.rust-lang.org/stable/std/slice/
+
+mod chunks;
+mod mergesort;
+mod quicksort;
+mod rchunks;
+
+mod test;
+
+use self::mergesort::par_mergesort;
+use self::quicksort::par_quicksort;
+use crate::iter::plumbing::*;
+use crate::iter::*;
+use crate::split_producer::*;
+use std::cmp;
+use std::cmp::Ordering;
+use std::fmt::{self, Debug};
+use std::mem;
+
+pub use self::chunks::{Chunks, ChunksExact, ChunksExactMut, ChunksMut};
+pub use self::rchunks::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
+
+/// Parallel extensions for slices.
+pub trait ParallelSlice<T: Sync> {
+ /// Returns a plain slice, which is used to implement the rest of the
+ /// parallel methods.
+ fn as_parallel_slice(&self) -> &[T];
+
+ /// Returns a parallel iterator over subslices separated by elements that
+ /// match the separator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let smallest = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]
+ /// .par_split(|i| *i == 0)
+ /// .map(|numbers| numbers.iter().min().unwrap())
+ /// .min();
+ /// assert_eq!(Some(&1), smallest);
+ /// ```
+ fn par_split<P>(&self, separator: P) -> Split<'_, T, P>
+ where
+ P: Fn(&T) -> bool + Sync + Send,
+ {
+ Split {
+ slice: self.as_parallel_slice(),
+ separator,
+ }
+ }
+
+ /// Returns a parallel iterator over all contiguous windows of length
+ /// `window_size`. The windows overlap.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let windows: Vec<_> = [1, 2, 3].par_windows(2).collect();
+ /// assert_eq!(vec![[1, 2], [2, 3]], windows);
+ /// ```
+ fn par_windows(&self, window_size: usize) -> Windows<'_, T> {
+ Windows {
+ window_size,
+ slice: self.as_parallel_slice(),
+ }
+ }
+
+ /// Returns a parallel iterator over at most `chunk_size` elements of
+ /// `self` at a time. The chunks do not overlap.
+ ///
+ /// If the number of elements in the iterator is not divisible by
+ /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All
+ /// other chunks will have that exact length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks(2).collect();
+ /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4], &[5]]);
+ /// ```
+ #[track_caller]
+ fn par_chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ Chunks::new(chunk_size, self.as_parallel_slice())
+ }
+
+ /// Returns a parallel iterator over `chunk_size` elements of
+ /// `self` at a time. The chunks do not overlap.
+ ///
+ /// If `chunk_size` does not divide the length of the slice, then the
+ /// last up to `chunk_size-1` elements will be omitted and can be
+ /// retrieved from the remainder function of the iterator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks_exact(2).collect();
+ /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4]]);
+ /// ```
+ #[track_caller]
+ fn par_chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ ChunksExact::new(chunk_size, self.as_parallel_slice())
+ }
+
+ /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time,
+ /// starting at the end. The chunks do not overlap.
+ ///
+ /// If the number of elements in the iterator is not divisible by
+ /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All
+ /// other chunks will have that exact length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks(2).collect();
+ /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3], &[1]]);
+ /// ```
+ #[track_caller]
+ fn par_rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ RChunks::new(chunk_size, self.as_parallel_slice())
+ }
+
+ /// Returns a parallel iterator over `chunk_size` elements of `self` at a time,
+ /// starting at the end. The chunks do not overlap.
+ ///
+ /// If `chunk_size` does not divide the length of the slice, then the
+ /// last up to `chunk_size-1` elements will be omitted and can be
+ /// retrieved from the remainder function of the iterator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks_exact(2).collect();
+ /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3]]);
+ /// ```
+ #[track_caller]
+ fn par_rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ RChunksExact::new(chunk_size, self.as_parallel_slice())
+ }
+}
+
+impl<T: Sync> ParallelSlice<T> for [T] {
+ #[inline]
+ fn as_parallel_slice(&self) -> &[T] {
+ self
+ }
+}
+
+/// Parallel extensions for mutable slices.
+pub trait ParallelSliceMut<T: Send> {
+ /// Returns a plain mutable slice, which is used to implement the rest of
+ /// the parallel methods.
+ fn as_parallel_slice_mut(&mut self) -> &mut [T];
+
+ /// Returns a parallel iterator over mutable subslices separated by
+ /// elements that match the separator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9];
+ /// array.par_split_mut(|i| *i == 0)
+ /// .for_each(|slice| slice.reverse());
+ /// assert_eq!(array, [3, 2, 1, 0, 8, 4, 2, 0, 9, 6, 3]);
+ /// ```
+ fn par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P>
+ where
+ P: Fn(&T) -> bool + Sync + Send,
+ {
+ SplitMut {
+ slice: self.as_parallel_slice_mut(),
+ separator,
+ }
+ }
+
+ /// Returns a parallel iterator over at most `chunk_size` elements of
+ /// `self` at a time. The chunks are mutable and do not overlap.
+ ///
+ /// If the number of elements in the iterator is not divisible by
+ /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All
+ /// other chunks will have that exact length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let mut array = [1, 2, 3, 4, 5];
+ /// array.par_chunks_mut(2)
+ /// .for_each(|slice| slice.reverse());
+ /// assert_eq!(array, [2, 1, 4, 3, 5]);
+ /// ```
+ #[track_caller]
+ fn par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ ChunksMut::new(chunk_size, self.as_parallel_slice_mut())
+ }
+
+ /// Returns a parallel iterator over `chunk_size` elements of
+ /// `self` at a time. The chunks are mutable and do not overlap.
+ ///
+ /// If `chunk_size` does not divide the length of the slice, then the
+ /// last up to `chunk_size-1` elements will be omitted and can be
+ /// retrieved from the remainder function of the iterator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let mut array = [1, 2, 3, 4, 5];
+ /// array.par_chunks_exact_mut(3)
+ /// .for_each(|slice| slice.reverse());
+ /// assert_eq!(array, [3, 2, 1, 4, 5]);
+ /// ```
+ #[track_caller]
+ fn par_chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ ChunksExactMut::new(chunk_size, self.as_parallel_slice_mut())
+ }
+
+ /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time,
+ /// starting at the end. The chunks are mutable and do not overlap.
+ ///
+ /// If the number of elements in the iterator is not divisible by
+ /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All
+ /// other chunks will have that exact length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let mut array = [1, 2, 3, 4, 5];
+ /// array.par_rchunks_mut(2)
+ /// .for_each(|slice| slice.reverse());
+ /// assert_eq!(array, [1, 3, 2, 5, 4]);
+ /// ```
+ #[track_caller]
+ fn par_rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ RChunksMut::new(chunk_size, self.as_parallel_slice_mut())
+ }
+
+ /// Returns a parallel iterator over `chunk_size` elements of `self` at a time,
+ /// starting at the end. The chunks are mutable and do not overlap.
+ ///
+ /// If `chunk_size` does not divide the length of the slice, then the
+ /// last up to `chunk_size-1` elements will be omitted and can be
+ /// retrieved from the remainder function of the iterator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ /// let mut array = [1, 2, 3, 4, 5];
+ /// array.par_rchunks_exact_mut(3)
+ /// .for_each(|slice| slice.reverse());
+ /// assert_eq!(array, [1, 2, 5, 4, 3]);
+ /// ```
+ #[track_caller]
+ fn par_rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
+ assert!(chunk_size != 0, "chunk_size must not be zero");
+ RChunksExactMut::new(chunk_size, self.as_parallel_slice_mut())
+ }
+
+ /// Sorts the slice in parallel.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`par_sort_unstable`](#method.par_sort_unstable).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
+ /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
+ /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
+ /// parallel subdivision of chunks and parallel merge operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [-5, 4, 1, -3, 2];
+ ///
+ /// v.par_sort();
+ /// assert_eq!(v, [-5, -3, 1, 2, 4]);
+ /// ```
+ fn par_sort(&mut self)
+ where
+ T: Ord,
+ {
+ par_mergesort(self.as_parallel_slice_mut(), T::lt);
+ }
+
+ /// Sorts the slice in parallel with a comparator function.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// The comparator function must define a total ordering for the elements in the slice. If
+ /// the ordering is not total, the order of the elements is unspecified. An order is a
+ /// total order if it is (for all `a`, `b` and `c`):
+ ///
+ /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
+ /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
+ ///
+ /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
+ /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
+ /// floats.par_sort_by(|a, b| a.partial_cmp(b).unwrap());
+ /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
+ /// ```
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`par_sort_unstable_by`](#method.par_sort_unstable_by).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
+ /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
+ /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
+ /// parallel subdivision of chunks and parallel merge operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [5, 4, 1, 3, 2];
+ /// v.par_sort_by(|a, b| a.cmp(b));
+ /// assert_eq!(v, [1, 2, 3, 4, 5]);
+ ///
+ /// // reverse sorting
+ /// v.par_sort_by(|a, b| b.cmp(a));
+ /// assert_eq!(v, [5, 4, 3, 2, 1]);
+ /// ```
+ fn par_sort_by<F>(&mut self, compare: F)
+ where
+ F: Fn(&T, &T) -> Ordering + Sync,
+ {
+ par_mergesort(self.as_parallel_slice_mut(), |a, b| {
+ compare(a, b) == Ordering::Less
+ });
+ }
+
+ /// Sorts the slice in parallel with a key extraction function.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
+ /// worst-case, where the key function is *O*(*m*).
+ ///
+ /// For expensive key functions (e.g. functions that are not simple property accesses or
+ /// basic operations), [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) is likely to
+ /// be significantly faster, as it does not recompute element keys.
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`par_sort_unstable_by_key`](#method.par_sort_unstable_by_key).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
+ /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
+ /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
+ /// parallel subdivision of chunks and parallel merge operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// v.par_sort_by_key(|k| k.abs());
+ /// assert_eq!(v, [1, 2, -3, 4, -5]);
+ /// ```
+ fn par_sort_by_key<K, F>(&mut self, f: F)
+ where
+ K: Ord,
+ F: Fn(&T) -> K + Sync,
+ {
+ par_mergesort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b)));
+ }
+
+ /// Sorts the slice in parallel with a key extraction function.
+ ///
+ /// During sorting, the key function is called at most once per element, by using
+ /// temporary storage to remember the results of key evaluation.
+ /// The key function is called in parallel, so the order of calls is completely unspecified.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
+ /// worst-case, where the key function is *O*(*m*).
+ ///
+ /// For simple key functions (e.g., functions that are property accesses or
+ /// basic operations), [`par_sort_by_key`](#method.par_sort_by_key) is likely to be
+ /// faster.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
+ /// length of the slice.
+ ///
+ /// All quicksorts work in two stages: partitioning into two halves followed by recursive
+ /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
+ /// parallel. Finally, after sorting the cached keys, the item positions are updated sequentially.
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [-5i32, 4, 32, -3, 2];
+ ///
+ /// v.par_sort_by_cached_key(|k| k.to_string());
+ /// assert!(v == [-3, -5, 2, 32, 4]);
+ /// ```
+ fn par_sort_by_cached_key<K, F>(&mut self, f: F)
+ where
+ F: Fn(&T) -> K + Sync,
+ K: Ord + Send,
+ {
+ let slice = self.as_parallel_slice_mut();
+ let len = slice.len();
+ if len < 2 {
+ return;
+ }
+
+ // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
+ macro_rules! sort_by_key {
+ ($t:ty) => {{
+ let mut indices: Vec<_> = slice
+ .par_iter_mut()
+ .enumerate()
+ .map(|(i, x)| (f(&*x), i as $t))
+ .collect();
+ // The elements of `indices` are unique, as they are indexed, so any sort will be
+ // stable with respect to the original slice. We use `sort_unstable` here because
+ // it requires less memory allocation.
+ indices.par_sort_unstable();
+ for i in 0..len {
+ let mut index = indices[i].1;
+ while (index as usize) < i {
+ index = indices[index as usize].1;
+ }
+ indices[i].1 = index;
+ slice.swap(i, index as usize);
+ }
+ }};
+ }
+
+ let sz_u8 = mem::size_of::<(K, u8)>();
+ let sz_u16 = mem::size_of::<(K, u16)>();
+ let sz_u32 = mem::size_of::<(K, u32)>();
+ let sz_usize = mem::size_of::<(K, usize)>();
+
+ if sz_u8 < sz_u16 && len <= (std::u8::MAX as usize) {
+ return sort_by_key!(u8);
+ }
+ if sz_u16 < sz_u32 && len <= (std::u16::MAX as usize) {
+ return sort_by_key!(u16);
+ }
+ if sz_u32 < sz_usize && len <= (std::u32::MAX as usize) {
+ return sort_by_key!(u32);
+ }
+ sort_by_key!(usize)
+ }
+
+ /// Sorts the slice in parallel, but might not preserve the order of equal elements.
+ ///
+ /// This sort is unstable (i.e., may reorder equal elements), in-place
+ /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
+ /// slice consists of several concatenated sorted sequences.
+ ///
+ /// All quicksorts work in two stages: partitioning into two halves followed by recursive
+ /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
+ /// parallel.
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [-5, 4, 1, -3, 2];
+ ///
+ /// v.par_sort_unstable();
+ /// assert_eq!(v, [-5, -3, 1, 2, 4]);
+ /// ```
+ fn par_sort_unstable(&mut self)
+ where
+ T: Ord,
+ {
+ par_quicksort(self.as_parallel_slice_mut(), T::lt);
+ }
+
+ /// Sorts the slice in parallel with a comparator function, but might not preserve the order of
+ /// equal elements.
+ ///
+ /// This sort is unstable (i.e., may reorder equal elements), in-place
+ /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// The comparator function must define a total ordering for the elements in the slice. If
+ /// the ordering is not total, the order of the elements is unspecified. An order is a
+ /// total order if it is (for all `a`, `b` and `c`):
+ ///
+ /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
+ /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
+ ///
+ /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
+ /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
+ /// floats.par_sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
+ /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
+ /// ```
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
+ /// slice consists of several concatenated sorted sequences.
+ ///
+ /// All quicksorts work in two stages: partitioning into two halves followed by recursive
+ /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
+ /// parallel.
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [5, 4, 1, 3, 2];
+ /// v.par_sort_unstable_by(|a, b| a.cmp(b));
+ /// assert_eq!(v, [1, 2, 3, 4, 5]);
+ ///
+ /// // reverse sorting
+ /// v.par_sort_unstable_by(|a, b| b.cmp(a));
+ /// assert_eq!(v, [5, 4, 3, 2, 1]);
+ /// ```
+ fn par_sort_unstable_by<F>(&mut self, compare: F)
+ where
+ F: Fn(&T, &T) -> Ordering + Sync,
+ {
+ par_quicksort(self.as_parallel_slice_mut(), |a, b| {
+ compare(a, b) == Ordering::Less
+ });
+ }
+
+ /// Sorts the slice in parallel with a key extraction function, but might not preserve the order
+ /// of equal elements.
+ ///
+ /// This sort is unstable (i.e., may reorder equal elements), in-place
+ /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case,
+ /// where the key function is *O*(*m*).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// Due to its key calling strategy, `par_sort_unstable_by_key` is likely to be slower than
+ /// [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) in cases where the key function
+ /// is expensive.
+ ///
+ /// All quicksorts work in two stages: partitioning into two halves followed by recursive
+ /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
+ /// parallel.
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use rayon::prelude::*;
+ ///
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// v.par_sort_unstable_by_key(|k| k.abs());
+ /// assert_eq!(v, [1, 2, -3, 4, -5]);
+ /// ```
+ fn par_sort_unstable_by_key<K, F>(&mut self, f: F)
+ where
+ K: Ord,
+ F: Fn(&T) -> K + Sync,
+ {
+ par_quicksort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b)));
+ }
+}
+
+impl<T: Send> ParallelSliceMut<T> for [T] {
+ #[inline]
+ fn as_parallel_slice_mut(&mut self) -> &mut [T] {
+ self
+ }
+}
+
+impl<'data, T: Sync + 'data> IntoParallelIterator for &'data [T] {
+ type Item = &'data T;
+ type Iter = Iter<'data, T>;
+
+ fn into_par_iter(self) -> Self::Iter {
+ Iter { slice: self }
+ }
+}
+
+impl<'data, T: Send + 'data> IntoParallelIterator for &'data mut [T] {
+ type Item = &'data mut T;
+ type Iter = IterMut<'data, T>;
+
+ fn into_par_iter(self) -> Self::Iter {
+ IterMut { slice: self }
+ }
+}
+
+/// Parallel iterator over immutable items in a slice
+#[derive(Debug)]
+pub struct Iter<'data, T: Sync> {
+ slice: &'data [T],
+}
+
+impl<'data, T: Sync> Clone for Iter<'data, T> {
+ fn clone(&self) -> Self {
+ Iter { ..*self }
+ }
+}
+
+impl<'data, T: Sync + 'data> ParallelIterator for Iter<'data, T> {
+ type Item = &'data T;
+
+ fn drive_unindexed<C>(self, consumer: C) -> C::Result
+ where
+ C: UnindexedConsumer<Self::Item>,
+ {
+ bridge(self, consumer)
+ }
+
+ fn opt_len(&self) -> Option<usize> {
+ Some(self.len())
+ }
+}
+
+impl<'data, T: Sync + 'data> IndexedParallelIterator for Iter<'data, T> {
+ fn drive<C>(self, consumer: C) -> C::Result
+ where
+ C: Consumer<Self::Item>,
+ {
+ bridge(self, consumer)
+ }
+
+ fn len(&self) -> usize {
+ self.slice.len()
+ }
+
+ fn with_producer<CB>(self, callback: CB) -> CB::Output
+ where
+ CB: ProducerCallback<Self::Item>,
+ {
+ callback.callback(IterProducer { slice: self.slice })
+ }
+}
+
+struct IterProducer<'data, T: Sync> {
+ slice: &'data [T],
+}
+
+impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> {
+ type Item = &'data T;
+ type IntoIter = ::std::slice::Iter<'data, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.slice.iter()
+ }
+
+ fn split_at(self, index: usize) -> (Self, Self) {
+ let (left, right) = self.slice.split_at(index);
+ (IterProducer { slice: left }, IterProducer { slice: right })
+ }
+}
+
+/// Parallel iterator over immutable overlapping windows of a slice
+#[derive(Debug)]
+pub struct Windows<'data, T: Sync> {
+ window_size: usize,
+ slice: &'data [T],
+}
+
+impl<'data, T: Sync> Clone for Windows<'data, T> {
+ fn clone(&self) -> Self {
+ Windows { ..*self }
+ }
+}
+
+impl<'data, T: Sync + 'data> ParallelIterator for Windows<'data, T> {
+ type Item = &'data [T];
+
+ fn drive_unindexed<C>(self, consumer: C) -> C::Result
+ where
+ C: UnindexedConsumer<Self::Item>,
+ {
+ bridge(self, consumer)
+ }
+
+ fn opt_len(&self) -> Option<usize> {
+ Some(self.len())
+ }
+}
+
+impl<'data, T: Sync + 'data> IndexedParallelIterator for Windows<'data, T> {
+ fn drive<C>(self, consumer: C) -> C::Result
+ where
+ C: Consumer<Self::Item>,
+ {
+ bridge(self, consumer)
+ }
+
+ fn len(&self) -> usize {
+ assert!(self.window_size >= 1);
+ self.slice.len().saturating_sub(self.window_size - 1)
+ }
+
+ fn with_producer<CB>(self, callback: CB) -> CB::Output
+ where
+ CB: ProducerCallback<Self::Item>,
+ {
+ callback.callback(WindowsProducer {
+ window_size: self.window_size,
+ slice: self.slice,
+ })
+ }
+}
+
+struct WindowsProducer<'data, T: Sync> {
+ window_size: usize,
+ slice: &'data [T],
+}
+
+impl<'data, T: 'data + Sync> Producer for WindowsProducer<'data, T> {
+ type Item = &'data [T];
+ type IntoIter = ::std::slice::Windows<'data, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.slice.windows(self.window_size)
+ }
+
+ fn split_at(self, index: usize) -> (Self, Self) {
+ let left_index = cmp::min(self.slice.len(), index + (self.window_size - 1));
+ let left = &self.slice[..left_index];
+ let right = &self.slice[index..];
+ (
+ WindowsProducer {
+ window_size: self.window_size,
+ slice: left,
+ },
+ WindowsProducer {
+ window_size: self.window_size,
+ slice: right,
+ },
+ )
+ }
+}
+
+/// Parallel iterator over mutable items in a slice
+#[derive(Debug)]
+pub struct IterMut<'data, T: Send> {
+ slice: &'data mut [T],
+}
+
+impl<'data, T: Send + 'data> ParallelIterator for IterMut<'data, T> {
+ type Item = &'data mut T;
+
+ fn drive_unindexed<C>(self, consumer: C) -> C::Result
+ where
+ C: UnindexedConsumer<Self::Item>,
+ {
+ bridge(self, consumer)
+ }
+
+ fn opt_len(&self) -> Option<usize> {
+ Some(self.len())
+ }
+}
+
+impl<'data, T: Send + 'data> IndexedParallelIterator for IterMut<'data, T> {
+ fn drive<C>(self, consumer: C) -> C::Result
+ where
+ C: Consumer<Self::Item>,
+ {
+ bridge(self, consumer)
+ }
+
+ fn len(&self) -> usize {
+ self.slice.len()
+ }
+
+ fn with_producer<CB>(self, callback: CB) -> CB::Output
+ where
+ CB: ProducerCallback<Self::Item>,
+ {
+ callback.callback(IterMutProducer { slice: self.slice })
+ }
+}
+
+struct IterMutProducer<'data, T: Send> {
+ slice: &'data mut [T],
+}
+
+impl<'data, T: 'data + Send> Producer for IterMutProducer<'data, T> {
+ type Item = &'data mut T;
+ type IntoIter = ::std::slice::IterMut<'data, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.slice.iter_mut()
+ }
+
+ fn split_at(self, index: usize) -> (Self, Self) {
+ let (left, right) = self.slice.split_at_mut(index);
+ (
+ IterMutProducer { slice: left },
+ IterMutProducer { slice: right },
+ )
+ }
+}
+
+/// Parallel iterator over slices separated by a predicate
+pub struct Split<'data, T, P> {
+ slice: &'data [T],
+ separator: P,
+}
+
+impl<'data, T, P: Clone> Clone for Split<'data, T, P> {
+ fn clone(&self) -> Self {
+ Split {
+ separator: self.separator.clone(),
+ ..*self
+ }
+ }
+}
+
+impl<'data, T: Debug, P> Debug for Split<'data, T, P> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Split").field("slice", &self.slice).finish()
+ }
+}
+
+impl<'data, T, P> ParallelIterator for Split<'data, T, P>
+where
+ P: Fn(&T) -> bool + Sync + Send,
+ T: Sync,
+{
+ type Item = &'data [T];
+
+ fn drive_unindexed<C>(self, consumer: C) -> C::Result
+ where
+ C: UnindexedConsumer<Self::Item>,
+ {
+ let producer = SplitProducer::new(self.slice, &self.separator);
+ bridge_unindexed(producer, consumer)
+ }
+}
+
+/// Implement support for `SplitProducer`.
+impl<'data, T, P> Fissile<P> for &'data [T]
+where
+ P: Fn(&T) -> bool,
+{
+ fn length(&self) -> usize {
+ self.len()
+ }
+
+ fn midpoint(&self, end: usize) -> usize {
+ end / 2
+ }
+
+ fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> {
+ self[start..end].iter().position(separator)
+ }
+
+ fn rfind(&self, separator: &P, end: usize) -> Option<usize> {
+ self[..end].iter().rposition(separator)
+ }
+
+ fn split_once(self, index: usize) -> (Self, Self) {
+ let (left, right) = self.split_at(index);
+ (left, &right[1..]) // skip the separator
+ }
+
+ fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F
+ where
+ F: Folder<Self>,
+ Self: Send,
+ {
+ let mut split = self.split(separator);
+ if skip_last {
+ split.next_back();
+ }
+ folder.consume_iter(split)
+ }
+}
+
+/// Parallel iterator over mutable slices separated by a predicate
+pub struct SplitMut<'data, T, P> {
+ slice: &'data mut [T],
+ separator: P,
+}
+
+impl<'data, T: Debug, P> Debug for SplitMut<'data, T, P> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("SplitMut")
+ .field("slice", &self.slice)
+ .finish()
+ }
+}
+
+impl<'data, T, P> ParallelIterator for SplitMut<'data, T, P>
+where
+ P: Fn(&T) -> bool + Sync + Send,
+ T: Send,
+{
+ type Item = &'data mut [T];
+
+ fn drive_unindexed<C>(self, consumer: C) -> C::Result
+ where
+ C: UnindexedConsumer<Self::Item>,
+ {
+ let producer = SplitProducer::new(self.slice, &self.separator);
+ bridge_unindexed(producer, consumer)
+ }
+}
+
+/// Implement support for `SplitProducer`.
+impl<'data, T, P> Fissile<P> for &'data mut [T]
+where
+ P: Fn(&T) -> bool,
+{
+ fn length(&self) -> usize {
+ self.len()
+ }
+
+ fn midpoint(&self, end: usize) -> usize {
+ end / 2
+ }
+
+ fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> {
+ self[start..end].iter().position(separator)
+ }
+
+ fn rfind(&self, separator: &P, end: usize) -> Option<usize> {
+ self[..end].iter().rposition(separator)
+ }
+
+ fn split_once(self, index: usize) -> (Self, Self) {
+ let (left, right) = self.split_at_mut(index);
+ (left, &mut right[1..]) // skip the separator
+ }
+
+ fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F
+ where
+ F: Folder<Self>,
+ Self: Send,
+ {
+ let mut split = self.split_mut(separator);
+ if skip_last {
+ split.next_back();
+ }
+ folder.consume_iter(split)
+ }
+}