aboutsummaryrefslogtreecommitdiff
path: root/vendor/serde_json/src/lexical/algorithm.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/serde_json/src/lexical/algorithm.rs')
-rw-r--r--vendor/serde_json/src/lexical/algorithm.rs196
1 files changed, 196 insertions, 0 deletions
diff --git a/vendor/serde_json/src/lexical/algorithm.rs b/vendor/serde_json/src/lexical/algorithm.rs
new file mode 100644
index 0000000..eaa5e7e
--- /dev/null
+++ b/vendor/serde_json/src/lexical/algorithm.rs
@@ -0,0 +1,196 @@
+// Adapted from https://github.com/Alexhuszagh/rust-lexical.
+
+//! Algorithms to efficiently convert strings to floats.
+
+use super::bhcomp::*;
+use super::cached::*;
+use super::errors::*;
+use super::float::ExtendedFloat;
+use super::num::*;
+use super::small_powers::*;
+
+// FAST
+// ----
+
+/// Convert mantissa to exact value for a non-base2 power.
+///
+/// Returns the resulting float and if the value can be represented exactly.
+pub(crate) fn fast_path<F>(mantissa: u64, exponent: i32) -> Option<F>
+where
+ F: Float,
+{
+ // `mantissa >> (F::MANTISSA_SIZE+1) != 0` effectively checks if the
+ // value has a no bits above the hidden bit, which is what we want.
+ let (min_exp, max_exp) = F::exponent_limit();
+ let shift_exp = F::mantissa_limit();
+ let mantissa_size = F::MANTISSA_SIZE + 1;
+ if mantissa == 0 {
+ Some(F::ZERO)
+ } else if mantissa >> mantissa_size != 0 {
+ // Would require truncation of the mantissa.
+ None
+ } else if exponent == 0 {
+ // 0 exponent, same as value, exact representation.
+ let float = F::as_cast(mantissa);
+ Some(float)
+ } else if exponent >= min_exp && exponent <= max_exp {
+ // Value can be exactly represented, return the value.
+ // Do not use powi, since powi can incrementally introduce
+ // error.
+ let float = F::as_cast(mantissa);
+ Some(float.pow10(exponent))
+ } else if exponent >= 0 && exponent <= max_exp + shift_exp {
+ // Check to see if we have a disguised fast-path, where the
+ // number of digits in the mantissa is very small, but and
+ // so digits can be shifted from the exponent to the mantissa.
+ // https://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
+ let small_powers = POW10_64;
+ let shift = exponent - max_exp;
+ let power = small_powers[shift as usize];
+
+ // Compute the product of the power, if it overflows,
+ // prematurely return early, otherwise, if we didn't overshoot,
+ // we can get an exact value.
+ let value = match mantissa.checked_mul(power) {
+ None => return None,
+ Some(value) => value,
+ };
+ if value >> mantissa_size != 0 {
+ None
+ } else {
+ // Use powi, since it's correct, and faster on
+ // the fast-path.
+ let float = F::as_cast(value);
+ Some(float.pow10(max_exp))
+ }
+ } else {
+ // Cannot be exactly represented, exponent too small or too big,
+ // would require truncation.
+ None
+ }
+}
+
+// MODERATE
+// --------
+
+/// Multiply the floating-point by the exponent.
+///
+/// Multiply by pre-calculated powers of the base, modify the extended-
+/// float, and return if new value and if the value can be represented
+/// accurately.
+fn multiply_exponent_extended<F>(fp: &mut ExtendedFloat, exponent: i32, truncated: bool) -> bool
+where
+ F: Float,
+{
+ let powers = ExtendedFloat::get_powers();
+ let exponent = exponent.saturating_add(powers.bias);
+ let small_index = exponent % powers.step;
+ let large_index = exponent / powers.step;
+ if exponent < 0 {
+ // Guaranteed underflow (assign 0).
+ fp.mant = 0;
+ true
+ } else if large_index as usize >= powers.large.len() {
+ // Overflow (assign infinity)
+ fp.mant = 1 << 63;
+ fp.exp = 0x7FF;
+ true
+ } else {
+ // Within the valid exponent range, multiply by the large and small
+ // exponents and return the resulting value.
+
+ // Track errors to as a factor of unit in last-precision.
+ let mut errors: u32 = 0;
+ if truncated {
+ errors += u64::error_halfscale();
+ }
+
+ // Multiply by the small power.
+ // Check if we can directly multiply by an integer, if not,
+ // use extended-precision multiplication.
+ match fp
+ .mant
+ .overflowing_mul(powers.get_small_int(small_index as usize))
+ {
+ // Overflow, multiplication unsuccessful, go slow path.
+ (_, true) => {
+ fp.normalize();
+ fp.imul(&powers.get_small(small_index as usize));
+ errors += u64::error_halfscale();
+ }
+ // No overflow, multiplication successful.
+ (mant, false) => {
+ fp.mant = mant;
+ fp.normalize();
+ }
+ }
+
+ // Multiply by the large power
+ fp.imul(&powers.get_large(large_index as usize));
+ if errors > 0 {
+ errors += 1;
+ }
+ errors += u64::error_halfscale();
+
+ // Normalize the floating point (and the errors).
+ let shift = fp.normalize();
+ errors <<= shift;
+
+ u64::error_is_accurate::<F>(errors, fp)
+ }
+}
+
+/// Create a precise native float using an intermediate extended-precision float.
+///
+/// Return the float approximation and if the value can be accurately
+/// represented with mantissa bits of precision.
+#[inline]
+pub(crate) fn moderate_path<F>(
+ mantissa: u64,
+ exponent: i32,
+ truncated: bool,
+) -> (ExtendedFloat, bool)
+where
+ F: Float,
+{
+ let mut fp = ExtendedFloat {
+ mant: mantissa,
+ exp: 0,
+ };
+ let valid = multiply_exponent_extended::<F>(&mut fp, exponent, truncated);
+ (fp, valid)
+}
+
+// FALLBACK
+// --------
+
+/// Fallback path when the fast path does not work.
+///
+/// Uses the moderate path, if applicable, otherwise, uses the slow path
+/// as required.
+pub(crate) fn fallback_path<F>(
+ integer: &[u8],
+ fraction: &[u8],
+ mantissa: u64,
+ exponent: i32,
+ mantissa_exponent: i32,
+ truncated: bool,
+) -> F
+where
+ F: Float,
+{
+ // Moderate path (use an extended 80-bit representation).
+ let (fp, valid) = moderate_path::<F>(mantissa, mantissa_exponent, truncated);
+ if valid {
+ return fp.into_float::<F>();
+ }
+
+ // Slow path, fast path didn't work.
+ let b = fp.into_downward_float::<F>();
+ if b.is_special() {
+ // We have a non-finite number, we get to leave early.
+ b
+ } else {
+ bhcomp(b, integer, fraction, exponent)
+ }
+}