aboutsummaryrefslogtreecommitdiff
path: root/vendor/serde_json/src/lexical/float.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/serde_json/src/lexical/float.rs')
-rw-r--r--vendor/serde_json/src/lexical/float.rs183
1 files changed, 0 insertions, 183 deletions
diff --git a/vendor/serde_json/src/lexical/float.rs b/vendor/serde_json/src/lexical/float.rs
deleted file mode 100644
index 2d434a2..0000000
--- a/vendor/serde_json/src/lexical/float.rs
+++ /dev/null
@@ -1,183 +0,0 @@
-// Adapted from https://github.com/Alexhuszagh/rust-lexical.
-
-// FLOAT TYPE
-
-use super::num::*;
-use super::rounding::*;
-use super::shift::*;
-
-/// Extended precision floating-point type.
-///
-/// Private implementation, exposed only for testing purposes.
-#[doc(hidden)]
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub(crate) struct ExtendedFloat {
- /// Mantissa for the extended-precision float.
- pub mant: u64,
- /// Binary exponent for the extended-precision float.
- pub exp: i32,
-}
-
-impl ExtendedFloat {
- // PROPERTIES
-
- // OPERATIONS
-
- /// Multiply two normalized extended-precision floats, as if by `a*b`.
- ///
- /// The precision is maximal when the numbers are normalized, however,
- /// decent precision will occur as long as both values have high bits
- /// set. The result is not normalized.
- ///
- /// Algorithm:
- /// 1. Non-signed multiplication of mantissas (requires 2x as many bits as input).
- /// 2. Normalization of the result (not done here).
- /// 3. Addition of exponents.
- pub(crate) fn mul(&self, b: &ExtendedFloat) -> ExtendedFloat {
- // Logic check, values must be decently normalized prior to multiplication.
- debug_assert!((self.mant & u64::HIMASK != 0) && (b.mant & u64::HIMASK != 0));
-
- // Extract high-and-low masks.
- let ah = self.mant >> u64::HALF;
- let al = self.mant & u64::LOMASK;
- let bh = b.mant >> u64::HALF;
- let bl = b.mant & u64::LOMASK;
-
- // Get our products
- let ah_bl = ah * bl;
- let al_bh = al * bh;
- let al_bl = al * bl;
- let ah_bh = ah * bh;
-
- let mut tmp = (ah_bl & u64::LOMASK) + (al_bh & u64::LOMASK) + (al_bl >> u64::HALF);
- // round up
- tmp += 1 << (u64::HALF - 1);
-
- ExtendedFloat {
- mant: ah_bh + (ah_bl >> u64::HALF) + (al_bh >> u64::HALF) + (tmp >> u64::HALF),
- exp: self.exp + b.exp + u64::FULL,
- }
- }
-
- /// Multiply in-place, as if by `a*b`.
- ///
- /// The result is not normalized.
- #[inline]
- pub(crate) fn imul(&mut self, b: &ExtendedFloat) {
- *self = self.mul(b);
- }
-
- // NORMALIZE
-
- /// Normalize float-point number.
- ///
- /// Shift the mantissa so the number of leading zeros is 0, or the value
- /// itself is 0.
- ///
- /// Get the number of bytes shifted.
- #[inline]
- pub(crate) fn normalize(&mut self) -> u32 {
- // Note:
- // Using the cltz intrinsic via leading_zeros is way faster (~10x)
- // than shifting 1-bit at a time, via while loop, and also way
- // faster (~2x) than an unrolled loop that checks at 32, 16, 4,
- // 2, and 1 bit.
- //
- // Using a modulus of pow2 (which will get optimized to a bitwise
- // and with 0x3F or faster) is slightly slower than an if/then,
- // however, removing the if/then will likely optimize more branched
- // code as it removes conditional logic.
-
- // Calculate the number of leading zeros, and then zero-out
- // any overflowing bits, to avoid shl overflow when self.mant == 0.
- let shift = if self.mant == 0 {
- 0
- } else {
- self.mant.leading_zeros()
- };
- shl(self, shift as i32);
- shift
- }
-
- // ROUND
-
- /// Lossy round float-point number to native mantissa boundaries.
- #[inline]
- pub(crate) fn round_to_native<F, Algorithm>(&mut self, algorithm: Algorithm)
- where
- F: Float,
- Algorithm: FnOnce(&mut ExtendedFloat, i32),
- {
- round_to_native::<F, _>(self, algorithm);
- }
-
- // FROM
-
- /// Create extended float from native float.
- #[inline]
- pub fn from_float<F: Float>(f: F) -> ExtendedFloat {
- from_float(f)
- }
-
- // INTO
-
- /// Convert into default-rounded, lower-precision native float.
- #[inline]
- pub(crate) fn into_float<F: Float>(mut self) -> F {
- self.round_to_native::<F, _>(round_nearest_tie_even);
- into_float(self)
- }
-
- /// Convert into downward-rounded, lower-precision native float.
- #[inline]
- pub(crate) fn into_downward_float<F: Float>(mut self) -> F {
- self.round_to_native::<F, _>(round_downward);
- into_float(self)
- }
-}
-
-// FROM FLOAT
-
-// Import ExtendedFloat from native float.
-#[inline]
-pub(crate) fn from_float<F>(f: F) -> ExtendedFloat
-where
- F: Float,
-{
- ExtendedFloat {
- mant: u64::as_cast(f.mantissa()),
- exp: f.exponent(),
- }
-}
-
-// INTO FLOAT
-
-// Export extended-precision float to native float.
-//
-// The extended-precision float must be in native float representation,
-// with overflow/underflow appropriately handled.
-#[inline]
-pub(crate) fn into_float<F>(fp: ExtendedFloat) -> F
-where
- F: Float,
-{
- // Export floating-point number.
- if fp.mant == 0 || fp.exp < F::DENORMAL_EXPONENT {
- // sub-denormal, underflow
- F::ZERO
- } else if fp.exp >= F::MAX_EXPONENT {
- // overflow
- F::from_bits(F::INFINITY_BITS)
- } else {
- // calculate the exp and fraction bits, and return a float from bits.
- let exp: u64;
- if (fp.exp == F::DENORMAL_EXPONENT) && (fp.mant & F::HIDDEN_BIT_MASK.as_u64()) == 0 {
- exp = 0;
- } else {
- exp = (fp.exp + F::EXPONENT_BIAS) as u64;
- }
- let exp = exp << F::MANTISSA_SIZE;
- let mant = fp.mant & F::MANTISSA_MASK.as_u64();
- F::from_bits(F::Unsigned::as_cast(mant | exp))
- }
-}