diff options
Diffstat (limited to 'vendor/serde_json/src/lexical/math.rs')
-rw-r--r-- | vendor/serde_json/src/lexical/math.rs | 886 |
1 files changed, 886 insertions, 0 deletions
diff --git a/vendor/serde_json/src/lexical/math.rs b/vendor/serde_json/src/lexical/math.rs new file mode 100644 index 0000000..d7122bf --- /dev/null +++ b/vendor/serde_json/src/lexical/math.rs @@ -0,0 +1,886 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Building-blocks for arbitrary-precision math. +//! +//! These algorithms assume little-endian order for the large integer +//! buffers, so for a `vec![0, 1, 2, 3]`, `3` is the most significant limb, +//! and `0` is the least significant limb. + +use super::large_powers; +use super::num::*; +use super::small_powers::*; +use alloc::vec::Vec; +use core::{cmp, iter, mem}; + +// ALIASES +// ------- + +// Type for a single limb of the big integer. +// +// A limb is analogous to a digit in base10, except, it stores 32-bit +// or 64-bit numbers instead. +// +// This should be all-known 64-bit platforms supported by Rust. +// https://forge.rust-lang.org/platform-support.html +// +// Platforms where native 128-bit multiplication is explicitly supported: +// - x86_64 (Supported via `MUL`). +// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from). +// +// Platforms where native 64-bit multiplication is supported and +// you can extract hi-lo for 64-bit multiplications. +// aarch64 (Requires `UMULH` and `MUL` to capture high and low bits). +// powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits). +// +// Platforms where native 128-bit multiplication is not supported, +// requiring software emulation. +// sparc64 (`UMUL` only supported double-word arguments). + +// 32-BIT LIMB +#[cfg(limb_width_32)] +pub type Limb = u32; + +#[cfg(limb_width_32)] +pub const POW5_LIMB: &[Limb] = &POW5_32; + +#[cfg(limb_width_32)] +pub const POW10_LIMB: &[Limb] = &POW10_32; + +#[cfg(limb_width_32)] +type Wide = u64; + +// 64-BIT LIMB +#[cfg(limb_width_64)] +pub type Limb = u64; + +#[cfg(limb_width_64)] +pub const POW5_LIMB: &[Limb] = &POW5_64; + +#[cfg(limb_width_64)] +pub const POW10_LIMB: &[Limb] = &POW10_64; + +#[cfg(limb_width_64)] +type Wide = u128; + +/// Cast to limb type. +#[inline] +pub(crate) fn as_limb<T: Integer>(t: T) -> Limb { + Limb::as_cast(t) +} + +/// Cast to wide type. +#[inline] +fn as_wide<T: Integer>(t: T) -> Wide { + Wide::as_cast(t) +} + +// SPLIT +// ----- + +/// Split u64 into limbs, in little-endian order. +#[inline] +#[cfg(limb_width_32)] +fn split_u64(x: u64) -> [Limb; 2] { + [as_limb(x), as_limb(x >> 32)] +} + +/// Split u64 into limbs, in little-endian order. +#[inline] +#[cfg(limb_width_64)] +fn split_u64(x: u64) -> [Limb; 1] { + [as_limb(x)] +} + +// HI64 +// ---- + +// NONZERO + +/// Check if any of the remaining bits are non-zero. +#[inline] +pub fn nonzero<T: Integer>(x: &[T], rindex: usize) -> bool { + let len = x.len(); + let slc = &x[..len - rindex]; + slc.iter().rev().any(|&x| x != T::ZERO) +} + +/// Shift 64-bit integer to high 64-bits. +#[inline] +fn u64_to_hi64_1(r0: u64) -> (u64, bool) { + debug_assert!(r0 != 0); + let ls = r0.leading_zeros(); + (r0 << ls, false) +} + +/// Shift 2 64-bit integers to high 64-bits. +#[inline] +fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) { + debug_assert!(r0 != 0); + let ls = r0.leading_zeros(); + let rs = 64 - ls; + let v = match ls { + 0 => r0, + _ => (r0 << ls) | (r1 >> rs), + }; + let n = r1 << ls != 0; + (v, n) +} + +/// Trait to export the high 64-bits from a little-endian slice. +trait Hi64<T>: AsRef<[T]> { + /// Get the hi64 bits from a 1-limb slice. + fn hi64_1(&self) -> (u64, bool); + + /// Get the hi64 bits from a 2-limb slice. + fn hi64_2(&self) -> (u64, bool); + + /// Get the hi64 bits from a 3-limb slice. + fn hi64_3(&self) -> (u64, bool); + + /// High-level exporter to extract the high 64 bits from a little-endian slice. + #[inline] + fn hi64(&self) -> (u64, bool) { + match self.as_ref().len() { + 0 => (0, false), + 1 => self.hi64_1(), + 2 => self.hi64_2(), + _ => self.hi64_3(), + } + } +} + +impl Hi64<u32> for [u32] { + #[inline] + fn hi64_1(&self) -> (u64, bool) { + debug_assert!(self.len() == 1); + let r0 = self[0] as u64; + u64_to_hi64_1(r0) + } + + #[inline] + fn hi64_2(&self) -> (u64, bool) { + debug_assert!(self.len() == 2); + let r0 = (self[1] as u64) << 32; + let r1 = self[0] as u64; + u64_to_hi64_1(r0 | r1) + } + + #[inline] + fn hi64_3(&self) -> (u64, bool) { + debug_assert!(self.len() >= 3); + let r0 = self[self.len() - 1] as u64; + let r1 = (self[self.len() - 2] as u64) << 32; + let r2 = self[self.len() - 3] as u64; + let (v, n) = u64_to_hi64_2(r0, r1 | r2); + (v, n || nonzero(self, 3)) + } +} + +impl Hi64<u64> for [u64] { + #[inline] + fn hi64_1(&self) -> (u64, bool) { + debug_assert!(self.len() == 1); + let r0 = self[0]; + u64_to_hi64_1(r0) + } + + #[inline] + fn hi64_2(&self) -> (u64, bool) { + debug_assert!(self.len() >= 2); + let r0 = self[self.len() - 1]; + let r1 = self[self.len() - 2]; + let (v, n) = u64_to_hi64_2(r0, r1); + (v, n || nonzero(self, 2)) + } + + #[inline] + fn hi64_3(&self) -> (u64, bool) { + self.hi64_2() + } +} + +// SCALAR +// ------ + +// Scalar-to-scalar operations, for building-blocks for arbitrary-precision +// operations. + +mod scalar { + use super::*; + + // ADDITION + + /// Add two small integers and return the resulting value and if overflow happens. + #[inline] + pub fn add(x: Limb, y: Limb) -> (Limb, bool) { + x.overflowing_add(y) + } + + /// AddAssign two small integers and return if overflow happens. + #[inline] + pub fn iadd(x: &mut Limb, y: Limb) -> bool { + let t = add(*x, y); + *x = t.0; + t.1 + } + + // SUBTRACTION + + /// Subtract two small integers and return the resulting value and if overflow happens. + #[inline] + pub fn sub(x: Limb, y: Limb) -> (Limb, bool) { + x.overflowing_sub(y) + } + + /// SubAssign two small integers and return if overflow happens. + #[inline] + pub fn isub(x: &mut Limb, y: Limb) -> bool { + let t = sub(*x, y); + *x = t.0; + t.1 + } + + // MULTIPLICATION + + /// Multiply two small integers (with carry) (and return the overflow contribution). + /// + /// Returns the (low, high) components. + #[inline] + pub fn mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) { + // Cannot overflow, as long as wide is 2x as wide. This is because + // the following is always true: + // `Wide::max_value() - (Narrow::max_value() * Narrow::max_value()) >= Narrow::max_value()` + let z: Wide = as_wide(x) * as_wide(y) + as_wide(carry); + let bits = mem::size_of::<Limb>() * 8; + (as_limb(z), as_limb(z >> bits)) + } + + /// Multiply two small integers (with carry) (and return if overflow happens). + #[inline] + pub fn imul(x: &mut Limb, y: Limb, carry: Limb) -> Limb { + let t = mul(*x, y, carry); + *x = t.0; + t.1 + } +} // scalar + +// SMALL +// ----- + +// Large-to-small operations, to modify a big integer from a native scalar. + +mod small { + use super::*; + + // MULTIPLICATIION + + /// ADDITION + + /// Implied AddAssign implementation for adding a small integer to bigint. + /// + /// Allows us to choose a start-index in x to store, to allow incrementing + /// from a non-zero start. + #[inline] + pub fn iadd_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) { + if x.len() <= xstart { + x.push(y); + } else { + // Initial add + let mut carry = scalar::iadd(&mut x[xstart], y); + + // Increment until overflow stops occurring. + let mut size = xstart + 1; + while carry && size < x.len() { + carry = scalar::iadd(&mut x[size], 1); + size += 1; + } + + // If we overflowed the buffer entirely, need to add 1 to the end + // of the buffer. + if carry { + x.push(1); + } + } + } + + /// AddAssign small integer to bigint. + #[inline] + pub fn iadd(x: &mut Vec<Limb>, y: Limb) { + iadd_impl(x, y, 0); + } + + // SUBTRACTION + + /// SubAssign small integer to bigint. + /// Does not do overflowing subtraction. + #[inline] + pub fn isub_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) { + debug_assert!(x.len() > xstart && (x[xstart] >= y || x.len() > xstart + 1)); + + // Initial subtraction + let mut carry = scalar::isub(&mut x[xstart], y); + + // Increment until overflow stops occurring. + let mut size = xstart + 1; + while carry && size < x.len() { + carry = scalar::isub(&mut x[size], 1); + size += 1; + } + normalize(x); + } + + // MULTIPLICATION + + /// MulAssign small integer to bigint. + #[inline] + pub fn imul(x: &mut Vec<Limb>, y: Limb) { + // Multiply iteratively over all elements, adding the carry each time. + let mut carry: Limb = 0; + for xi in &mut *x { + carry = scalar::imul(xi, y, carry); + } + + // Overflow of value, add to end. + if carry != 0 { + x.push(carry); + } + } + + /// Mul small integer to bigint. + #[inline] + pub fn mul(x: &[Limb], y: Limb) -> Vec<Limb> { + let mut z = Vec::<Limb>::default(); + z.extend_from_slice(x); + imul(&mut z, y); + z + } + + /// MulAssign by a power. + /// + /// Theoretically... + /// + /// Use an exponentiation by squaring method, since it reduces the time + /// complexity of the multiplication to ~`O(log(n))` for the squaring, + /// and `O(n*m)` for the result. Since `m` is typically a lower-order + /// factor, this significantly reduces the number of multiplications + /// we need to do. Iteratively multiplying by small powers follows + /// the nth triangular number series, which scales as `O(p^2)`, but + /// where `p` is `n+m`. In short, it scales very poorly. + /// + /// Practically.... + /// + /// Exponentiation by Squaring: + /// running 2 tests + /// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78) + /// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007) + /// + /// Exponentiation by Iterative Small Powers: + /// running 2 tests + /// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31) + /// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47) + /// + /// Exponentiation by Iterative Large Powers (of 2): + /// running 2 tests + /// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31) + /// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47) + /// + /// Even using worst-case scenarios, exponentiation by squaring is + /// significantly slower for our workloads. Just multiply by small powers, + /// in simple cases, and use precalculated large powers in other cases. + pub fn imul_pow5(x: &mut Vec<Limb>, n: u32) { + use super::large::KARATSUBA_CUTOFF; + + let small_powers = POW5_LIMB; + let large_powers = large_powers::POW5; + + if n == 0 { + // No exponent, just return. + // The 0-index of the large powers is `2^0`, which is 1, so we want + // to make sure we don't take that path with a literal 0. + return; + } + + // We want to use the asymptotically faster algorithm if we're going + // to be using Karabatsu multiplication sometime during the result, + // otherwise, just use exponentiation by squaring. + let bit_length = 32 - n.leading_zeros() as usize; + debug_assert!(bit_length != 0 && bit_length <= large_powers.len()); + if x.len() + large_powers[bit_length - 1].len() < 2 * KARATSUBA_CUTOFF { + // We can use iterative small powers to make this faster for the + // easy cases. + + // Multiply by the largest small power until n < step. + let step = small_powers.len() - 1; + let power = small_powers[step]; + let mut n = n as usize; + while n >= step { + imul(x, power); + n -= step; + } + + // Multiply by the remainder. + imul(x, small_powers[n]); + } else { + // In theory, this code should be asymptotically a lot faster, + // in practice, our small::imul seems to be the limiting step, + // and large imul is slow as well. + + // Multiply by higher order powers. + let mut idx: usize = 0; + let mut bit: usize = 1; + let mut n = n as usize; + while n != 0 { + if n & bit != 0 { + debug_assert!(idx < large_powers.len()); + large::imul(x, large_powers[idx]); + n ^= bit; + } + idx += 1; + bit <<= 1; + } + } + } + + // BIT LENGTH + + /// Get number of leading zero bits in the storage. + #[inline] + pub fn leading_zeros(x: &[Limb]) -> usize { + x.last().map_or(0, |x| x.leading_zeros() as usize) + } + + /// Calculate the bit-length of the big-integer. + #[inline] + pub fn bit_length(x: &[Limb]) -> usize { + let bits = mem::size_of::<Limb>() * 8; + // Avoid overflowing, calculate via total number of bits + // minus leading zero bits. + let nlz = leading_zeros(x); + bits.checked_mul(x.len()) + .map_or_else(usize::max_value, |v| v - nlz) + } + + // SHL + + /// Shift-left bits inside a buffer. + /// + /// Assumes `n < Limb::BITS`, IE, internally shifting bits. + #[inline] + pub fn ishl_bits(x: &mut Vec<Limb>, n: usize) { + // Need to shift by the number of `bits % Limb::BITS)`. + let bits = mem::size_of::<Limb>() * 8; + debug_assert!(n < bits); + if n == 0 { + return; + } + + // Internally, for each item, we shift left by n, and add the previous + // right shifted limb-bits. + // For example, we transform (for u8) shifted left 2, to: + // b10100100 b01000010 + // b10 b10010001 b00001000 + let rshift = bits - n; + let lshift = n; + let mut prev: Limb = 0; + for xi in &mut *x { + let tmp = *xi; + *xi <<= lshift; + *xi |= prev >> rshift; + prev = tmp; + } + + // Always push the carry, even if it creates a non-normal result. + let carry = prev >> rshift; + if carry != 0 { + x.push(carry); + } + } + + /// Shift-left `n` digits inside a buffer. + /// + /// Assumes `n` is not 0. + #[inline] + pub fn ishl_limbs(x: &mut Vec<Limb>, n: usize) { + debug_assert!(n != 0); + if !x.is_empty() { + x.reserve(n); + x.splice(..0, iter::repeat(0).take(n)); + } + } + + /// Shift-left buffer by n bits. + #[inline] + pub fn ishl(x: &mut Vec<Limb>, n: usize) { + let bits = mem::size_of::<Limb>() * 8; + // Need to pad with zeros for the number of `bits / Limb::BITS`, + // and shift-left with carry for `bits % Limb::BITS`. + let rem = n % bits; + let div = n / bits; + ishl_bits(x, rem); + if div != 0 { + ishl_limbs(x, div); + } + } + + // NORMALIZE + + /// Normalize the container by popping any leading zeros. + #[inline] + pub fn normalize(x: &mut Vec<Limb>) { + // Remove leading zero if we cause underflow. Since we're dividing + // by a small power, we have at max 1 int removed. + while x.last() == Some(&0) { + x.pop(); + } + } +} // small + +// LARGE +// ----- + +// Large-to-large operations, to modify a big integer from a native scalar. + +mod large { + use super::*; + + // RELATIVE OPERATORS + + /// Compare `x` to `y`, in little-endian order. + #[inline] + pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering { + if x.len() > y.len() { + cmp::Ordering::Greater + } else if x.len() < y.len() { + cmp::Ordering::Less + } else { + let iter = x.iter().rev().zip(y.iter().rev()); + for (&xi, &yi) in iter { + if xi > yi { + return cmp::Ordering::Greater; + } else if xi < yi { + return cmp::Ordering::Less; + } + } + // Equal case. + cmp::Ordering::Equal + } + } + + /// Check if x is less than y. + #[inline] + pub fn less(x: &[Limb], y: &[Limb]) -> bool { + compare(x, y) == cmp::Ordering::Less + } + + /// Check if x is greater than or equal to y. + #[inline] + pub fn greater_equal(x: &[Limb], y: &[Limb]) -> bool { + !less(x, y) + } + + // ADDITION + + /// Implied AddAssign implementation for bigints. + /// + /// Allows us to choose a start-index in x to store, so we can avoid + /// padding the buffer with zeros when not needed, optimized for vectors. + pub fn iadd_impl(x: &mut Vec<Limb>, y: &[Limb], xstart: usize) { + // The effective x buffer is from `xstart..x.len()`, so we need to treat + // that as the current range. If the effective y buffer is longer, need + // to resize to that, + the start index. + if y.len() > x.len() - xstart { + x.resize(y.len() + xstart, 0); + } + + // Iteratively add elements from y to x. + let mut carry = false; + for (xi, yi) in x[xstart..].iter_mut().zip(y.iter()) { + // Only one op of the two can overflow, since we added at max + // Limb::max_value() + Limb::max_value(). Add the previous carry, + // and store the current carry for the next. + let mut tmp = scalar::iadd(xi, *yi); + if carry { + tmp |= scalar::iadd(xi, 1); + } + carry = tmp; + } + + // Overflow from the previous bit. + if carry { + small::iadd_impl(x, 1, y.len() + xstart); + } + } + + /// AddAssign bigint to bigint. + #[inline] + pub fn iadd(x: &mut Vec<Limb>, y: &[Limb]) { + iadd_impl(x, y, 0); + } + + /// Add bigint to bigint. + #[inline] + pub fn add(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + let mut z = Vec::<Limb>::default(); + z.extend_from_slice(x); + iadd(&mut z, y); + z + } + + // SUBTRACTION + + /// SubAssign bigint to bigint. + pub fn isub(x: &mut Vec<Limb>, y: &[Limb]) { + // Basic underflow checks. + debug_assert!(greater_equal(x, y)); + + // Iteratively add elements from y to x. + let mut carry = false; + for (xi, yi) in x.iter_mut().zip(y.iter()) { + // Only one op of the two can overflow, since we added at max + // Limb::max_value() + Limb::max_value(). Add the previous carry, + // and store the current carry for the next. + let mut tmp = scalar::isub(xi, *yi); + if carry { + tmp |= scalar::isub(xi, 1); + } + carry = tmp; + } + + if carry { + small::isub_impl(x, 1, y.len()); + } else { + small::normalize(x); + } + } + + // MULTIPLICATION + + /// Number of digits to bottom-out to asymptotically slow algorithms. + /// + /// Karatsuba tends to out-perform long-multiplication at ~320-640 bits, + /// so we go halfway, while Newton division tends to out-perform + /// Algorithm D at ~1024 bits. We can toggle this for optimal performance. + pub const KARATSUBA_CUTOFF: usize = 32; + + /// Grade-school multiplication algorithm. + /// + /// Slow, naive algorithm, using limb-bit bases and just shifting left for + /// each iteration. This could be optimized with numerous other algorithms, + /// but it's extremely simple, and works in O(n*m) time, which is fine + /// by me. Each iteration, of which there are `m` iterations, requires + /// `n` multiplications, and `n` additions, or grade-school multiplication. + fn long_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + // Using the immutable value, multiply by all the scalars in y, using + // the algorithm defined above. Use a single buffer to avoid + // frequent reallocations. Handle the first case to avoid a redundant + // addition, since we know y.len() >= 1. + let mut z: Vec<Limb> = small::mul(x, y[0]); + z.resize(x.len() + y.len(), 0); + + // Handle the iterative cases. + for (i, &yi) in y[1..].iter().enumerate() { + let zi: Vec<Limb> = small::mul(x, yi); + iadd_impl(&mut z, &zi, i + 1); + } + + small::normalize(&mut z); + + z + } + + /// Split two buffers into halfway, into (lo, hi). + #[inline] + pub fn karatsuba_split(z: &[Limb], m: usize) -> (&[Limb], &[Limb]) { + (&z[..m], &z[m..]) + } + + /// Karatsuba multiplication algorithm with roughly equal input sizes. + /// + /// Assumes `y.len() >= x.len()`. + fn karatsuba_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + if y.len() <= KARATSUBA_CUTOFF { + // Bottom-out to long division for small cases. + long_mul(x, y) + } else if x.len() < y.len() / 2 { + karatsuba_uneven_mul(x, y) + } else { + // Do our 3 multiplications. + let m = y.len() / 2; + let (xl, xh) = karatsuba_split(x, m); + let (yl, yh) = karatsuba_split(y, m); + let sumx = add(xl, xh); + let sumy = add(yl, yh); + let z0 = karatsuba_mul(xl, yl); + let mut z1 = karatsuba_mul(&sumx, &sumy); + let z2 = karatsuba_mul(xh, yh); + // Properly scale z1, which is `z1 - z2 - zo`. + isub(&mut z1, &z2); + isub(&mut z1, &z0); + + // Create our result, which is equal to, in little-endian order: + // [z0, z1 - z2 - z0, z2] + // z1 must be shifted m digits (2^(32m)) over. + // z2 must be shifted 2*m digits (2^(64m)) over. + let len = z0.len().max(m + z1.len()).max(2 * m + z2.len()); + let mut result = z0; + result.reserve_exact(len - result.len()); + iadd_impl(&mut result, &z1, m); + iadd_impl(&mut result, &z2, 2 * m); + + result + } + } + + /// Karatsuba multiplication algorithm where y is substantially larger than x. + /// + /// Assumes `y.len() >= x.len()`. + fn karatsuba_uneven_mul(x: &[Limb], mut y: &[Limb]) -> Vec<Limb> { + let mut result = Vec::<Limb>::default(); + result.resize(x.len() + y.len(), 0); + + // This effectively is like grade-school multiplication between + // two numbers, except we're using splits on `y`, and the intermediate + // step is a Karatsuba multiplication. + let mut start = 0; + while !y.is_empty() { + let m = x.len().min(y.len()); + let (yl, yh) = karatsuba_split(y, m); + let prod = karatsuba_mul(x, yl); + iadd_impl(&mut result, &prod, start); + y = yh; + start += m; + } + small::normalize(&mut result); + + result + } + + /// Forwarder to the proper Karatsuba algorithm. + #[inline] + fn karatsuba_mul_fwd(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + if x.len() < y.len() { + karatsuba_mul(x, y) + } else { + karatsuba_mul(y, x) + } + } + + /// MulAssign bigint to bigint. + #[inline] + pub fn imul(x: &mut Vec<Limb>, y: &[Limb]) { + if y.len() == 1 { + small::imul(x, y[0]); + } else { + // We're not really in a condition where using Karatsuba + // multiplication makes sense, so we're just going to use long + // division. ~20% speedup compared to: + // *x = karatsuba_mul_fwd(x, y); + *x = karatsuba_mul_fwd(x, y); + } + } +} // large + +// TRAITS +// ------ + +/// Traits for shared operations for big integers. +/// +/// None of these are implemented using normal traits, since these +/// are very expensive operations, and we want to deliberately +/// and explicitly use these functions. +pub(crate) trait Math: Clone + Sized + Default { + // DATA + + /// Get access to the underlying data + fn data(&self) -> &Vec<Limb>; + + /// Get access to the underlying data + fn data_mut(&mut self) -> &mut Vec<Limb>; + + // RELATIVE OPERATIONS + + /// Compare self to y. + #[inline] + fn compare(&self, y: &Self) -> cmp::Ordering { + large::compare(self.data(), y.data()) + } + + // PROPERTIES + + /// Get the high 64-bits from the bigint and if there are remaining bits. + #[inline] + fn hi64(&self) -> (u64, bool) { + self.data().as_slice().hi64() + } + + /// Calculate the bit-length of the big-integer. + /// Returns usize::max_value() if the value overflows, + /// IE, if `self.data().len() > usize::max_value() / 8`. + #[inline] + fn bit_length(&self) -> usize { + small::bit_length(self.data()) + } + + // INTEGER CONVERSIONS + + /// Create new big integer from u64. + #[inline] + fn from_u64(x: u64) -> Self { + let mut v = Self::default(); + let slc = split_u64(x); + v.data_mut().extend_from_slice(&slc); + v.normalize(); + v + } + + // NORMALIZE + + /// Normalize the integer, so any leading zero values are removed. + #[inline] + fn normalize(&mut self) { + small::normalize(self.data_mut()); + } + + // ADDITION + + /// AddAssign small integer. + #[inline] + fn iadd_small(&mut self, y: Limb) { + small::iadd(self.data_mut(), y); + } + + // MULTIPLICATION + + /// MulAssign small integer. + #[inline] + fn imul_small(&mut self, y: Limb) { + small::imul(self.data_mut(), y); + } + + /// Multiply by a power of 2. + #[inline] + fn imul_pow2(&mut self, n: u32) { + self.ishl(n as usize); + } + + /// Multiply by a power of 5. + #[inline] + fn imul_pow5(&mut self, n: u32) { + small::imul_pow5(self.data_mut(), n); + } + + /// MulAssign by a power of 10. + #[inline] + fn imul_pow10(&mut self, n: u32) { + self.imul_pow5(n); + self.imul_pow2(n); + } + + // SHIFTS + + /// Shift-left the entire buffer n bits. + #[inline] + fn ishl(&mut self, n: usize) { + small::ishl(self.data_mut(), n); + } +} |