aboutsummaryrefslogtreecommitdiff
path: root/vendor/serde_json/src/lexical/math.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/serde_json/src/lexical/math.rs')
-rw-r--r--vendor/serde_json/src/lexical/math.rs886
1 files changed, 0 insertions, 886 deletions
diff --git a/vendor/serde_json/src/lexical/math.rs b/vendor/serde_json/src/lexical/math.rs
deleted file mode 100644
index d7122bf..0000000
--- a/vendor/serde_json/src/lexical/math.rs
+++ /dev/null
@@ -1,886 +0,0 @@
-// Adapted from https://github.com/Alexhuszagh/rust-lexical.
-
-//! Building-blocks for arbitrary-precision math.
-//!
-//! These algorithms assume little-endian order for the large integer
-//! buffers, so for a `vec![0, 1, 2, 3]`, `3` is the most significant limb,
-//! and `0` is the least significant limb.
-
-use super::large_powers;
-use super::num::*;
-use super::small_powers::*;
-use alloc::vec::Vec;
-use core::{cmp, iter, mem};
-
-// ALIASES
-// -------
-
-// Type for a single limb of the big integer.
-//
-// A limb is analogous to a digit in base10, except, it stores 32-bit
-// or 64-bit numbers instead.
-//
-// This should be all-known 64-bit platforms supported by Rust.
-// https://forge.rust-lang.org/platform-support.html
-//
-// Platforms where native 128-bit multiplication is explicitly supported:
-// - x86_64 (Supported via `MUL`).
-// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from).
-//
-// Platforms where native 64-bit multiplication is supported and
-// you can extract hi-lo for 64-bit multiplications.
-// aarch64 (Requires `UMULH` and `MUL` to capture high and low bits).
-// powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits).
-//
-// Platforms where native 128-bit multiplication is not supported,
-// requiring software emulation.
-// sparc64 (`UMUL` only supported double-word arguments).
-
-// 32-BIT LIMB
-#[cfg(limb_width_32)]
-pub type Limb = u32;
-
-#[cfg(limb_width_32)]
-pub const POW5_LIMB: &[Limb] = &POW5_32;
-
-#[cfg(limb_width_32)]
-pub const POW10_LIMB: &[Limb] = &POW10_32;
-
-#[cfg(limb_width_32)]
-type Wide = u64;
-
-// 64-BIT LIMB
-#[cfg(limb_width_64)]
-pub type Limb = u64;
-
-#[cfg(limb_width_64)]
-pub const POW5_LIMB: &[Limb] = &POW5_64;
-
-#[cfg(limb_width_64)]
-pub const POW10_LIMB: &[Limb] = &POW10_64;
-
-#[cfg(limb_width_64)]
-type Wide = u128;
-
-/// Cast to limb type.
-#[inline]
-pub(crate) fn as_limb<T: Integer>(t: T) -> Limb {
- Limb::as_cast(t)
-}
-
-/// Cast to wide type.
-#[inline]
-fn as_wide<T: Integer>(t: T) -> Wide {
- Wide::as_cast(t)
-}
-
-// SPLIT
-// -----
-
-/// Split u64 into limbs, in little-endian order.
-#[inline]
-#[cfg(limb_width_32)]
-fn split_u64(x: u64) -> [Limb; 2] {
- [as_limb(x), as_limb(x >> 32)]
-}
-
-/// Split u64 into limbs, in little-endian order.
-#[inline]
-#[cfg(limb_width_64)]
-fn split_u64(x: u64) -> [Limb; 1] {
- [as_limb(x)]
-}
-
-// HI64
-// ----
-
-// NONZERO
-
-/// Check if any of the remaining bits are non-zero.
-#[inline]
-pub fn nonzero<T: Integer>(x: &[T], rindex: usize) -> bool {
- let len = x.len();
- let slc = &x[..len - rindex];
- slc.iter().rev().any(|&x| x != T::ZERO)
-}
-
-/// Shift 64-bit integer to high 64-bits.
-#[inline]
-fn u64_to_hi64_1(r0: u64) -> (u64, bool) {
- debug_assert!(r0 != 0);
- let ls = r0.leading_zeros();
- (r0 << ls, false)
-}
-
-/// Shift 2 64-bit integers to high 64-bits.
-#[inline]
-fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) {
- debug_assert!(r0 != 0);
- let ls = r0.leading_zeros();
- let rs = 64 - ls;
- let v = match ls {
- 0 => r0,
- _ => (r0 << ls) | (r1 >> rs),
- };
- let n = r1 << ls != 0;
- (v, n)
-}
-
-/// Trait to export the high 64-bits from a little-endian slice.
-trait Hi64<T>: AsRef<[T]> {
- /// Get the hi64 bits from a 1-limb slice.
- fn hi64_1(&self) -> (u64, bool);
-
- /// Get the hi64 bits from a 2-limb slice.
- fn hi64_2(&self) -> (u64, bool);
-
- /// Get the hi64 bits from a 3-limb slice.
- fn hi64_3(&self) -> (u64, bool);
-
- /// High-level exporter to extract the high 64 bits from a little-endian slice.
- #[inline]
- fn hi64(&self) -> (u64, bool) {
- match self.as_ref().len() {
- 0 => (0, false),
- 1 => self.hi64_1(),
- 2 => self.hi64_2(),
- _ => self.hi64_3(),
- }
- }
-}
-
-impl Hi64<u32> for [u32] {
- #[inline]
- fn hi64_1(&self) -> (u64, bool) {
- debug_assert!(self.len() == 1);
- let r0 = self[0] as u64;
- u64_to_hi64_1(r0)
- }
-
- #[inline]
- fn hi64_2(&self) -> (u64, bool) {
- debug_assert!(self.len() == 2);
- let r0 = (self[1] as u64) << 32;
- let r1 = self[0] as u64;
- u64_to_hi64_1(r0 | r1)
- }
-
- #[inline]
- fn hi64_3(&self) -> (u64, bool) {
- debug_assert!(self.len() >= 3);
- let r0 = self[self.len() - 1] as u64;
- let r1 = (self[self.len() - 2] as u64) << 32;
- let r2 = self[self.len() - 3] as u64;
- let (v, n) = u64_to_hi64_2(r0, r1 | r2);
- (v, n || nonzero(self, 3))
- }
-}
-
-impl Hi64<u64> for [u64] {
- #[inline]
- fn hi64_1(&self) -> (u64, bool) {
- debug_assert!(self.len() == 1);
- let r0 = self[0];
- u64_to_hi64_1(r0)
- }
-
- #[inline]
- fn hi64_2(&self) -> (u64, bool) {
- debug_assert!(self.len() >= 2);
- let r0 = self[self.len() - 1];
- let r1 = self[self.len() - 2];
- let (v, n) = u64_to_hi64_2(r0, r1);
- (v, n || nonzero(self, 2))
- }
-
- #[inline]
- fn hi64_3(&self) -> (u64, bool) {
- self.hi64_2()
- }
-}
-
-// SCALAR
-// ------
-
-// Scalar-to-scalar operations, for building-blocks for arbitrary-precision
-// operations.
-
-mod scalar {
- use super::*;
-
- // ADDITION
-
- /// Add two small integers and return the resulting value and if overflow happens.
- #[inline]
- pub fn add(x: Limb, y: Limb) -> (Limb, bool) {
- x.overflowing_add(y)
- }
-
- /// AddAssign two small integers and return if overflow happens.
- #[inline]
- pub fn iadd(x: &mut Limb, y: Limb) -> bool {
- let t = add(*x, y);
- *x = t.0;
- t.1
- }
-
- // SUBTRACTION
-
- /// Subtract two small integers and return the resulting value and if overflow happens.
- #[inline]
- pub fn sub(x: Limb, y: Limb) -> (Limb, bool) {
- x.overflowing_sub(y)
- }
-
- /// SubAssign two small integers and return if overflow happens.
- #[inline]
- pub fn isub(x: &mut Limb, y: Limb) -> bool {
- let t = sub(*x, y);
- *x = t.0;
- t.1
- }
-
- // MULTIPLICATION
-
- /// Multiply two small integers (with carry) (and return the overflow contribution).
- ///
- /// Returns the (low, high) components.
- #[inline]
- pub fn mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) {
- // Cannot overflow, as long as wide is 2x as wide. This is because
- // the following is always true:
- // `Wide::max_value() - (Narrow::max_value() * Narrow::max_value()) >= Narrow::max_value()`
- let z: Wide = as_wide(x) * as_wide(y) + as_wide(carry);
- let bits = mem::size_of::<Limb>() * 8;
- (as_limb(z), as_limb(z >> bits))
- }
-
- /// Multiply two small integers (with carry) (and return if overflow happens).
- #[inline]
- pub fn imul(x: &mut Limb, y: Limb, carry: Limb) -> Limb {
- let t = mul(*x, y, carry);
- *x = t.0;
- t.1
- }
-} // scalar
-
-// SMALL
-// -----
-
-// Large-to-small operations, to modify a big integer from a native scalar.
-
-mod small {
- use super::*;
-
- // MULTIPLICATIION
-
- /// ADDITION
-
- /// Implied AddAssign implementation for adding a small integer to bigint.
- ///
- /// Allows us to choose a start-index in x to store, to allow incrementing
- /// from a non-zero start.
- #[inline]
- pub fn iadd_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) {
- if x.len() <= xstart {
- x.push(y);
- } else {
- // Initial add
- let mut carry = scalar::iadd(&mut x[xstart], y);
-
- // Increment until overflow stops occurring.
- let mut size = xstart + 1;
- while carry && size < x.len() {
- carry = scalar::iadd(&mut x[size], 1);
- size += 1;
- }
-
- // If we overflowed the buffer entirely, need to add 1 to the end
- // of the buffer.
- if carry {
- x.push(1);
- }
- }
- }
-
- /// AddAssign small integer to bigint.
- #[inline]
- pub fn iadd(x: &mut Vec<Limb>, y: Limb) {
- iadd_impl(x, y, 0);
- }
-
- // SUBTRACTION
-
- /// SubAssign small integer to bigint.
- /// Does not do overflowing subtraction.
- #[inline]
- pub fn isub_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) {
- debug_assert!(x.len() > xstart && (x[xstart] >= y || x.len() > xstart + 1));
-
- // Initial subtraction
- let mut carry = scalar::isub(&mut x[xstart], y);
-
- // Increment until overflow stops occurring.
- let mut size = xstart + 1;
- while carry && size < x.len() {
- carry = scalar::isub(&mut x[size], 1);
- size += 1;
- }
- normalize(x);
- }
-
- // MULTIPLICATION
-
- /// MulAssign small integer to bigint.
- #[inline]
- pub fn imul(x: &mut Vec<Limb>, y: Limb) {
- // Multiply iteratively over all elements, adding the carry each time.
- let mut carry: Limb = 0;
- for xi in &mut *x {
- carry = scalar::imul(xi, y, carry);
- }
-
- // Overflow of value, add to end.
- if carry != 0 {
- x.push(carry);
- }
- }
-
- /// Mul small integer to bigint.
- #[inline]
- pub fn mul(x: &[Limb], y: Limb) -> Vec<Limb> {
- let mut z = Vec::<Limb>::default();
- z.extend_from_slice(x);
- imul(&mut z, y);
- z
- }
-
- /// MulAssign by a power.
- ///
- /// Theoretically...
- ///
- /// Use an exponentiation by squaring method, since it reduces the time
- /// complexity of the multiplication to ~`O(log(n))` for the squaring,
- /// and `O(n*m)` for the result. Since `m` is typically a lower-order
- /// factor, this significantly reduces the number of multiplications
- /// we need to do. Iteratively multiplying by small powers follows
- /// the nth triangular number series, which scales as `O(p^2)`, but
- /// where `p` is `n+m`. In short, it scales very poorly.
- ///
- /// Practically....
- ///
- /// Exponentiation by Squaring:
- /// running 2 tests
- /// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78)
- /// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007)
- ///
- /// Exponentiation by Iterative Small Powers:
- /// running 2 tests
- /// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31)
- /// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47)
- ///
- /// Exponentiation by Iterative Large Powers (of 2):
- /// running 2 tests
- /// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31)
- /// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47)
- ///
- /// Even using worst-case scenarios, exponentiation by squaring is
- /// significantly slower for our workloads. Just multiply by small powers,
- /// in simple cases, and use precalculated large powers in other cases.
- pub fn imul_pow5(x: &mut Vec<Limb>, n: u32) {
- use super::large::KARATSUBA_CUTOFF;
-
- let small_powers = POW5_LIMB;
- let large_powers = large_powers::POW5;
-
- if n == 0 {
- // No exponent, just return.
- // The 0-index of the large powers is `2^0`, which is 1, so we want
- // to make sure we don't take that path with a literal 0.
- return;
- }
-
- // We want to use the asymptotically faster algorithm if we're going
- // to be using Karabatsu multiplication sometime during the result,
- // otherwise, just use exponentiation by squaring.
- let bit_length = 32 - n.leading_zeros() as usize;
- debug_assert!(bit_length != 0 && bit_length <= large_powers.len());
- if x.len() + large_powers[bit_length - 1].len() < 2 * KARATSUBA_CUTOFF {
- // We can use iterative small powers to make this faster for the
- // easy cases.
-
- // Multiply by the largest small power until n < step.
- let step = small_powers.len() - 1;
- let power = small_powers[step];
- let mut n = n as usize;
- while n >= step {
- imul(x, power);
- n -= step;
- }
-
- // Multiply by the remainder.
- imul(x, small_powers[n]);
- } else {
- // In theory, this code should be asymptotically a lot faster,
- // in practice, our small::imul seems to be the limiting step,
- // and large imul is slow as well.
-
- // Multiply by higher order powers.
- let mut idx: usize = 0;
- let mut bit: usize = 1;
- let mut n = n as usize;
- while n != 0 {
- if n & bit != 0 {
- debug_assert!(idx < large_powers.len());
- large::imul(x, large_powers[idx]);
- n ^= bit;
- }
- idx += 1;
- bit <<= 1;
- }
- }
- }
-
- // BIT LENGTH
-
- /// Get number of leading zero bits in the storage.
- #[inline]
- pub fn leading_zeros(x: &[Limb]) -> usize {
- x.last().map_or(0, |x| x.leading_zeros() as usize)
- }
-
- /// Calculate the bit-length of the big-integer.
- #[inline]
- pub fn bit_length(x: &[Limb]) -> usize {
- let bits = mem::size_of::<Limb>() * 8;
- // Avoid overflowing, calculate via total number of bits
- // minus leading zero bits.
- let nlz = leading_zeros(x);
- bits.checked_mul(x.len())
- .map_or_else(usize::max_value, |v| v - nlz)
- }
-
- // SHL
-
- /// Shift-left bits inside a buffer.
- ///
- /// Assumes `n < Limb::BITS`, IE, internally shifting bits.
- #[inline]
- pub fn ishl_bits(x: &mut Vec<Limb>, n: usize) {
- // Need to shift by the number of `bits % Limb::BITS)`.
- let bits = mem::size_of::<Limb>() * 8;
- debug_assert!(n < bits);
- if n == 0 {
- return;
- }
-
- // Internally, for each item, we shift left by n, and add the previous
- // right shifted limb-bits.
- // For example, we transform (for u8) shifted left 2, to:
- // b10100100 b01000010
- // b10 b10010001 b00001000
- let rshift = bits - n;
- let lshift = n;
- let mut prev: Limb = 0;
- for xi in &mut *x {
- let tmp = *xi;
- *xi <<= lshift;
- *xi |= prev >> rshift;
- prev = tmp;
- }
-
- // Always push the carry, even if it creates a non-normal result.
- let carry = prev >> rshift;
- if carry != 0 {
- x.push(carry);
- }
- }
-
- /// Shift-left `n` digits inside a buffer.
- ///
- /// Assumes `n` is not 0.
- #[inline]
- pub fn ishl_limbs(x: &mut Vec<Limb>, n: usize) {
- debug_assert!(n != 0);
- if !x.is_empty() {
- x.reserve(n);
- x.splice(..0, iter::repeat(0).take(n));
- }
- }
-
- /// Shift-left buffer by n bits.
- #[inline]
- pub fn ishl(x: &mut Vec<Limb>, n: usize) {
- let bits = mem::size_of::<Limb>() * 8;
- // Need to pad with zeros for the number of `bits / Limb::BITS`,
- // and shift-left with carry for `bits % Limb::BITS`.
- let rem = n % bits;
- let div = n / bits;
- ishl_bits(x, rem);
- if div != 0 {
- ishl_limbs(x, div);
- }
- }
-
- // NORMALIZE
-
- /// Normalize the container by popping any leading zeros.
- #[inline]
- pub fn normalize(x: &mut Vec<Limb>) {
- // Remove leading zero if we cause underflow. Since we're dividing
- // by a small power, we have at max 1 int removed.
- while x.last() == Some(&0) {
- x.pop();
- }
- }
-} // small
-
-// LARGE
-// -----
-
-// Large-to-large operations, to modify a big integer from a native scalar.
-
-mod large {
- use super::*;
-
- // RELATIVE OPERATORS
-
- /// Compare `x` to `y`, in little-endian order.
- #[inline]
- pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering {
- if x.len() > y.len() {
- cmp::Ordering::Greater
- } else if x.len() < y.len() {
- cmp::Ordering::Less
- } else {
- let iter = x.iter().rev().zip(y.iter().rev());
- for (&xi, &yi) in iter {
- if xi > yi {
- return cmp::Ordering::Greater;
- } else if xi < yi {
- return cmp::Ordering::Less;
- }
- }
- // Equal case.
- cmp::Ordering::Equal
- }
- }
-
- /// Check if x is less than y.
- #[inline]
- pub fn less(x: &[Limb], y: &[Limb]) -> bool {
- compare(x, y) == cmp::Ordering::Less
- }
-
- /// Check if x is greater than or equal to y.
- #[inline]
- pub fn greater_equal(x: &[Limb], y: &[Limb]) -> bool {
- !less(x, y)
- }
-
- // ADDITION
-
- /// Implied AddAssign implementation for bigints.
- ///
- /// Allows us to choose a start-index in x to store, so we can avoid
- /// padding the buffer with zeros when not needed, optimized for vectors.
- pub fn iadd_impl(x: &mut Vec<Limb>, y: &[Limb], xstart: usize) {
- // The effective x buffer is from `xstart..x.len()`, so we need to treat
- // that as the current range. If the effective y buffer is longer, need
- // to resize to that, + the start index.
- if y.len() > x.len() - xstart {
- x.resize(y.len() + xstart, 0);
- }
-
- // Iteratively add elements from y to x.
- let mut carry = false;
- for (xi, yi) in x[xstart..].iter_mut().zip(y.iter()) {
- // Only one op of the two can overflow, since we added at max
- // Limb::max_value() + Limb::max_value(). Add the previous carry,
- // and store the current carry for the next.
- let mut tmp = scalar::iadd(xi, *yi);
- if carry {
- tmp |= scalar::iadd(xi, 1);
- }
- carry = tmp;
- }
-
- // Overflow from the previous bit.
- if carry {
- small::iadd_impl(x, 1, y.len() + xstart);
- }
- }
-
- /// AddAssign bigint to bigint.
- #[inline]
- pub fn iadd(x: &mut Vec<Limb>, y: &[Limb]) {
- iadd_impl(x, y, 0);
- }
-
- /// Add bigint to bigint.
- #[inline]
- pub fn add(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
- let mut z = Vec::<Limb>::default();
- z.extend_from_slice(x);
- iadd(&mut z, y);
- z
- }
-
- // SUBTRACTION
-
- /// SubAssign bigint to bigint.
- pub fn isub(x: &mut Vec<Limb>, y: &[Limb]) {
- // Basic underflow checks.
- debug_assert!(greater_equal(x, y));
-
- // Iteratively add elements from y to x.
- let mut carry = false;
- for (xi, yi) in x.iter_mut().zip(y.iter()) {
- // Only one op of the two can overflow, since we added at max
- // Limb::max_value() + Limb::max_value(). Add the previous carry,
- // and store the current carry for the next.
- let mut tmp = scalar::isub(xi, *yi);
- if carry {
- tmp |= scalar::isub(xi, 1);
- }
- carry = tmp;
- }
-
- if carry {
- small::isub_impl(x, 1, y.len());
- } else {
- small::normalize(x);
- }
- }
-
- // MULTIPLICATION
-
- /// Number of digits to bottom-out to asymptotically slow algorithms.
- ///
- /// Karatsuba tends to out-perform long-multiplication at ~320-640 bits,
- /// so we go halfway, while Newton division tends to out-perform
- /// Algorithm D at ~1024 bits. We can toggle this for optimal performance.
- pub const KARATSUBA_CUTOFF: usize = 32;
-
- /// Grade-school multiplication algorithm.
- ///
- /// Slow, naive algorithm, using limb-bit bases and just shifting left for
- /// each iteration. This could be optimized with numerous other algorithms,
- /// but it's extremely simple, and works in O(n*m) time, which is fine
- /// by me. Each iteration, of which there are `m` iterations, requires
- /// `n` multiplications, and `n` additions, or grade-school multiplication.
- fn long_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
- // Using the immutable value, multiply by all the scalars in y, using
- // the algorithm defined above. Use a single buffer to avoid
- // frequent reallocations. Handle the first case to avoid a redundant
- // addition, since we know y.len() >= 1.
- let mut z: Vec<Limb> = small::mul(x, y[0]);
- z.resize(x.len() + y.len(), 0);
-
- // Handle the iterative cases.
- for (i, &yi) in y[1..].iter().enumerate() {
- let zi: Vec<Limb> = small::mul(x, yi);
- iadd_impl(&mut z, &zi, i + 1);
- }
-
- small::normalize(&mut z);
-
- z
- }
-
- /// Split two buffers into halfway, into (lo, hi).
- #[inline]
- pub fn karatsuba_split(z: &[Limb], m: usize) -> (&[Limb], &[Limb]) {
- (&z[..m], &z[m..])
- }
-
- /// Karatsuba multiplication algorithm with roughly equal input sizes.
- ///
- /// Assumes `y.len() >= x.len()`.
- fn karatsuba_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
- if y.len() <= KARATSUBA_CUTOFF {
- // Bottom-out to long division for small cases.
- long_mul(x, y)
- } else if x.len() < y.len() / 2 {
- karatsuba_uneven_mul(x, y)
- } else {
- // Do our 3 multiplications.
- let m = y.len() / 2;
- let (xl, xh) = karatsuba_split(x, m);
- let (yl, yh) = karatsuba_split(y, m);
- let sumx = add(xl, xh);
- let sumy = add(yl, yh);
- let z0 = karatsuba_mul(xl, yl);
- let mut z1 = karatsuba_mul(&sumx, &sumy);
- let z2 = karatsuba_mul(xh, yh);
- // Properly scale z1, which is `z1 - z2 - zo`.
- isub(&mut z1, &z2);
- isub(&mut z1, &z0);
-
- // Create our result, which is equal to, in little-endian order:
- // [z0, z1 - z2 - z0, z2]
- // z1 must be shifted m digits (2^(32m)) over.
- // z2 must be shifted 2*m digits (2^(64m)) over.
- let len = z0.len().max(m + z1.len()).max(2 * m + z2.len());
- let mut result = z0;
- result.reserve_exact(len - result.len());
- iadd_impl(&mut result, &z1, m);
- iadd_impl(&mut result, &z2, 2 * m);
-
- result
- }
- }
-
- /// Karatsuba multiplication algorithm where y is substantially larger than x.
- ///
- /// Assumes `y.len() >= x.len()`.
- fn karatsuba_uneven_mul(x: &[Limb], mut y: &[Limb]) -> Vec<Limb> {
- let mut result = Vec::<Limb>::default();
- result.resize(x.len() + y.len(), 0);
-
- // This effectively is like grade-school multiplication between
- // two numbers, except we're using splits on `y`, and the intermediate
- // step is a Karatsuba multiplication.
- let mut start = 0;
- while !y.is_empty() {
- let m = x.len().min(y.len());
- let (yl, yh) = karatsuba_split(y, m);
- let prod = karatsuba_mul(x, yl);
- iadd_impl(&mut result, &prod, start);
- y = yh;
- start += m;
- }
- small::normalize(&mut result);
-
- result
- }
-
- /// Forwarder to the proper Karatsuba algorithm.
- #[inline]
- fn karatsuba_mul_fwd(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
- if x.len() < y.len() {
- karatsuba_mul(x, y)
- } else {
- karatsuba_mul(y, x)
- }
- }
-
- /// MulAssign bigint to bigint.
- #[inline]
- pub fn imul(x: &mut Vec<Limb>, y: &[Limb]) {
- if y.len() == 1 {
- small::imul(x, y[0]);
- } else {
- // We're not really in a condition where using Karatsuba
- // multiplication makes sense, so we're just going to use long
- // division. ~20% speedup compared to:
- // *x = karatsuba_mul_fwd(x, y);
- *x = karatsuba_mul_fwd(x, y);
- }
- }
-} // large
-
-// TRAITS
-// ------
-
-/// Traits for shared operations for big integers.
-///
-/// None of these are implemented using normal traits, since these
-/// are very expensive operations, and we want to deliberately
-/// and explicitly use these functions.
-pub(crate) trait Math: Clone + Sized + Default {
- // DATA
-
- /// Get access to the underlying data
- fn data(&self) -> &Vec<Limb>;
-
- /// Get access to the underlying data
- fn data_mut(&mut self) -> &mut Vec<Limb>;
-
- // RELATIVE OPERATIONS
-
- /// Compare self to y.
- #[inline]
- fn compare(&self, y: &Self) -> cmp::Ordering {
- large::compare(self.data(), y.data())
- }
-
- // PROPERTIES
-
- /// Get the high 64-bits from the bigint and if there are remaining bits.
- #[inline]
- fn hi64(&self) -> (u64, bool) {
- self.data().as_slice().hi64()
- }
-
- /// Calculate the bit-length of the big-integer.
- /// Returns usize::max_value() if the value overflows,
- /// IE, if `self.data().len() > usize::max_value() / 8`.
- #[inline]
- fn bit_length(&self) -> usize {
- small::bit_length(self.data())
- }
-
- // INTEGER CONVERSIONS
-
- /// Create new big integer from u64.
- #[inline]
- fn from_u64(x: u64) -> Self {
- let mut v = Self::default();
- let slc = split_u64(x);
- v.data_mut().extend_from_slice(&slc);
- v.normalize();
- v
- }
-
- // NORMALIZE
-
- /// Normalize the integer, so any leading zero values are removed.
- #[inline]
- fn normalize(&mut self) {
- small::normalize(self.data_mut());
- }
-
- // ADDITION
-
- /// AddAssign small integer.
- #[inline]
- fn iadd_small(&mut self, y: Limb) {
- small::iadd(self.data_mut(), y);
- }
-
- // MULTIPLICATION
-
- /// MulAssign small integer.
- #[inline]
- fn imul_small(&mut self, y: Limb) {
- small::imul(self.data_mut(), y);
- }
-
- /// Multiply by a power of 2.
- #[inline]
- fn imul_pow2(&mut self, n: u32) {
- self.ishl(n as usize);
- }
-
- /// Multiply by a power of 5.
- #[inline]
- fn imul_pow5(&mut self, n: u32) {
- small::imul_pow5(self.data_mut(), n);
- }
-
- /// MulAssign by a power of 10.
- #[inline]
- fn imul_pow10(&mut self, n: u32) {
- self.imul_pow5(n);
- self.imul_pow2(n);
- }
-
- // SHIFTS
-
- /// Shift-left the entire buffer n bits.
- #[inline]
- fn ishl(&mut self, n: usize) {
- small::ishl(self.data_mut(), n);
- }
-}