diff options
Diffstat (limited to 'vendor/serde_json/src/lexical')
19 files changed, 3729 insertions, 0 deletions
diff --git a/vendor/serde_json/src/lexical/algorithm.rs b/vendor/serde_json/src/lexical/algorithm.rs new file mode 100644 index 0000000..eaa5e7e --- /dev/null +++ b/vendor/serde_json/src/lexical/algorithm.rs @@ -0,0 +1,196 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Algorithms to efficiently convert strings to floats. + +use super::bhcomp::*; +use super::cached::*; +use super::errors::*; +use super::float::ExtendedFloat; +use super::num::*; +use super::small_powers::*; + +// FAST +// ---- + +/// Convert mantissa to exact value for a non-base2 power. +/// +/// Returns the resulting float and if the value can be represented exactly. +pub(crate) fn fast_path<F>(mantissa: u64, exponent: i32) -> Option<F> +where + F: Float, +{ + // `mantissa >> (F::MANTISSA_SIZE+1) != 0` effectively checks if the + // value has a no bits above the hidden bit, which is what we want. + let (min_exp, max_exp) = F::exponent_limit(); + let shift_exp = F::mantissa_limit(); + let mantissa_size = F::MANTISSA_SIZE + 1; + if mantissa == 0 { + Some(F::ZERO) + } else if mantissa >> mantissa_size != 0 { + // Would require truncation of the mantissa. + None + } else if exponent == 0 { + // 0 exponent, same as value, exact representation. + let float = F::as_cast(mantissa); + Some(float) + } else if exponent >= min_exp && exponent <= max_exp { + // Value can be exactly represented, return the value. + // Do not use powi, since powi can incrementally introduce + // error. + let float = F::as_cast(mantissa); + Some(float.pow10(exponent)) + } else if exponent >= 0 && exponent <= max_exp + shift_exp { + // Check to see if we have a disguised fast-path, where the + // number of digits in the mantissa is very small, but and + // so digits can be shifted from the exponent to the mantissa. + // https://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ + let small_powers = POW10_64; + let shift = exponent - max_exp; + let power = small_powers[shift as usize]; + + // Compute the product of the power, if it overflows, + // prematurely return early, otherwise, if we didn't overshoot, + // we can get an exact value. + let value = match mantissa.checked_mul(power) { + None => return None, + Some(value) => value, + }; + if value >> mantissa_size != 0 { + None + } else { + // Use powi, since it's correct, and faster on + // the fast-path. + let float = F::as_cast(value); + Some(float.pow10(max_exp)) + } + } else { + // Cannot be exactly represented, exponent too small or too big, + // would require truncation. + None + } +} + +// MODERATE +// -------- + +/// Multiply the floating-point by the exponent. +/// +/// Multiply by pre-calculated powers of the base, modify the extended- +/// float, and return if new value and if the value can be represented +/// accurately. +fn multiply_exponent_extended<F>(fp: &mut ExtendedFloat, exponent: i32, truncated: bool) -> bool +where + F: Float, +{ + let powers = ExtendedFloat::get_powers(); + let exponent = exponent.saturating_add(powers.bias); + let small_index = exponent % powers.step; + let large_index = exponent / powers.step; + if exponent < 0 { + // Guaranteed underflow (assign 0). + fp.mant = 0; + true + } else if large_index as usize >= powers.large.len() { + // Overflow (assign infinity) + fp.mant = 1 << 63; + fp.exp = 0x7FF; + true + } else { + // Within the valid exponent range, multiply by the large and small + // exponents and return the resulting value. + + // Track errors to as a factor of unit in last-precision. + let mut errors: u32 = 0; + if truncated { + errors += u64::error_halfscale(); + } + + // Multiply by the small power. + // Check if we can directly multiply by an integer, if not, + // use extended-precision multiplication. + match fp + .mant + .overflowing_mul(powers.get_small_int(small_index as usize)) + { + // Overflow, multiplication unsuccessful, go slow path. + (_, true) => { + fp.normalize(); + fp.imul(&powers.get_small(small_index as usize)); + errors += u64::error_halfscale(); + } + // No overflow, multiplication successful. + (mant, false) => { + fp.mant = mant; + fp.normalize(); + } + } + + // Multiply by the large power + fp.imul(&powers.get_large(large_index as usize)); + if errors > 0 { + errors += 1; + } + errors += u64::error_halfscale(); + + // Normalize the floating point (and the errors). + let shift = fp.normalize(); + errors <<= shift; + + u64::error_is_accurate::<F>(errors, fp) + } +} + +/// Create a precise native float using an intermediate extended-precision float. +/// +/// Return the float approximation and if the value can be accurately +/// represented with mantissa bits of precision. +#[inline] +pub(crate) fn moderate_path<F>( + mantissa: u64, + exponent: i32, + truncated: bool, +) -> (ExtendedFloat, bool) +where + F: Float, +{ + let mut fp = ExtendedFloat { + mant: mantissa, + exp: 0, + }; + let valid = multiply_exponent_extended::<F>(&mut fp, exponent, truncated); + (fp, valid) +} + +// FALLBACK +// -------- + +/// Fallback path when the fast path does not work. +/// +/// Uses the moderate path, if applicable, otherwise, uses the slow path +/// as required. +pub(crate) fn fallback_path<F>( + integer: &[u8], + fraction: &[u8], + mantissa: u64, + exponent: i32, + mantissa_exponent: i32, + truncated: bool, +) -> F +where + F: Float, +{ + // Moderate path (use an extended 80-bit representation). + let (fp, valid) = moderate_path::<F>(mantissa, mantissa_exponent, truncated); + if valid { + return fp.into_float::<F>(); + } + + // Slow path, fast path didn't work. + let b = fp.into_downward_float::<F>(); + if b.is_special() { + // We have a non-finite number, we get to leave early. + b + } else { + bhcomp(b, integer, fraction, exponent) + } +} diff --git a/vendor/serde_json/src/lexical/bhcomp.rs b/vendor/serde_json/src/lexical/bhcomp.rs new file mode 100644 index 0000000..1f2a7bb --- /dev/null +++ b/vendor/serde_json/src/lexical/bhcomp.rs @@ -0,0 +1,218 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Compare the mantissa to the halfway representation of the float. +//! +//! Compares the actual significant digits of the mantissa to the +//! theoretical digits from `b+h`, scaled into the proper range. + +use super::bignum::*; +use super::digit::*; +use super::exponent::*; +use super::float::*; +use super::math::*; +use super::num::*; +use super::rounding::*; +use core::{cmp, mem}; + +// MANTISSA + +/// Parse the full mantissa into a big integer. +/// +/// Max digits is the maximum number of digits plus one. +fn parse_mantissa<F>(integer: &[u8], fraction: &[u8]) -> Bigint +where + F: Float, +{ + // Main loop + let small_powers = POW10_LIMB; + let step = small_powers.len() - 2; + let max_digits = F::MAX_DIGITS - 1; + let mut counter = 0; + let mut value: Limb = 0; + let mut i: usize = 0; + let mut result = Bigint::default(); + + // Iteratively process all the data in the mantissa. + for &digit in integer.iter().chain(fraction) { + // We've parsed the max digits using small values, add to bignum + if counter == step { + result.imul_small(small_powers[counter]); + result.iadd_small(value); + counter = 0; + value = 0; + } + + value *= 10; + value += as_limb(to_digit(digit).unwrap()); + + i += 1; + counter += 1; + if i == max_digits { + break; + } + } + + // We will always have a remainder, as long as we entered the loop + // once, or counter % step is 0. + if counter != 0 { + result.imul_small(small_powers[counter]); + result.iadd_small(value); + } + + // If we have any remaining digits after the last value, we need + // to add a 1 after the rest of the array, it doesn't matter where, + // just move it up. This is good for the worst-possible float + // representation. We also need to return an index. + // Since we already trimmed trailing zeros, we know there has + // to be a non-zero digit if there are any left. + if i < integer.len() + fraction.len() { + result.imul_small(10); + result.iadd_small(1); + } + + result +} + +// FLOAT OPS + +/// Calculate `b` from a a representation of `b` as a float. +#[inline] +pub(super) fn b_extended<F: Float>(f: F) -> ExtendedFloat { + ExtendedFloat::from_float(f) +} + +/// Calculate `b+h` from a a representation of `b` as a float. +#[inline] +pub(super) fn bh_extended<F: Float>(f: F) -> ExtendedFloat { + // None of these can overflow. + let b = b_extended(f); + ExtendedFloat { + mant: (b.mant << 1) + 1, + exp: b.exp - 1, + } +} + +// ROUNDING + +/// Custom round-nearest, tie-event algorithm for bhcomp. +#[inline] +fn round_nearest_tie_even(fp: &mut ExtendedFloat, shift: i32, is_truncated: bool) { + let (mut is_above, mut is_halfway) = round_nearest(fp, shift); + if is_halfway && is_truncated { + is_above = true; + is_halfway = false; + } + tie_even(fp, is_above, is_halfway); +} + +// BHCOMP + +/// Calculate the mantissa for a big integer with a positive exponent. +fn large_atof<F>(mantissa: Bigint, exponent: i32) -> F +where + F: Float, +{ + let bits = mem::size_of::<u64>() * 8; + + // Simple, we just need to multiply by the power of the radix. + // Now, we can calculate the mantissa and the exponent from this. + // The binary exponent is the binary exponent for the mantissa + // shifted to the hidden bit. + let mut bigmant = mantissa; + bigmant.imul_pow10(exponent as u32); + + // Get the exact representation of the float from the big integer. + let (mant, is_truncated) = bigmant.hi64(); + let exp = bigmant.bit_length() as i32 - bits as i32; + let mut fp = ExtendedFloat { mant, exp }; + fp.round_to_native::<F, _>(|fp, shift| round_nearest_tie_even(fp, shift, is_truncated)); + into_float(fp) +} + +/// Calculate the mantissa for a big integer with a negative exponent. +/// +/// This invokes the comparison with `b+h`. +fn small_atof<F>(mantissa: Bigint, exponent: i32, f: F) -> F +where + F: Float, +{ + // Get the significant digits and radix exponent for the real digits. + let mut real_digits = mantissa; + let real_exp = exponent; + debug_assert!(real_exp < 0); + + // Get the significant digits and the binary exponent for `b+h`. + let theor = bh_extended(f); + let mut theor_digits = Bigint::from_u64(theor.mant); + let theor_exp = theor.exp; + + // We need to scale the real digits and `b+h` digits to be the same + // order. We currently have `real_exp`, in `radix`, that needs to be + // shifted to `theor_digits` (since it is negative), and `theor_exp` + // to either `theor_digits` or `real_digits` as a power of 2 (since it + // may be positive or negative). Try to remove as many powers of 2 + // as possible. All values are relative to `theor_digits`, that is, + // reflect the power you need to multiply `theor_digits` by. + + // Can remove a power-of-two, since the radix is 10. + // Both are on opposite-sides of equation, can factor out a + // power of two. + // + // Example: 10^-10, 2^-10 -> ( 0, 10, 0) + // Example: 10^-10, 2^-15 -> (-5, 10, 0) + // Example: 10^-10, 2^-5 -> ( 5, 10, 0) + // Example: 10^-10, 2^5 -> (15, 10, 0) + let binary_exp = theor_exp - real_exp; + let halfradix_exp = -real_exp; + let radix_exp = 0; + + // Carry out our multiplication. + if halfradix_exp != 0 { + theor_digits.imul_pow5(halfradix_exp as u32); + } + if radix_exp != 0 { + theor_digits.imul_pow10(radix_exp as u32); + } + if binary_exp > 0 { + theor_digits.imul_pow2(binary_exp as u32); + } else if binary_exp < 0 { + real_digits.imul_pow2(-binary_exp as u32); + } + + // Compare real digits to theoretical digits and round the float. + match real_digits.compare(&theor_digits) { + cmp::Ordering::Greater => f.next_positive(), + cmp::Ordering::Less => f, + cmp::Ordering::Equal => f.round_positive_even(), + } +} + +/// Calculate the exact value of the float. +/// +/// Note: fraction must not have trailing zeros. +pub(crate) fn bhcomp<F>(b: F, integer: &[u8], mut fraction: &[u8], exponent: i32) -> F +where + F: Float, +{ + // Calculate the number of integer digits and use that to determine + // where the significant digits start in the fraction. + let integer_digits = integer.len(); + let fraction_digits = fraction.len(); + let digits_start = if integer_digits == 0 { + let start = fraction.iter().take_while(|&x| *x == b'0').count(); + fraction = &fraction[start..]; + start + } else { + 0 + }; + let sci_exp = scientific_exponent(exponent, integer_digits, digits_start); + let count = F::MAX_DIGITS.min(integer_digits + fraction_digits - digits_start); + let scaled_exponent = sci_exp + 1 - count as i32; + + let mantissa = parse_mantissa::<F>(integer, fraction); + if scaled_exponent >= 0 { + large_atof(mantissa, scaled_exponent) + } else { + small_atof(mantissa, scaled_exponent, b) + } +} diff --git a/vendor/serde_json/src/lexical/bignum.rs b/vendor/serde_json/src/lexical/bignum.rs new file mode 100644 index 0000000..f9551f5 --- /dev/null +++ b/vendor/serde_json/src/lexical/bignum.rs @@ -0,0 +1,33 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Big integer type definition. + +use super::math::*; +use alloc::vec::Vec; + +/// Storage for a big integer type. +#[derive(Clone, PartialEq, Eq)] +pub(crate) struct Bigint { + /// Internal storage for the Bigint, in little-endian order. + pub(crate) data: Vec<Limb>, +} + +impl Default for Bigint { + fn default() -> Self { + Bigint { + data: Vec::with_capacity(20), + } + } +} + +impl Math for Bigint { + #[inline] + fn data(&self) -> &Vec<Limb> { + &self.data + } + + #[inline] + fn data_mut(&mut self) -> &mut Vec<Limb> { + &mut self.data + } +} diff --git a/vendor/serde_json/src/lexical/cached.rs b/vendor/serde_json/src/lexical/cached.rs new file mode 100644 index 0000000..ef5a9fe --- /dev/null +++ b/vendor/serde_json/src/lexical/cached.rs @@ -0,0 +1,82 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Cached powers trait for extended-precision floats. + +use super::cached_float80; +use super::float::ExtendedFloat; + +// POWERS + +/// Precalculated powers that uses two-separate arrays for memory-efficiency. +#[doc(hidden)] +pub(crate) struct ExtendedFloatArray { + // Pre-calculated mantissa for the powers. + pub mant: &'static [u64], + // Pre-calculated binary exponents for the powers. + pub exp: &'static [i32], +} + +/// Allow indexing of values without bounds checking +impl ExtendedFloatArray { + #[inline] + pub fn get_extended_float(&self, index: usize) -> ExtendedFloat { + let mant = self.mant[index]; + let exp = self.exp[index]; + ExtendedFloat { mant, exp } + } + + #[inline] + pub fn len(&self) -> usize { + self.mant.len() + } +} + +// MODERATE PATH POWERS + +/// Precalculated powers of base N for the moderate path. +#[doc(hidden)] +pub(crate) struct ModeratePathPowers { + // Pre-calculated small powers. + pub small: ExtendedFloatArray, + // Pre-calculated large powers. + pub large: ExtendedFloatArray, + /// Pre-calculated small powers as 64-bit integers + pub small_int: &'static [u64], + // Step between large powers and number of small powers. + pub step: i32, + // Exponent bias for the large powers. + pub bias: i32, +} + +/// Allow indexing of values without bounds checking +impl ModeratePathPowers { + #[inline] + pub fn get_small(&self, index: usize) -> ExtendedFloat { + self.small.get_extended_float(index) + } + + #[inline] + pub fn get_large(&self, index: usize) -> ExtendedFloat { + self.large.get_extended_float(index) + } + + #[inline] + pub fn get_small_int(&self, index: usize) -> u64 { + self.small_int[index] + } +} + +// CACHED EXTENDED POWERS + +/// Cached powers as a trait for a floating-point type. +pub(crate) trait ModeratePathCache { + /// Get cached powers. + fn get_powers() -> &'static ModeratePathPowers; +} + +impl ModeratePathCache for ExtendedFloat { + #[inline] + fn get_powers() -> &'static ModeratePathPowers { + cached_float80::get_powers() + } +} diff --git a/vendor/serde_json/src/lexical/cached_float80.rs b/vendor/serde_json/src/lexical/cached_float80.rs new file mode 100644 index 0000000..9beda3d --- /dev/null +++ b/vendor/serde_json/src/lexical/cached_float80.rs @@ -0,0 +1,206 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Cached exponents for basen values with 80-bit extended floats. +//! +//! Exact versions of base**n as an extended-precision float, with both +//! large and small powers. Use the large powers to minimize the amount +//! of compounded error. +//! +//! These values were calculated using Python, using the arbitrary-precision +//! integer to calculate exact extended-representation of each value. +//! These values are all normalized. + +use super::cached::{ExtendedFloatArray, ModeratePathPowers}; + +// LOW-LEVEL +// --------- + +// BASE10 + +const BASE10_SMALL_MANTISSA: [u64; 10] = [ + 9223372036854775808, // 10^0 + 11529215046068469760, // 10^1 + 14411518807585587200, // 10^2 + 18014398509481984000, // 10^3 + 11258999068426240000, // 10^4 + 14073748835532800000, // 10^5 + 17592186044416000000, // 10^6 + 10995116277760000000, // 10^7 + 13743895347200000000, // 10^8 + 17179869184000000000, // 10^9 +]; +const BASE10_SMALL_EXPONENT: [i32; 10] = [ + -63, // 10^0 + -60, // 10^1 + -57, // 10^2 + -54, // 10^3 + -50, // 10^4 + -47, // 10^5 + -44, // 10^6 + -40, // 10^7 + -37, // 10^8 + -34, // 10^9 +]; +const BASE10_LARGE_MANTISSA: [u64; 66] = [ + 11555125961253852697, // 10^-350 + 13451937075301367670, // 10^-340 + 15660115838168849784, // 10^-330 + 18230774251475056848, // 10^-320 + 10611707258198326947, // 10^-310 + 12353653155963782858, // 10^-300 + 14381545078898527261, // 10^-290 + 16742321987285426889, // 10^-280 + 9745314011399999080, // 10^-270 + 11345038669416679861, // 10^-260 + 13207363278391631158, // 10^-250 + 15375394465392026070, // 10^-240 + 17899314949046850752, // 10^-230 + 10418772551374772303, // 10^-220 + 12129047596099288555, // 10^-210 + 14120069793541087484, // 10^-200 + 16437924692338667210, // 10^-190 + 9568131466127621947, // 10^-180 + 11138771039116687545, // 10^-170 + 12967236152753102995, // 10^-160 + 15095849699286165408, // 10^-150 + 17573882009934360870, // 10^-140 + 10229345649675443343, // 10^-130 + 11908525658859223294, // 10^-120 + 13863348470604074297, // 10^-110 + 16139061738043178685, // 10^-100 + 9394170331095332911, // 10^-90 + 10936253623915059621, // 10^-80 + 12731474852090538039, // 10^-70 + 14821387422376473014, // 10^-60 + 17254365866976409468, // 10^-50 + 10043362776618689222, // 10^-40 + 11692013098647223345, // 10^-30 + 13611294676837538538, // 10^-20 + 15845632502852867518, // 10^-10 + 9223372036854775808, // 10^0 + 10737418240000000000, // 10^10 + 12500000000000000000, // 10^20 + 14551915228366851806, // 10^30 + 16940658945086006781, // 10^40 + 9860761315262647567, // 10^50 + 11479437019748901445, // 10^60 + 13363823550460978230, // 10^70 + 15557538194652854267, // 10^80 + 18111358157653424735, // 10^90 + 10542197943230523224, // 10^100 + 12272733663244316382, // 10^110 + 14287342391028437277, // 10^120 + 16632655625031838749, // 10^130 + 9681479787123295682, // 10^140 + 11270725851789228247, // 10^150 + 13120851772591970218, // 10^160 + 15274681817498023410, // 10^170 + 17782069995880619867, // 10^180 + 10350527006597618960, // 10^190 + 12049599325514420588, // 10^200 + 14027579833653779454, // 10^210 + 16330252207878254650, // 10^220 + 9505457831475799117, // 10^230 + 11065809325636130661, // 10^240 + 12882297539194266616, // 10^250 + 14996968138956309548, // 10^260 + 17458768723248864463, // 10^270 + 10162340898095201970, // 10^280 + 11830521861667747109, // 10^290 + 13772540099066387756, // 10^300 +]; +const BASE10_LARGE_EXPONENT: [i32; 66] = [ + -1226, // 10^-350 + -1193, // 10^-340 + -1160, // 10^-330 + -1127, // 10^-320 + -1093, // 10^-310 + -1060, // 10^-300 + -1027, // 10^-290 + -994, // 10^-280 + -960, // 10^-270 + -927, // 10^-260 + -894, // 10^-250 + -861, // 10^-240 + -828, // 10^-230 + -794, // 10^-220 + -761, // 10^-210 + -728, // 10^-200 + -695, // 10^-190 + -661, // 10^-180 + -628, // 10^-170 + -595, // 10^-160 + -562, // 10^-150 + -529, // 10^-140 + -495, // 10^-130 + -462, // 10^-120 + -429, // 10^-110 + -396, // 10^-100 + -362, // 10^-90 + -329, // 10^-80 + -296, // 10^-70 + -263, // 10^-60 + -230, // 10^-50 + -196, // 10^-40 + -163, // 10^-30 + -130, // 10^-20 + -97, // 10^-10 + -63, // 10^0 + -30, // 10^10 + 3, // 10^20 + 36, // 10^30 + 69, // 10^40 + 103, // 10^50 + 136, // 10^60 + 169, // 10^70 + 202, // 10^80 + 235, // 10^90 + 269, // 10^100 + 302, // 10^110 + 335, // 10^120 + 368, // 10^130 + 402, // 10^140 + 435, // 10^150 + 468, // 10^160 + 501, // 10^170 + 534, // 10^180 + 568, // 10^190 + 601, // 10^200 + 634, // 10^210 + 667, // 10^220 + 701, // 10^230 + 734, // 10^240 + 767, // 10^250 + 800, // 10^260 + 833, // 10^270 + 867, // 10^280 + 900, // 10^290 + 933, // 10^300 +]; +const BASE10_SMALL_INT_POWERS: [u64; 10] = [ + 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, +]; +const BASE10_STEP: i32 = 10; +const BASE10_BIAS: i32 = 350; + +// HIGH LEVEL +// ---------- + +const BASE10_POWERS: ModeratePathPowers = ModeratePathPowers { + small: ExtendedFloatArray { + mant: &BASE10_SMALL_MANTISSA, + exp: &BASE10_SMALL_EXPONENT, + }, + large: ExtendedFloatArray { + mant: &BASE10_LARGE_MANTISSA, + exp: &BASE10_LARGE_EXPONENT, + }, + small_int: &BASE10_SMALL_INT_POWERS, + step: BASE10_STEP, + bias: BASE10_BIAS, +}; + +/// Get powers from base. +pub(crate) fn get_powers() -> &'static ModeratePathPowers { + &BASE10_POWERS +} diff --git a/vendor/serde_json/src/lexical/digit.rs b/vendor/serde_json/src/lexical/digit.rs new file mode 100644 index 0000000..3d150a1 --- /dev/null +++ b/vendor/serde_json/src/lexical/digit.rs @@ -0,0 +1,18 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Helpers to convert and add digits from characters. + +// Convert u8 to digit. +#[inline] +pub(crate) fn to_digit(c: u8) -> Option<u32> { + (c as char).to_digit(10) +} + +// Add digit to mantissa. +#[inline] +pub(crate) fn add_digit(value: u64, digit: u32) -> Option<u64> { + match value.checked_mul(10) { + None => None, + Some(n) => n.checked_add(digit as u64), + } +} diff --git a/vendor/serde_json/src/lexical/errors.rs b/vendor/serde_json/src/lexical/errors.rs new file mode 100644 index 0000000..f4f41cd --- /dev/null +++ b/vendor/serde_json/src/lexical/errors.rs @@ -0,0 +1,132 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Estimate the error in an 80-bit approximation of a float. +//! +//! This estimates the error in a floating-point representation. +//! +//! This implementation is loosely based off the Golang implementation, +//! found here: <https://golang.org/src/strconv/atof.go> + +use super::float::*; +use super::num::*; +use super::rounding::*; + +pub(crate) trait FloatErrors { + /// Get the full error scale. + fn error_scale() -> u32; + /// Get the half error scale. + fn error_halfscale() -> u32; + /// Determine if the number of errors is tolerable for float precision. + fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool; +} + +/// Check if the error is accurate with a round-nearest rounding scheme. +#[inline] +fn nearest_error_is_accurate(errors: u64, fp: &ExtendedFloat, extrabits: u64) -> bool { + // Round-to-nearest, need to use the halfway point. + if extrabits == 65 { + // Underflow, we have a shift larger than the mantissa. + // Representation is valid **only** if the value is close enough + // overflow to the next bit within errors. If it overflows, + // the representation is **not** valid. + !fp.mant.overflowing_add(errors).1 + } else { + let mask: u64 = lower_n_mask(extrabits); + let extra: u64 = fp.mant & mask; + + // Round-to-nearest, need to check if we're close to halfway. + // IE, b10100 | 100000, where `|` signifies the truncation point. + let halfway: u64 = lower_n_halfway(extrabits); + let cmp1 = halfway.wrapping_sub(errors) < extra; + let cmp2 = extra < halfway.wrapping_add(errors); + + // If both comparisons are true, we have significant rounding error, + // and the value cannot be exactly represented. Otherwise, the + // representation is valid. + !(cmp1 && cmp2) + } +} + +impl FloatErrors for u64 { + #[inline] + fn error_scale() -> u32 { + 8 + } + + #[inline] + fn error_halfscale() -> u32 { + u64::error_scale() / 2 + } + + #[inline] + fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool { + // Determine if extended-precision float is a good approximation. + // If the error has affected too many units, the float will be + // inaccurate, or if the representation is too close to halfway + // that any operations could affect this halfway representation. + // See the documentation for dtoa for more information. + let bias = -(F::EXPONENT_BIAS - F::MANTISSA_SIZE); + let denormal_exp = bias - 63; + // This is always a valid u32, since (denormal_exp - fp.exp) + // will always be positive and the significand size is {23, 52}. + let extrabits = if fp.exp <= denormal_exp { + 64 - F::MANTISSA_SIZE + denormal_exp - fp.exp + } else { + 63 - F::MANTISSA_SIZE + }; + + // Our logic is as follows: we want to determine if the actual + // mantissa and the errors during calculation differ significantly + // from the rounding point. The rounding point for round-nearest + // is the halfway point, IE, this when the truncated bits start + // with b1000..., while the rounding point for the round-toward + // is when the truncated bits are equal to 0. + // To do so, we can check whether the rounding point +/- the error + // are >/< the actual lower n bits. + // + // For whether we need to use signed or unsigned types for this + // analysis, see this example, using u8 rather than u64 to simplify + // things. + // + // # Comparisons + // cmp1 = (halfway - errors) < extra + // cmp1 = extra < (halfway + errors) + // + // # Large Extrabits, Low Errors + // + // extrabits = 8 + // halfway = 0b10000000 + // extra = 0b10000010 + // errors = 0b00000100 + // halfway - errors = 0b01111100 + // halfway + errors = 0b10000100 + // + // Unsigned: + // halfway - errors = 124 + // halfway + errors = 132 + // extra = 130 + // cmp1 = true + // cmp2 = true + // Signed: + // halfway - errors = 124 + // halfway + errors = -124 + // extra = -126 + // cmp1 = false + // cmp2 = true + // + // # Conclusion + // + // Since errors will always be small, and since we want to detect + // if the representation is accurate, we need to use an **unsigned** + // type for comparisons. + + let extrabits = extrabits as u64; + let errors = count as u64; + if extrabits > 65 { + // Underflow, we have a literal 0. + return true; + } + + nearest_error_is_accurate(errors, fp, extrabits) + } +} diff --git a/vendor/serde_json/src/lexical/exponent.rs b/vendor/serde_json/src/lexical/exponent.rs new file mode 100644 index 0000000..6fc5197 --- /dev/null +++ b/vendor/serde_json/src/lexical/exponent.rs @@ -0,0 +1,50 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Utilities to calculate exponents. + +/// Convert usize into i32 without overflow. +/// +/// This is needed to ensure when adjusting the exponent relative to +/// the mantissa we do not overflow for comically-long exponents. +#[inline] +fn into_i32(value: usize) -> i32 { + if value > i32::max_value() as usize { + i32::max_value() + } else { + value as i32 + } +} + +// EXPONENT CALCULATION + +// Calculate the scientific notation exponent without overflow. +// +// For example, 0.1 would be -1, and 10 would be 1 in base 10. +#[inline] +pub(crate) fn scientific_exponent( + exponent: i32, + integer_digits: usize, + fraction_start: usize, +) -> i32 { + if integer_digits == 0 { + let fraction_start = into_i32(fraction_start); + exponent.saturating_sub(fraction_start).saturating_sub(1) + } else { + let integer_shift = into_i32(integer_digits - 1); + exponent.saturating_add(integer_shift) + } +} + +// Calculate the mantissa exponent without overflow. +// +// Remove the number of digits that contributed to the mantissa past +// the dot, and add the number of truncated digits from the mantissa, +// to calculate the scaling factor for the mantissa from a raw exponent. +#[inline] +pub(crate) fn mantissa_exponent(exponent: i32, fraction_digits: usize, truncated: usize) -> i32 { + if fraction_digits > truncated { + exponent.saturating_sub(into_i32(fraction_digits - truncated)) + } else { + exponent.saturating_add(into_i32(truncated - fraction_digits)) + } +} diff --git a/vendor/serde_json/src/lexical/float.rs b/vendor/serde_json/src/lexical/float.rs new file mode 100644 index 0000000..2d434a2 --- /dev/null +++ b/vendor/serde_json/src/lexical/float.rs @@ -0,0 +1,183 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +// FLOAT TYPE + +use super::num::*; +use super::rounding::*; +use super::shift::*; + +/// Extended precision floating-point type. +/// +/// Private implementation, exposed only for testing purposes. +#[doc(hidden)] +#[derive(Clone, Copy, Debug, PartialEq, Eq)] +pub(crate) struct ExtendedFloat { + /// Mantissa for the extended-precision float. + pub mant: u64, + /// Binary exponent for the extended-precision float. + pub exp: i32, +} + +impl ExtendedFloat { + // PROPERTIES + + // OPERATIONS + + /// Multiply two normalized extended-precision floats, as if by `a*b`. + /// + /// The precision is maximal when the numbers are normalized, however, + /// decent precision will occur as long as both values have high bits + /// set. The result is not normalized. + /// + /// Algorithm: + /// 1. Non-signed multiplication of mantissas (requires 2x as many bits as input). + /// 2. Normalization of the result (not done here). + /// 3. Addition of exponents. + pub(crate) fn mul(&self, b: &ExtendedFloat) -> ExtendedFloat { + // Logic check, values must be decently normalized prior to multiplication. + debug_assert!((self.mant & u64::HIMASK != 0) && (b.mant & u64::HIMASK != 0)); + + // Extract high-and-low masks. + let ah = self.mant >> u64::HALF; + let al = self.mant & u64::LOMASK; + let bh = b.mant >> u64::HALF; + let bl = b.mant & u64::LOMASK; + + // Get our products + let ah_bl = ah * bl; + let al_bh = al * bh; + let al_bl = al * bl; + let ah_bh = ah * bh; + + let mut tmp = (ah_bl & u64::LOMASK) + (al_bh & u64::LOMASK) + (al_bl >> u64::HALF); + // round up + tmp += 1 << (u64::HALF - 1); + + ExtendedFloat { + mant: ah_bh + (ah_bl >> u64::HALF) + (al_bh >> u64::HALF) + (tmp >> u64::HALF), + exp: self.exp + b.exp + u64::FULL, + } + } + + /// Multiply in-place, as if by `a*b`. + /// + /// The result is not normalized. + #[inline] + pub(crate) fn imul(&mut self, b: &ExtendedFloat) { + *self = self.mul(b); + } + + // NORMALIZE + + /// Normalize float-point number. + /// + /// Shift the mantissa so the number of leading zeros is 0, or the value + /// itself is 0. + /// + /// Get the number of bytes shifted. + #[inline] + pub(crate) fn normalize(&mut self) -> u32 { + // Note: + // Using the cltz intrinsic via leading_zeros is way faster (~10x) + // than shifting 1-bit at a time, via while loop, and also way + // faster (~2x) than an unrolled loop that checks at 32, 16, 4, + // 2, and 1 bit. + // + // Using a modulus of pow2 (which will get optimized to a bitwise + // and with 0x3F or faster) is slightly slower than an if/then, + // however, removing the if/then will likely optimize more branched + // code as it removes conditional logic. + + // Calculate the number of leading zeros, and then zero-out + // any overflowing bits, to avoid shl overflow when self.mant == 0. + let shift = if self.mant == 0 { + 0 + } else { + self.mant.leading_zeros() + }; + shl(self, shift as i32); + shift + } + + // ROUND + + /// Lossy round float-point number to native mantissa boundaries. + #[inline] + pub(crate) fn round_to_native<F, Algorithm>(&mut self, algorithm: Algorithm) + where + F: Float, + Algorithm: FnOnce(&mut ExtendedFloat, i32), + { + round_to_native::<F, _>(self, algorithm); + } + + // FROM + + /// Create extended float from native float. + #[inline] + pub fn from_float<F: Float>(f: F) -> ExtendedFloat { + from_float(f) + } + + // INTO + + /// Convert into default-rounded, lower-precision native float. + #[inline] + pub(crate) fn into_float<F: Float>(mut self) -> F { + self.round_to_native::<F, _>(round_nearest_tie_even); + into_float(self) + } + + /// Convert into downward-rounded, lower-precision native float. + #[inline] + pub(crate) fn into_downward_float<F: Float>(mut self) -> F { + self.round_to_native::<F, _>(round_downward); + into_float(self) + } +} + +// FROM FLOAT + +// Import ExtendedFloat from native float. +#[inline] +pub(crate) fn from_float<F>(f: F) -> ExtendedFloat +where + F: Float, +{ + ExtendedFloat { + mant: u64::as_cast(f.mantissa()), + exp: f.exponent(), + } +} + +// INTO FLOAT + +// Export extended-precision float to native float. +// +// The extended-precision float must be in native float representation, +// with overflow/underflow appropriately handled. +#[inline] +pub(crate) fn into_float<F>(fp: ExtendedFloat) -> F +where + F: Float, +{ + // Export floating-point number. + if fp.mant == 0 || fp.exp < F::DENORMAL_EXPONENT { + // sub-denormal, underflow + F::ZERO + } else if fp.exp >= F::MAX_EXPONENT { + // overflow + F::from_bits(F::INFINITY_BITS) + } else { + // calculate the exp and fraction bits, and return a float from bits. + let exp: u64; + if (fp.exp == F::DENORMAL_EXPONENT) && (fp.mant & F::HIDDEN_BIT_MASK.as_u64()) == 0 { + exp = 0; + } else { + exp = (fp.exp + F::EXPONENT_BIAS) as u64; + } + let exp = exp << F::MANTISSA_SIZE; + let mant = fp.mant & F::MANTISSA_MASK.as_u64(); + F::from_bits(F::Unsigned::as_cast(mant | exp)) + } +} diff --git a/vendor/serde_json/src/lexical/large_powers.rs b/vendor/serde_json/src/lexical/large_powers.rs new file mode 100644 index 0000000..c63ce1c --- /dev/null +++ b/vendor/serde_json/src/lexical/large_powers.rs @@ -0,0 +1,9 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Precalculated large powers for limbs. + +#[cfg(limb_width_32)] +pub(crate) use super::large_powers32::*; + +#[cfg(limb_width_64)] +pub(crate) use super::large_powers64::*; diff --git a/vendor/serde_json/src/lexical/large_powers32.rs b/vendor/serde_json/src/lexical/large_powers32.rs new file mode 100644 index 0000000..7991197 --- /dev/null +++ b/vendor/serde_json/src/lexical/large_powers32.rs @@ -0,0 +1,183 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Precalculated large powers for 32-bit limbs. + +/// Large powers (&[u32]) for base5 operations. +const POW5_1: [u32; 1] = [5]; +const POW5_2: [u32; 1] = [25]; +const POW5_3: [u32; 1] = [625]; +const POW5_4: [u32; 1] = [390625]; +const POW5_5: [u32; 2] = [2264035265, 35]; +const POW5_6: [u32; 3] = [2242703233, 762134875, 1262]; +const POW5_7: [u32; 5] = [3211403009, 1849224548, 3668416493, 3913284084, 1593091]; +const POW5_8: [u32; 10] = [ + 781532673, 64985353, 253049085, 594863151, 3553621484, 3288652808, 3167596762, 2788392729, + 3911132675, 590, +]; +const POW5_9: [u32; 19] = [ + 2553183233, 3201533787, 3638140786, 303378311, 1809731782, 3477761648, 3583367183, 649228654, + 2915460784, 487929380, 1011012442, 1677677582, 3428152256, 1710878487, 1438394610, 2161952759, + 4100910556, 1608314830, 349175, +]; +const POW5_10: [u32; 38] = [ + 4234999809, 2012377703, 2408924892, 1570150255, 3090844311, 3273530073, 1187251475, 2498123591, + 3364452033, 1148564857, 687371067, 2854068671, 1883165473, 505794538, 2988060450, 3159489326, + 2531348317, 3215191468, 849106862, 3892080979, 3288073877, 2242451748, 4183778142, 2995818208, + 2477501924, 325481258, 2487842652, 1774082830, 1933815724, 2962865281, 1168579910, 2724829000, + 2360374019, 2315984659, 2360052375, 3251779801, 1664357844, 28, +]; +const POW5_11: [u32; 75] = [ + 689565697, 4116392818, 1853628763, 516071302, 2568769159, 365238920, 336250165, 1283268122, + 3425490969, 248595470, 2305176814, 2111925499, 507770399, 2681111421, 589114268, 591287751, + 1708941527, 4098957707, 475844916, 3378731398, 2452339615, 2817037361, 2678008327, 1656645978, + 2383430340, 73103988, 448667107, 2329420453, 3124020241, 3625235717, 3208634035, 2412059158, + 2981664444, 4117622508, 838560765, 3069470027, 270153238, 1802868219, 3692709886, 2161737865, + 2159912357, 2585798786, 837488486, 4237238160, 2540319504, 3798629246, 3748148874, 1021550776, + 2386715342, 1973637538, 1823520457, 1146713475, 833971519, 3277251466, 905620390, 26278816, + 2680483154, 2294040859, 373297482, 5996609, 4109575006, 512575049, 917036550, 1942311753, + 2816916778, 3248920332, 1192784020, 3537586671, 2456567643, 2925660628, 759380297, 888447942, + 3559939476, 3654687237, 805, +]; +const POW5_12: [u32; 149] = [ + 322166785, 3809044581, 2994556223, 1239584207, 3962455841, 4001882964, 3053876612, 915114683, + 2783289745, 785739093, 4253185907, 3931164994, 1370983858, 2553556126, 3360742076, 2255410929, + 422849554, 2457422215, 3539495362, 1720790602, 1908931983, 1470596141, 592794347, 4219465164, + 4085652704, 941661409, 2534650953, 885063988, 2355909854, 2812815516, 767256131, 3821757683, + 2155151105, 3817418473, 281116564, 2834395026, 2821201622, 2524625843, 1511330880, 2572352493, + 330571332, 2951088579, 2730271766, 4044456479, 4212286644, 2444937588, 3603420843, 2387148597, + 1142537539, 3299235429, 1751012624, 861228086, 2873722519, 230498814, 1023297821, 2553128038, + 3421129895, 2651917435, 2042981258, 1606787143, 2228751918, 447345732, 1930371132, 1784132011, + 3612538790, 2275925090, 2487567871, 1080427616, 2009179183, 3383506781, 3899054063, 1950782960, + 2168622213, 2717674390, 3616636027, 2079341593, 1530129217, 1461057425, 2406264415, 3674671357, + 2972036238, 2019354295, 1455849819, 1866918619, 1324269294, 424891864, 2722422332, 2641594816, + 1400249021, 3482963993, 3734946379, 225889849, 1891545473, 777383150, 3589824633, 4117601611, + 4220028667, 334453379, 1083130821, 1060342180, 4208163139, 1489826908, 4163762246, 1096580926, + 689301528, 2336054516, 1782865703, 4175148410, 3398369392, 2329412588, 3001580596, 59740741, + 3202189932, 3351895776, 246185302, 718535188, 3772647488, 4151666556, 4055698133, 2461934110, + 2281316281, 3466396836, 3536023465, 1064267812, 2955456354, 2423805422, 3627960790, 1325057500, + 3876919979, 2009959531, 175455101, 184092852, 2358785571, 3842977831, 2485266289, 487121622, + 4159252710, 4075707558, 459389244, 300652075, 2521346588, 3458976673, 888631636, 2076098096, + 3844514585, 2363697580, 3729421522, 3051115477, 649395, +]; +const POW5_13: [u32; 298] = [ + 711442433, 3564261005, 2399042279, 4170849936, 4010295575, 1423987028, 330414929, 1349249065, + 4213813618, 3852031822, 4040843590, 2154565331, 3094013374, 1159028371, 3227065538, 2115927092, + 2085102554, 488590542, 2609619432, 3602898805, 3812736528, 3269439096, 23816114, 253984538, + 1035905997, 2942969204, 3400787671, 338562688, 1637191975, 740509713, 2264962817, 3410753922, + 4162231428, 2282041228, 1759373012, 3155367777, 4278913285, 1420532801, 1981002276, 438054990, + 1006507643, 1142697287, 1332538012, 2029019521, 3949305784, 818392641, 2491288846, 2716584663, + 3648886102, 556814413, 444795339, 4071412999, 1066321706, 4253169466, 2510832316, 672091442, + 4083256000, 2165985028, 1841538484, 3549854235, 364431512, 3707648143, 1162785440, 2268641545, + 281340310, 735693841, 848809228, 1700785200, 2919703985, 4094234344, 58530286, 965505005, + 1000010347, 3381961808, 3040089923, 1973852082, 2890971585, 1019960210, 4292895237, 2821887841, + 3756675650, 3951282907, 3885870583, 1008791145, 503998487, 1881258362, 1949332730, 392996726, + 2012973814, 3970014187, 2461725150, 2942547730, 3728066699, 2766901132, 3778532841, 1085564064, + 2278673896, 1116879805, 3448726271, 774279411, 157211670, 1506320155, 531168605, 1362654525, + 956967721, 2148871960, 769186085, 4186232894, 2055679604, 3248365487, 3981268013, 3975787984, + 2489510517, 3309046495, 212771124, 933418041, 3371839114, 562115198, 1853601831, 757336096, + 1354633440, 1486083256, 2872126393, 522920738, 1141587749, 3210903262, 1926940553, 3054024853, + 2021162538, 2262742000, 1877899947, 3147002868, 669840763, 4158174590, 4238502559, 1023731922, + 3386840011, 829588074, 3449720188, 2835142880, 2999162007, 813056473, 482949569, 638108879, + 3067201471, 1026714238, 4004452838, 2383667807, 3999477803, 771648919, 630660440, 3827121348, + 176185980, 2878191002, 2666149832, 3909811063, 2429163983, 2665690412, 907266128, 4269332098, + 2022665808, 1527122180, 3072053668, 1072477492, 3006022924, 549664855, 2800340954, 37352654, + 1212772743, 2711280533, 3029527946, 2511120040, 1305308377, 3474662224, 4226330922, 442988428, + 954940108, 3274548099, 4212288177, 2688499880, 3982226758, 3922609956, 1279948029, 1939943640, + 3650489901, 2733364929, 2494263275, 1864579964, 1225941120, 2390465139, 1267503249, 3533240729, + 904410805, 2842550015, 2517736241, 1796069820, 3335274381, 673539835, 1924694759, 3598098235, + 2792633405, 16535707, 3703535497, 3592841791, 2929082877, 1317622811, 294990855, 1396706563, + 2383271770, 3853857605, 277813677, 277580220, 1101318484, 3761974115, 1132150143, 2544692622, + 3419825776, 743770306, 1695464553, 1548693232, 2421159615, 2575672031, 2678971806, 1591267897, + 626546738, 3823443129, 267710932, 1455435162, 2353985540, 3248523795, 335348168, 3872552561, + 2814522612, 2634118860, 3503767026, 1301019273, 1414467789, 722985138, 3070909565, 4253482569, + 3744939841, 558142907, 2229819389, 13833173, 77003966, 2763671364, 3905603970, 2931990126, + 2280419384, 1879090457, 2934846267, 4284933164, 2331863845, 62191163, 3178861020, 1522063815, + 785672270, 1215568492, 2936443917, 802972489, 2956820173, 3916732783, 2893572089, 1391232801, + 3168640330, 2396859648, 894950918, 1103583736, 961991865, 2807302642, 305977505, 3054505899, + 1048256994, 781017659, 2459278754, 3164823415, 537658277, 905753687, 464963300, 4149131560, + 1029507924, 2278300961, 1231291503, 414073408, 3630740085, 2345841814, 475358196, 3258243317, + 4167625072, 4178911231, 2927355042, 655438830, 3138378018, 623200562, 2785714112, 273403236, + 807993669, 98, +]; +const POW5_14: [u32; 595] = [ + 1691320321, 2671006246, 1682531301, 2072858707, 1240508969, 3108358191, 1125119096, 2470144952, + 1610099978, 1690632660, 1941696884, 2663506355, 1006364675, 3909158537, 4147711374, 1072663936, + 4078768933, 745751659, 4123687570, 471458681, 655028926, 4113407388, 3945524552, 985625313, + 1254424514, 2127508744, 570530434, 945388122, 3194649404, 2589065070, 2731705399, 202030749, + 2090780394, 3348662271, 1481754777, 1130635472, 4025144705, 1924486271, 2578567861, 125491448, + 1558036315, 994248173, 3817216711, 763950077, 1030439870, 959586474, 3845661701, 483795093, + 1637944470, 2275463649, 3398804829, 1758016486, 2665513698, 2004912571, 1094885097, 4223064276, + 3307819021, 651121777, 1757003305, 3603542336, 129917786, 2215974994, 3042386306, 2205352757, + 3944939700, 3710987569, 97967515, 1217242524, 930630949, 3660328512, 1787663098, 1784141600, + 2500542892, 4034561586, 3444961378, 785043562, 3869499367, 885623728, 2625011087, 3053789617, + 1965731793, 3900511934, 2648823592, 3851062028, 3321968688, 799195417, 1011847510, 1369129160, + 1348009103, 2876796955, 2915408967, 3305284948, 263399535, 1715990604, 2645821294, 1587844552, + 2624912049, 3035631499, 2306636348, 3499275462, 675152704, 854794152, 4004972748, 1739996642, + 1333476491, 4012621867, 3658792931, 3297985728, 2864481726, 3066357406, 785287846, 1671499798, + 433044045, 1919608025, 264833858, 3999983367, 1116778570, 1301982149, 4213901070, 4081649357, + 536169226, 1389008649, 188923873, 373495152, 2551132278, 1800758715, 3951840330, 2632334454, + 3118778225, 1034046547, 1862428410, 3037609062, 1994608505, 29051798, 2571685694, 264151332, + 2260643090, 2717535964, 3508441116, 3283713017, 1903365635, 923575694, 1219598101, 2288281570, + 3676533911, 1014136356, 555142354, 2389170030, 4185108175, 884862419, 836141292, 2957159173, + 1997444768, 4233903127, 2876184692, 3089125070, 1480848293, 1097600237, 299700527, 2507669891, + 2982628312, 2114881043, 2529576251, 2812279824, 2987750993, 4241938954, 2204775591, 1037094060, + 829315638, 1231047149, 52608178, 3735136637, 3455232602, 962039123, 488286513, 50685385, + 3516451821, 843975207, 1572355722, 675489076, 2428445672, 1555117248, 3708476086, 10375249, + 4172112346, 2117510871, 2227658327, 3187664554, 3050656558, 328034318, 3179601324, 1247769761, + 3439263953, 1431538938, 2962525068, 1213366289, 3813013550, 2651093719, 1860661503, 3933716208, + 264320617, 789980519, 2257856172, 102000748, 977269860, 1113845122, 3008928583, 1461738106, + 557786285, 2926560363, 1038106190, 3643478847, 828004507, 457818698, 1933056971, 373408056, + 2076808229, 3160935130, 2781854874, 2519636100, 177606000, 4237103862, 3977834316, 1621936232, + 2599050516, 319893558, 3343370366, 765044144, 976657331, 7026264, 294277429, 3829376742, + 3029627280, 2705178718, 3614653880, 230519152, 3288033233, 293525479, 3805751881, 3227511198, + 2520308544, 3648103003, 1111086184, 437622105, 2232033852, 3239146386, 584244184, 1450926016, + 2462430443, 3226534010, 298582169, 4214576928, 1762099469, 964985185, 1585788148, 1641127666, + 787006566, 2315956284, 3258232694, 2275058964, 2541003317, 1508235863, 2613339827, 4080647514, + 1152057965, 3149266279, 731345410, 914737650, 65395712, 1884566942, 1379520432, 2611027720, + 4163073378, 2619704967, 2746552541, 1388822415, 3005141199, 843440249, 4288674003, 3136174279, + 4051522914, 4144149433, 3427566947, 3419023197, 3758479825, 3893877676, 96899594, 1657725776, + 253618880, 434129337, 1499045748, 2996992534, 4036042074, 2110713869, 906222950, 928326225, + 2541827893, 1604330202, 226792470, 4022228930, 815850898, 1466012310, 3377712199, 292769859, + 2822055597, 3225701344, 3052947004, 385831222, 705324593, 4030158636, 3540280538, 2982120874, + 2136414455, 255762046, 3852783591, 3262064164, 2358991588, 3756586117, 4143612643, 3326743817, + 2897365738, 807711264, 3719310016, 3721264861, 3627337076, 944539331, 3640975513, 3712525681, + 1162911839, 2008243316, 2179489649, 2867584109, 261861553, 3570253908, 2062868357, 2220328623, + 3857004679, 3744109002, 4138041873, 1451860932, 2364975637, 2802161722, 2680106834, 753401584, + 1223182946, 1245401957, 4163377735, 3565815922, 2216942838, 4036140094, 71979081, 3924559643, + 400477238, 551750683, 1174153235, 859969898, 1185921017, 1711399735, 812991545, 4051735761, + 3549118738, 1631653329, 3631835958, 3648867800, 1206500363, 2155893137, 361030362, 3454286017, + 2505909489, 1083595169, 453595313, 1510564703, 1706163902, 1632924345, 1381875722, 1661526119, + 1082778324, 3571910052, 1140625929, 851544870, 1145546234, 2938573139, 907528924, 1304752338, + 1764668294, 1788942063, 1700368828, 104979467, 1413911959, 3327497828, 1956384744, 1272712474, + 2815637534, 3307809377, 1320574940, 1111968962, 4073107827, 434096622, 169451929, 3201183459, + 3331028877, 2852366972, 3369830128, 2924794558, 3106537952, 3739481231, 1612955817, 4138608722, + 2721281595, 2755775390, 843505117, 982234295, 1157276611, 814674632, 4246504726, 3532006708, + 992340967, 1647538031, 204696133, 193866982, 3899126129, 300851698, 1379496684, 1759463683, + 1354782756, 1374637239, 3410883240, 1073406229, 3038431791, 1053909855, 3607043270, 173719711, + 3733903830, 171820911, 1573050589, 932781534, 4183534770, 2158849555, 372245998, 3573073830, + 841339264, 2759200520, 1610547277, 2603293319, 3890906486, 1557138278, 3964109906, 677238797, + 537994297, 1124184993, 4287078344, 4207654540, 2943022776, 2977947524, 3255359985, 4098397558, + 2274666217, 2915862060, 243524940, 2467726756, 2869020032, 507521339, 3403121914, 522051455, + 1803903108, 3471254194, 473535371, 1948602036, 3352095732, 3116527002, 1795743673, 775867940, + 2551469548, 3757442064, 3162525227, 3765412747, 3040105484, 1927625810, 48214767, 2997207130, + 1342349989, 2536583992, 1501320191, 3592287317, 887432730, 967585477, 3334212779, 948663609, + 1064513472, 15386372, 2465931737, 3230242590, 3036652803, 2063155087, 1927500726, 2821790499, + 2187774383, 501520074, 3688568496, 3606711121, 2576459247, 3176542345, 378322447, 156541411, + 1400607301, 1406179107, 677848877, 2253753529, 193196070, 4207435024, 4166396241, 509467541, + 2906024136, 1221753746, 3375413222, 431327897, 2749265123, 2848827671, 3412997614, 2051920238, + 1283516885, 1300498239, 1957256104, 2634010560, 3531900395, 360276850, 1461184973, 2012063967, + 2873572430, 2914608609, 4289554777, 1539331673, 1859532928, 4213441063, 538215691, 3512720863, + 4258743698, 3040408445, 982396546, 343095663, 4138069496, 1021581857, 214185242, 1968079460, + 2864275059, 3347192726, 4096783459, 3259169450, 3707808869, 142485006, 399610869, 230556456, + 2219467721, 4191227798, 2242548189, 3136366572, 179755707, 3464881829, 452317775, 3887426070, + 3446430233, 1473370015, 1576807208, 3964523248, 419325089, 2373067114, 1596072055, 1928415752, + 3635452689, 1005598891, 3335462724, 3290848636, 3669078247, 1178176812, 2110774376, 3068593619, + 1253036518, 908857731, 3631223047, 4138506423, 2903592318, 3596915748, 3289036113, 3721512676, + 2704409359, 3386016968, 3676268074, 2185259502, 1096257611, 3360076717, 3548676554, 170167319, + 3360064287, 3899940843, 9640, +]; + +pub(crate) const POW5: [&'static [u32]; 14] = [ + &POW5_1, &POW5_2, &POW5_3, &POW5_4, &POW5_5, &POW5_6, &POW5_7, &POW5_8, &POW5_9, &POW5_10, + &POW5_11, &POW5_12, &POW5_13, &POW5_14, +]; diff --git a/vendor/serde_json/src/lexical/large_powers64.rs b/vendor/serde_json/src/lexical/large_powers64.rs new file mode 100644 index 0000000..ee36561 --- /dev/null +++ b/vendor/serde_json/src/lexical/large_powers64.rs @@ -0,0 +1,625 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Precalculated large powers for 64-bit limbs. + +/// Large powers (&[u64]) for base5 operations. +const POW5_1: [u64; 1] = [5]; +const POW5_2: [u64; 1] = [25]; +const POW5_3: [u64; 1] = [625]; +const POW5_4: [u64; 1] = [390625]; +const POW5_5: [u64; 1] = [152587890625]; +const POW5_6: [u64; 2] = [3273344365508751233, 1262]; +const POW5_7: [u64; 3] = [7942358959831785217, 16807427164405733357, 1593091]; +const POW5_8: [u64; 5] = [ + 279109966635548161, + 2554917779393558781, + 14124656261812188652, + 11976055582626787546, + 2537941837315, +]; +const POW5_9: [u64; 10] = [ + 13750482914757213185, + 1302999927698857842, + 14936872543252795590, + 2788415840139466767, + 2095640732773017264, + 7205570348933370714, + 7348167152523113408, + 9285516396840364274, + 6907659600622710236, + 349175, +]; +const POW5_10: [u64; 19] = [ + 8643096425819600897, + 6743743997439985372, + 14059704609098336919, + 10729359125898331411, + 4933048501514368705, + 12258131603170554683, + 2172371001088594721, + 13569903330219142946, + 13809142207969578845, + 16716360519037769646, + 9631256923806107285, + 12866941232305103710, + 1397931361048440292, + 7619627737732970332, + 12725409486282665900, + 11703051443360963910, + 9947078370803086083, + 13966287901448440471, + 121923442132, +]; +const POW5_11: [u64; 38] = [ + 17679772531488845825, + 2216509366347768155, + 1568689219195129479, + 5511594616325588277, + 1067709417009240089, + 9070650952098657518, + 11515285870634858015, + 2539561553659505564, + 17604889300961091799, + 14511540856854204724, + 12099083339557485471, + 7115240299237943815, + 313979240050606788, + 10004784664717172195, + 15570268847930131473, + 10359715202835930803, + 17685054012115162812, + 13183273382855797757, + 7743260039872919062, + 9284593436392572926, + 11105921222066415013, + 18198799323400703846, + 16314988383739458320, + 4387527177871570570, + 8476708682254672590, + 4925096874831034057, + 14075687868072027455, + 112866656203221926, + 9852830467773230418, + 25755239915196746, + 2201493076310172510, + 8342165458688466438, + 13954006576066379050, + 15193819059903295636, + 12565616718911389531, + 3815854855847885129, + 15696762163583540628, + 805, +]; +const POW5_12: [u64; 75] = [ + 16359721904723189761, + 5323973632697650495, + 17187956456762001185, + 3930387638628283780, + 3374723710406992273, + 16884225088663222131, + 10967440051041439154, + 9686916182456720060, + 10554548046311730194, + 7390739362393647554, + 6316162333127736719, + 18122464886584070891, + 4044404959645932768, + 3801320885861987401, + 12080950653257274590, + 16414324262488991299, + 16395687498836410113, + 12173633940896186260, + 10843185433142632150, + 11048169832730399808, + 12674828934734683716, + 17370808310130582550, + 10500926985433408692, + 10252725158410704555, + 14170108270502067523, + 3698946465517688080, + 989984870770509463, + 10965601426733943069, + 11389898658438335655, + 6901098232861256586, + 1921335291173932590, + 7662788640922083388, + 9775023833308395430, + 4640401278902814207, + 14532050972198413359, + 8378549018693130223, + 11672322628395371653, + 8930704142764178555, + 6275193859483102017, + 15782593304269205087, + 8673060659034172558, + 8018354414354334043, + 1824896661540749038, + 11345563346725559868, + 14959216444480821949, + 970189517688324683, + 3338835207603007873, + 17684964260791738489, + 1436466329061721851, + 4554134986752476101, + 6398757850768963907, + 4709779218751158342, + 10033277748582410264, + 17932125878679265063, + 10004750887749091440, + 256584531835386932, + 14396282740722731628, + 3086085133731396950, + 17831272085689600064, + 10573926491412564693, + 14888061047859191737, + 4570995450261499817, + 10410165022312935266, + 5691078631447480790, + 8632710455805418155, + 790672778942823293, + 16505464105756800547, + 2092171438149740401, + 17505030673829275878, + 1291290830058928444, + 14856191690683232796, + 8916773426496500052, + 10152003807578858265, + 13104441193763861714, + 649395, +]; +const POW5_13: [u64; 149] = [ + 15308384451594534913, + 17913664074042735335, + 6115977719198531863, + 5794980608663993169, + 16544350702855106930, + 9253787637781258566, + 4977988951675168190, + 9087837664087448770, + 2098480401110016986, + 15474332540882100712, + 14042133997396540944, + 1090855284423485362, + 12639956485351058381, + 1454115676006639319, + 3180465001342538023, + 14649076551958697729, + 9801292446545910916, + 13552201410826594004, + 6101141927469189381, + 1881431857880609316, + 4907847477899433595, + 8714572486973123228, + 3514969632331374520, + 11667642286891470094, + 2391499697425323350, + 17486585679659076043, + 18267223761882105642, + 2886610765822313148, + 9302834862968900288, + 15246507846733637044, + 15924227519624562840, + 9743741243284697760, + 3159780987244964246, + 7304816812369628428, + 17584602612559717809, + 4146812420657846766, + 14525415362681041515, + 8477630142371600195, + 4380695748062263745, + 12119915994367943173, + 16970630866565485122, + 4332724980155264503, + 8079943140620527639, + 1687908087554405626, + 17051081099834002166, + 12638146269730763230, + 11883749876933445771, + 4662462156371383785, + 4796962238316531176, + 3325504751659868927, + 6469595803187862550, + 5852556621152583005, + 9229334792448387881, + 17979733373938620709, + 13951623534175792756, + 17075879371091039277, + 14212246479457938037, + 4008999959804158260, + 2414266395366403722, + 3252733766253918247, + 6382678985007829216, + 2245927470982310841, + 13790724502051307301, + 13116936866733148041, + 9718402891306794538, + 13516274400356104875, + 17859223875778049403, + 4396895129099725471, + 3563053650368467915, + 12176845952536972668, + 3492050964335269015, + 2740656767075170753, + 4409704077614761919, + 10237775279597492710, + 3314206875098230827, + 16437361028114095448, + 12361736225407656572, + 16792510651790145480, + 11449053143229929935, + 18336641737580333136, + 6558939822118891088, + 4606255756908155300, + 2360792578991605004, + 160428430149144538, + 11644861220729221511, + 10785178451159739786, + 14923560618031934681, + 1902620814992781610, + 14064076995338910412, + 11547019064112212657, + 16847481479966225734, + 8331994491163145469, + 11739712981738851885, + 8008309968651120619, + 10266969595459035264, + 15175153381217702033, + 12208659352573720245, + 7714061140750342961, + 2892831567213510541, + 15453714249045017319, + 71020323573871677, + 15431137995750602633, + 5659146884637671933, + 5998809010488554503, + 16552192379299157850, + 1192197967194298797, + 16157555793424861524, + 10929371590994640255, + 3194469143425738352, + 6651586784672005225, + 11062427140788057791, + 6834443579468668318, + 16421563197797455922, + 6251046422506172884, + 13952303462156793860, + 16632486601871393224, + 11313454360291325172, + 5587835232504462834, + 3105197524618514637, + 18268568531031972989, + 2397205535804309313, + 59413027864729597, + 11869878125348715710, + 12592801707270523266, + 8070632061321113656, + 18403647807860650811, + 267109013517069093, + 6537214311028855260, + 5220826919973709902, + 3448740582779163661, + 16822239213112884941, + 5975299384311048185, + 10294433804430712138, + 4739856055412448774, + 12057273038326387897, + 13119002941950056609, + 3354445304051737058, + 13592813067499314594, + 3890182464434078629, + 17820384357466425060, + 9785228118969879380, + 1778431746734556271, + 10075313876350055029, + 13994048489400919028, + 17948287074199726448, + 2815088342305858722, + 2676626035777198370, + 1174257960026283968, + 421714788677, +]; +const POW5_14: [u64; 298] = [ + 11471884475673051137, + 8902860357476377573, + 13350296775839230505, + 10609191786344608888, + 7261211985859587338, + 11439672689354862964, + 16789708072300570627, + 4607056528866348430, + 3202978990421512997, + 2024899620433984146, + 17666950207239811774, + 4233228489390288200, + 9137580478688460738, + 4060411066587388546, + 11119949806060600124, + 867715462473090103, + 14382394941384869610, + 4856042377419278489, + 8265605599571137921, + 538981667666252469, + 4270263388700786523, + 3281140600308898503, + 4121392524544394174, + 2077884106245940229, + 9773041957329767574, + 7550623316597646685, + 8611033926449791714, + 18137922955420802793, + 2796546741236224013, + 15477096484628446761, + 9517540128113714010, + 9471917970500821378, + 15938570248662483124, + 5228016831978462619, + 15720991252586974501, + 7662829825220776698, + 17328310068068434348, + 3371736428170309730, + 3803724952191098855, + 13115926536504376719, + 16752571196153442257, + 16540185467776259880, + 3432518182450051120, + 5880364967211798870, + 12355748840305392783, + 14196090758536469575, + 7370123524686686319, + 6819740424617592686, + 13037938013537368753, + 15029273671291927100, + 3671312928327205696, + 7473228676544792780, + 17234079691312938123, + 14164740848093544419, + 13169904779481875902, + 7179036968465894054, + 8244653688947194445, + 17179797746073799490, + 5591970751047577674, + 17530550506268329742, + 5965746721852312330, + 1604149463243472865, + 7734199791463116918, + 11305790396015856714, + 4441196105025505137, + 13046431581185664762, + 124776524294606713, + 1134521334706523966, + 11671728093344476434, + 14103440020972933148, + 3966727403013869059, + 9828094508409132821, + 4355682486381147287, + 10261407143988481234, + 3800455155249557199, + 12700901937937547500, + 18184475466894579360, + 13267691151779895412, + 4714157123477697445, + 10770360171308585263, + 9083344917597998040, + 12078649873810212155, + 18218989082046199377, + 4454285072780637351, + 5287307245618354742, + 16042289702059031730, + 4131926574212754010, + 217692071448455473, + 3624845916216282093, + 2901203491797614218, + 6679177724033967080, + 44561358851332790, + 9094639944041587162, + 13690915012276084311, + 1408896670826320686, + 5359130319612337580, + 6148412925099835601, + 5211368532286409612, + 11386360825549027374, + 16895182466965795071, + 3392940493846427241, + 438089879085393580, + 4783928372776399972, + 6278117363595909959, + 12569481049412674733, + 15648622492570893902, + 1966316336235305115, + 1603775390515993547, + 13576113010204316709, + 10821754650102840474, + 18198222517222903152, + 6966163076615302988, + 1373932372410129684, + 3285839581819684990, + 30177575069719475, + 16447047871247307061, + 11618654126674833808, + 990072222556306872, + 1260682336135768017, + 13862055046689532489, + 15668483092844698432, + 1879572630092764264, + 13912027797058626108, + 6231679788219816920, + 13857858054844167403, + 18101470072534728857, + 4144579812461609229, + 7048589655616599284, + 9946956499532694630, + 9771303850109874038, + 6477823708780339765, + 17526247621747041971, + 13525995675852669549, + 3928768291901239810, + 8094153383078124544, + 11214278667728965552, + 11251547162596832610, + 5964946855123292381, + 3622548288590237903, + 13469765967150053587, + 17798986288523466082, + 14684592818807932259, + 16724077276802963921, + 7119877993753121290, + 1864571304902781632, + 12871984921385213812, + 9065447042604670298, + 3987130777300360550, + 6890545752116901685, + 17275341711601865750, + 6296474927799264658, + 1257436973037243463, + 13854281781965301421, + 1657132483318662716, + 17309399540017292849, + 12808111630089217242, + 1098489625264462071, + 14010458905686364135, + 16134414519481621220, + 14288255900328821475, + 3469093466388187882, + 15982710881468295872, + 4056765540058056052, + 15945176389096104089, + 8625339365793505375, + 12316179968863788913, + 15334123773538054321, + 9536238824220581765, + 16080825720106203271, + 6235695225418121745, + 12035192956458019349, + 3235835166714703698, + 5348960676912581218, + 15315062772709464647, + 17335089708021308662, + 16855855317958414409, + 2369751139431140406, + 3693542588628609043, + 7350405893393987577, + 17402072586341663801, + 7007897690013647122, + 15671767872059304758, + 9259490518292347915, + 14836045474406130394, + 4654005815464502513, + 6487825998330548401, + 7013356660323385022, + 7136200343936679946, + 15341236858676437716, + 3657357368867197449, + 12621075530054608378, + 5603868621997066972, + 7683447656788439942, + 450883379216880060, + 14291494350184945047, + 5466258454997635048, + 14206933098432772126, + 4775870327277641692, + 1864430798867181939, + 13748978265070608793, + 12250822864261576589, + 12561896977498605296, + 16060949594257359328, + 17775189113543311529, + 11835965177892927035, + 4218664174878121437, + 3499000902478111683, + 15169853304359126294, + 7076121963053575143, + 832652347668916805, + 1292148207755194737, + 7556838978364207852, + 5904021986723518500, + 4610244652288570024, + 4526508363195533871, + 746120481022614726, + 737965197247830486, + 4006266184415762653, + 9272188239892688050, + 15346235246415709678, + 11850675997347533184, + 11181059668610842701, + 6687857983250662774, + 2908718488661492818, + 4828337780126983225, + 18071738646453002184, + 12790187227727197880, + 17602483480871623153, + 12523532189621855977, + 10598805712727696716, + 2179787555896149376, + 2242193929457337594, + 14908923241136742532, + 8369182018012550027, + 13385381554043022324, + 3332327430110633913, + 16138090784046208492, + 16172324607469047339, + 8279089815915615244, + 12872906602736235247, + 10894545290539475621, + 15428756545851905023, + 4155747980686992922, + 4074479178894544043, + 66083965608603584, + 13873786284662268377, + 8861183628277687555, + 12119497911296021430, + 2154012318305274287, + 15490706314503067312, + 13643145488710608367, + 672340241093017103, + 6039493278284091973, + 9679797700977436461, + 18070795828318171174, + 2188146431134935377, + 5247392385741514952, + 1852539214842869734, + 12235621681634112739, + 8812930319623534062, + 5585597406294108629, + 11312989214475901864, + 1547377291787797995, + 8641748937186208205, + 12518148659168623694, + 6611379197521520985, + 18096591571068008576, + 15087021227100112139, + 13058454842015958418, + 1473584652966833794, + 4387660670140018168, + 8452836916843525402, + 14376083294443363955, + 13998026203969090659, + 611968444648172645, + 990232438801273845, + 18001186324715561929, + 13470591857250177501, + 14881554140239420091, + 16696367836720124495, + 6328076032778459673, + 17027497695968504616, + 10192245646262428833, + 8282482589527318647, + 4319014353374321425, + 14134087271041670980, + 5060230880114618599, + 13179509240430058600, + 3903514232614801894, + 17774749744702165255, + 15448635507030969726, + 15983775238358480209, + 14542832143965487887, + 9385618098039514666, + 14431419612662304843, + 730863073501675978, + 16750118380379734815, + 9640, +]; + +pub(crate) const POW5: [&[u64]; 14] = [ + &POW5_1, &POW5_2, &POW5_3, &POW5_4, &POW5_5, &POW5_6, &POW5_7, &POW5_8, &POW5_9, &POW5_10, + &POW5_11, &POW5_12, &POW5_13, &POW5_14, +]; diff --git a/vendor/serde_json/src/lexical/math.rs b/vendor/serde_json/src/lexical/math.rs new file mode 100644 index 0000000..d7122bf --- /dev/null +++ b/vendor/serde_json/src/lexical/math.rs @@ -0,0 +1,886 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Building-blocks for arbitrary-precision math. +//! +//! These algorithms assume little-endian order for the large integer +//! buffers, so for a `vec![0, 1, 2, 3]`, `3` is the most significant limb, +//! and `0` is the least significant limb. + +use super::large_powers; +use super::num::*; +use super::small_powers::*; +use alloc::vec::Vec; +use core::{cmp, iter, mem}; + +// ALIASES +// ------- + +// Type for a single limb of the big integer. +// +// A limb is analogous to a digit in base10, except, it stores 32-bit +// or 64-bit numbers instead. +// +// This should be all-known 64-bit platforms supported by Rust. +// https://forge.rust-lang.org/platform-support.html +// +// Platforms where native 128-bit multiplication is explicitly supported: +// - x86_64 (Supported via `MUL`). +// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from). +// +// Platforms where native 64-bit multiplication is supported and +// you can extract hi-lo for 64-bit multiplications. +// aarch64 (Requires `UMULH` and `MUL` to capture high and low bits). +// powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits). +// +// Platforms where native 128-bit multiplication is not supported, +// requiring software emulation. +// sparc64 (`UMUL` only supported double-word arguments). + +// 32-BIT LIMB +#[cfg(limb_width_32)] +pub type Limb = u32; + +#[cfg(limb_width_32)] +pub const POW5_LIMB: &[Limb] = &POW5_32; + +#[cfg(limb_width_32)] +pub const POW10_LIMB: &[Limb] = &POW10_32; + +#[cfg(limb_width_32)] +type Wide = u64; + +// 64-BIT LIMB +#[cfg(limb_width_64)] +pub type Limb = u64; + +#[cfg(limb_width_64)] +pub const POW5_LIMB: &[Limb] = &POW5_64; + +#[cfg(limb_width_64)] +pub const POW10_LIMB: &[Limb] = &POW10_64; + +#[cfg(limb_width_64)] +type Wide = u128; + +/// Cast to limb type. +#[inline] +pub(crate) fn as_limb<T: Integer>(t: T) -> Limb { + Limb::as_cast(t) +} + +/// Cast to wide type. +#[inline] +fn as_wide<T: Integer>(t: T) -> Wide { + Wide::as_cast(t) +} + +// SPLIT +// ----- + +/// Split u64 into limbs, in little-endian order. +#[inline] +#[cfg(limb_width_32)] +fn split_u64(x: u64) -> [Limb; 2] { + [as_limb(x), as_limb(x >> 32)] +} + +/// Split u64 into limbs, in little-endian order. +#[inline] +#[cfg(limb_width_64)] +fn split_u64(x: u64) -> [Limb; 1] { + [as_limb(x)] +} + +// HI64 +// ---- + +// NONZERO + +/// Check if any of the remaining bits are non-zero. +#[inline] +pub fn nonzero<T: Integer>(x: &[T], rindex: usize) -> bool { + let len = x.len(); + let slc = &x[..len - rindex]; + slc.iter().rev().any(|&x| x != T::ZERO) +} + +/// Shift 64-bit integer to high 64-bits. +#[inline] +fn u64_to_hi64_1(r0: u64) -> (u64, bool) { + debug_assert!(r0 != 0); + let ls = r0.leading_zeros(); + (r0 << ls, false) +} + +/// Shift 2 64-bit integers to high 64-bits. +#[inline] +fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) { + debug_assert!(r0 != 0); + let ls = r0.leading_zeros(); + let rs = 64 - ls; + let v = match ls { + 0 => r0, + _ => (r0 << ls) | (r1 >> rs), + }; + let n = r1 << ls != 0; + (v, n) +} + +/// Trait to export the high 64-bits from a little-endian slice. +trait Hi64<T>: AsRef<[T]> { + /// Get the hi64 bits from a 1-limb slice. + fn hi64_1(&self) -> (u64, bool); + + /// Get the hi64 bits from a 2-limb slice. + fn hi64_2(&self) -> (u64, bool); + + /// Get the hi64 bits from a 3-limb slice. + fn hi64_3(&self) -> (u64, bool); + + /// High-level exporter to extract the high 64 bits from a little-endian slice. + #[inline] + fn hi64(&self) -> (u64, bool) { + match self.as_ref().len() { + 0 => (0, false), + 1 => self.hi64_1(), + 2 => self.hi64_2(), + _ => self.hi64_3(), + } + } +} + +impl Hi64<u32> for [u32] { + #[inline] + fn hi64_1(&self) -> (u64, bool) { + debug_assert!(self.len() == 1); + let r0 = self[0] as u64; + u64_to_hi64_1(r0) + } + + #[inline] + fn hi64_2(&self) -> (u64, bool) { + debug_assert!(self.len() == 2); + let r0 = (self[1] as u64) << 32; + let r1 = self[0] as u64; + u64_to_hi64_1(r0 | r1) + } + + #[inline] + fn hi64_3(&self) -> (u64, bool) { + debug_assert!(self.len() >= 3); + let r0 = self[self.len() - 1] as u64; + let r1 = (self[self.len() - 2] as u64) << 32; + let r2 = self[self.len() - 3] as u64; + let (v, n) = u64_to_hi64_2(r0, r1 | r2); + (v, n || nonzero(self, 3)) + } +} + +impl Hi64<u64> for [u64] { + #[inline] + fn hi64_1(&self) -> (u64, bool) { + debug_assert!(self.len() == 1); + let r0 = self[0]; + u64_to_hi64_1(r0) + } + + #[inline] + fn hi64_2(&self) -> (u64, bool) { + debug_assert!(self.len() >= 2); + let r0 = self[self.len() - 1]; + let r1 = self[self.len() - 2]; + let (v, n) = u64_to_hi64_2(r0, r1); + (v, n || nonzero(self, 2)) + } + + #[inline] + fn hi64_3(&self) -> (u64, bool) { + self.hi64_2() + } +} + +// SCALAR +// ------ + +// Scalar-to-scalar operations, for building-blocks for arbitrary-precision +// operations. + +mod scalar { + use super::*; + + // ADDITION + + /// Add two small integers and return the resulting value and if overflow happens. + #[inline] + pub fn add(x: Limb, y: Limb) -> (Limb, bool) { + x.overflowing_add(y) + } + + /// AddAssign two small integers and return if overflow happens. + #[inline] + pub fn iadd(x: &mut Limb, y: Limb) -> bool { + let t = add(*x, y); + *x = t.0; + t.1 + } + + // SUBTRACTION + + /// Subtract two small integers and return the resulting value and if overflow happens. + #[inline] + pub fn sub(x: Limb, y: Limb) -> (Limb, bool) { + x.overflowing_sub(y) + } + + /// SubAssign two small integers and return if overflow happens. + #[inline] + pub fn isub(x: &mut Limb, y: Limb) -> bool { + let t = sub(*x, y); + *x = t.0; + t.1 + } + + // MULTIPLICATION + + /// Multiply two small integers (with carry) (and return the overflow contribution). + /// + /// Returns the (low, high) components. + #[inline] + pub fn mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) { + // Cannot overflow, as long as wide is 2x as wide. This is because + // the following is always true: + // `Wide::max_value() - (Narrow::max_value() * Narrow::max_value()) >= Narrow::max_value()` + let z: Wide = as_wide(x) * as_wide(y) + as_wide(carry); + let bits = mem::size_of::<Limb>() * 8; + (as_limb(z), as_limb(z >> bits)) + } + + /// Multiply two small integers (with carry) (and return if overflow happens). + #[inline] + pub fn imul(x: &mut Limb, y: Limb, carry: Limb) -> Limb { + let t = mul(*x, y, carry); + *x = t.0; + t.1 + } +} // scalar + +// SMALL +// ----- + +// Large-to-small operations, to modify a big integer from a native scalar. + +mod small { + use super::*; + + // MULTIPLICATIION + + /// ADDITION + + /// Implied AddAssign implementation for adding a small integer to bigint. + /// + /// Allows us to choose a start-index in x to store, to allow incrementing + /// from a non-zero start. + #[inline] + pub fn iadd_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) { + if x.len() <= xstart { + x.push(y); + } else { + // Initial add + let mut carry = scalar::iadd(&mut x[xstart], y); + + // Increment until overflow stops occurring. + let mut size = xstart + 1; + while carry && size < x.len() { + carry = scalar::iadd(&mut x[size], 1); + size += 1; + } + + // If we overflowed the buffer entirely, need to add 1 to the end + // of the buffer. + if carry { + x.push(1); + } + } + } + + /// AddAssign small integer to bigint. + #[inline] + pub fn iadd(x: &mut Vec<Limb>, y: Limb) { + iadd_impl(x, y, 0); + } + + // SUBTRACTION + + /// SubAssign small integer to bigint. + /// Does not do overflowing subtraction. + #[inline] + pub fn isub_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) { + debug_assert!(x.len() > xstart && (x[xstart] >= y || x.len() > xstart + 1)); + + // Initial subtraction + let mut carry = scalar::isub(&mut x[xstart], y); + + // Increment until overflow stops occurring. + let mut size = xstart + 1; + while carry && size < x.len() { + carry = scalar::isub(&mut x[size], 1); + size += 1; + } + normalize(x); + } + + // MULTIPLICATION + + /// MulAssign small integer to bigint. + #[inline] + pub fn imul(x: &mut Vec<Limb>, y: Limb) { + // Multiply iteratively over all elements, adding the carry each time. + let mut carry: Limb = 0; + for xi in &mut *x { + carry = scalar::imul(xi, y, carry); + } + + // Overflow of value, add to end. + if carry != 0 { + x.push(carry); + } + } + + /// Mul small integer to bigint. + #[inline] + pub fn mul(x: &[Limb], y: Limb) -> Vec<Limb> { + let mut z = Vec::<Limb>::default(); + z.extend_from_slice(x); + imul(&mut z, y); + z + } + + /// MulAssign by a power. + /// + /// Theoretically... + /// + /// Use an exponentiation by squaring method, since it reduces the time + /// complexity of the multiplication to ~`O(log(n))` for the squaring, + /// and `O(n*m)` for the result. Since `m` is typically a lower-order + /// factor, this significantly reduces the number of multiplications + /// we need to do. Iteratively multiplying by small powers follows + /// the nth triangular number series, which scales as `O(p^2)`, but + /// where `p` is `n+m`. In short, it scales very poorly. + /// + /// Practically.... + /// + /// Exponentiation by Squaring: + /// running 2 tests + /// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78) + /// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007) + /// + /// Exponentiation by Iterative Small Powers: + /// running 2 tests + /// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31) + /// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47) + /// + /// Exponentiation by Iterative Large Powers (of 2): + /// running 2 tests + /// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31) + /// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47) + /// + /// Even using worst-case scenarios, exponentiation by squaring is + /// significantly slower for our workloads. Just multiply by small powers, + /// in simple cases, and use precalculated large powers in other cases. + pub fn imul_pow5(x: &mut Vec<Limb>, n: u32) { + use super::large::KARATSUBA_CUTOFF; + + let small_powers = POW5_LIMB; + let large_powers = large_powers::POW5; + + if n == 0 { + // No exponent, just return. + // The 0-index of the large powers is `2^0`, which is 1, so we want + // to make sure we don't take that path with a literal 0. + return; + } + + // We want to use the asymptotically faster algorithm if we're going + // to be using Karabatsu multiplication sometime during the result, + // otherwise, just use exponentiation by squaring. + let bit_length = 32 - n.leading_zeros() as usize; + debug_assert!(bit_length != 0 && bit_length <= large_powers.len()); + if x.len() + large_powers[bit_length - 1].len() < 2 * KARATSUBA_CUTOFF { + // We can use iterative small powers to make this faster for the + // easy cases. + + // Multiply by the largest small power until n < step. + let step = small_powers.len() - 1; + let power = small_powers[step]; + let mut n = n as usize; + while n >= step { + imul(x, power); + n -= step; + } + + // Multiply by the remainder. + imul(x, small_powers[n]); + } else { + // In theory, this code should be asymptotically a lot faster, + // in practice, our small::imul seems to be the limiting step, + // and large imul is slow as well. + + // Multiply by higher order powers. + let mut idx: usize = 0; + let mut bit: usize = 1; + let mut n = n as usize; + while n != 0 { + if n & bit != 0 { + debug_assert!(idx < large_powers.len()); + large::imul(x, large_powers[idx]); + n ^= bit; + } + idx += 1; + bit <<= 1; + } + } + } + + // BIT LENGTH + + /// Get number of leading zero bits in the storage. + #[inline] + pub fn leading_zeros(x: &[Limb]) -> usize { + x.last().map_or(0, |x| x.leading_zeros() as usize) + } + + /// Calculate the bit-length of the big-integer. + #[inline] + pub fn bit_length(x: &[Limb]) -> usize { + let bits = mem::size_of::<Limb>() * 8; + // Avoid overflowing, calculate via total number of bits + // minus leading zero bits. + let nlz = leading_zeros(x); + bits.checked_mul(x.len()) + .map_or_else(usize::max_value, |v| v - nlz) + } + + // SHL + + /// Shift-left bits inside a buffer. + /// + /// Assumes `n < Limb::BITS`, IE, internally shifting bits. + #[inline] + pub fn ishl_bits(x: &mut Vec<Limb>, n: usize) { + // Need to shift by the number of `bits % Limb::BITS)`. + let bits = mem::size_of::<Limb>() * 8; + debug_assert!(n < bits); + if n == 0 { + return; + } + + // Internally, for each item, we shift left by n, and add the previous + // right shifted limb-bits. + // For example, we transform (for u8) shifted left 2, to: + // b10100100 b01000010 + // b10 b10010001 b00001000 + let rshift = bits - n; + let lshift = n; + let mut prev: Limb = 0; + for xi in &mut *x { + let tmp = *xi; + *xi <<= lshift; + *xi |= prev >> rshift; + prev = tmp; + } + + // Always push the carry, even if it creates a non-normal result. + let carry = prev >> rshift; + if carry != 0 { + x.push(carry); + } + } + + /// Shift-left `n` digits inside a buffer. + /// + /// Assumes `n` is not 0. + #[inline] + pub fn ishl_limbs(x: &mut Vec<Limb>, n: usize) { + debug_assert!(n != 0); + if !x.is_empty() { + x.reserve(n); + x.splice(..0, iter::repeat(0).take(n)); + } + } + + /// Shift-left buffer by n bits. + #[inline] + pub fn ishl(x: &mut Vec<Limb>, n: usize) { + let bits = mem::size_of::<Limb>() * 8; + // Need to pad with zeros for the number of `bits / Limb::BITS`, + // and shift-left with carry for `bits % Limb::BITS`. + let rem = n % bits; + let div = n / bits; + ishl_bits(x, rem); + if div != 0 { + ishl_limbs(x, div); + } + } + + // NORMALIZE + + /// Normalize the container by popping any leading zeros. + #[inline] + pub fn normalize(x: &mut Vec<Limb>) { + // Remove leading zero if we cause underflow. Since we're dividing + // by a small power, we have at max 1 int removed. + while x.last() == Some(&0) { + x.pop(); + } + } +} // small + +// LARGE +// ----- + +// Large-to-large operations, to modify a big integer from a native scalar. + +mod large { + use super::*; + + // RELATIVE OPERATORS + + /// Compare `x` to `y`, in little-endian order. + #[inline] + pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering { + if x.len() > y.len() { + cmp::Ordering::Greater + } else if x.len() < y.len() { + cmp::Ordering::Less + } else { + let iter = x.iter().rev().zip(y.iter().rev()); + for (&xi, &yi) in iter { + if xi > yi { + return cmp::Ordering::Greater; + } else if xi < yi { + return cmp::Ordering::Less; + } + } + // Equal case. + cmp::Ordering::Equal + } + } + + /// Check if x is less than y. + #[inline] + pub fn less(x: &[Limb], y: &[Limb]) -> bool { + compare(x, y) == cmp::Ordering::Less + } + + /// Check if x is greater than or equal to y. + #[inline] + pub fn greater_equal(x: &[Limb], y: &[Limb]) -> bool { + !less(x, y) + } + + // ADDITION + + /// Implied AddAssign implementation for bigints. + /// + /// Allows us to choose a start-index in x to store, so we can avoid + /// padding the buffer with zeros when not needed, optimized for vectors. + pub fn iadd_impl(x: &mut Vec<Limb>, y: &[Limb], xstart: usize) { + // The effective x buffer is from `xstart..x.len()`, so we need to treat + // that as the current range. If the effective y buffer is longer, need + // to resize to that, + the start index. + if y.len() > x.len() - xstart { + x.resize(y.len() + xstart, 0); + } + + // Iteratively add elements from y to x. + let mut carry = false; + for (xi, yi) in x[xstart..].iter_mut().zip(y.iter()) { + // Only one op of the two can overflow, since we added at max + // Limb::max_value() + Limb::max_value(). Add the previous carry, + // and store the current carry for the next. + let mut tmp = scalar::iadd(xi, *yi); + if carry { + tmp |= scalar::iadd(xi, 1); + } + carry = tmp; + } + + // Overflow from the previous bit. + if carry { + small::iadd_impl(x, 1, y.len() + xstart); + } + } + + /// AddAssign bigint to bigint. + #[inline] + pub fn iadd(x: &mut Vec<Limb>, y: &[Limb]) { + iadd_impl(x, y, 0); + } + + /// Add bigint to bigint. + #[inline] + pub fn add(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + let mut z = Vec::<Limb>::default(); + z.extend_from_slice(x); + iadd(&mut z, y); + z + } + + // SUBTRACTION + + /// SubAssign bigint to bigint. + pub fn isub(x: &mut Vec<Limb>, y: &[Limb]) { + // Basic underflow checks. + debug_assert!(greater_equal(x, y)); + + // Iteratively add elements from y to x. + let mut carry = false; + for (xi, yi) in x.iter_mut().zip(y.iter()) { + // Only one op of the two can overflow, since we added at max + // Limb::max_value() + Limb::max_value(). Add the previous carry, + // and store the current carry for the next. + let mut tmp = scalar::isub(xi, *yi); + if carry { + tmp |= scalar::isub(xi, 1); + } + carry = tmp; + } + + if carry { + small::isub_impl(x, 1, y.len()); + } else { + small::normalize(x); + } + } + + // MULTIPLICATION + + /// Number of digits to bottom-out to asymptotically slow algorithms. + /// + /// Karatsuba tends to out-perform long-multiplication at ~320-640 bits, + /// so we go halfway, while Newton division tends to out-perform + /// Algorithm D at ~1024 bits. We can toggle this for optimal performance. + pub const KARATSUBA_CUTOFF: usize = 32; + + /// Grade-school multiplication algorithm. + /// + /// Slow, naive algorithm, using limb-bit bases and just shifting left for + /// each iteration. This could be optimized with numerous other algorithms, + /// but it's extremely simple, and works in O(n*m) time, which is fine + /// by me. Each iteration, of which there are `m` iterations, requires + /// `n` multiplications, and `n` additions, or grade-school multiplication. + fn long_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + // Using the immutable value, multiply by all the scalars in y, using + // the algorithm defined above. Use a single buffer to avoid + // frequent reallocations. Handle the first case to avoid a redundant + // addition, since we know y.len() >= 1. + let mut z: Vec<Limb> = small::mul(x, y[0]); + z.resize(x.len() + y.len(), 0); + + // Handle the iterative cases. + for (i, &yi) in y[1..].iter().enumerate() { + let zi: Vec<Limb> = small::mul(x, yi); + iadd_impl(&mut z, &zi, i + 1); + } + + small::normalize(&mut z); + + z + } + + /// Split two buffers into halfway, into (lo, hi). + #[inline] + pub fn karatsuba_split(z: &[Limb], m: usize) -> (&[Limb], &[Limb]) { + (&z[..m], &z[m..]) + } + + /// Karatsuba multiplication algorithm with roughly equal input sizes. + /// + /// Assumes `y.len() >= x.len()`. + fn karatsuba_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + if y.len() <= KARATSUBA_CUTOFF { + // Bottom-out to long division for small cases. + long_mul(x, y) + } else if x.len() < y.len() / 2 { + karatsuba_uneven_mul(x, y) + } else { + // Do our 3 multiplications. + let m = y.len() / 2; + let (xl, xh) = karatsuba_split(x, m); + let (yl, yh) = karatsuba_split(y, m); + let sumx = add(xl, xh); + let sumy = add(yl, yh); + let z0 = karatsuba_mul(xl, yl); + let mut z1 = karatsuba_mul(&sumx, &sumy); + let z2 = karatsuba_mul(xh, yh); + // Properly scale z1, which is `z1 - z2 - zo`. + isub(&mut z1, &z2); + isub(&mut z1, &z0); + + // Create our result, which is equal to, in little-endian order: + // [z0, z1 - z2 - z0, z2] + // z1 must be shifted m digits (2^(32m)) over. + // z2 must be shifted 2*m digits (2^(64m)) over. + let len = z0.len().max(m + z1.len()).max(2 * m + z2.len()); + let mut result = z0; + result.reserve_exact(len - result.len()); + iadd_impl(&mut result, &z1, m); + iadd_impl(&mut result, &z2, 2 * m); + + result + } + } + + /// Karatsuba multiplication algorithm where y is substantially larger than x. + /// + /// Assumes `y.len() >= x.len()`. + fn karatsuba_uneven_mul(x: &[Limb], mut y: &[Limb]) -> Vec<Limb> { + let mut result = Vec::<Limb>::default(); + result.resize(x.len() + y.len(), 0); + + // This effectively is like grade-school multiplication between + // two numbers, except we're using splits on `y`, and the intermediate + // step is a Karatsuba multiplication. + let mut start = 0; + while !y.is_empty() { + let m = x.len().min(y.len()); + let (yl, yh) = karatsuba_split(y, m); + let prod = karatsuba_mul(x, yl); + iadd_impl(&mut result, &prod, start); + y = yh; + start += m; + } + small::normalize(&mut result); + + result + } + + /// Forwarder to the proper Karatsuba algorithm. + #[inline] + fn karatsuba_mul_fwd(x: &[Limb], y: &[Limb]) -> Vec<Limb> { + if x.len() < y.len() { + karatsuba_mul(x, y) + } else { + karatsuba_mul(y, x) + } + } + + /// MulAssign bigint to bigint. + #[inline] + pub fn imul(x: &mut Vec<Limb>, y: &[Limb]) { + if y.len() == 1 { + small::imul(x, y[0]); + } else { + // We're not really in a condition where using Karatsuba + // multiplication makes sense, so we're just going to use long + // division. ~20% speedup compared to: + // *x = karatsuba_mul_fwd(x, y); + *x = karatsuba_mul_fwd(x, y); + } + } +} // large + +// TRAITS +// ------ + +/// Traits for shared operations for big integers. +/// +/// None of these are implemented using normal traits, since these +/// are very expensive operations, and we want to deliberately +/// and explicitly use these functions. +pub(crate) trait Math: Clone + Sized + Default { + // DATA + + /// Get access to the underlying data + fn data(&self) -> &Vec<Limb>; + + /// Get access to the underlying data + fn data_mut(&mut self) -> &mut Vec<Limb>; + + // RELATIVE OPERATIONS + + /// Compare self to y. + #[inline] + fn compare(&self, y: &Self) -> cmp::Ordering { + large::compare(self.data(), y.data()) + } + + // PROPERTIES + + /// Get the high 64-bits from the bigint and if there are remaining bits. + #[inline] + fn hi64(&self) -> (u64, bool) { + self.data().as_slice().hi64() + } + + /// Calculate the bit-length of the big-integer. + /// Returns usize::max_value() if the value overflows, + /// IE, if `self.data().len() > usize::max_value() / 8`. + #[inline] + fn bit_length(&self) -> usize { + small::bit_length(self.data()) + } + + // INTEGER CONVERSIONS + + /// Create new big integer from u64. + #[inline] + fn from_u64(x: u64) -> Self { + let mut v = Self::default(); + let slc = split_u64(x); + v.data_mut().extend_from_slice(&slc); + v.normalize(); + v + } + + // NORMALIZE + + /// Normalize the integer, so any leading zero values are removed. + #[inline] + fn normalize(&mut self) { + small::normalize(self.data_mut()); + } + + // ADDITION + + /// AddAssign small integer. + #[inline] + fn iadd_small(&mut self, y: Limb) { + small::iadd(self.data_mut(), y); + } + + // MULTIPLICATION + + /// MulAssign small integer. + #[inline] + fn imul_small(&mut self, y: Limb) { + small::imul(self.data_mut(), y); + } + + /// Multiply by a power of 2. + #[inline] + fn imul_pow2(&mut self, n: u32) { + self.ishl(n as usize); + } + + /// Multiply by a power of 5. + #[inline] + fn imul_pow5(&mut self, n: u32) { + small::imul_pow5(self.data_mut(), n); + } + + /// MulAssign by a power of 10. + #[inline] + fn imul_pow10(&mut self, n: u32) { + self.imul_pow5(n); + self.imul_pow2(n); + } + + // SHIFTS + + /// Shift-left the entire buffer n bits. + #[inline] + fn ishl(&mut self, n: usize) { + small::ishl(self.data_mut(), n); + } +} diff --git a/vendor/serde_json/src/lexical/mod.rs b/vendor/serde_json/src/lexical/mod.rs new file mode 100644 index 0000000..b1a45e2 --- /dev/null +++ b/vendor/serde_json/src/lexical/mod.rs @@ -0,0 +1,38 @@ +// The code in this module is derived from the `lexical` crate by @Alexhuszagh +// which the author condensed into this minimal subset for use in serde_json. +// For the serde_json use case we care more about reliably round tripping all +// possible floating point values than about parsing any arbitrarily long string +// of digits with perfect accuracy, as the latter would take a high cost in +// compile time and performance. +// +// Dual licensed as MIT and Apache 2.0 just like the rest of serde_json, but +// copyright Alexander Huszagh. + +//! Fast, minimal float-parsing algorithm. + +// MODULES +pub(crate) mod algorithm; +mod bhcomp; +mod bignum; +mod cached; +mod cached_float80; +mod digit; +mod errors; +pub(crate) mod exponent; +pub(crate) mod float; +mod large_powers; +pub(crate) mod math; +pub(crate) mod num; +pub(crate) mod parse; +pub(crate) mod rounding; +mod shift; +mod small_powers; + +#[cfg(limb_width_32)] +mod large_powers32; + +#[cfg(limb_width_64)] +mod large_powers64; + +// API +pub use self::parse::{parse_concise_float, parse_truncated_float}; diff --git a/vendor/serde_json/src/lexical/num.rs b/vendor/serde_json/src/lexical/num.rs new file mode 100644 index 0000000..e47e003 --- /dev/null +++ b/vendor/serde_json/src/lexical/num.rs @@ -0,0 +1,440 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Utilities for Rust numbers. + +use core::ops; + +/// Precalculated values of radix**i for i in range [0, arr.len()-1]. +/// Each value can be **exactly** represented as that type. +const F32_POW10: [f32; 11] = [ + 1.0, + 10.0, + 100.0, + 1000.0, + 10000.0, + 100000.0, + 1000000.0, + 10000000.0, + 100000000.0, + 1000000000.0, + 10000000000.0, +]; + +/// Precalculated values of radix**i for i in range [0, arr.len()-1]. +/// Each value can be **exactly** represented as that type. +const F64_POW10: [f64; 23] = [ + 1.0, + 10.0, + 100.0, + 1000.0, + 10000.0, + 100000.0, + 1000000.0, + 10000000.0, + 100000000.0, + 1000000000.0, + 10000000000.0, + 100000000000.0, + 1000000000000.0, + 10000000000000.0, + 100000000000000.0, + 1000000000000000.0, + 10000000000000000.0, + 100000000000000000.0, + 1000000000000000000.0, + 10000000000000000000.0, + 100000000000000000000.0, + 1000000000000000000000.0, + 10000000000000000000000.0, +]; + +/// Type that can be converted to primitive with `as`. +pub trait AsPrimitive: Sized + Copy + PartialOrd { + fn as_u32(self) -> u32; + fn as_u64(self) -> u64; + fn as_u128(self) -> u128; + fn as_usize(self) -> usize; + fn as_f32(self) -> f32; + fn as_f64(self) -> f64; +} + +macro_rules! as_primitive_impl { + ($($ty:ident)*) => { + $( + impl AsPrimitive for $ty { + #[inline] + fn as_u32(self) -> u32 { + self as u32 + } + + #[inline] + fn as_u64(self) -> u64 { + self as u64 + } + + #[inline] + fn as_u128(self) -> u128 { + self as u128 + } + + #[inline] + fn as_usize(self) -> usize { + self as usize + } + + #[inline] + fn as_f32(self) -> f32 { + self as f32 + } + + #[inline] + fn as_f64(self) -> f64 { + self as f64 + } + } + )* + }; +} + +as_primitive_impl! { u32 u64 u128 usize f32 f64 } + +/// An interface for casting between machine scalars. +pub trait AsCast: AsPrimitive { + /// Creates a number from another value that can be converted into + /// a primitive via the `AsPrimitive` trait. + fn as_cast<N: AsPrimitive>(n: N) -> Self; +} + +macro_rules! as_cast_impl { + ($ty:ident, $method:ident) => { + impl AsCast for $ty { + #[inline] + fn as_cast<N: AsPrimitive>(n: N) -> Self { + n.$method() + } + } + }; +} + +as_cast_impl!(u32, as_u32); +as_cast_impl!(u64, as_u64); +as_cast_impl!(u128, as_u128); +as_cast_impl!(usize, as_usize); +as_cast_impl!(f32, as_f32); +as_cast_impl!(f64, as_f64); + +/// Numerical type trait. +pub trait Number: AsCast + ops::Add<Output = Self> {} + +macro_rules! number_impl { + ($($ty:ident)*) => { + $( + impl Number for $ty {} + )* + }; +} + +number_impl! { u32 u64 u128 usize f32 f64 } + +/// Defines a trait that supports integral operations. +pub trait Integer: Number + ops::BitAnd<Output = Self> + ops::Shr<i32, Output = Self> { + const ZERO: Self; +} + +macro_rules! integer_impl { + ($($ty:tt)*) => { + $( + impl Integer for $ty { + const ZERO: Self = 0; + } + )* + }; +} + +integer_impl! { u32 u64 u128 usize } + +/// Type trait for the mantissa type. +pub trait Mantissa: Integer { + /// Mask to extract the high bits from the integer. + const HIMASK: Self; + /// Mask to extract the low bits from the integer. + const LOMASK: Self; + /// Full size of the integer, in bits. + const FULL: i32; + /// Half size of the integer, in bits. + const HALF: i32 = Self::FULL / 2; +} + +impl Mantissa for u64 { + const HIMASK: u64 = 0xFFFFFFFF00000000; + const LOMASK: u64 = 0x00000000FFFFFFFF; + const FULL: i32 = 64; +} + +/// Get exact exponent limit for radix. +pub trait Float: Number { + /// Unsigned type of the same size. + type Unsigned: Integer; + + /// Literal zero. + const ZERO: Self; + /// Maximum number of digits that can contribute in the mantissa. + /// + /// We can exactly represent a float in radix `b` from radix 2 if + /// `b` is divisible by 2. This function calculates the exact number of + /// digits required to exactly represent that float. + /// + /// According to the "Handbook of Floating Point Arithmetic", + /// for IEEE754, with emin being the min exponent, p2 being the + /// precision, and b being the radix, the number of digits follows as: + /// + /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋` + /// + /// For f32, this follows as: + /// emin = -126 + /// p2 = 24 + /// + /// For f64, this follows as: + /// emin = -1022 + /// p2 = 53 + /// + /// In Python: + /// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))` + /// + /// This was used to calculate the maximum number of digits for [2, 36]. + const MAX_DIGITS: usize; + + // MASKS + + /// Bitmask for the sign bit. + const SIGN_MASK: Self::Unsigned; + /// Bitmask for the exponent, including the hidden bit. + const EXPONENT_MASK: Self::Unsigned; + /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction. + const HIDDEN_BIT_MASK: Self::Unsigned; + /// Bitmask for the mantissa (fraction), excluding the hidden bit. + const MANTISSA_MASK: Self::Unsigned; + + // PROPERTIES + + /// Positive infinity as bits. + const INFINITY_BITS: Self::Unsigned; + /// Positive infinity as bits. + const NEGATIVE_INFINITY_BITS: Self::Unsigned; + /// Size of the significand (mantissa) without hidden bit. + const MANTISSA_SIZE: i32; + /// Bias of the exponet + const EXPONENT_BIAS: i32; + /// Exponent portion of a denormal float. + const DENORMAL_EXPONENT: i32; + /// Maximum exponent value in float. + const MAX_EXPONENT: i32; + + // ROUNDING + + /// Default number of bits to shift (or 64 - mantissa size - 1). + const DEFAULT_SHIFT: i32; + /// Mask to determine if a full-carry occurred (1 in bit above hidden bit). + const CARRY_MASK: u64; + + /// Get min and max exponent limits (exact) from radix. + fn exponent_limit() -> (i32, i32); + + /// Get the number of digits that can be shifted from exponent to mantissa. + fn mantissa_limit() -> i32; + + // Re-exported methods from std. + fn pow10(self, n: i32) -> Self; + fn from_bits(u: Self::Unsigned) -> Self; + fn to_bits(self) -> Self::Unsigned; + fn is_sign_positive(self) -> bool; + fn is_sign_negative(self) -> bool; + + /// Returns true if the float is a denormal. + #[inline] + fn is_denormal(self) -> bool { + self.to_bits() & Self::EXPONENT_MASK == Self::Unsigned::ZERO + } + + /// Returns true if the float is a NaN or Infinite. + #[inline] + fn is_special(self) -> bool { + self.to_bits() & Self::EXPONENT_MASK == Self::EXPONENT_MASK + } + + /// Returns true if the float is infinite. + #[inline] + fn is_inf(self) -> bool { + self.is_special() && (self.to_bits() & Self::MANTISSA_MASK) == Self::Unsigned::ZERO + } + + /// Get exponent component from the float. + #[inline] + fn exponent(self) -> i32 { + if self.is_denormal() { + return Self::DENORMAL_EXPONENT; + } + + let bits = self.to_bits(); + let biased_e = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE).as_u32(); + biased_e as i32 - Self::EXPONENT_BIAS + } + + /// Get mantissa (significand) component from float. + #[inline] + fn mantissa(self) -> Self::Unsigned { + let bits = self.to_bits(); + let s = bits & Self::MANTISSA_MASK; + if !self.is_denormal() { + s + Self::HIDDEN_BIT_MASK + } else { + s + } + } + + /// Get next greater float for a positive float. + /// Value must be >= 0.0 and < INFINITY. + #[inline] + fn next_positive(self) -> Self { + debug_assert!(self.is_sign_positive() && !self.is_inf()); + Self::from_bits(self.to_bits() + Self::Unsigned::as_cast(1u32)) + } + + /// Round a positive number to even. + #[inline] + fn round_positive_even(self) -> Self { + if self.mantissa() & Self::Unsigned::as_cast(1u32) == Self::Unsigned::as_cast(1u32) { + self.next_positive() + } else { + self + } + } +} + +impl Float for f32 { + type Unsigned = u32; + + const ZERO: f32 = 0.0; + const MAX_DIGITS: usize = 114; + const SIGN_MASK: u32 = 0x80000000; + const EXPONENT_MASK: u32 = 0x7F800000; + const HIDDEN_BIT_MASK: u32 = 0x00800000; + const MANTISSA_MASK: u32 = 0x007FFFFF; + const INFINITY_BITS: u32 = 0x7F800000; + const NEGATIVE_INFINITY_BITS: u32 = Self::INFINITY_BITS | Self::SIGN_MASK; + const MANTISSA_SIZE: i32 = 23; + const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE; + const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; + const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS; + const DEFAULT_SHIFT: i32 = u64::FULL - f32::MANTISSA_SIZE - 1; + const CARRY_MASK: u64 = 0x1000000; + + #[inline] + fn exponent_limit() -> (i32, i32) { + (-10, 10) + } + + #[inline] + fn mantissa_limit() -> i32 { + 7 + } + + #[inline] + fn pow10(self, n: i32) -> f32 { + // Check the exponent is within bounds in debug builds. + debug_assert!({ + let (min, max) = Self::exponent_limit(); + n >= min && n <= max + }); + + if n > 0 { + self * F32_POW10[n as usize] + } else { + self / F32_POW10[-n as usize] + } + } + + #[inline] + fn from_bits(u: u32) -> f32 { + f32::from_bits(u) + } + + #[inline] + fn to_bits(self) -> u32 { + f32::to_bits(self) + } + + #[inline] + fn is_sign_positive(self) -> bool { + f32::is_sign_positive(self) + } + + #[inline] + fn is_sign_negative(self) -> bool { + f32::is_sign_negative(self) + } +} + +impl Float for f64 { + type Unsigned = u64; + + const ZERO: f64 = 0.0; + const MAX_DIGITS: usize = 769; + const SIGN_MASK: u64 = 0x8000000000000000; + const EXPONENT_MASK: u64 = 0x7FF0000000000000; + const HIDDEN_BIT_MASK: u64 = 0x0010000000000000; + const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF; + const INFINITY_BITS: u64 = 0x7FF0000000000000; + const NEGATIVE_INFINITY_BITS: u64 = Self::INFINITY_BITS | Self::SIGN_MASK; + const MANTISSA_SIZE: i32 = 52; + const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE; + const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; + const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS; + const DEFAULT_SHIFT: i32 = u64::FULL - f64::MANTISSA_SIZE - 1; + const CARRY_MASK: u64 = 0x20000000000000; + + #[inline] + fn exponent_limit() -> (i32, i32) { + (-22, 22) + } + + #[inline] + fn mantissa_limit() -> i32 { + 15 + } + + #[inline] + fn pow10(self, n: i32) -> f64 { + // Check the exponent is within bounds in debug builds. + debug_assert!({ + let (min, max) = Self::exponent_limit(); + n >= min && n <= max + }); + + if n > 0 { + self * F64_POW10[n as usize] + } else { + self / F64_POW10[-n as usize] + } + } + + #[inline] + fn from_bits(u: u64) -> f64 { + f64::from_bits(u) + } + + #[inline] + fn to_bits(self) -> u64 { + f64::to_bits(self) + } + + #[inline] + fn is_sign_positive(self) -> bool { + f64::is_sign_positive(self) + } + + #[inline] + fn is_sign_negative(self) -> bool { + f64::is_sign_negative(self) + } +} diff --git a/vendor/serde_json/src/lexical/parse.rs b/vendor/serde_json/src/lexical/parse.rs new file mode 100644 index 0000000..e3d7f1e --- /dev/null +++ b/vendor/serde_json/src/lexical/parse.rs @@ -0,0 +1,83 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +use super::algorithm::*; +use super::bhcomp::*; +use super::digit::*; +use super::exponent::*; +use super::num::*; + +// PARSERS +// ------- + +/// Parse float for which the entire integer and fraction parts fit into a 64 +/// bit mantissa. +pub fn parse_concise_float<F>(mantissa: u64, mant_exp: i32) -> F +where + F: Float, +{ + if let Some(float) = fast_path(mantissa, mant_exp) { + return float; + } + + // Moderate path (use an extended 80-bit representation). + let truncated = false; + let (fp, valid) = moderate_path::<F>(mantissa, mant_exp, truncated); + if valid { + return fp.into_float::<F>(); + } + + let b = fp.into_downward_float::<F>(); + if b.is_special() { + // We have a non-finite number, we get to leave early. + return b; + } + + // Slow path, fast path didn't work. + let mut buffer = itoa::Buffer::new(); + let integer = buffer.format(mantissa).as_bytes(); + let fraction = &[]; + bhcomp(b, integer, fraction, mant_exp) +} + +/// Parse float from extracted float components. +/// +/// * `integer` - Slice containing the integer digits. +/// * `fraction` - Slice containing the fraction digits. +/// * `exponent` - Parsed, 32-bit exponent. +/// +/// Precondition: The integer must not have leading zeros. +pub fn parse_truncated_float<F>(integer: &[u8], mut fraction: &[u8], exponent: i32) -> F +where + F: Float, +{ + // Trim trailing zeroes from the fraction part. + while fraction.last() == Some(&b'0') { + fraction = &fraction[..fraction.len() - 1]; + } + + // Calculate the number of truncated digits. + let mut truncated = 0; + let mut mantissa: u64 = 0; + let mut iter = integer.iter().chain(fraction); + for &c in &mut iter { + mantissa = match add_digit(mantissa, to_digit(c).unwrap()) { + Some(v) => v, + None => { + truncated = 1 + iter.count(); + break; + } + }; + } + + let mant_exp = mantissa_exponent(exponent, fraction.len(), truncated); + let is_truncated = true; + + fallback_path( + integer, + fraction, + mantissa, + exponent, + mant_exp, + is_truncated, + ) +} diff --git a/vendor/serde_json/src/lexical/rounding.rs b/vendor/serde_json/src/lexical/rounding.rs new file mode 100644 index 0000000..6ec1292 --- /dev/null +++ b/vendor/serde_json/src/lexical/rounding.rs @@ -0,0 +1,231 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Defines rounding schemes for floating-point numbers. + +use super::float::ExtendedFloat; +use super::num::*; +use super::shift::*; +use core::mem; + +// MASKS + +/// Calculate a scalar factor of 2 above the halfway point. +#[inline] +pub(crate) fn nth_bit(n: u64) -> u64 { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!(n < bits, "nth_bit() overflow in shl."); + + 1 << n +} + +/// Generate a bitwise mask for the lower `n` bits. +#[inline] +pub(crate) fn lower_n_mask(n: u64) -> u64 { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!(n <= bits, "lower_n_mask() overflow in shl."); + + if n == bits { + u64::max_value() + } else { + (1 << n) - 1 + } +} + +/// Calculate the halfway point for the lower `n` bits. +#[inline] +pub(crate) fn lower_n_halfway(n: u64) -> u64 { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!(n <= bits, "lower_n_halfway() overflow in shl."); + + if n == 0 { + 0 + } else { + nth_bit(n - 1) + } +} + +/// Calculate a bitwise mask with `n` 1 bits starting at the `bit` position. +#[inline] +pub(crate) fn internal_n_mask(bit: u64, n: u64) -> u64 { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!(bit <= bits, "internal_n_halfway() overflow in shl."); + debug_assert!(n <= bits, "internal_n_halfway() overflow in shl."); + debug_assert!(bit >= n, "internal_n_halfway() overflow in sub."); + + lower_n_mask(bit) ^ lower_n_mask(bit - n) +} + +// NEAREST ROUNDING + +// Shift right N-bytes and round to the nearest. +// +// Return if we are above halfway and if we are halfway. +#[inline] +pub(crate) fn round_nearest(fp: &mut ExtendedFloat, shift: i32) -> (bool, bool) { + // Extract the truncated bits using mask. + // Calculate if the value of the truncated bits are either above + // the mid-way point, or equal to it. + // + // For example, for 4 truncated bytes, the mask would be b1111 + // and the midway point would be b1000. + let mask: u64 = lower_n_mask(shift as u64); + let halfway: u64 = lower_n_halfway(shift as u64); + + let truncated_bits = fp.mant & mask; + let is_above = truncated_bits > halfway; + let is_halfway = truncated_bits == halfway; + + // Bit shift so the leading bit is in the hidden bit. + overflowing_shr(fp, shift); + + (is_above, is_halfway) +} + +// Tie rounded floating point to event. +#[inline] +pub(crate) fn tie_even(fp: &mut ExtendedFloat, is_above: bool, is_halfway: bool) { + // Extract the last bit after shifting (and determine if it is odd). + let is_odd = fp.mant & 1 == 1; + + // Calculate if we need to roundup. + // We need to roundup if we are above halfway, or if we are odd + // and at half-way (need to tie-to-even). + if is_above || (is_odd && is_halfway) { + fp.mant += 1; + } +} + +// Shift right N-bytes and round nearest, tie-to-even. +// +// Floating-point arithmetic uses round to nearest, ties to even, +// which rounds to the nearest value, if the value is halfway in between, +// round to an even value. +#[inline] +pub(crate) fn round_nearest_tie_even(fp: &mut ExtendedFloat, shift: i32) { + let (is_above, is_halfway) = round_nearest(fp, shift); + tie_even(fp, is_above, is_halfway); +} + +// DIRECTED ROUNDING + +// Shift right N-bytes and round towards a direction. +// +// Return if we have any truncated bytes. +#[inline] +fn round_toward(fp: &mut ExtendedFloat, shift: i32) -> bool { + let mask: u64 = lower_n_mask(shift as u64); + let truncated_bits = fp.mant & mask; + + // Bit shift so the leading bit is in the hidden bit. + overflowing_shr(fp, shift); + + truncated_bits != 0 +} + +// Round down. +#[inline] +fn downard(_: &mut ExtendedFloat, _: bool) {} + +// Shift right N-bytes and round toward zero. +// +// Floating-point arithmetic defines round toward zero, which rounds +// towards positive zero. +#[inline] +pub(crate) fn round_downward(fp: &mut ExtendedFloat, shift: i32) { + // Bit shift so the leading bit is in the hidden bit. + // No rounding schemes, so we just ignore everything else. + let is_truncated = round_toward(fp, shift); + downard(fp, is_truncated); +} + +// ROUND TO FLOAT + +// Shift the ExtendedFloat fraction to the fraction bits in a native float. +// +// Floating-point arithmetic uses round to nearest, ties to even, +// which rounds to the nearest value, if the value is halfway in between, +// round to an even value. +#[inline] +pub(crate) fn round_to_float<F, Algorithm>(fp: &mut ExtendedFloat, algorithm: Algorithm) +where + F: Float, + Algorithm: FnOnce(&mut ExtendedFloat, i32), +{ + // Calculate the difference to allow a single calculation + // rather than a loop, to minimize the number of ops required. + // This does underflow detection. + let final_exp = fp.exp + F::DEFAULT_SHIFT; + if final_exp < F::DENORMAL_EXPONENT { + // We would end up with a denormal exponent, try to round to more + // digits. Only shift right if we can avoid zeroing out the value, + // which requires the exponent diff to be < M::BITS. The value + // is already normalized, so we shouldn't have any issue zeroing + // out the value. + let diff = F::DENORMAL_EXPONENT - fp.exp; + if diff <= u64::FULL { + // We can avoid underflow, can get a valid representation. + algorithm(fp, diff); + } else { + // Certain underflow, assign literal 0s. + fp.mant = 0; + fp.exp = 0; + } + } else { + algorithm(fp, F::DEFAULT_SHIFT); + } + + if fp.mant & F::CARRY_MASK == F::CARRY_MASK { + // Roundup carried over to 1 past the hidden bit. + shr(fp, 1); + } +} + +// AVOID OVERFLOW/UNDERFLOW + +// Avoid overflow for large values, shift left as needed. +// +// Shift until a 1-bit is in the hidden bit, if the mantissa is not 0. +#[inline] +pub(crate) fn avoid_overflow<F>(fp: &mut ExtendedFloat) +where + F: Float, +{ + // Calculate the difference to allow a single calculation + // rather than a loop, minimizing the number of ops required. + if fp.exp >= F::MAX_EXPONENT { + let diff = fp.exp - F::MAX_EXPONENT; + if diff <= F::MANTISSA_SIZE { + // Our overflow mask needs to start at the hidden bit, or at + // `F::MANTISSA_SIZE+1`, and needs to have `diff+1` bits set, + // to see if our value overflows. + let bit = (F::MANTISSA_SIZE + 1) as u64; + let n = (diff + 1) as u64; + let mask = internal_n_mask(bit, n); + if (fp.mant & mask) == 0 { + // If we have no 1-bit in the hidden-bit position, + // which is index 0, we need to shift 1. + let shift = diff + 1; + shl(fp, shift); + } + } + } +} + +// ROUND TO NATIVE + +// Round an extended-precision float to a native float representation. +#[inline] +pub(crate) fn round_to_native<F, Algorithm>(fp: &mut ExtendedFloat, algorithm: Algorithm) +where + F: Float, + Algorithm: FnOnce(&mut ExtendedFloat, i32), +{ + // Shift all the way left, to ensure a consistent representation. + // The following right-shifts do not work for a non-normalized number. + fp.normalize(); + + // Round so the fraction is in a native mantissa representation, + // and avoid overflow/underflow. + round_to_float::<F, _>(fp, algorithm); + avoid_overflow::<F>(fp); +} diff --git a/vendor/serde_json/src/lexical/shift.rs b/vendor/serde_json/src/lexical/shift.rs new file mode 100644 index 0000000..a0bae01 --- /dev/null +++ b/vendor/serde_json/src/lexical/shift.rs @@ -0,0 +1,46 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Bit-shift helpers. + +use super::float::ExtendedFloat; +use core::mem; + +// Shift extended-precision float right `shift` bytes. +#[inline] +pub(crate) fn shr(fp: &mut ExtendedFloat, shift: i32) { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!((shift as u64) < bits, "shr() overflow in shift right."); + + fp.mant >>= shift; + fp.exp += shift; +} + +// Shift extended-precision float right `shift` bytes. +// +// Accepts when the shift is the same as the type size, and +// sets the value to 0. +#[inline] +pub(crate) fn overflowing_shr(fp: &mut ExtendedFloat, shift: i32) { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!( + (shift as u64) <= bits, + "overflowing_shr() overflow in shift right." + ); + + fp.mant = if shift as u64 == bits { + 0 + } else { + fp.mant >> shift + }; + fp.exp += shift; +} + +// Shift extended-precision float left `shift` bytes. +#[inline] +pub(crate) fn shl(fp: &mut ExtendedFloat, shift: i32) { + let bits: u64 = mem::size_of::<u64>() as u64 * 8; + debug_assert!((shift as u64) < bits, "shl() overflow in shift left."); + + fp.mant <<= shift; + fp.exp -= shift; +} diff --git a/vendor/serde_json/src/lexical/small_powers.rs b/vendor/serde_json/src/lexical/small_powers.rs new file mode 100644 index 0000000..219d826 --- /dev/null +++ b/vendor/serde_json/src/lexical/small_powers.rs @@ -0,0 +1,70 @@ +// Adapted from https://github.com/Alexhuszagh/rust-lexical. + +//! Pre-computed small powers. + +// 32 BIT +#[cfg(limb_width_32)] +pub(crate) const POW5_32: [u32; 14] = [ + 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, + 1220703125, +]; + +#[cfg(limb_width_32)] +pub(crate) const POW10_32: [u32; 10] = [ + 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, +]; + +// 64 BIT +#[cfg(limb_width_64)] +pub(crate) const POW5_64: [u64; 28] = [ + 1, + 5, + 25, + 125, + 625, + 3125, + 15625, + 78125, + 390625, + 1953125, + 9765625, + 48828125, + 244140625, + 1220703125, + 6103515625, + 30517578125, + 152587890625, + 762939453125, + 3814697265625, + 19073486328125, + 95367431640625, + 476837158203125, + 2384185791015625, + 11920928955078125, + 59604644775390625, + 298023223876953125, + 1490116119384765625, + 7450580596923828125, +]; +pub(crate) const POW10_64: [u64; 20] = [ + 1, + 10, + 100, + 1000, + 10000, + 100000, + 1000000, + 10000000, + 100000000, + 1000000000, + 10000000000, + 100000000000, + 1000000000000, + 10000000000000, + 100000000000000, + 1000000000000000, + 10000000000000000, + 100000000000000000, + 1000000000000000000, + 10000000000000000000, +]; |