aboutsummaryrefslogtreecommitdiff
path: root/vendor/spin/src/mutex/spin.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/spin/src/mutex/spin.rs')
-rw-r--r--vendor/spin/src/mutex/spin.rs543
1 files changed, 0 insertions, 543 deletions
diff --git a/vendor/spin/src/mutex/spin.rs b/vendor/spin/src/mutex/spin.rs
deleted file mode 100644
index fc97472..0000000
--- a/vendor/spin/src/mutex/spin.rs
+++ /dev/null
@@ -1,543 +0,0 @@
-//! A naïve spinning mutex.
-//!
-//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case
-//! latency is theoretically infinite.
-
-use crate::{
- atomic::{AtomicBool, Ordering},
- RelaxStrategy, Spin,
-};
-use core::{
- cell::UnsafeCell,
- fmt,
- marker::PhantomData,
- mem::ManuallyDrop,
- ops::{Deref, DerefMut},
-};
-
-/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data.
-///
-/// # Example
-///
-/// ```
-/// use spin;
-///
-/// let lock = spin::mutex::SpinMutex::<_>::new(0);
-///
-/// // Modify the data
-/// *lock.lock() = 2;
-///
-/// // Read the data
-/// let answer = *lock.lock();
-/// assert_eq!(answer, 2);
-/// ```
-///
-/// # Thread safety example
-///
-/// ```
-/// use spin;
-/// use std::sync::{Arc, Barrier};
-///
-/// let thread_count = 1000;
-/// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0));
-///
-/// // We use a barrier to ensure the readout happens after all writing
-/// let barrier = Arc::new(Barrier::new(thread_count + 1));
-///
-/// # let mut ts = Vec::new();
-/// for _ in (0..thread_count) {
-/// let my_barrier = barrier.clone();
-/// let my_lock = spin_mutex.clone();
-/// # let t =
-/// std::thread::spawn(move || {
-/// let mut guard = my_lock.lock();
-/// *guard += 1;
-///
-/// // Release the lock to prevent a deadlock
-/// drop(guard);
-/// my_barrier.wait();
-/// });
-/// # ts.push(t);
-/// }
-///
-/// barrier.wait();
-///
-/// let answer = { *spin_mutex.lock() };
-/// assert_eq!(answer, thread_count);
-///
-/// # for t in ts {
-/// # t.join().unwrap();
-/// # }
-/// ```
-pub struct SpinMutex<T: ?Sized, R = Spin> {
- phantom: PhantomData<R>,
- pub(crate) lock: AtomicBool,
- data: UnsafeCell<T>,
-}
-
-/// A guard that provides mutable data access.
-///
-/// When the guard falls out of scope it will release the lock.
-pub struct SpinMutexGuard<'a, T: ?Sized + 'a> {
- lock: &'a AtomicBool,
- data: *mut T,
-}
-
-// Same unsafe impls as `std::sync::Mutex`
-unsafe impl<T: ?Sized + Send, R> Sync for SpinMutex<T, R> {}
-unsafe impl<T: ?Sized + Send, R> Send for SpinMutex<T, R> {}
-
-unsafe impl<T: ?Sized + Sync> Sync for SpinMutexGuard<'_, T> {}
-unsafe impl<T: ?Sized + Send> Send for SpinMutexGuard<'_, T> {}
-
-impl<T, R> SpinMutex<T, R> {
- /// Creates a new [`SpinMutex`] wrapping the supplied data.
- ///
- /// # Example
- ///
- /// ```
- /// use spin::mutex::SpinMutex;
- ///
- /// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(());
- ///
- /// fn demo() {
- /// let lock = MUTEX.lock();
- /// // do something with lock
- /// drop(lock);
- /// }
- /// ```
- #[inline(always)]
- pub const fn new(data: T) -> Self {
- SpinMutex {
- lock: AtomicBool::new(false),
- data: UnsafeCell::new(data),
- phantom: PhantomData,
- }
- }
-
- /// Consumes this [`SpinMutex`] and unwraps the underlying data.
- ///
- /// # Example
- ///
- /// ```
- /// let lock = spin::mutex::SpinMutex::<_>::new(42);
- /// assert_eq!(42, lock.into_inner());
- /// ```
- #[inline(always)]
- pub fn into_inner(self) -> T {
- // We know statically that there are no outstanding references to
- // `self` so there's no need to lock.
- let SpinMutex { data, .. } = self;
- data.into_inner()
- }
-
- /// Returns a mutable pointer to the underlying data.
- ///
- /// This is mostly meant to be used for applications which require manual unlocking, but where
- /// storing both the lock and the pointer to the inner data gets inefficient.
- ///
- /// # Example
- /// ```
- /// let lock = spin::mutex::SpinMutex::<_>::new(42);
- ///
- /// unsafe {
- /// core::mem::forget(lock.lock());
- ///
- /// assert_eq!(lock.as_mut_ptr().read(), 42);
- /// lock.as_mut_ptr().write(58);
- ///
- /// lock.force_unlock();
- /// }
- ///
- /// assert_eq!(*lock.lock(), 58);
- ///
- /// ```
- #[inline(always)]
- pub fn as_mut_ptr(&self) -> *mut T {
- self.data.get()
- }
-}
-
-impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R> {
- /// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data.
- ///
- /// The returned value may be dereferenced for data access
- /// and the lock will be dropped when the guard falls out of scope.
- ///
- /// ```
- /// let lock = spin::mutex::SpinMutex::<_>::new(0);
- /// {
- /// let mut data = lock.lock();
- /// // The lock is now locked and the data can be accessed
- /// *data += 1;
- /// // The lock is implicitly dropped at the end of the scope
- /// }
- /// ```
- #[inline(always)]
- pub fn lock(&self) -> SpinMutexGuard<T> {
- // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
- // when called in a loop.
- while self
- .lock
- .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
- .is_err()
- {
- // Wait until the lock looks unlocked before retrying
- while self.is_locked() {
- R::relax();
- }
- }
-
- SpinMutexGuard {
- lock: &self.lock,
- data: unsafe { &mut *self.data.get() },
- }
- }
-}
-
-impl<T: ?Sized, R> SpinMutex<T, R> {
- /// Returns `true` if the lock is currently held.
- ///
- /// # Safety
- ///
- /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
- /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
- #[inline(always)]
- pub fn is_locked(&self) -> bool {
- self.lock.load(Ordering::Relaxed)
- }
-
- /// Force unlock this [`SpinMutex`].
- ///
- /// # Safety
- ///
- /// This is *extremely* unsafe if the lock is not held by the current
- /// thread. However, this can be useful in some instances for exposing the
- /// lock to FFI that doesn't know how to deal with RAII.
- #[inline(always)]
- pub unsafe fn force_unlock(&self) {
- self.lock.store(false, Ordering::Release);
- }
-
- /// Try to lock this [`SpinMutex`], returning a lock guard if successful.
- ///
- /// # Example
- ///
- /// ```
- /// let lock = spin::mutex::SpinMutex::<_>::new(42);
- ///
- /// let maybe_guard = lock.try_lock();
- /// assert!(maybe_guard.is_some());
- ///
- /// // `maybe_guard` is still held, so the second call fails
- /// let maybe_guard2 = lock.try_lock();
- /// assert!(maybe_guard2.is_none());
- /// ```
- #[inline(always)]
- pub fn try_lock(&self) -> Option<SpinMutexGuard<T>> {
- // The reason for using a strong compare_exchange is explained here:
- // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
- if self
- .lock
- .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
- .is_ok()
- {
- Some(SpinMutexGuard {
- lock: &self.lock,
- data: unsafe { &mut *self.data.get() },
- })
- } else {
- None
- }
- }
-
- /// Returns a mutable reference to the underlying data.
- ///
- /// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
- /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
- /// such, this is a 'zero-cost' operation.
- ///
- /// # Example
- ///
- /// ```
- /// let mut lock = spin::mutex::SpinMutex::<_>::new(0);
- /// *lock.get_mut() = 10;
- /// assert_eq!(*lock.lock(), 10);
- /// ```
- #[inline(always)]
- pub fn get_mut(&mut self) -> &mut T {
- // We know statically that there are no other references to `self`, so
- // there's no need to lock the inner mutex.
- unsafe { &mut *self.data.get() }
- }
-}
-
-impl<T: ?Sized + fmt::Debug, R> fmt::Debug for SpinMutex<T, R> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- match self.try_lock() {
- Some(guard) => write!(f, "Mutex {{ data: ")
- .and_then(|()| (&*guard).fmt(f))
- .and_then(|()| write!(f, "}}")),
- None => write!(f, "Mutex {{ <locked> }}"),
- }
- }
-}
-
-impl<T: ?Sized + Default, R> Default for SpinMutex<T, R> {
- fn default() -> Self {
- Self::new(Default::default())
- }
-}
-
-impl<T, R> From<T> for SpinMutex<T, R> {
- fn from(data: T) -> Self {
- Self::new(data)
- }
-}
-
-impl<'a, T: ?Sized> SpinMutexGuard<'a, T> {
- /// Leak the lock guard, yielding a mutable reference to the underlying data.
- ///
- /// Note that this function will permanently lock the original [`SpinMutex`].
- ///
- /// ```
- /// let mylock = spin::mutex::SpinMutex::<_>::new(0);
- ///
- /// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock());
- ///
- /// *data = 1;
- /// assert_eq!(*data, 1);
- /// ```
- #[inline(always)]
- pub fn leak(this: Self) -> &'a mut T {
- // Use ManuallyDrop to avoid stacked-borrow invalidation
- let mut this = ManuallyDrop::new(this);
- // We know statically that only we are referencing data
- unsafe { &mut *this.data }
- }
-}
-
-impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- fmt::Debug::fmt(&**self, f)
- }
-}
-
-impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- fmt::Display::fmt(&**self, f)
- }
-}
-
-impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> {
- type Target = T;
- fn deref(&self) -> &T {
- // We know statically that only we are referencing data
- unsafe { &*self.data }
- }
-}
-
-impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> {
- fn deref_mut(&mut self) -> &mut T {
- // We know statically that only we are referencing data
- unsafe { &mut *self.data }
- }
-}
-
-impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> {
- /// The dropping of the MutexGuard will release the lock it was created from.
- fn drop(&mut self) {
- self.lock.store(false, Ordering::Release);
- }
-}
-
-#[cfg(feature = "lock_api")]
-unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for SpinMutex<(), R> {
- type GuardMarker = lock_api_crate::GuardSend;
-
- const INIT: Self = Self::new(());
-
- fn lock(&self) {
- // Prevent guard destructor running
- core::mem::forget(Self::lock(self));
- }
-
- fn try_lock(&self) -> bool {
- // Prevent guard destructor running
- Self::try_lock(self).map(core::mem::forget).is_some()
- }
-
- unsafe fn unlock(&self) {
- self.force_unlock();
- }
-
- fn is_locked(&self) -> bool {
- Self::is_locked(self)
- }
-}
-
-#[cfg(test)]
-mod tests {
- use std::prelude::v1::*;
-
- use std::sync::atomic::{AtomicUsize, Ordering};
- use std::sync::mpsc::channel;
- use std::sync::Arc;
- use std::thread;
-
- type SpinMutex<T> = super::SpinMutex<T>;
-
- #[derive(Eq, PartialEq, Debug)]
- struct NonCopy(i32);
-
- #[test]
- fn smoke() {
- let m = SpinMutex::<_>::new(());
- drop(m.lock());
- drop(m.lock());
- }
-
- #[test]
- fn lots_and_lots() {
- static M: SpinMutex<()> = SpinMutex::<_>::new(());
- static mut CNT: u32 = 0;
- const J: u32 = 1000;
- const K: u32 = 3;
-
- fn inc() {
- for _ in 0..J {
- unsafe {
- let _g = M.lock();
- CNT += 1;
- }
- }
- }
-
- let (tx, rx) = channel();
- let mut ts = Vec::new();
- for _ in 0..K {
- let tx2 = tx.clone();
- ts.push(thread::spawn(move || {
- inc();
- tx2.send(()).unwrap();
- }));
- let tx2 = tx.clone();
- ts.push(thread::spawn(move || {
- inc();
- tx2.send(()).unwrap();
- }));
- }
-
- drop(tx);
- for _ in 0..2 * K {
- rx.recv().unwrap();
- }
- assert_eq!(unsafe { CNT }, J * K * 2);
-
- for t in ts {
- t.join().unwrap();
- }
- }
-
- #[test]
- fn try_lock() {
- let mutex = SpinMutex::<_>::new(42);
-
- // First lock succeeds
- let a = mutex.try_lock();
- assert_eq!(a.as_ref().map(|r| **r), Some(42));
-
- // Additional lock fails
- let b = mutex.try_lock();
- assert!(b.is_none());
-
- // After dropping lock, it succeeds again
- ::core::mem::drop(a);
- let c = mutex.try_lock();
- assert_eq!(c.as_ref().map(|r| **r), Some(42));
- }
-
- #[test]
- fn test_into_inner() {
- let m = SpinMutex::<_>::new(NonCopy(10));
- assert_eq!(m.into_inner(), NonCopy(10));
- }
-
- #[test]
- fn test_into_inner_drop() {
- struct Foo(Arc<AtomicUsize>);
- impl Drop for Foo {
- fn drop(&mut self) {
- self.0.fetch_add(1, Ordering::SeqCst);
- }
- }
- let num_drops = Arc::new(AtomicUsize::new(0));
- let m = SpinMutex::<_>::new(Foo(num_drops.clone()));
- assert_eq!(num_drops.load(Ordering::SeqCst), 0);
- {
- let _inner = m.into_inner();
- assert_eq!(num_drops.load(Ordering::SeqCst), 0);
- }
- assert_eq!(num_drops.load(Ordering::SeqCst), 1);
- }
-
- #[test]
- fn test_mutex_arc_nested() {
- // Tests nested mutexes and access
- // to underlying data.
- let arc = Arc::new(SpinMutex::<_>::new(1));
- let arc2 = Arc::new(SpinMutex::<_>::new(arc));
- let (tx, rx) = channel();
- let t = thread::spawn(move || {
- let lock = arc2.lock();
- let lock2 = lock.lock();
- assert_eq!(*lock2, 1);
- tx.send(()).unwrap();
- });
- rx.recv().unwrap();
- t.join().unwrap();
- }
-
- #[test]
- fn test_mutex_arc_access_in_unwind() {
- let arc = Arc::new(SpinMutex::<_>::new(1));
- let arc2 = arc.clone();
- let _ = thread::spawn(move || -> () {
- struct Unwinder {
- i: Arc<SpinMutex<i32>>,
- }
- impl Drop for Unwinder {
- fn drop(&mut self) {
- *self.i.lock() += 1;
- }
- }
- let _u = Unwinder { i: arc2 };
- panic!();
- })
- .join();
- let lock = arc.lock();
- assert_eq!(*lock, 2);
- }
-
- #[test]
- fn test_mutex_unsized() {
- let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]);
- {
- let b = &mut *mutex.lock();
- b[0] = 4;
- b[2] = 5;
- }
- let comp: &[i32] = &[4, 2, 5];
- assert_eq!(&*mutex.lock(), comp);
- }
-
- #[test]
- fn test_mutex_force_lock() {
- let lock = SpinMutex::<_>::new(());
- ::std::mem::forget(lock.lock());
- unsafe {
- lock.force_unlock();
- }
- assert!(lock.try_lock().is_some());
- }
-}