aboutsummaryrefslogtreecommitdiff
path: root/vendor/spin/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/spin/src')
-rw-r--r--vendor/spin/src/barrier.rs239
-rw-r--r--vendor/spin/src/lazy.rs118
-rw-r--r--vendor/spin/src/lib.rs221
-rw-r--r--vendor/spin/src/mutex.rs340
-rw-r--r--vendor/spin/src/mutex/fair.rs735
-rw-r--r--vendor/spin/src/mutex/spin.rs543
-rw-r--r--vendor/spin/src/mutex/ticket.rs537
-rw-r--r--vendor/spin/src/once.rs789
-rw-r--r--vendor/spin/src/relax.rs61
-rw-r--r--vendor/spin/src/rwlock.rs1165
10 files changed, 4748 insertions, 0 deletions
diff --git a/vendor/spin/src/barrier.rs b/vendor/spin/src/barrier.rs
new file mode 100644
index 0000000..c3a1c92
--- /dev/null
+++ b/vendor/spin/src/barrier.rs
@@ -0,0 +1,239 @@
+//! Synchronization primitive allowing multiple threads to synchronize the
+//! beginning of some computation.
+//!
+//! Implementation adapted from the 'Barrier' type of the standard library. See:
+//! <https://doc.rust-lang.org/std/sync/struct.Barrier.html>
+//!
+//! Copyright 2014 The Rust Project Developers. See the COPYRIGHT
+//! file at the top-level directory of this distribution and at
+//! <http://rust-lang.org/COPYRIGHT>.
+//!
+//! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+//! <http://www.apache.org/licenses/LICENSE-2.0>> or the MIT license
+//! <LICENSE-MIT or <http://opensource.org/licenses/MIT>>, at your
+//! option. This file may not be copied, modified, or distributed
+//! except according to those terms.
+
+use crate::{mutex::Mutex, RelaxStrategy, Spin};
+
+/// A primitive that synchronizes the execution of multiple threads.
+///
+/// # Example
+///
+/// ```
+/// use spin;
+/// use std::sync::Arc;
+/// use std::thread;
+///
+/// let mut handles = Vec::with_capacity(10);
+/// let barrier = Arc::new(spin::Barrier::new(10));
+/// for _ in 0..10 {
+/// let c = barrier.clone();
+/// // The same messages will be printed together.
+/// // You will NOT see any interleaving.
+/// handles.push(thread::spawn(move|| {
+/// println!("before wait");
+/// c.wait();
+/// println!("after wait");
+/// }));
+/// }
+/// // Wait for other threads to finish.
+/// for handle in handles {
+/// handle.join().unwrap();
+/// }
+/// ```
+pub struct Barrier<R = Spin> {
+ lock: Mutex<BarrierState, R>,
+ num_threads: usize,
+}
+
+// The inner state of a double barrier
+struct BarrierState {
+ count: usize,
+ generation_id: usize,
+}
+
+/// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`]
+/// have rendezvoused.
+///
+/// [`wait`]: struct.Barrier.html#method.wait
+/// [`Barrier`]: struct.Barrier.html
+///
+/// # Examples
+///
+/// ```
+/// use spin;
+///
+/// let barrier = spin::Barrier::new(1);
+/// let barrier_wait_result = barrier.wait();
+/// ```
+pub struct BarrierWaitResult(bool);
+
+impl<R: RelaxStrategy> Barrier<R> {
+ /// Blocks the current thread until all threads have rendezvoused here.
+ ///
+ /// Barriers are re-usable after all threads have rendezvoused once, and can
+ /// be used continuously.
+ ///
+ /// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that
+ /// returns `true` from [`is_leader`] when returning from this function, and
+ /// all other threads will receive a result that will return `false` from
+ /// [`is_leader`].
+ ///
+ /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html
+ /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use spin;
+ /// use std::sync::Arc;
+ /// use std::thread;
+ ///
+ /// let mut handles = Vec::with_capacity(10);
+ /// let barrier = Arc::new(spin::Barrier::new(10));
+ /// for _ in 0..10 {
+ /// let c = barrier.clone();
+ /// // The same messages will be printed together.
+ /// // You will NOT see any interleaving.
+ /// handles.push(thread::spawn(move|| {
+ /// println!("before wait");
+ /// c.wait();
+ /// println!("after wait");
+ /// }));
+ /// }
+ /// // Wait for other threads to finish.
+ /// for handle in handles {
+ /// handle.join().unwrap();
+ /// }
+ /// ```
+ pub fn wait(&self) -> BarrierWaitResult {
+ let mut lock = self.lock.lock();
+ lock.count += 1;
+
+ if lock.count < self.num_threads {
+ // not the leader
+ let local_gen = lock.generation_id;
+
+ while local_gen == lock.generation_id && lock.count < self.num_threads {
+ drop(lock);
+ R::relax();
+ lock = self.lock.lock();
+ }
+ BarrierWaitResult(false)
+ } else {
+ // this thread is the leader,
+ // and is responsible for incrementing the generation
+ lock.count = 0;
+ lock.generation_id = lock.generation_id.wrapping_add(1);
+ BarrierWaitResult(true)
+ }
+ }
+}
+
+impl<R> Barrier<R> {
+ /// Creates a new barrier that can block a given number of threads.
+ ///
+ /// A barrier will block `n`-1 threads which call [`wait`] and then wake up
+ /// all threads at once when the `n`th thread calls [`wait`]. A Barrier created
+ /// with n = 0 will behave identically to one created with n = 1.
+ ///
+ /// [`wait`]: #method.wait
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use spin;
+ ///
+ /// let barrier = spin::Barrier::new(10);
+ /// ```
+ pub const fn new(n: usize) -> Self {
+ Self {
+ lock: Mutex::new(BarrierState {
+ count: 0,
+ generation_id: 0,
+ }),
+ num_threads: n,
+ }
+ }
+}
+
+impl BarrierWaitResult {
+ /// Returns whether this thread from [`wait`] is the "leader thread".
+ ///
+ /// Only one thread will have `true` returned from their result, all other
+ /// threads will have `false` returned.
+ ///
+ /// [`wait`]: struct.Barrier.html#method.wait
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use spin;
+ ///
+ /// let barrier = spin::Barrier::new(1);
+ /// let barrier_wait_result = barrier.wait();
+ /// println!("{:?}", barrier_wait_result.is_leader());
+ /// ```
+ pub fn is_leader(&self) -> bool {
+ self.0
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::mpsc::{channel, TryRecvError};
+ use std::sync::Arc;
+ use std::thread;
+
+ type Barrier = super::Barrier;
+
+ fn use_barrier(n: usize, barrier: Arc<Barrier>) {
+ let (tx, rx) = channel();
+
+ let mut ts = Vec::new();
+ for _ in 0..n - 1 {
+ let c = barrier.clone();
+ let tx = tx.clone();
+ ts.push(thread::spawn(move || {
+ tx.send(c.wait().is_leader()).unwrap();
+ }));
+ }
+
+ // At this point, all spawned threads should be blocked,
+ // so we shouldn't get anything from the port
+ assert!(match rx.try_recv() {
+ Err(TryRecvError::Empty) => true,
+ _ => false,
+ });
+
+ let mut leader_found = barrier.wait().is_leader();
+
+ // Now, the barrier is cleared and we should get data.
+ for _ in 0..n - 1 {
+ if rx.recv().unwrap() {
+ assert!(!leader_found);
+ leader_found = true;
+ }
+ }
+ assert!(leader_found);
+
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn test_barrier() {
+ const N: usize = 10;
+
+ let barrier = Arc::new(Barrier::new(N));
+
+ use_barrier(N, barrier.clone());
+
+ // use barrier twice to ensure it is reusable
+ use_barrier(N, barrier.clone());
+ }
+}
diff --git a/vendor/spin/src/lazy.rs b/vendor/spin/src/lazy.rs
new file mode 100644
index 0000000..6e5efe4
--- /dev/null
+++ b/vendor/spin/src/lazy.rs
@@ -0,0 +1,118 @@
+//! Synchronization primitives for lazy evaluation.
+//!
+//! Implementation adapted from the `SyncLazy` type of the standard library. See:
+//! <https://doc.rust-lang.org/std/lazy/struct.SyncLazy.html>
+
+use crate::{once::Once, RelaxStrategy, Spin};
+use core::{cell::Cell, fmt, ops::Deref};
+
+/// A value which is initialized on the first access.
+///
+/// This type is a thread-safe `Lazy`, and can be used in statics.
+///
+/// # Examples
+///
+/// ```
+/// use std::collections::HashMap;
+/// use spin::Lazy;
+///
+/// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| {
+/// println!("initializing");
+/// let mut m = HashMap::new();
+/// m.insert(13, "Spica".to_string());
+/// m.insert(74, "Hoyten".to_string());
+/// m
+/// });
+///
+/// fn main() {
+/// println!("ready");
+/// std::thread::spawn(|| {
+/// println!("{:?}", HASHMAP.get(&13));
+/// }).join().unwrap();
+/// println!("{:?}", HASHMAP.get(&74));
+///
+/// // Prints:
+/// // ready
+/// // initializing
+/// // Some("Spica")
+/// // Some("Hoyten")
+/// }
+/// ```
+pub struct Lazy<T, F = fn() -> T, R = Spin> {
+ cell: Once<T, R>,
+ init: Cell<Option<F>>,
+}
+
+impl<T: fmt::Debug, F, R> fmt::Debug for Lazy<T, F, R> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Lazy")
+ .field("cell", &self.cell)
+ .field("init", &"..")
+ .finish()
+ }
+}
+
+// We never create a `&F` from a `&Lazy<T, F>` so it is fine
+// to not impl `Sync` for `F`
+// we do create a `&mut Option<F>` in `force`, but this is
+// properly synchronized, so it only happens once
+// so it also does not contribute to this impl.
+unsafe impl<T, F: Send> Sync for Lazy<T, F> where Once<T>: Sync {}
+// auto-derived `Send` impl is OK.
+
+impl<T, F, R> Lazy<T, F, R> {
+ /// Creates a new lazy value with the given initializing
+ /// function.
+ pub const fn new(f: F) -> Self {
+ Self {
+ cell: Once::new(),
+ init: Cell::new(Some(f)),
+ }
+ }
+ /// Retrieves a mutable pointer to the inner data.
+ ///
+ /// This is especially useful when interfacing with low level code or FFI where the caller
+ /// explicitly knows that it has exclusive access to the inner data. Note that reading from
+ /// this pointer is UB until initialized or directly written to.
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.cell.as_mut_ptr()
+ }
+}
+
+impl<T, F: FnOnce() -> T, R: RelaxStrategy> Lazy<T, F, R> {
+ /// Forces the evaluation of this lazy value and
+ /// returns a reference to result. This is equivalent
+ /// to the `Deref` impl, but is explicit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use spin::Lazy;
+ ///
+ /// let lazy = Lazy::new(|| 92);
+ ///
+ /// assert_eq!(Lazy::force(&lazy), &92);
+ /// assert_eq!(&*lazy, &92);
+ /// ```
+ pub fn force(this: &Self) -> &T {
+ this.cell.call_once(|| match this.init.take() {
+ Some(f) => f(),
+ None => panic!("Lazy instance has previously been poisoned"),
+ })
+ }
+}
+
+impl<T, F: FnOnce() -> T, R: RelaxStrategy> Deref for Lazy<T, F, R> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ Self::force(self)
+ }
+}
+
+impl<T: Default, R> Default for Lazy<T, fn() -> T, R> {
+ /// Creates a new lazy value using `Default` as the initializing function.
+ fn default() -> Self {
+ Self::new(T::default)
+ }
+}
diff --git a/vendor/spin/src/lib.rs b/vendor/spin/src/lib.rs
new file mode 100644
index 0000000..50768bc
--- /dev/null
+++ b/vendor/spin/src/lib.rs
@@ -0,0 +1,221 @@
+#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
+#![cfg_attr(docsrs, feature(doc_cfg))]
+#![deny(missing_docs)]
+
+//! This crate provides [spin-based](https://en.wikipedia.org/wiki/Spinlock) versions of the
+//! primitives in `std::sync` and `std::lazy`. Because synchronization is done through spinning,
+//! the primitives are suitable for use in `no_std` environments.
+//!
+//! # Features
+//!
+//! - `Mutex`, `RwLock`, `Once`/`SyncOnceCell`, and `SyncLazy` equivalents
+//!
+//! - Support for `no_std` environments
+//!
+//! - [`lock_api`](https://crates.io/crates/lock_api) compatibility
+//!
+//! - Upgradeable `RwLock` guards
+//!
+//! - Guards can be sent and shared between threads
+//!
+//! - Guard leaking
+//!
+//! - Ticket locks
+//!
+//! - Different strategies for dealing with contention
+//!
+//! # Relationship with `std::sync`
+//!
+//! While `spin` is not a drop-in replacement for `std::sync` (and
+//! [should not be considered as such](https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html))
+//! an effort is made to keep this crate reasonably consistent with `std::sync`.
+//!
+//! Many of the types defined in this crate have 'additional capabilities' when compared to `std::sync`:
+//!
+//! - Because spinning does not depend on the thread-driven model of `std::sync`, guards ([`MutexGuard`],
+//! [`RwLockReadGuard`], [`RwLockWriteGuard`], etc.) may be sent and shared between threads.
+//!
+//! - [`RwLockUpgradableGuard`] supports being upgraded into a [`RwLockWriteGuard`].
+//!
+//! - Guards support [leaking](https://doc.rust-lang.org/nomicon/leaking.html).
+//!
+//! - [`Once`] owns the value returned by its `call_once` initializer.
+//!
+//! - [`RwLock`] supports counting readers and writers.
+//!
+//! Conversely, the types in this crate do not have some of the features `std::sync` has:
+//!
+//! - Locks do not track [panic poisoning](https://doc.rust-lang.org/nomicon/poisoning.html).
+//!
+//! ## Feature flags
+//!
+//! The crate comes with a few feature flags that you may wish to use.
+//!
+//! - `lock_api` enables support for [`lock_api`](https://crates.io/crates/lock_api)
+//!
+//! - `ticket_mutex` uses a ticket lock for the implementation of `Mutex`
+//!
+//! - `fair_mutex` enables a fairer implementation of `Mutex` that uses eventual fairness to avoid
+//! starvation
+//!
+//! - `std` enables support for thread yielding instead of spinning
+
+#[cfg(any(test, feature = "std"))]
+extern crate core;
+
+#[cfg(feature = "portable_atomic")]
+extern crate portable_atomic;
+
+#[cfg(not(feature = "portable_atomic"))]
+use core::sync::atomic;
+#[cfg(feature = "portable_atomic")]
+use portable_atomic as atomic;
+
+#[cfg(feature = "barrier")]
+#[cfg_attr(docsrs, doc(cfg(feature = "barrier")))]
+pub mod barrier;
+#[cfg(feature = "lazy")]
+#[cfg_attr(docsrs, doc(cfg(feature = "lazy")))]
+pub mod lazy;
+#[cfg(feature = "mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))]
+pub mod mutex;
+#[cfg(feature = "once")]
+#[cfg_attr(docsrs, doc(cfg(feature = "once")))]
+pub mod once;
+pub mod relax;
+#[cfg(feature = "rwlock")]
+#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+pub mod rwlock;
+
+#[cfg(feature = "mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))]
+pub use mutex::MutexGuard;
+#[cfg(feature = "std")]
+#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
+pub use relax::Yield;
+pub use relax::{RelaxStrategy, Spin};
+#[cfg(feature = "rwlock")]
+#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+pub use rwlock::RwLockReadGuard;
+
+// Avoid confusing inference errors by aliasing away the relax strategy parameter. Users that need to use a different
+// relax strategy can do so by accessing the types through their fully-qualified path. This is a little bit horrible
+// but sadly adding a default type parameter is *still* a breaking change in Rust (for understandable reasons).
+
+/// A primitive that synchronizes the execution of multiple threads. See [`barrier::Barrier`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "barrier")]
+#[cfg_attr(docsrs, doc(cfg(feature = "barrier")))]
+pub type Barrier = crate::barrier::Barrier;
+
+/// A value which is initialized on the first access. See [`lazy::Lazy`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "lazy")]
+#[cfg_attr(docsrs, doc(cfg(feature = "lazy")))]
+pub type Lazy<T, F = fn() -> T> = crate::lazy::Lazy<T, F>;
+
+/// A primitive that synchronizes the execution of multiple threads. See [`mutex::Mutex`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))]
+pub type Mutex<T> = crate::mutex::Mutex<T>;
+
+/// A primitive that provides lazy one-time initialization. See [`once::Once`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "once")]
+#[cfg_attr(docsrs, doc(cfg(feature = "once")))]
+pub type Once<T = ()> = crate::once::Once<T>;
+
+/// A lock that provides data access to either one writer or many readers. See [`rwlock::RwLock`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "rwlock")]
+#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+pub type RwLock<T> = crate::rwlock::RwLock<T>;
+
+/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`]. See
+/// [`rwlock::RwLockUpgradableGuard`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "rwlock")]
+#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+pub type RwLockUpgradableGuard<'a, T> = crate::rwlock::RwLockUpgradableGuard<'a, T>;
+
+/// A guard that provides mutable data access. See [`rwlock::RwLockWriteGuard`] for documentation.
+///
+/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax
+/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path.
+#[cfg(feature = "rwlock")]
+#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+pub type RwLockWriteGuard<'a, T> = crate::rwlock::RwLockWriteGuard<'a, T>;
+
+/// Spin synchronisation primitives, but compatible with [`lock_api`](https://crates.io/crates/lock_api).
+#[cfg(feature = "lock_api")]
+#[cfg_attr(docsrs, doc(cfg(feature = "lock_api")))]
+pub mod lock_api {
+ /// A lock that provides mutually exclusive data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)).
+ #[cfg(feature = "mutex")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "mutex")))]
+ pub type Mutex<T> = lock_api_crate::Mutex<crate::Mutex<()>, T>;
+
+ /// A guard that provides mutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)).
+ #[cfg(feature = "mutex")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "mutex")))]
+ pub type MutexGuard<'a, T> = lock_api_crate::MutexGuard<'a, crate::Mutex<()>, T>;
+
+ /// A lock that provides data access to either one writer or many readers (compatible with [`lock_api`](https://crates.io/crates/lock_api)).
+ #[cfg(feature = "rwlock")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+ pub type RwLock<T> = lock_api_crate::RwLock<crate::RwLock<()>, T>;
+
+ /// A guard that provides immutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)).
+ #[cfg(feature = "rwlock")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+ pub type RwLockReadGuard<'a, T> = lock_api_crate::RwLockReadGuard<'a, crate::RwLock<()>, T>;
+
+ /// A guard that provides mutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)).
+ #[cfg(feature = "rwlock")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+ pub type RwLockWriteGuard<'a, T> = lock_api_crate::RwLockWriteGuard<'a, crate::RwLock<()>, T>;
+
+ /// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`] (compatible with [`lock_api`](https://crates.io/crates/lock_api)).
+ #[cfg(feature = "rwlock")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))]
+ pub type RwLockUpgradableReadGuard<'a, T> =
+ lock_api_crate::RwLockUpgradableReadGuard<'a, crate::RwLock<()>, T>;
+}
+
+/// In the event of an invalid operation, it's best to abort the current process.
+#[cfg(feature = "fair_mutex")]
+fn abort() -> ! {
+ #[cfg(not(feature = "std"))]
+ {
+ // Panicking while panicking is defined by Rust to result in an abort.
+ struct Panic;
+
+ impl Drop for Panic {
+ fn drop(&mut self) {
+ panic!("aborting due to invalid operation");
+ }
+ }
+
+ let _panic = Panic;
+ panic!("aborting due to invalid operation");
+ }
+
+ #[cfg(feature = "std")]
+ {
+ std::process::abort();
+ }
+}
diff --git a/vendor/spin/src/mutex.rs b/vendor/spin/src/mutex.rs
new file mode 100644
index 0000000..e333d8a
--- /dev/null
+++ b/vendor/spin/src/mutex.rs
@@ -0,0 +1,340 @@
+//! Locks that have the same behaviour as a mutex.
+//!
+//! The [`Mutex`] in the root of the crate, can be configured using the `ticket_mutex` feature.
+//! If it's enabled, [`TicketMutex`] and [`TicketMutexGuard`] will be re-exported as [`Mutex`]
+//! and [`MutexGuard`], otherwise the [`SpinMutex`] and guard will be re-exported.
+//!
+//! `ticket_mutex` is disabled by default.
+//!
+//! [`Mutex`]: ../struct.Mutex.html
+//! [`MutexGuard`]: ../struct.MutexGuard.html
+//! [`TicketMutex`]: ./struct.TicketMutex.html
+//! [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
+//! [`SpinMutex`]: ./struct.SpinMutex.html
+//! [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
+
+#[cfg(feature = "spin_mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))]
+pub mod spin;
+#[cfg(feature = "spin_mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))]
+pub use self::spin::{SpinMutex, SpinMutexGuard};
+
+#[cfg(feature = "ticket_mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))]
+pub mod ticket;
+#[cfg(feature = "ticket_mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))]
+pub use self::ticket::{TicketMutex, TicketMutexGuard};
+
+#[cfg(feature = "fair_mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))]
+pub mod fair;
+#[cfg(feature = "fair_mutex")]
+#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))]
+pub use self::fair::{FairMutex, FairMutexGuard, Starvation};
+
+use crate::{RelaxStrategy, Spin};
+use core::{
+ fmt,
+ ops::{Deref, DerefMut},
+};
+
+#[cfg(all(not(feature = "spin_mutex"), not(feature = "use_ticket_mutex")))]
+compile_error!("The `mutex` feature flag was used (perhaps through another feature?) without either `spin_mutex` or `use_ticket_mutex`. One of these is required.");
+
+#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))]
+type InnerMutex<T, R> = self::spin::SpinMutex<T, R>;
+#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))]
+type InnerMutexGuard<'a, T> = self::spin::SpinMutexGuard<'a, T>;
+
+#[cfg(feature = "use_ticket_mutex")]
+type InnerMutex<T, R> = self::ticket::TicketMutex<T, R>;
+#[cfg(feature = "use_ticket_mutex")]
+type InnerMutexGuard<'a, T> = self::ticket::TicketMutexGuard<'a, T>;
+
+/// A spin-based lock providing mutually exclusive access to data.
+///
+/// The implementation uses either a ticket mutex or a regular spin mutex depending on whether the `spin_mutex` or
+/// `ticket_mutex` feature flag is enabled.
+///
+/// # Example
+///
+/// ```
+/// use spin;
+///
+/// let lock = spin::Mutex::new(0);
+///
+/// // Modify the data
+/// *lock.lock() = 2;
+///
+/// // Read the data
+/// let answer = *lock.lock();
+/// assert_eq!(answer, 2);
+/// ```
+///
+/// # Thread safety example
+///
+/// ```
+/// use spin;
+/// use std::sync::{Arc, Barrier};
+///
+/// let thread_count = 1000;
+/// let spin_mutex = Arc::new(spin::Mutex::new(0));
+///
+/// // We use a barrier to ensure the readout happens after all writing
+/// let barrier = Arc::new(Barrier::new(thread_count + 1));
+///
+/// # let mut ts = Vec::new();
+/// for _ in (0..thread_count) {
+/// let my_barrier = barrier.clone();
+/// let my_lock = spin_mutex.clone();
+/// # let t =
+/// std::thread::spawn(move || {
+/// let mut guard = my_lock.lock();
+/// *guard += 1;
+///
+/// // Release the lock to prevent a deadlock
+/// drop(guard);
+/// my_barrier.wait();
+/// });
+/// # ts.push(t);
+/// }
+///
+/// barrier.wait();
+///
+/// let answer = { *spin_mutex.lock() };
+/// assert_eq!(answer, thread_count);
+///
+/// # for t in ts {
+/// # t.join().unwrap();
+/// # }
+/// ```
+pub struct Mutex<T: ?Sized, R = Spin> {
+ inner: InnerMutex<T, R>,
+}
+
+unsafe impl<T: ?Sized + Send, R> Sync for Mutex<T, R> {}
+unsafe impl<T: ?Sized + Send, R> Send for Mutex<T, R> {}
+
+/// A generic guard that will protect some data access and
+/// uses either a ticket lock or a normal spin mutex.
+///
+/// For more info see [`TicketMutexGuard`] or [`SpinMutexGuard`].
+///
+/// [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
+/// [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
+pub struct MutexGuard<'a, T: 'a + ?Sized> {
+ inner: InnerMutexGuard<'a, T>,
+}
+
+impl<T, R> Mutex<T, R> {
+ /// Creates a new [`Mutex`] wrapping the supplied data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use spin::Mutex;
+ ///
+ /// static MUTEX: Mutex<()> = Mutex::new(());
+ ///
+ /// fn demo() {
+ /// let lock = MUTEX.lock();
+ /// // do something with lock
+ /// drop(lock);
+ /// }
+ /// ```
+ #[inline(always)]
+ pub const fn new(value: T) -> Self {
+ Self {
+ inner: InnerMutex::new(value),
+ }
+ }
+
+ /// Consumes this [`Mutex`] and unwraps the underlying data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::Mutex::new(42);
+ /// assert_eq!(42, lock.into_inner());
+ /// ```
+ #[inline(always)]
+ pub fn into_inner(self) -> T {
+ self.inner.into_inner()
+ }
+}
+
+impl<T: ?Sized, R: RelaxStrategy> Mutex<T, R> {
+ /// Locks the [`Mutex`] and returns a guard that permits access to the inner data.
+ ///
+ /// The returned value may be dereferenced for data access
+ /// and the lock will be dropped when the guard falls out of scope.
+ ///
+ /// ```
+ /// let lock = spin::Mutex::new(0);
+ /// {
+ /// let mut data = lock.lock();
+ /// // The lock is now locked and the data can be accessed
+ /// *data += 1;
+ /// // The lock is implicitly dropped at the end of the scope
+ /// }
+ /// ```
+ #[inline(always)]
+ pub fn lock(&self) -> MutexGuard<T> {
+ MutexGuard {
+ inner: self.inner.lock(),
+ }
+ }
+}
+
+impl<T: ?Sized, R> Mutex<T, R> {
+ /// Returns `true` if the lock is currently held.
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ #[inline(always)]
+ pub fn is_locked(&self) -> bool {
+ self.inner.is_locked()
+ }
+
+ /// Force unlock this [`Mutex`].
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the lock is not held by the current
+ /// thread. However, this can be useful in some instances for exposing the
+ /// lock to FFI that doesn't know how to deal with RAII.
+ #[inline(always)]
+ pub unsafe fn force_unlock(&self) {
+ self.inner.force_unlock()
+ }
+
+ /// Try to lock this [`Mutex`], returning a lock guard if successful.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::Mutex::new(42);
+ ///
+ /// let maybe_guard = lock.try_lock();
+ /// assert!(maybe_guard.is_some());
+ ///
+ /// // `maybe_guard` is still held, so the second call fails
+ /// let maybe_guard2 = lock.try_lock();
+ /// assert!(maybe_guard2.is_none());
+ /// ```
+ #[inline(always)]
+ pub fn try_lock(&self) -> Option<MutexGuard<T>> {
+ self.inner
+ .try_lock()
+ .map(|guard| MutexGuard { inner: guard })
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in Rust,
+ /// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such,
+ /// this is a 'zero-cost' operation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let mut lock = spin::Mutex::new(0);
+ /// *lock.get_mut() = 10;
+ /// assert_eq!(*lock.lock(), 10);
+ /// ```
+ #[inline(always)]
+ pub fn get_mut(&mut self) -> &mut T {
+ self.inner.get_mut()
+ }
+}
+
+impl<T: ?Sized + fmt::Debug, R> fmt::Debug for Mutex<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&self.inner, f)
+ }
+}
+
+impl<T: ?Sized + Default, R> Default for Mutex<T, R> {
+ fn default() -> Self {
+ Self::new(Default::default())
+ }
+}
+
+impl<T, R> From<T> for Mutex<T, R> {
+ fn from(data: T) -> Self {
+ Self::new(data)
+ }
+}
+
+impl<'a, T: ?Sized> MutexGuard<'a, T> {
+ /// Leak the lock guard, yielding a mutable reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original [`Mutex`].
+ ///
+ /// ```
+ /// let mylock = spin::Mutex::new(0);
+ ///
+ /// let data: &mut i32 = spin::MutexGuard::leak(mylock.lock());
+ ///
+ /// *data = 1;
+ /// assert_eq!(*data, 1);
+ /// ```
+ #[inline(always)]
+ pub fn leak(this: Self) -> &'a mut T {
+ InnerMutexGuard::leak(this.inner)
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ &*self.inner
+ }
+}
+
+impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ &mut *self.inner
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for Mutex<(), R> {
+ type GuardMarker = lock_api_crate::GuardSend;
+
+ const INIT: Self = Self::new(());
+
+ fn lock(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(Self::lock(self));
+ }
+
+ fn try_lock(&self) -> bool {
+ // Prevent guard destructor running
+ Self::try_lock(self).map(core::mem::forget).is_some()
+ }
+
+ unsafe fn unlock(&self) {
+ self.force_unlock();
+ }
+
+ fn is_locked(&self) -> bool {
+ self.inner.is_locked()
+ }
+}
diff --git a/vendor/spin/src/mutex/fair.rs b/vendor/spin/src/mutex/fair.rs
new file mode 100644
index 0000000..db07ad6
--- /dev/null
+++ b/vendor/spin/src/mutex/fair.rs
@@ -0,0 +1,735 @@
+//! A spinning mutex with a fairer unlock algorithm.
+//!
+//! This mutex is similar to the `SpinMutex` in that it uses spinning to avoid
+//! context switches. However, it uses a fairer unlock algorithm that avoids
+//! starvation of threads that are waiting for the lock.
+
+use crate::{
+ atomic::{AtomicUsize, Ordering},
+ RelaxStrategy, Spin,
+};
+use core::{
+ cell::UnsafeCell,
+ fmt,
+ marker::PhantomData,
+ mem::ManuallyDrop,
+ ops::{Deref, DerefMut},
+};
+
+// The lowest bit of `lock` is used to indicate whether the mutex is locked or not. The rest of the bits are used to
+// store the number of starving threads.
+const LOCKED: usize = 1;
+const STARVED: usize = 2;
+
+/// Number chosen by fair roll of the dice, adjust as needed.
+const STARVATION_SPINS: usize = 1024;
+
+/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data, but with a fairer
+/// algorithm.
+///
+/// # Example
+///
+/// ```
+/// use spin;
+///
+/// let lock = spin::mutex::FairMutex::<_>::new(0);
+///
+/// // Modify the data
+/// *lock.lock() = 2;
+///
+/// // Read the data
+/// let answer = *lock.lock();
+/// assert_eq!(answer, 2);
+/// ```
+///
+/// # Thread safety example
+///
+/// ```
+/// use spin;
+/// use std::sync::{Arc, Barrier};
+///
+/// let thread_count = 1000;
+/// let spin_mutex = Arc::new(spin::mutex::FairMutex::<_>::new(0));
+///
+/// // We use a barrier to ensure the readout happens after all writing
+/// let barrier = Arc::new(Barrier::new(thread_count + 1));
+///
+/// for _ in (0..thread_count) {
+/// let my_barrier = barrier.clone();
+/// let my_lock = spin_mutex.clone();
+/// std::thread::spawn(move || {
+/// let mut guard = my_lock.lock();
+/// *guard += 1;
+///
+/// // Release the lock to prevent a deadlock
+/// drop(guard);
+/// my_barrier.wait();
+/// });
+/// }
+///
+/// barrier.wait();
+///
+/// let answer = { *spin_mutex.lock() };
+/// assert_eq!(answer, thread_count);
+/// ```
+pub struct FairMutex<T: ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ pub(crate) lock: AtomicUsize,
+ data: UnsafeCell<T>,
+}
+
+/// A guard that provides mutable data access.
+///
+/// When the guard falls out of scope it will release the lock.
+pub struct FairMutexGuard<'a, T: ?Sized + 'a> {
+ lock: &'a AtomicUsize,
+ data: *mut T,
+}
+
+/// A handle that indicates that we have been trying to acquire the lock for a while.
+///
+/// This handle is used to prevent starvation.
+pub struct Starvation<'a, T: ?Sized + 'a, R> {
+ lock: &'a FairMutex<T, R>,
+}
+
+/// Indicates whether a lock was rejected due to the lock being held by another thread or due to starvation.
+#[derive(Debug)]
+pub enum LockRejectReason {
+ /// The lock was rejected due to the lock being held by another thread.
+ Locked,
+
+ /// The lock was rejected due to starvation.
+ Starved,
+}
+
+// Same unsafe impls as `std::sync::Mutex`
+unsafe impl<T: ?Sized + Send, R> Sync for FairMutex<T, R> {}
+unsafe impl<T: ?Sized + Send, R> Send for FairMutex<T, R> {}
+
+unsafe impl<T: ?Sized + Sync> Sync for FairMutexGuard<'_, T> {}
+unsafe impl<T: ?Sized + Send> Send for FairMutexGuard<'_, T> {}
+
+impl<T, R> FairMutex<T, R> {
+ /// Creates a new [`FairMutex`] wrapping the supplied data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use spin::mutex::FairMutex;
+ ///
+ /// static MUTEX: FairMutex<()> = FairMutex::<_>::new(());
+ ///
+ /// fn demo() {
+ /// let lock = MUTEX.lock();
+ /// // do something with lock
+ /// drop(lock);
+ /// }
+ /// ```
+ #[inline(always)]
+ pub const fn new(data: T) -> Self {
+ FairMutex {
+ lock: AtomicUsize::new(0),
+ data: UnsafeCell::new(data),
+ phantom: PhantomData,
+ }
+ }
+
+ /// Consumes this [`FairMutex`] and unwraps the underlying data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::FairMutex::<_>::new(42);
+ /// assert_eq!(42, lock.into_inner());
+ /// ```
+ #[inline(always)]
+ pub fn into_inner(self) -> T {
+ // We know statically that there are no outstanding references to
+ // `self` so there's no need to lock.
+ let FairMutex { data, .. } = self;
+ data.into_inner()
+ }
+
+ /// Returns a mutable pointer to the underlying data.
+ ///
+ /// This is mostly meant to be used for applications which require manual unlocking, but where
+ /// storing both the lock and the pointer to the inner data gets inefficient.
+ ///
+ /// # Example
+ /// ```
+ /// let lock = spin::mutex::FairMutex::<_>::new(42);
+ ///
+ /// unsafe {
+ /// core::mem::forget(lock.lock());
+ ///
+ /// assert_eq!(lock.as_mut_ptr().read(), 42);
+ /// lock.as_mut_ptr().write(58);
+ ///
+ /// lock.force_unlock();
+ /// }
+ ///
+ /// assert_eq!(*lock.lock(), 58);
+ ///
+ /// ```
+ #[inline(always)]
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.data.get()
+ }
+}
+
+impl<T: ?Sized, R: RelaxStrategy> FairMutex<T, R> {
+ /// Locks the [`FairMutex`] and returns a guard that permits access to the inner data.
+ ///
+ /// The returned value may be dereferenced for data access
+ /// and the lock will be dropped when the guard falls out of scope.
+ ///
+ /// ```
+ /// let lock = spin::mutex::FairMutex::<_>::new(0);
+ /// {
+ /// let mut data = lock.lock();
+ /// // The lock is now locked and the data can be accessed
+ /// *data += 1;
+ /// // The lock is implicitly dropped at the end of the scope
+ /// }
+ /// ```
+ #[inline(always)]
+ pub fn lock(&self) -> FairMutexGuard<T> {
+ // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
+ // when called in a loop.
+ let mut spins = 0;
+ while self
+ .lock
+ .compare_exchange_weak(0, 1, Ordering::Acquire, Ordering::Relaxed)
+ .is_err()
+ {
+ // Wait until the lock looks unlocked before retrying
+ while self.is_locked() {
+ R::relax();
+
+ // If we've been spinning for a while, switch to a fairer strategy that will prevent
+ // newer users from stealing our lock from us.
+ if spins > STARVATION_SPINS {
+ return self.starve().lock();
+ }
+ spins += 1;
+ }
+ }
+
+ FairMutexGuard {
+ lock: &self.lock,
+ data: unsafe { &mut *self.data.get() },
+ }
+ }
+}
+
+impl<T: ?Sized, R> FairMutex<T, R> {
+ /// Returns `true` if the lock is currently held.
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ #[inline(always)]
+ pub fn is_locked(&self) -> bool {
+ self.lock.load(Ordering::Relaxed) & LOCKED != 0
+ }
+
+ /// Force unlock this [`FairMutex`].
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the lock is not held by the current
+ /// thread. However, this can be useful in some instances for exposing the
+ /// lock to FFI that doesn't know how to deal with RAII.
+ #[inline(always)]
+ pub unsafe fn force_unlock(&self) {
+ self.lock.fetch_and(!LOCKED, Ordering::Release);
+ }
+
+ /// Try to lock this [`FairMutex`], returning a lock guard if successful.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::FairMutex::<_>::new(42);
+ ///
+ /// let maybe_guard = lock.try_lock();
+ /// assert!(maybe_guard.is_some());
+ ///
+ /// // `maybe_guard` is still held, so the second call fails
+ /// let maybe_guard2 = lock.try_lock();
+ /// assert!(maybe_guard2.is_none());
+ /// ```
+ #[inline(always)]
+ pub fn try_lock(&self) -> Option<FairMutexGuard<T>> {
+ self.try_lock_starver().ok()
+ }
+
+ /// Tries to lock this [`FairMutex`] and returns a result that indicates whether the lock was
+ /// rejected due to a starver or not.
+ #[inline(always)]
+ pub fn try_lock_starver(&self) -> Result<FairMutexGuard<T>, LockRejectReason> {
+ match self
+ .lock
+ .compare_exchange(0, LOCKED, Ordering::Acquire, Ordering::Relaxed)
+ .unwrap_or_else(|x| x)
+ {
+ 0 => Ok(FairMutexGuard {
+ lock: &self.lock,
+ data: unsafe { &mut *self.data.get() },
+ }),
+ LOCKED => Err(LockRejectReason::Locked),
+ _ => Err(LockRejectReason::Starved),
+ }
+ }
+
+ /// Indicates that the current user has been waiting for the lock for a while
+ /// and that the lock should yield to this thread over a newly arriving thread.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::FairMutex::<_>::new(42);
+ ///
+ /// // Lock the mutex to simulate it being used by another user.
+ /// let guard1 = lock.lock();
+ ///
+ /// // Try to lock the mutex.
+ /// let guard2 = lock.try_lock();
+ /// assert!(guard2.is_none());
+ ///
+ /// // Wait for a while.
+ /// wait_for_a_while();
+ ///
+ /// // We are now starved, indicate as such.
+ /// let starve = lock.starve();
+ ///
+ /// // Once the lock is released, another user trying to lock it will
+ /// // fail.
+ /// drop(guard1);
+ /// let guard3 = lock.try_lock();
+ /// assert!(guard3.is_none());
+ ///
+ /// // However, we will be able to lock it.
+ /// let guard4 = starve.try_lock();
+ /// assert!(guard4.is_ok());
+ ///
+ /// # fn wait_for_a_while() {}
+ /// ```
+ pub fn starve(&self) -> Starvation<'_, T, R> {
+ // Add a new starver to the state.
+ if self.lock.fetch_add(STARVED, Ordering::Relaxed) > (core::isize::MAX - 1) as usize {
+ // In the event of a potential lock overflow, abort.
+ crate::abort();
+ }
+
+ Starvation { lock: self }
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the [`FairMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
+ /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
+ /// such, this is a 'zero-cost' operation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let mut lock = spin::mutex::FairMutex::<_>::new(0);
+ /// *lock.get_mut() = 10;
+ /// assert_eq!(*lock.lock(), 10);
+ /// ```
+ #[inline(always)]
+ pub fn get_mut(&mut self) -> &mut T {
+ // We know statically that there are no other references to `self`, so
+ // there's no need to lock the inner mutex.
+ unsafe { &mut *self.data.get() }
+ }
+}
+
+impl<T: ?Sized + fmt::Debug, R> fmt::Debug for FairMutex<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ struct LockWrapper<'a, T: ?Sized + fmt::Debug>(Option<FairMutexGuard<'a, T>>);
+
+ impl<T: ?Sized + fmt::Debug> fmt::Debug for LockWrapper<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match &self.0 {
+ Some(guard) => fmt::Debug::fmt(guard, f),
+ None => f.write_str("<locked>"),
+ }
+ }
+ }
+
+ f.debug_struct("FairMutex")
+ .field("data", &LockWrapper(self.try_lock()))
+ .finish()
+ }
+}
+
+impl<T: ?Sized + Default, R> Default for FairMutex<T, R> {
+ fn default() -> Self {
+ Self::new(Default::default())
+ }
+}
+
+impl<T, R> From<T> for FairMutex<T, R> {
+ fn from(data: T) -> Self {
+ Self::new(data)
+ }
+}
+
+impl<'a, T: ?Sized> FairMutexGuard<'a, T> {
+ /// Leak the lock guard, yielding a mutable reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original [`FairMutex`].
+ ///
+ /// ```
+ /// let mylock = spin::mutex::FairMutex::<_>::new(0);
+ ///
+ /// let data: &mut i32 = spin::mutex::FairMutexGuard::leak(mylock.lock());
+ ///
+ /// *data = 1;
+ /// assert_eq!(*data, 1);
+ /// ```
+ #[inline(always)]
+ pub fn leak(this: Self) -> &'a mut T {
+ // Use ManuallyDrop to avoid stacked-borrow invalidation
+ let mut this = ManuallyDrop::new(this);
+ // We know statically that only we are referencing data
+ unsafe { &mut *this.data }
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for FairMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Display> fmt::Display for FairMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized> Deref for FairMutexGuard<'a, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ // We know statically that only we are referencing data
+ unsafe { &*self.data }
+ }
+}
+
+impl<'a, T: ?Sized> DerefMut for FairMutexGuard<'a, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ // We know statically that only we are referencing data
+ unsafe { &mut *self.data }
+ }
+}
+
+impl<'a, T: ?Sized> Drop for FairMutexGuard<'a, T> {
+ /// The dropping of the MutexGuard will release the lock it was created from.
+ fn drop(&mut self) {
+ self.lock.fetch_and(!LOCKED, Ordering::Release);
+ }
+}
+
+impl<'a, T: ?Sized, R> Starvation<'a, T, R> {
+ /// Attempts the lock the mutex if we are the only starving user.
+ ///
+ /// This allows another user to lock the mutex if they are starving as well.
+ pub fn try_lock_fair(self) -> Result<FairMutexGuard<'a, T>, Self> {
+ // Try to lock the mutex.
+ if self
+ .lock
+ .lock
+ .compare_exchange(
+ STARVED,
+ STARVED | LOCKED,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ // We are the only starving user, lock the mutex.
+ Ok(FairMutexGuard {
+ lock: &self.lock.lock,
+ data: self.lock.data.get(),
+ })
+ } else {
+ // Another user is starving, fail.
+ Err(self)
+ }
+ }
+
+ /// Attempts to lock the mutex.
+ ///
+ /// If the lock is currently held by another thread, this will return `None`.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::FairMutex::<_>::new(42);
+ ///
+ /// // Lock the mutex to simulate it being used by another user.
+ /// let guard1 = lock.lock();
+ ///
+ /// // Try to lock the mutex.
+ /// let guard2 = lock.try_lock();
+ /// assert!(guard2.is_none());
+ ///
+ /// // Wait for a while.
+ /// wait_for_a_while();
+ ///
+ /// // We are now starved, indicate as such.
+ /// let starve = lock.starve();
+ ///
+ /// // Once the lock is released, another user trying to lock it will
+ /// // fail.
+ /// drop(guard1);
+ /// let guard3 = lock.try_lock();
+ /// assert!(guard3.is_none());
+ ///
+ /// // However, we will be able to lock it.
+ /// let guard4 = starve.try_lock();
+ /// assert!(guard4.is_ok());
+ ///
+ /// # fn wait_for_a_while() {}
+ /// ```
+ pub fn try_lock(self) -> Result<FairMutexGuard<'a, T>, Self> {
+ // Try to lock the mutex.
+ if self.lock.lock.fetch_or(LOCKED, Ordering::Acquire) & LOCKED == 0 {
+ // We have successfully locked the mutex.
+ // By dropping `self` here, we decrement the starvation count.
+ Ok(FairMutexGuard {
+ lock: &self.lock.lock,
+ data: self.lock.data.get(),
+ })
+ } else {
+ Err(self)
+ }
+ }
+}
+
+impl<'a, T: ?Sized, R: RelaxStrategy> Starvation<'a, T, R> {
+ /// Locks the mutex.
+ pub fn lock(mut self) -> FairMutexGuard<'a, T> {
+ // Try to lock the mutex.
+ loop {
+ match self.try_lock() {
+ Ok(lock) => return lock,
+ Err(starve) => self = starve,
+ }
+
+ // Relax until the lock is released.
+ while self.lock.is_locked() {
+ R::relax();
+ }
+ }
+ }
+}
+
+impl<'a, T: ?Sized, R> Drop for Starvation<'a, T, R> {
+ fn drop(&mut self) {
+ // As there is no longer a user being starved, we decrement the starver count.
+ self.lock.lock.fetch_sub(STARVED, Ordering::Release);
+ }
+}
+
+impl fmt::Display for LockRejectReason {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self {
+ LockRejectReason::Locked => write!(f, "locked"),
+ LockRejectReason::Starved => write!(f, "starved"),
+ }
+ }
+}
+
+#[cfg(feature = "std")]
+impl std::error::Error for LockRejectReason {}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for FairMutex<(), R> {
+ type GuardMarker = lock_api_crate::GuardSend;
+
+ const INIT: Self = Self::new(());
+
+ fn lock(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(Self::lock(self));
+ }
+
+ fn try_lock(&self) -> bool {
+ // Prevent guard destructor running
+ Self::try_lock(self).map(core::mem::forget).is_some()
+ }
+
+ unsafe fn unlock(&self) {
+ self.force_unlock();
+ }
+
+ fn is_locked(&self) -> bool {
+ Self::is_locked(self)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ type FairMutex<T> = super::FairMutex<T>;
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let m = FairMutex::<_>::new(());
+ drop(m.lock());
+ drop(m.lock());
+ }
+
+ #[test]
+ fn lots_and_lots() {
+ static M: FairMutex<()> = FairMutex::<_>::new(());
+ static mut CNT: u32 = 0;
+ const J: u32 = 1000;
+ const K: u32 = 3;
+
+ fn inc() {
+ for _ in 0..J {
+ unsafe {
+ let _g = M.lock();
+ CNT += 1;
+ }
+ }
+ }
+
+ let (tx, rx) = channel();
+ for _ in 0..K {
+ let tx2 = tx.clone();
+ thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ });
+ let tx2 = tx.clone();
+ thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ });
+ }
+
+ drop(tx);
+ for _ in 0..2 * K {
+ rx.recv().unwrap();
+ }
+ assert_eq!(unsafe { CNT }, J * K * 2);
+ }
+
+ #[test]
+ fn try_lock() {
+ let mutex = FairMutex::<_>::new(42);
+
+ // First lock succeeds
+ let a = mutex.try_lock();
+ assert_eq!(a.as_ref().map(|r| **r), Some(42));
+
+ // Additional lock fails
+ let b = mutex.try_lock();
+ assert!(b.is_none());
+
+ // After dropping lock, it succeeds again
+ ::core::mem::drop(a);
+ let c = mutex.try_lock();
+ assert_eq!(c.as_ref().map(|r| **r), Some(42));
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = FairMutex::<_>::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = FairMutex::<_>::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_mutex_arc_nested() {
+ // Tests nested mutexes and access
+ // to underlying data.
+ let arc = Arc::new(FairMutex::<_>::new(1));
+ let arc2 = Arc::new(FairMutex::<_>::new(arc));
+ let (tx, rx) = channel();
+ let _t = thread::spawn(move || {
+ let lock = arc2.lock();
+ let lock2 = lock.lock();
+ assert_eq!(*lock2, 1);
+ tx.send(()).unwrap();
+ });
+ rx.recv().unwrap();
+ }
+
+ #[test]
+ fn test_mutex_arc_access_in_unwind() {
+ let arc = Arc::new(FairMutex::<_>::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || -> () {
+ struct Unwinder {
+ i: Arc<FairMutex<i32>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ *self.i.lock() += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.lock();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_mutex_unsized() {
+ let mutex: &FairMutex<[i32]> = &FairMutex::<_>::new([1, 2, 3]);
+ {
+ let b = &mut *mutex.lock();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*mutex.lock(), comp);
+ }
+
+ #[test]
+ fn test_mutex_force_lock() {
+ let lock = FairMutex::<_>::new(());
+ ::std::mem::forget(lock.lock());
+ unsafe {
+ lock.force_unlock();
+ }
+ assert!(lock.try_lock().is_some());
+ }
+}
diff --git a/vendor/spin/src/mutex/spin.rs b/vendor/spin/src/mutex/spin.rs
new file mode 100644
index 0000000..fc97472
--- /dev/null
+++ b/vendor/spin/src/mutex/spin.rs
@@ -0,0 +1,543 @@
+//! A naïve spinning mutex.
+//!
+//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case
+//! latency is theoretically infinite.
+
+use crate::{
+ atomic::{AtomicBool, Ordering},
+ RelaxStrategy, Spin,
+};
+use core::{
+ cell::UnsafeCell,
+ fmt,
+ marker::PhantomData,
+ mem::ManuallyDrop,
+ ops::{Deref, DerefMut},
+};
+
+/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data.
+///
+/// # Example
+///
+/// ```
+/// use spin;
+///
+/// let lock = spin::mutex::SpinMutex::<_>::new(0);
+///
+/// // Modify the data
+/// *lock.lock() = 2;
+///
+/// // Read the data
+/// let answer = *lock.lock();
+/// assert_eq!(answer, 2);
+/// ```
+///
+/// # Thread safety example
+///
+/// ```
+/// use spin;
+/// use std::sync::{Arc, Barrier};
+///
+/// let thread_count = 1000;
+/// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0));
+///
+/// // We use a barrier to ensure the readout happens after all writing
+/// let barrier = Arc::new(Barrier::new(thread_count + 1));
+///
+/// # let mut ts = Vec::new();
+/// for _ in (0..thread_count) {
+/// let my_barrier = barrier.clone();
+/// let my_lock = spin_mutex.clone();
+/// # let t =
+/// std::thread::spawn(move || {
+/// let mut guard = my_lock.lock();
+/// *guard += 1;
+///
+/// // Release the lock to prevent a deadlock
+/// drop(guard);
+/// my_barrier.wait();
+/// });
+/// # ts.push(t);
+/// }
+///
+/// barrier.wait();
+///
+/// let answer = { *spin_mutex.lock() };
+/// assert_eq!(answer, thread_count);
+///
+/// # for t in ts {
+/// # t.join().unwrap();
+/// # }
+/// ```
+pub struct SpinMutex<T: ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ pub(crate) lock: AtomicBool,
+ data: UnsafeCell<T>,
+}
+
+/// A guard that provides mutable data access.
+///
+/// When the guard falls out of scope it will release the lock.
+pub struct SpinMutexGuard<'a, T: ?Sized + 'a> {
+ lock: &'a AtomicBool,
+ data: *mut T,
+}
+
+// Same unsafe impls as `std::sync::Mutex`
+unsafe impl<T: ?Sized + Send, R> Sync for SpinMutex<T, R> {}
+unsafe impl<T: ?Sized + Send, R> Send for SpinMutex<T, R> {}
+
+unsafe impl<T: ?Sized + Sync> Sync for SpinMutexGuard<'_, T> {}
+unsafe impl<T: ?Sized + Send> Send for SpinMutexGuard<'_, T> {}
+
+impl<T, R> SpinMutex<T, R> {
+ /// Creates a new [`SpinMutex`] wrapping the supplied data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use spin::mutex::SpinMutex;
+ ///
+ /// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(());
+ ///
+ /// fn demo() {
+ /// let lock = MUTEX.lock();
+ /// // do something with lock
+ /// drop(lock);
+ /// }
+ /// ```
+ #[inline(always)]
+ pub const fn new(data: T) -> Self {
+ SpinMutex {
+ lock: AtomicBool::new(false),
+ data: UnsafeCell::new(data),
+ phantom: PhantomData,
+ }
+ }
+
+ /// Consumes this [`SpinMutex`] and unwraps the underlying data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ /// assert_eq!(42, lock.into_inner());
+ /// ```
+ #[inline(always)]
+ pub fn into_inner(self) -> T {
+ // We know statically that there are no outstanding references to
+ // `self` so there's no need to lock.
+ let SpinMutex { data, .. } = self;
+ data.into_inner()
+ }
+
+ /// Returns a mutable pointer to the underlying data.
+ ///
+ /// This is mostly meant to be used for applications which require manual unlocking, but where
+ /// storing both the lock and the pointer to the inner data gets inefficient.
+ ///
+ /// # Example
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ ///
+ /// unsafe {
+ /// core::mem::forget(lock.lock());
+ ///
+ /// assert_eq!(lock.as_mut_ptr().read(), 42);
+ /// lock.as_mut_ptr().write(58);
+ ///
+ /// lock.force_unlock();
+ /// }
+ ///
+ /// assert_eq!(*lock.lock(), 58);
+ ///
+ /// ```
+ #[inline(always)]
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.data.get()
+ }
+}
+
+impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R> {
+ /// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data.
+ ///
+ /// The returned value may be dereferenced for data access
+ /// and the lock will be dropped when the guard falls out of scope.
+ ///
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(0);
+ /// {
+ /// let mut data = lock.lock();
+ /// // The lock is now locked and the data can be accessed
+ /// *data += 1;
+ /// // The lock is implicitly dropped at the end of the scope
+ /// }
+ /// ```
+ #[inline(always)]
+ pub fn lock(&self) -> SpinMutexGuard<T> {
+ // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
+ // when called in a loop.
+ while self
+ .lock
+ .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
+ .is_err()
+ {
+ // Wait until the lock looks unlocked before retrying
+ while self.is_locked() {
+ R::relax();
+ }
+ }
+
+ SpinMutexGuard {
+ lock: &self.lock,
+ data: unsafe { &mut *self.data.get() },
+ }
+ }
+}
+
+impl<T: ?Sized, R> SpinMutex<T, R> {
+ /// Returns `true` if the lock is currently held.
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ #[inline(always)]
+ pub fn is_locked(&self) -> bool {
+ self.lock.load(Ordering::Relaxed)
+ }
+
+ /// Force unlock this [`SpinMutex`].
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the lock is not held by the current
+ /// thread. However, this can be useful in some instances for exposing the
+ /// lock to FFI that doesn't know how to deal with RAII.
+ #[inline(always)]
+ pub unsafe fn force_unlock(&self) {
+ self.lock.store(false, Ordering::Release);
+ }
+
+ /// Try to lock this [`SpinMutex`], returning a lock guard if successful.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ ///
+ /// let maybe_guard = lock.try_lock();
+ /// assert!(maybe_guard.is_some());
+ ///
+ /// // `maybe_guard` is still held, so the second call fails
+ /// let maybe_guard2 = lock.try_lock();
+ /// assert!(maybe_guard2.is_none());
+ /// ```
+ #[inline(always)]
+ pub fn try_lock(&self) -> Option<SpinMutexGuard<T>> {
+ // The reason for using a strong compare_exchange is explained here:
+ // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
+ if self
+ .lock
+ .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ Some(SpinMutexGuard {
+ lock: &self.lock,
+ data: unsafe { &mut *self.data.get() },
+ })
+ } else {
+ None
+ }
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
+ /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
+ /// such, this is a 'zero-cost' operation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let mut lock = spin::mutex::SpinMutex::<_>::new(0);
+ /// *lock.get_mut() = 10;
+ /// assert_eq!(*lock.lock(), 10);
+ /// ```
+ #[inline(always)]
+ pub fn get_mut(&mut self) -> &mut T {
+ // We know statically that there are no other references to `self`, so
+ // there's no need to lock the inner mutex.
+ unsafe { &mut *self.data.get() }
+ }
+}
+
+impl<T: ?Sized + fmt::Debug, R> fmt::Debug for SpinMutex<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.try_lock() {
+ Some(guard) => write!(f, "Mutex {{ data: ")
+ .and_then(|()| (&*guard).fmt(f))
+ .and_then(|()| write!(f, "}}")),
+ None => write!(f, "Mutex {{ <locked> }}"),
+ }
+ }
+}
+
+impl<T: ?Sized + Default, R> Default for SpinMutex<T, R> {
+ fn default() -> Self {
+ Self::new(Default::default())
+ }
+}
+
+impl<T, R> From<T> for SpinMutex<T, R> {
+ fn from(data: T) -> Self {
+ Self::new(data)
+ }
+}
+
+impl<'a, T: ?Sized> SpinMutexGuard<'a, T> {
+ /// Leak the lock guard, yielding a mutable reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original [`SpinMutex`].
+ ///
+ /// ```
+ /// let mylock = spin::mutex::SpinMutex::<_>::new(0);
+ ///
+ /// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock());
+ ///
+ /// *data = 1;
+ /// assert_eq!(*data, 1);
+ /// ```
+ #[inline(always)]
+ pub fn leak(this: Self) -> &'a mut T {
+ // Use ManuallyDrop to avoid stacked-borrow invalidation
+ let mut this = ManuallyDrop::new(this);
+ // We know statically that only we are referencing data
+ unsafe { &mut *this.data }
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ // We know statically that only we are referencing data
+ unsafe { &*self.data }
+ }
+}
+
+impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ // We know statically that only we are referencing data
+ unsafe { &mut *self.data }
+ }
+}
+
+impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> {
+ /// The dropping of the MutexGuard will release the lock it was created from.
+ fn drop(&mut self) {
+ self.lock.store(false, Ordering::Release);
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for SpinMutex<(), R> {
+ type GuardMarker = lock_api_crate::GuardSend;
+
+ const INIT: Self = Self::new(());
+
+ fn lock(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(Self::lock(self));
+ }
+
+ fn try_lock(&self) -> bool {
+ // Prevent guard destructor running
+ Self::try_lock(self).map(core::mem::forget).is_some()
+ }
+
+ unsafe fn unlock(&self) {
+ self.force_unlock();
+ }
+
+ fn is_locked(&self) -> bool {
+ Self::is_locked(self)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ type SpinMutex<T> = super::SpinMutex<T>;
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let m = SpinMutex::<_>::new(());
+ drop(m.lock());
+ drop(m.lock());
+ }
+
+ #[test]
+ fn lots_and_lots() {
+ static M: SpinMutex<()> = SpinMutex::<_>::new(());
+ static mut CNT: u32 = 0;
+ const J: u32 = 1000;
+ const K: u32 = 3;
+
+ fn inc() {
+ for _ in 0..J {
+ unsafe {
+ let _g = M.lock();
+ CNT += 1;
+ }
+ }
+ }
+
+ let (tx, rx) = channel();
+ let mut ts = Vec::new();
+ for _ in 0..K {
+ let tx2 = tx.clone();
+ ts.push(thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ }));
+ let tx2 = tx.clone();
+ ts.push(thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ }));
+ }
+
+ drop(tx);
+ for _ in 0..2 * K {
+ rx.recv().unwrap();
+ }
+ assert_eq!(unsafe { CNT }, J * K * 2);
+
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn try_lock() {
+ let mutex = SpinMutex::<_>::new(42);
+
+ // First lock succeeds
+ let a = mutex.try_lock();
+ assert_eq!(a.as_ref().map(|r| **r), Some(42));
+
+ // Additional lock fails
+ let b = mutex.try_lock();
+ assert!(b.is_none());
+
+ // After dropping lock, it succeeds again
+ ::core::mem::drop(a);
+ let c = mutex.try_lock();
+ assert_eq!(c.as_ref().map(|r| **r), Some(42));
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = SpinMutex::<_>::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = SpinMutex::<_>::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_mutex_arc_nested() {
+ // Tests nested mutexes and access
+ // to underlying data.
+ let arc = Arc::new(SpinMutex::<_>::new(1));
+ let arc2 = Arc::new(SpinMutex::<_>::new(arc));
+ let (tx, rx) = channel();
+ let t = thread::spawn(move || {
+ let lock = arc2.lock();
+ let lock2 = lock.lock();
+ assert_eq!(*lock2, 1);
+ tx.send(()).unwrap();
+ });
+ rx.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_mutex_arc_access_in_unwind() {
+ let arc = Arc::new(SpinMutex::<_>::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || -> () {
+ struct Unwinder {
+ i: Arc<SpinMutex<i32>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ *self.i.lock() += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.lock();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_mutex_unsized() {
+ let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]);
+ {
+ let b = &mut *mutex.lock();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*mutex.lock(), comp);
+ }
+
+ #[test]
+ fn test_mutex_force_lock() {
+ let lock = SpinMutex::<_>::new(());
+ ::std::mem::forget(lock.lock());
+ unsafe {
+ lock.force_unlock();
+ }
+ assert!(lock.try_lock().is_some());
+ }
+}
diff --git a/vendor/spin/src/mutex/ticket.rs b/vendor/spin/src/mutex/ticket.rs
new file mode 100644
index 0000000..c14869e
--- /dev/null
+++ b/vendor/spin/src/mutex/ticket.rs
@@ -0,0 +1,537 @@
+//! A ticket-based mutex.
+//!
+//! Waiting threads take a 'ticket' from the lock in the order they arrive and gain access to the lock when their
+//! ticket is next in the queue. Best-case latency is slightly worse than a regular spinning mutex, but worse-case
+//! latency is infinitely better. Waiting threads simply need to wait for all threads that come before them in the
+//! queue to finish.
+
+use crate::{
+ atomic::{AtomicUsize, Ordering},
+ RelaxStrategy, Spin,
+};
+use core::{
+ cell::UnsafeCell,
+ fmt,
+ marker::PhantomData,
+ ops::{Deref, DerefMut},
+};
+
+/// A spin-based [ticket lock](https://en.wikipedia.org/wiki/Ticket_lock) providing mutually exclusive access to data.
+///
+/// A ticket lock is analogous to a queue management system for lock requests. When a thread tries to take a lock, it
+/// is assigned a 'ticket'. It then spins until its ticket becomes next in line. When the lock guard is released, the
+/// next ticket will be processed.
+///
+/// Ticket locks significantly reduce the worse-case performance of locking at the cost of slightly higher average-time
+/// overhead.
+///
+/// # Example
+///
+/// ```
+/// use spin;
+///
+/// let lock = spin::mutex::TicketMutex::<_>::new(0);
+///
+/// // Modify the data
+/// *lock.lock() = 2;
+///
+/// // Read the data
+/// let answer = *lock.lock();
+/// assert_eq!(answer, 2);
+/// ```
+///
+/// # Thread safety example
+///
+/// ```
+/// use spin;
+/// use std::sync::{Arc, Barrier};
+///
+/// let thread_count = 1000;
+/// let spin_mutex = Arc::new(spin::mutex::TicketMutex::<_>::new(0));
+///
+/// // We use a barrier to ensure the readout happens after all writing
+/// let barrier = Arc::new(Barrier::new(thread_count + 1));
+///
+/// for _ in (0..thread_count) {
+/// let my_barrier = barrier.clone();
+/// let my_lock = spin_mutex.clone();
+/// std::thread::spawn(move || {
+/// let mut guard = my_lock.lock();
+/// *guard += 1;
+///
+/// // Release the lock to prevent a deadlock
+/// drop(guard);
+/// my_barrier.wait();
+/// });
+/// }
+///
+/// barrier.wait();
+///
+/// let answer = { *spin_mutex.lock() };
+/// assert_eq!(answer, thread_count);
+/// ```
+pub struct TicketMutex<T: ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ next_ticket: AtomicUsize,
+ next_serving: AtomicUsize,
+ data: UnsafeCell<T>,
+}
+
+/// A guard that protects some data.
+///
+/// When the guard is dropped, the next ticket will be processed.
+pub struct TicketMutexGuard<'a, T: ?Sized + 'a> {
+ next_serving: &'a AtomicUsize,
+ ticket: usize,
+ data: &'a mut T,
+}
+
+unsafe impl<T: ?Sized + Send, R> Sync for TicketMutex<T, R> {}
+unsafe impl<T: ?Sized + Send, R> Send for TicketMutex<T, R> {}
+
+impl<T, R> TicketMutex<T, R> {
+ /// Creates a new [`TicketMutex`] wrapping the supplied data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use spin::mutex::TicketMutex;
+ ///
+ /// static MUTEX: TicketMutex<()> = TicketMutex::<_>::new(());
+ ///
+ /// fn demo() {
+ /// let lock = MUTEX.lock();
+ /// // do something with lock
+ /// drop(lock);
+ /// }
+ /// ```
+ #[inline(always)]
+ pub const fn new(data: T) -> Self {
+ Self {
+ phantom: PhantomData,
+ next_ticket: AtomicUsize::new(0),
+ next_serving: AtomicUsize::new(0),
+ data: UnsafeCell::new(data),
+ }
+ }
+
+ /// Consumes this [`TicketMutex`] and unwraps the underlying data.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::TicketMutex::<_>::new(42);
+ /// assert_eq!(42, lock.into_inner());
+ /// ```
+ #[inline(always)]
+ pub fn into_inner(self) -> T {
+ self.data.into_inner()
+ }
+ /// Returns a mutable pointer to the underying data.
+ ///
+ /// This is mostly meant to be used for applications which require manual unlocking, but where
+ /// storing both the lock and the pointer to the inner data gets inefficient.
+ ///
+ /// # Example
+ /// ```
+ /// let lock = spin::mutex::SpinMutex::<_>::new(42);
+ ///
+ /// unsafe {
+ /// core::mem::forget(lock.lock());
+ ///
+ /// assert_eq!(lock.as_mut_ptr().read(), 42);
+ /// lock.as_mut_ptr().write(58);
+ ///
+ /// lock.force_unlock();
+ /// }
+ ///
+ /// assert_eq!(*lock.lock(), 58);
+ ///
+ /// ```
+ #[inline(always)]
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.data.get()
+ }
+}
+
+impl<T: ?Sized + fmt::Debug, R> fmt::Debug for TicketMutex<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.try_lock() {
+ Some(guard) => write!(f, "Mutex {{ data: ")
+ .and_then(|()| (&*guard).fmt(f))
+ .and_then(|()| write!(f, "}}")),
+ None => write!(f, "Mutex {{ <locked> }}"),
+ }
+ }
+}
+
+impl<T: ?Sized, R: RelaxStrategy> TicketMutex<T, R> {
+ /// Locks the [`TicketMutex`] and returns a guard that permits access to the inner data.
+ ///
+ /// The returned data may be dereferenced for data access
+ /// and the lock will be dropped when the guard falls out of scope.
+ ///
+ /// ```
+ /// let lock = spin::mutex::TicketMutex::<_>::new(0);
+ /// {
+ /// let mut data = lock.lock();
+ /// // The lock is now locked and the data can be accessed
+ /// *data += 1;
+ /// // The lock is implicitly dropped at the end of the scope
+ /// }
+ /// ```
+ #[inline(always)]
+ pub fn lock(&self) -> TicketMutexGuard<T> {
+ let ticket = self.next_ticket.fetch_add(1, Ordering::Relaxed);
+
+ while self.next_serving.load(Ordering::Acquire) != ticket {
+ R::relax();
+ }
+
+ TicketMutexGuard {
+ next_serving: &self.next_serving,
+ ticket,
+ // Safety
+ // We know that we are the next ticket to be served,
+ // so there's no other thread accessing the data.
+ //
+ // Every other thread has another ticket number so it's
+ // definitely stuck in the spin loop above.
+ data: unsafe { &mut *self.data.get() },
+ }
+ }
+}
+
+impl<T: ?Sized, R> TicketMutex<T, R> {
+ /// Returns `true` if the lock is currently held.
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ #[inline(always)]
+ pub fn is_locked(&self) -> bool {
+ let ticket = self.next_ticket.load(Ordering::Relaxed);
+ self.next_serving.load(Ordering::Relaxed) != ticket
+ }
+
+ /// Force unlock this [`TicketMutex`], by serving the next ticket.
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the lock is not held by the current
+ /// thread. However, this can be useful in some instances for exposing the
+ /// lock to FFI that doesn't know how to deal with RAII.
+ #[inline(always)]
+ pub unsafe fn force_unlock(&self) {
+ self.next_serving.fetch_add(1, Ordering::Release);
+ }
+
+ /// Try to lock this [`TicketMutex`], returning a lock guard if successful.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let lock = spin::mutex::TicketMutex::<_>::new(42);
+ ///
+ /// let maybe_guard = lock.try_lock();
+ /// assert!(maybe_guard.is_some());
+ ///
+ /// // `maybe_guard` is still held, so the second call fails
+ /// let maybe_guard2 = lock.try_lock();
+ /// assert!(maybe_guard2.is_none());
+ /// ```
+ #[inline(always)]
+ pub fn try_lock(&self) -> Option<TicketMutexGuard<T>> {
+ let ticket = self
+ .next_ticket
+ .fetch_update(Ordering::SeqCst, Ordering::SeqCst, |ticket| {
+ if self.next_serving.load(Ordering::Acquire) == ticket {
+ Some(ticket + 1)
+ } else {
+ None
+ }
+ });
+
+ ticket.ok().map(|ticket| TicketMutexGuard {
+ next_serving: &self.next_serving,
+ ticket,
+ // Safety
+ // We have a ticket that is equal to the next_serving ticket, so we know:
+ // - that no other thread can have the same ticket id as this thread
+ // - that we are the next one to be served so we have exclusive access to the data
+ data: unsafe { &mut *self.data.get() },
+ })
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the [`TicketMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
+ /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
+ /// such, this is a 'zero-cost' operation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// let mut lock = spin::mutex::TicketMutex::<_>::new(0);
+ /// *lock.get_mut() = 10;
+ /// assert_eq!(*lock.lock(), 10);
+ /// ```
+ #[inline(always)]
+ pub fn get_mut(&mut self) -> &mut T {
+ // Safety:
+ // We know that there are no other references to `self`,
+ // so it's safe to return a exclusive reference to the data.
+ unsafe { &mut *self.data.get() }
+ }
+}
+
+impl<T: ?Sized + Default, R> Default for TicketMutex<T, R> {
+ fn default() -> Self {
+ Self::new(Default::default())
+ }
+}
+
+impl<T, R> From<T> for TicketMutex<T, R> {
+ fn from(data: T) -> Self {
+ Self::new(data)
+ }
+}
+
+impl<'a, T: ?Sized> TicketMutexGuard<'a, T> {
+ /// Leak the lock guard, yielding a mutable reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original [`TicketMutex`].
+ ///
+ /// ```
+ /// let mylock = spin::mutex::TicketMutex::<_>::new(0);
+ ///
+ /// let data: &mut i32 = spin::mutex::TicketMutexGuard::leak(mylock.lock());
+ ///
+ /// *data = 1;
+ /// assert_eq!(*data, 1);
+ /// ```
+ #[inline(always)]
+ pub fn leak(this: Self) -> &'a mut T {
+ let data = this.data as *mut _; // Keep it in pointer form temporarily to avoid double-aliasing
+ core::mem::forget(this);
+ unsafe { &mut *data }
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for TicketMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized + fmt::Display> fmt::Display for TicketMutexGuard<'a, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'a, T: ?Sized> Deref for TicketMutexGuard<'a, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ self.data
+ }
+}
+
+impl<'a, T: ?Sized> DerefMut for TicketMutexGuard<'a, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ self.data
+ }
+}
+
+impl<'a, T: ?Sized> Drop for TicketMutexGuard<'a, T> {
+ fn drop(&mut self) {
+ let new_ticket = self.ticket + 1;
+ self.next_serving.store(new_ticket, Ordering::Release);
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for TicketMutex<(), R> {
+ type GuardMarker = lock_api_crate::GuardSend;
+
+ const INIT: Self = Self::new(());
+
+ fn lock(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(Self::lock(self));
+ }
+
+ fn try_lock(&self) -> bool {
+ // Prevent guard destructor running
+ Self::try_lock(self).map(core::mem::forget).is_some()
+ }
+
+ unsafe fn unlock(&self) {
+ self.force_unlock();
+ }
+
+ fn is_locked(&self) -> bool {
+ Self::is_locked(self)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ type TicketMutex<T> = super::TicketMutex<T>;
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let m = TicketMutex::<_>::new(());
+ drop(m.lock());
+ drop(m.lock());
+ }
+
+ #[test]
+ fn lots_and_lots() {
+ static M: TicketMutex<()> = TicketMutex::<_>::new(());
+ static mut CNT: u32 = 0;
+ const J: u32 = 1000;
+ const K: u32 = 3;
+
+ fn inc() {
+ for _ in 0..J {
+ unsafe {
+ let _g = M.lock();
+ CNT += 1;
+ }
+ }
+ }
+
+ let (tx, rx) = channel();
+ for _ in 0..K {
+ let tx2 = tx.clone();
+ thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ });
+ let tx2 = tx.clone();
+ thread::spawn(move || {
+ inc();
+ tx2.send(()).unwrap();
+ });
+ }
+
+ drop(tx);
+ for _ in 0..2 * K {
+ rx.recv().unwrap();
+ }
+ assert_eq!(unsafe { CNT }, J * K * 2);
+ }
+
+ #[test]
+ fn try_lock() {
+ let mutex = TicketMutex::<_>::new(42);
+
+ // First lock succeeds
+ let a = mutex.try_lock();
+ assert_eq!(a.as_ref().map(|r| **r), Some(42));
+
+ // Additional lock fails
+ let b = mutex.try_lock();
+ assert!(b.is_none());
+
+ // After dropping lock, it succeeds again
+ ::core::mem::drop(a);
+ let c = mutex.try_lock();
+ assert_eq!(c.as_ref().map(|r| **r), Some(42));
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = TicketMutex::<_>::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = TicketMutex::<_>::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_mutex_arc_nested() {
+ // Tests nested mutexes and access
+ // to underlying data.
+ let arc = Arc::new(TicketMutex::<_>::new(1));
+ let arc2 = Arc::new(TicketMutex::<_>::new(arc));
+ let (tx, rx) = channel();
+ let _t = thread::spawn(move || {
+ let lock = arc2.lock();
+ let lock2 = lock.lock();
+ assert_eq!(*lock2, 1);
+ tx.send(()).unwrap();
+ });
+ rx.recv().unwrap();
+ }
+
+ #[test]
+ fn test_mutex_arc_access_in_unwind() {
+ let arc = Arc::new(TicketMutex::<_>::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || -> () {
+ struct Unwinder {
+ i: Arc<TicketMutex<i32>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ *self.i.lock() += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.lock();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_mutex_unsized() {
+ let mutex: &TicketMutex<[i32]> = &TicketMutex::<_>::new([1, 2, 3]);
+ {
+ let b = &mut *mutex.lock();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*mutex.lock(), comp);
+ }
+
+ #[test]
+ fn is_locked() {
+ let mutex = TicketMutex::<_>::new(());
+ assert!(!mutex.is_locked());
+ let lock = mutex.lock();
+ assert!(mutex.is_locked());
+ drop(lock);
+ assert!(!mutex.is_locked());
+ }
+}
diff --git a/vendor/spin/src/once.rs b/vendor/spin/src/once.rs
new file mode 100644
index 0000000..31700dc
--- /dev/null
+++ b/vendor/spin/src/once.rs
@@ -0,0 +1,789 @@
+//! Synchronization primitives for one-time evaluation.
+
+use crate::{
+ atomic::{AtomicU8, Ordering},
+ RelaxStrategy, Spin,
+};
+use core::{cell::UnsafeCell, fmt, marker::PhantomData, mem::MaybeUninit};
+
+/// A primitive that provides lazy one-time initialization.
+///
+/// Unlike its `std::sync` equivalent, this is generalized such that the closure returns a
+/// value to be stored by the [`Once`] (`std::sync::Once` can be trivially emulated with
+/// `Once`).
+///
+/// Because [`Once::new`] is `const`, this primitive may be used to safely initialize statics.
+///
+/// # Examples
+///
+/// ```
+/// use spin;
+///
+/// static START: spin::Once = spin::Once::new();
+///
+/// START.call_once(|| {
+/// // run initialization here
+/// });
+/// ```
+pub struct Once<T = (), R = Spin> {
+ phantom: PhantomData<R>,
+ status: AtomicStatus,
+ data: UnsafeCell<MaybeUninit<T>>,
+}
+
+impl<T, R> Default for Once<T, R> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<T: fmt::Debug, R> fmt::Debug for Once<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.get() {
+ Some(s) => write!(f, "Once {{ data: ")
+ .and_then(|()| s.fmt(f))
+ .and_then(|()| write!(f, "}}")),
+ None => write!(f, "Once {{ <uninitialized> }}"),
+ }
+ }
+}
+
+// Same unsafe impls as `std::sync::RwLock`, because this also allows for
+// concurrent reads.
+unsafe impl<T: Send + Sync, R> Sync for Once<T, R> {}
+unsafe impl<T: Send, R> Send for Once<T, R> {}
+
+mod status {
+ use super::*;
+
+ // SAFETY: This structure has an invariant, namely that the inner atomic u8 must *always* have
+ // a value for which there exists a valid Status. This means that users of this API must only
+ // be allowed to load and store `Status`es.
+ #[repr(transparent)]
+ pub struct AtomicStatus(AtomicU8);
+
+ // Four states that a Once can be in, encoded into the lower bits of `status` in
+ // the Once structure.
+ #[repr(u8)]
+ #[derive(Clone, Copy, Debug, PartialEq)]
+ pub enum Status {
+ Incomplete = 0x00,
+ Running = 0x01,
+ Complete = 0x02,
+ Panicked = 0x03,
+ }
+ impl Status {
+ // Construct a status from an inner u8 integer.
+ //
+ // # Safety
+ //
+ // For this to be safe, the inner number must have a valid corresponding enum variant.
+ unsafe fn new_unchecked(inner: u8) -> Self {
+ core::mem::transmute(inner)
+ }
+ }
+
+ impl AtomicStatus {
+ #[inline(always)]
+ pub const fn new(status: Status) -> Self {
+ // SAFETY: We got the value directly from status, so transmuting back is fine.
+ Self(AtomicU8::new(status as u8))
+ }
+ #[inline(always)]
+ pub fn load(&self, ordering: Ordering) -> Status {
+ // SAFETY: We know that the inner integer must have been constructed from a Status in
+ // the first place.
+ unsafe { Status::new_unchecked(self.0.load(ordering)) }
+ }
+ #[inline(always)]
+ pub fn store(&self, status: Status, ordering: Ordering) {
+ // SAFETY: While not directly unsafe, this is safe because the value was retrieved from
+ // a status, thus making transmutation safe.
+ self.0.store(status as u8, ordering);
+ }
+ #[inline(always)]
+ pub fn compare_exchange(
+ &self,
+ old: Status,
+ new: Status,
+ success: Ordering,
+ failure: Ordering,
+ ) -> Result<Status, Status> {
+ match self
+ .0
+ .compare_exchange(old as u8, new as u8, success, failure)
+ {
+ // SAFETY: A compare exchange will always return a value that was later stored into
+ // the atomic u8, but due to the invariant that it must be a valid Status, we know
+ // that both Ok(_) and Err(_) will be safely transmutable.
+ Ok(ok) => Ok(unsafe { Status::new_unchecked(ok) }),
+ Err(err) => Err(unsafe { Status::new_unchecked(err) }),
+ }
+ }
+ #[inline(always)]
+ pub fn get_mut(&mut self) -> &mut Status {
+ // SAFETY: Since we know that the u8 inside must be a valid Status, we can safely cast
+ // it to a &mut Status.
+ unsafe { &mut *((self.0.get_mut() as *mut u8).cast::<Status>()) }
+ }
+ }
+}
+use self::status::{AtomicStatus, Status};
+
+impl<T, R: RelaxStrategy> Once<T, R> {
+ /// Performs an initialization routine once and only once. The given closure
+ /// will be executed if this is the first time `call_once` has been called,
+ /// and otherwise the routine will *not* be invoked.
+ ///
+ /// This method will block the calling thread if another initialization
+ /// routine is currently running.
+ ///
+ /// When this function returns, it is guaranteed that some initialization
+ /// has run and completed (it may not be the closure specified). The
+ /// returned pointer will point to the result from the closure that was
+ /// run.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the [`Once`] previously panicked while attempting
+ /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
+ /// primitives.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use spin;
+ ///
+ /// static INIT: spin::Once<usize> = spin::Once::new();
+ ///
+ /// fn get_cached_val() -> usize {
+ /// *INIT.call_once(expensive_computation)
+ /// }
+ ///
+ /// fn expensive_computation() -> usize {
+ /// // ...
+ /// # 2
+ /// }
+ /// ```
+ pub fn call_once<F: FnOnce() -> T>(&self, f: F) -> &T {
+ match self.try_call_once(|| Ok::<T, core::convert::Infallible>(f())) {
+ Ok(x) => x,
+ Err(void) => match void {},
+ }
+ }
+
+ /// This method is similar to `call_once`, but allows the given closure to
+ /// fail, and lets the `Once` in a uninitialized state if it does.
+ ///
+ /// This method will block the calling thread if another initialization
+ /// routine is currently running.
+ ///
+ /// When this function returns without error, it is guaranteed that some
+ /// initialization has run and completed (it may not be the closure
+ /// specified). The returned reference will point to the result from the
+ /// closure that was run.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the [`Once`] previously panicked while attempting
+ /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
+ /// primitives.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use spin;
+ ///
+ /// static INIT: spin::Once<usize> = spin::Once::new();
+ ///
+ /// fn get_cached_val() -> Result<usize, String> {
+ /// INIT.try_call_once(expensive_fallible_computation).map(|x| *x)
+ /// }
+ ///
+ /// fn expensive_fallible_computation() -> Result<usize, String> {
+ /// // ...
+ /// # Ok(2)
+ /// }
+ /// ```
+ pub fn try_call_once<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> {
+ if let Some(value) = self.get() {
+ Ok(value)
+ } else {
+ self.try_call_once_slow(f)
+ }
+ }
+
+ #[cold]
+ fn try_call_once_slow<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> {
+ loop {
+ let xchg = self.status.compare_exchange(
+ Status::Incomplete,
+ Status::Running,
+ Ordering::Acquire,
+ Ordering::Acquire,
+ );
+
+ match xchg {
+ Ok(_must_be_state_incomplete) => {
+ // Impl is defined after the match for readability
+ }
+ Err(Status::Panicked) => panic!("Once panicked"),
+ Err(Status::Running) => match self.poll() {
+ Some(v) => return Ok(v),
+ None => continue,
+ },
+ Err(Status::Complete) => {
+ return Ok(unsafe {
+ // SAFETY: The status is Complete
+ self.force_get()
+ });
+ }
+ Err(Status::Incomplete) => {
+ // The compare_exchange failed, so this shouldn't ever be reached,
+ // however if we decide to switch to compare_exchange_weak it will
+ // be safer to leave this here than hit an unreachable
+ continue;
+ }
+ }
+
+ // The compare-exchange succeeded, so we shall initialize it.
+
+ // We use a guard (Finish) to catch panics caused by builder
+ let finish = Finish {
+ status: &self.status,
+ };
+ let val = match f() {
+ Ok(val) => val,
+ Err(err) => {
+ // If an error occurs, clean up everything and leave.
+ core::mem::forget(finish);
+ self.status.store(Status::Incomplete, Ordering::Release);
+ return Err(err);
+ }
+ };
+ unsafe {
+ // SAFETY:
+ // `UnsafeCell`/deref: currently the only accessor, mutably
+ // and immutably by cas exclusion.
+ // `write`: pointer comes from `MaybeUninit`.
+ (*self.data.get()).as_mut_ptr().write(val);
+ };
+ // If there were to be a panic with unwind enabled, the code would
+ // short-circuit and never reach the point where it writes the inner data.
+ // The destructor for Finish will run, and poison the Once to ensure that other
+ // threads accessing it do not exhibit unwanted behavior, if there were to be
+ // any inconsistency in data structures caused by the panicking thread.
+ //
+ // However, f() is expected in the general case not to panic. In that case, we
+ // simply forget the guard, bypassing its destructor. We could theoretically
+ // clear a flag instead, but this eliminates the call to the destructor at
+ // compile time, and unconditionally poisons during an eventual panic, if
+ // unwinding is enabled.
+ core::mem::forget(finish);
+
+ // SAFETY: Release is required here, so that all memory accesses done in the
+ // closure when initializing, become visible to other threads that perform Acquire
+ // loads.
+ //
+ // And, we also know that the changes this thread has done will not magically
+ // disappear from our cache, so it does not need to be AcqRel.
+ self.status.store(Status::Complete, Ordering::Release);
+
+ // This next line is mainly an optimization.
+ return unsafe { Ok(self.force_get()) };
+ }
+ }
+
+ /// Spins until the [`Once`] contains a value.
+ ///
+ /// Note that in releases prior to `0.7`, this function had the behaviour of [`Once::poll`].
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the [`Once`] previously panicked while attempting
+ /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
+ /// primitives.
+ pub fn wait(&self) -> &T {
+ loop {
+ match self.poll() {
+ Some(x) => break x,
+ None => R::relax(),
+ }
+ }
+ }
+
+ /// Like [`Once::get`], but will spin if the [`Once`] is in the process of being
+ /// initialized. If initialization has not even begun, `None` will be returned.
+ ///
+ /// Note that in releases prior to `0.7`, this function was named `wait`.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the [`Once`] previously panicked while attempting
+ /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
+ /// primitives.
+ pub fn poll(&self) -> Option<&T> {
+ loop {
+ // SAFETY: Acquire is safe here, because if the status is COMPLETE, then we want to make
+ // sure that all memory accessed done while initializing that value, are visible when
+ // we return a reference to the inner data after this load.
+ match self.status.load(Ordering::Acquire) {
+ Status::Incomplete => return None,
+ Status::Running => R::relax(), // We spin
+ Status::Complete => return Some(unsafe { self.force_get() }),
+ Status::Panicked => panic!("Once previously poisoned by a panicked"),
+ }
+ }
+ }
+}
+
+impl<T, R> Once<T, R> {
+ /// Initialization constant of [`Once`].
+ #[allow(clippy::declare_interior_mutable_const)]
+ pub const INIT: Self = Self {
+ phantom: PhantomData,
+ status: AtomicStatus::new(Status::Incomplete),
+ data: UnsafeCell::new(MaybeUninit::uninit()),
+ };
+
+ /// Creates a new [`Once`].
+ pub const fn new() -> Self {
+ Self::INIT
+ }
+
+ /// Creates a new initialized [`Once`].
+ pub const fn initialized(data: T) -> Self {
+ Self {
+ phantom: PhantomData,
+ status: AtomicStatus::new(Status::Complete),
+ data: UnsafeCell::new(MaybeUninit::new(data)),
+ }
+ }
+
+ /// Retrieve a pointer to the inner data.
+ ///
+ /// While this method itself is safe, accessing the pointer before the [`Once`] has been
+ /// initialized is UB, unless this method has already been written to from a pointer coming
+ /// from this method.
+ pub fn as_mut_ptr(&self) -> *mut T {
+ // SAFETY:
+ // * MaybeUninit<T> always has exactly the same layout as T
+ self.data.get().cast::<T>()
+ }
+
+ /// Get a reference to the initialized instance. Must only be called once COMPLETE.
+ unsafe fn force_get(&self) -> &T {
+ // SAFETY:
+ // * `UnsafeCell`/inner deref: data never changes again
+ // * `MaybeUninit`/outer deref: data was initialized
+ &*(*self.data.get()).as_ptr()
+ }
+
+ /// Get a reference to the initialized instance. Must only be called once COMPLETE.
+ unsafe fn force_get_mut(&mut self) -> &mut T {
+ // SAFETY:
+ // * `UnsafeCell`/inner deref: data never changes again
+ // * `MaybeUninit`/outer deref: data was initialized
+ &mut *(*self.data.get()).as_mut_ptr()
+ }
+
+ /// Get a reference to the initialized instance. Must only be called once COMPLETE.
+ unsafe fn force_into_inner(self) -> T {
+ // SAFETY:
+ // * `UnsafeCell`/inner deref: data never changes again
+ // * `MaybeUninit`/outer deref: data was initialized
+ (*self.data.get()).as_ptr().read()
+ }
+
+ /// Returns a reference to the inner value if the [`Once`] has been initialized.
+ pub fn get(&self) -> Option<&T> {
+ // SAFETY: Just as with `poll`, Acquire is safe here because we want to be able to see the
+ // nonatomic stores done when initializing, once we have loaded and checked the status.
+ match self.status.load(Ordering::Acquire) {
+ Status::Complete => Some(unsafe { self.force_get() }),
+ _ => None,
+ }
+ }
+
+ /// Returns a reference to the inner value on the unchecked assumption that the [`Once`] has been initialized.
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized
+ /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused).
+ /// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically
+ /// checking initialization is unacceptable and the `Once` has already been initialized.
+ pub unsafe fn get_unchecked(&self) -> &T {
+ debug_assert_eq!(
+ self.status.load(Ordering::SeqCst),
+ Status::Complete,
+ "Attempted to access an uninitialized Once. If this was run without debug checks, this would be undefined behaviour. This is a serious bug and you must fix it.",
+ );
+ self.force_get()
+ }
+
+ /// Returns a mutable reference to the inner value if the [`Once`] has been initialized.
+ ///
+ /// Because this method requires a mutable reference to the [`Once`], no synchronization
+ /// overhead is required to access the inner value. In effect, it is zero-cost.
+ pub fn get_mut(&mut self) -> Option<&mut T> {
+ match *self.status.get_mut() {
+ Status::Complete => Some(unsafe { self.force_get_mut() }),
+ _ => None,
+ }
+ }
+
+ /// Returns a mutable reference to the inner value
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized
+ /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused).
+ /// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically
+ /// checking initialization is unacceptable and the `Once` has already been initialized.
+ pub unsafe fn get_mut_unchecked(&mut self) -> &mut T {
+ debug_assert_eq!(
+ self.status.load(Ordering::SeqCst),
+ Status::Complete,
+ "Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.",
+ );
+ self.force_get_mut()
+ }
+
+ /// Returns a the inner value if the [`Once`] has been initialized.
+ ///
+ /// Because this method requires ownership of the [`Once`], no synchronization overhead
+ /// is required to access the inner value. In effect, it is zero-cost.
+ pub fn try_into_inner(mut self) -> Option<T> {
+ match *self.status.get_mut() {
+ Status::Complete => Some(unsafe { self.force_into_inner() }),
+ _ => None,
+ }
+ }
+
+ /// Returns a the inner value if the [`Once`] has been initialized.
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized
+ /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused)
+ /// This can be useful, if `Once` has already been initialized, and you want to bypass an
+ /// option check.
+ pub unsafe fn into_inner_unchecked(self) -> T {
+ debug_assert_eq!(
+ self.status.load(Ordering::SeqCst),
+ Status::Complete,
+ "Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.",
+ );
+ self.force_into_inner()
+ }
+
+ /// Checks whether the value has been initialized.
+ ///
+ /// This is done using [`Acquire`](core::sync::atomic::Ordering::Acquire) ordering, and
+ /// therefore it is safe to access the value directly via
+ /// [`get_unchecked`](Self::get_unchecked) if this returns true.
+ pub fn is_completed(&self) -> bool {
+ // TODO: Add a similar variant for Relaxed?
+ self.status.load(Ordering::Acquire) == Status::Complete
+ }
+}
+
+impl<T, R> From<T> for Once<T, R> {
+ fn from(data: T) -> Self {
+ Self::initialized(data)
+ }
+}
+
+impl<T, R> Drop for Once<T, R> {
+ fn drop(&mut self) {
+ // No need to do any atomic access here, we have &mut!
+ if *self.status.get_mut() == Status::Complete {
+ unsafe {
+ //TODO: Use MaybeUninit::assume_init_drop once stabilised
+ core::ptr::drop_in_place((*self.data.get()).as_mut_ptr());
+ }
+ }
+ }
+}
+
+struct Finish<'a> {
+ status: &'a AtomicStatus,
+}
+
+impl<'a> Drop for Finish<'a> {
+ fn drop(&mut self) {
+ // While using Relaxed here would most likely not be an issue, we use SeqCst anyway.
+ // This is mainly because panics are not meant to be fast at all, but also because if
+ // there were to be a compiler bug which reorders accesses within the same thread,
+ // where it should not, we want to be sure that the panic really is handled, and does
+ // not cause additional problems. SeqCst will therefore help guarding against such
+ // bugs.
+ self.status.store(Status::Panicked, Ordering::SeqCst);
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::atomic::AtomicU32;
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ use super::*;
+
+ #[test]
+ fn smoke_once() {
+ static O: Once = Once::new();
+ let mut a = 0;
+ O.call_once(|| a += 1);
+ assert_eq!(a, 1);
+ O.call_once(|| a += 1);
+ assert_eq!(a, 1);
+ }
+
+ #[test]
+ fn smoke_once_value() {
+ static O: Once<usize> = Once::new();
+ let a = O.call_once(|| 1);
+ assert_eq!(*a, 1);
+ let b = O.call_once(|| 2);
+ assert_eq!(*b, 1);
+ }
+
+ #[test]
+ fn stampede_once() {
+ static O: Once = Once::new();
+ static mut RUN: bool = false;
+
+ let (tx, rx) = channel();
+ let mut ts = Vec::new();
+ for _ in 0..10 {
+ let tx = tx.clone();
+ ts.push(thread::spawn(move || {
+ for _ in 0..4 {
+ thread::yield_now()
+ }
+ unsafe {
+ O.call_once(|| {
+ assert!(!RUN);
+ RUN = true;
+ });
+ assert!(RUN);
+ }
+ tx.send(()).unwrap();
+ }));
+ }
+
+ unsafe {
+ O.call_once(|| {
+ assert!(!RUN);
+ RUN = true;
+ });
+ assert!(RUN);
+ }
+
+ for _ in 0..10 {
+ rx.recv().unwrap();
+ }
+
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn get() {
+ static INIT: Once<usize> = Once::new();
+
+ assert!(INIT.get().is_none());
+ INIT.call_once(|| 2);
+ assert_eq!(INIT.get().map(|r| *r), Some(2));
+ }
+
+ #[test]
+ fn get_no_wait() {
+ static INIT: Once<usize> = Once::new();
+
+ assert!(INIT.get().is_none());
+ let t = thread::spawn(move || {
+ INIT.call_once(|| {
+ thread::sleep(std::time::Duration::from_secs(3));
+ 42
+ });
+ });
+ assert!(INIT.get().is_none());
+
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn poll() {
+ static INIT: Once<usize> = Once::new();
+
+ assert!(INIT.poll().is_none());
+ INIT.call_once(|| 3);
+ assert_eq!(INIT.poll().map(|r| *r), Some(3));
+ }
+
+ #[test]
+ fn wait() {
+ static INIT: Once<usize> = Once::new();
+
+ let t = std::thread::spawn(|| {
+ assert_eq!(*INIT.wait(), 3);
+ assert!(INIT.is_completed());
+ });
+
+ for _ in 0..4 {
+ thread::yield_now()
+ }
+
+ assert!(INIT.poll().is_none());
+ INIT.call_once(|| 3);
+
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn panic() {
+ use std::panic;
+
+ static INIT: Once = Once::new();
+
+ // poison the once
+ let t = panic::catch_unwind(|| {
+ INIT.call_once(|| panic!());
+ });
+ assert!(t.is_err());
+
+ // poisoning propagates
+ let t = panic::catch_unwind(|| {
+ INIT.call_once(|| {});
+ });
+ assert!(t.is_err());
+ }
+
+ #[test]
+ fn init_constant() {
+ static O: Once = Once::INIT;
+ let mut a = 0;
+ O.call_once(|| a += 1);
+ assert_eq!(a, 1);
+ O.call_once(|| a += 1);
+ assert_eq!(a, 1);
+ }
+
+ static mut CALLED: bool = false;
+
+ struct DropTest {}
+
+ impl Drop for DropTest {
+ fn drop(&mut self) {
+ unsafe {
+ CALLED = true;
+ }
+ }
+ }
+
+ #[test]
+ fn try_call_once_err() {
+ let once = Once::<_, Spin>::new();
+ let shared = Arc::new((once, AtomicU32::new(0)));
+
+ let (tx, rx) = channel();
+
+ let t0 = {
+ let shared = shared.clone();
+ thread::spawn(move || {
+ let (once, called) = &*shared;
+
+ once.try_call_once(|| {
+ called.fetch_add(1, Ordering::AcqRel);
+ tx.send(()).unwrap();
+ thread::sleep(std::time::Duration::from_millis(50));
+ Err(())
+ })
+ .ok();
+ })
+ };
+
+ let t1 = {
+ let shared = shared.clone();
+ thread::spawn(move || {
+ rx.recv().unwrap();
+ let (once, called) = &*shared;
+ assert_eq!(
+ called.load(Ordering::Acquire),
+ 1,
+ "leader thread did not run first"
+ );
+
+ once.call_once(|| {
+ called.fetch_add(1, Ordering::AcqRel);
+ });
+ })
+ };
+
+ t0.join().unwrap();
+ t1.join().unwrap();
+
+ assert_eq!(shared.1.load(Ordering::Acquire), 2);
+ }
+
+ // This is sort of two test cases, but if we write them as separate test methods
+ // they can be executed concurrently and then fail some small fraction of the
+ // time.
+ #[test]
+ fn drop_occurs_and_skip_uninit_drop() {
+ unsafe {
+ CALLED = false;
+ }
+
+ {
+ let once = Once::<_>::new();
+ once.call_once(|| DropTest {});
+ }
+
+ assert!(unsafe { CALLED });
+ // Now test that we skip drops for the uninitialized case.
+ unsafe {
+ CALLED = false;
+ }
+
+ let once = Once::<DropTest>::new();
+ drop(once);
+
+ assert!(unsafe { !CALLED });
+ }
+
+ #[test]
+ fn call_once_test() {
+ for _ in 0..20 {
+ use std::sync::atomic::AtomicUsize;
+ use std::sync::Arc;
+ use std::time::Duration;
+ let share = Arc::new(AtomicUsize::new(0));
+ let once = Arc::new(Once::<_, Spin>::new());
+ let mut hs = Vec::new();
+ for _ in 0..8 {
+ let h = thread::spawn({
+ let share = share.clone();
+ let once = once.clone();
+ move || {
+ thread::sleep(Duration::from_millis(10));
+ once.call_once(|| {
+ share.fetch_add(1, Ordering::SeqCst);
+ });
+ }
+ });
+ hs.push(h);
+ }
+ for h in hs {
+ h.join().unwrap();
+ }
+ assert_eq!(1, share.load(Ordering::SeqCst));
+ }
+ }
+}
diff --git a/vendor/spin/src/relax.rs b/vendor/spin/src/relax.rs
new file mode 100644
index 0000000..8842f80
--- /dev/null
+++ b/vendor/spin/src/relax.rs
@@ -0,0 +1,61 @@
+//! Strategies that determine the behaviour of locks when encountering contention.
+
+/// A trait implemented by spinning relax strategies.
+pub trait RelaxStrategy {
+ /// Perform the relaxing operation during a period of contention.
+ fn relax();
+}
+
+/// A strategy that rapidly spins while informing the CPU that it should power down non-essential components via
+/// [`core::hint::spin_loop`].
+///
+/// Note that spinning is a 'dumb' strategy and most schedulers cannot correctly differentiate it from useful work,
+/// thereby misallocating even more CPU time to the spinning process. This is known as
+/// ['priority inversion'](https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html).
+///
+/// If you see signs that priority inversion is occurring, consider switching to [`Yield`] or, even better, not using a
+/// spinlock at all and opting for a proper scheduler-aware lock. Remember also that different targets, operating
+/// systems, schedulers, and even the same scheduler with different workloads will exhibit different behaviour. Just
+/// because priority inversion isn't occurring in your tests does not mean that it will not occur. Use a scheduler-
+/// aware lock if at all possible.
+pub struct Spin;
+
+impl RelaxStrategy for Spin {
+ #[inline(always)]
+ fn relax() {
+ // Use the deprecated spin_loop_hint() to ensure that we don't get
+ // a higher MSRV than we need to.
+ #[allow(deprecated)]
+ core::sync::atomic::spin_loop_hint();
+ }
+}
+
+/// A strategy that yields the current time slice to the scheduler in favour of other threads or processes.
+///
+/// This is generally used as a strategy for minimising power consumption and priority inversion on targets that have a
+/// standard library available. Note that such targets have scheduler-integrated concurrency primitives available, and
+/// you should generally use these instead, except in rare circumstances.
+#[cfg(feature = "std")]
+#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
+pub struct Yield;
+
+#[cfg(feature = "std")]
+#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
+impl RelaxStrategy for Yield {
+ #[inline(always)]
+ fn relax() {
+ std::thread::yield_now();
+ }
+}
+
+/// A strategy that rapidly spins, without telling the CPU to do any powering down.
+///
+/// You almost certainly do not want to use this. Use [`Spin`] instead. It exists for completeness and for targets
+/// that, for some reason, miscompile or do not support spin hint intrinsics despite attempting to generate code for
+/// them (i.e: this is a workaround for possible compiler bugs).
+pub struct Loop;
+
+impl RelaxStrategy for Loop {
+ #[inline(always)]
+ fn relax() {}
+}
diff --git a/vendor/spin/src/rwlock.rs b/vendor/spin/src/rwlock.rs
new file mode 100644
index 0000000..5dd3544
--- /dev/null
+++ b/vendor/spin/src/rwlock.rs
@@ -0,0 +1,1165 @@
+//! A lock that provides data access to either one writer or many readers.
+
+use crate::{
+ atomic::{AtomicUsize, Ordering},
+ RelaxStrategy, Spin,
+};
+use core::{
+ cell::UnsafeCell,
+ fmt,
+ marker::PhantomData,
+ mem,
+ mem::ManuallyDrop,
+ ops::{Deref, DerefMut},
+};
+
+/// A lock that provides data access to either one writer or many readers.
+///
+/// This lock behaves in a similar manner to its namesake `std::sync::RwLock` but uses
+/// spinning for synchronisation instead. Unlike its namespace, this lock does not
+/// track lock poisoning.
+///
+/// This type of lock allows a number of readers or at most one writer at any
+/// point in time. The write portion of this lock typically allows modification
+/// of the underlying data (exclusive access) and the read portion of this lock
+/// typically allows for read-only access (shared access).
+///
+/// The type parameter `T` represents the data that this lock protects. It is
+/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
+/// allow concurrent access through readers. The RAII guards returned from the
+/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
+/// to allow access to the contained of the lock.
+///
+/// An [`RwLockUpgradableGuard`](RwLockUpgradableGuard) can be upgraded to a
+/// writable guard through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade)
+/// [`RwLockUpgradableGuard::try_upgrade`](RwLockUpgradableGuard::try_upgrade) functions.
+/// Writable or upgradeable guards can be downgraded through their respective `downgrade`
+/// functions.
+///
+/// Based on Facebook's
+/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h).
+/// This implementation is unfair to writers - if the lock always has readers, then no writers will
+/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no
+/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken
+/// when there are existing readers. However if the lock is that highly contended and writes are
+/// crucial then this implementation may be a poor choice.
+///
+/// # Examples
+///
+/// ```
+/// use spin;
+///
+/// let lock = spin::RwLock::new(5);
+///
+/// // many reader locks can be held at once
+/// {
+/// let r1 = lock.read();
+/// let r2 = lock.read();
+/// assert_eq!(*r1, 5);
+/// assert_eq!(*r2, 5);
+/// } // read locks are dropped at this point
+///
+/// // only one write lock may be held, however
+/// {
+/// let mut w = lock.write();
+/// *w += 1;
+/// assert_eq!(*w, 6);
+/// } // write lock is dropped here
+/// ```
+pub struct RwLock<T: ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ lock: AtomicUsize,
+ data: UnsafeCell<T>,
+}
+
+const READER: usize = 1 << 2;
+const UPGRADED: usize = 1 << 1;
+const WRITER: usize = 1;
+
+/// A guard that provides immutable data access.
+///
+/// When the guard falls out of scope it will decrement the read count,
+/// potentially releasing the lock.
+pub struct RwLockReadGuard<'a, T: 'a + ?Sized> {
+ lock: &'a AtomicUsize,
+ data: *const T,
+}
+
+/// A guard that provides mutable data access.
+///
+/// When the guard falls out of scope it will release the lock.
+pub struct RwLockWriteGuard<'a, T: 'a + ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ inner: &'a RwLock<T, R>,
+ data: *mut T,
+}
+
+/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`].
+///
+/// No writers or other upgradeable guards can exist while this is in scope. New reader
+/// creation is prevented (to alleviate writer starvation) but there may be existing readers
+/// when the lock is acquired.
+///
+/// When the guard falls out of scope it will release the lock.
+pub struct RwLockUpgradableGuard<'a, T: 'a + ?Sized, R = Spin> {
+ phantom: PhantomData<R>,
+ inner: &'a RwLock<T, R>,
+ data: *const T,
+}
+
+// Same unsafe impls as `std::sync::RwLock`
+unsafe impl<T: ?Sized + Send, R> Send for RwLock<T, R> {}
+unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLock<T, R> {}
+
+unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockWriteGuard<'_, T, R> {}
+unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockWriteGuard<'_, T, R> {}
+
+unsafe impl<T: ?Sized + Sync> Send for RwLockReadGuard<'_, T> {}
+unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}
+
+unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockUpgradableGuard<'_, T, R> {}
+unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockUpgradableGuard<'_, T, R> {}
+
+impl<T, R> RwLock<T, R> {
+ /// Creates a new spinlock wrapping the supplied data.
+ ///
+ /// May be used statically:
+ ///
+ /// ```
+ /// use spin;
+ ///
+ /// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(());
+ ///
+ /// fn demo() {
+ /// let lock = RW_LOCK.read();
+ /// // do something with lock
+ /// drop(lock);
+ /// }
+ /// ```
+ #[inline]
+ pub const fn new(data: T) -> Self {
+ RwLock {
+ phantom: PhantomData,
+ lock: AtomicUsize::new(0),
+ data: UnsafeCell::new(data),
+ }
+ }
+
+ /// Consumes this `RwLock`, returning the underlying data.
+ #[inline]
+ pub fn into_inner(self) -> T {
+ // We know statically that there are no outstanding references to
+ // `self` so there's no need to lock.
+ let RwLock { data, .. } = self;
+ data.into_inner()
+ }
+ /// Returns a mutable pointer to the underying data.
+ ///
+ /// This is mostly meant to be used for applications which require manual unlocking, but where
+ /// storing both the lock and the pointer to the inner data gets inefficient.
+ ///
+ /// While this is safe, writing to the data is undefined behavior unless the current thread has
+ /// acquired a write lock, and reading requires either a read or write lock.
+ ///
+ /// # Example
+ /// ```
+ /// let lock = spin::RwLock::new(42);
+ ///
+ /// unsafe {
+ /// core::mem::forget(lock.write());
+ ///
+ /// assert_eq!(lock.as_mut_ptr().read(), 42);
+ /// lock.as_mut_ptr().write(58);
+ ///
+ /// lock.force_write_unlock();
+ /// }
+ ///
+ /// assert_eq!(*lock.read(), 58);
+ ///
+ /// ```
+ #[inline(always)]
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.data.get()
+ }
+}
+
+impl<T: ?Sized, R: RelaxStrategy> RwLock<T, R> {
+ /// Locks this rwlock with shared read access, blocking the current thread
+ /// until it can be acquired.
+ ///
+ /// The calling thread will be blocked until there are no more writers which
+ /// hold the lock. There may be other readers currently inside the lock when
+ /// this method returns. This method does not provide any guarantees with
+ /// respect to the ordering of whether contentious readers or writers will
+ /// acquire the lock first.
+ ///
+ /// Returns an RAII guard which will release this thread's shared access
+ /// once it is dropped.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ /// {
+ /// let mut data = mylock.read();
+ /// // The lock is now locked and the data can be read
+ /// println!("{}", *data);
+ /// // The lock is dropped
+ /// }
+ /// ```
+ #[inline]
+ pub fn read(&self) -> RwLockReadGuard<T> {
+ loop {
+ match self.try_read() {
+ Some(guard) => return guard,
+ None => R::relax(),
+ }
+ }
+ }
+
+ /// Lock this rwlock with exclusive write access, blocking the current
+ /// thread until it can be acquired.
+ ///
+ /// This function will not return while other writers or other readers
+ /// currently have access to the lock.
+ ///
+ /// Returns an RAII guard which will drop the write access of this rwlock
+ /// when dropped.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ /// {
+ /// let mut data = mylock.write();
+ /// // The lock is now locked and the data can be written
+ /// *data += 1;
+ /// // The lock is dropped
+ /// }
+ /// ```
+ #[inline]
+ pub fn write(&self) -> RwLockWriteGuard<T, R> {
+ loop {
+ match self.try_write_internal(false) {
+ Some(guard) => return guard,
+ None => R::relax(),
+ }
+ }
+ }
+
+ /// Obtain a readable lock guard that can later be upgraded to a writable lock guard.
+ /// Upgrades can be done through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) method.
+ #[inline]
+ pub fn upgradeable_read(&self) -> RwLockUpgradableGuard<T, R> {
+ loop {
+ match self.try_upgradeable_read() {
+ Some(guard) => return guard,
+ None => R::relax(),
+ }
+ }
+ }
+}
+
+impl<T: ?Sized, R> RwLock<T, R> {
+ // Acquire a read lock, returning the new lock value.
+ fn acquire_reader(&self) -> usize {
+ // An arbitrary cap that allows us to catch overflows long before they happen
+ const MAX_READERS: usize = core::usize::MAX / READER / 2;
+
+ let value = self.lock.fetch_add(READER, Ordering::Acquire);
+
+ if value > MAX_READERS * READER {
+ self.lock.fetch_sub(READER, Ordering::Relaxed);
+ panic!("Too many lock readers, cannot safely proceed");
+ } else {
+ value
+ }
+ }
+
+ /// Attempt to acquire this lock with shared read access.
+ ///
+ /// This function will never block and will return immediately if `read`
+ /// would otherwise succeed. Returns `Some` of an RAII guard which will
+ /// release the shared access of this thread when dropped, or `None` if the
+ /// access could not be granted. This method does not provide any
+ /// guarantees with respect to the ordering of whether contentious readers
+ /// or writers will acquire the lock first.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ /// {
+ /// match mylock.try_read() {
+ /// Some(data) => {
+ /// // The lock is now locked and the data can be read
+ /// println!("{}", *data);
+ /// // The lock is dropped
+ /// },
+ /// None => (), // no cigar
+ /// };
+ /// }
+ /// ```
+ #[inline]
+ pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
+ let value = self.acquire_reader();
+
+ // We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held.
+ // This helps reduce writer starvation.
+ if value & (WRITER | UPGRADED) != 0 {
+ // Lock is taken, undo.
+ self.lock.fetch_sub(READER, Ordering::Release);
+ None
+ } else {
+ Some(RwLockReadGuard {
+ lock: &self.lock,
+ data: unsafe { &*self.data.get() },
+ })
+ }
+ }
+
+ /// Return the number of readers that currently hold the lock (including upgradable readers).
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ pub fn reader_count(&self) -> usize {
+ let state = self.lock.load(Ordering::Relaxed);
+ state / READER + (state & UPGRADED) / UPGRADED
+ }
+
+ /// Return the number of writers that currently hold the lock.
+ ///
+ /// Because [`RwLock`] guarantees exclusive mutable access, this function may only return either `0` or `1`.
+ ///
+ /// # Safety
+ ///
+ /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
+ /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
+ pub fn writer_count(&self) -> usize {
+ (self.lock.load(Ordering::Relaxed) & WRITER) / WRITER
+ }
+
+ /// Force decrement the reader count.
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s
+ /// live, or if called more times than `read` has been called, but can be
+ /// useful in FFI contexts where the caller doesn't know how to deal with
+ /// RAII. The underlying atomic operation uses `Ordering::Release`.
+ #[inline]
+ pub unsafe fn force_read_decrement(&self) {
+ debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0);
+ self.lock.fetch_sub(READER, Ordering::Release);
+ }
+
+ /// Force unlock exclusive write access.
+ ///
+ /// # Safety
+ ///
+ /// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s
+ /// live, or if called when there are current readers, but can be useful in
+ /// FFI contexts where the caller doesn't know how to deal with RAII. The
+ /// underlying atomic operation uses `Ordering::Release`.
+ #[inline]
+ pub unsafe fn force_write_unlock(&self) {
+ debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0);
+ self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
+ }
+
+ #[inline(always)]
+ fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T, R>> {
+ if compare_exchange(
+ &self.lock,
+ 0,
+ WRITER,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ strong,
+ )
+ .is_ok()
+ {
+ Some(RwLockWriteGuard {
+ phantom: PhantomData,
+ inner: self,
+ data: unsafe { &mut *self.data.get() },
+ })
+ } else {
+ None
+ }
+ }
+
+ /// Attempt to lock this rwlock with exclusive write access.
+ ///
+ /// This function does not ever block, and it will return `None` if a call
+ /// to `write` would otherwise block. If successful, an RAII guard is
+ /// returned.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ /// {
+ /// match mylock.try_write() {
+ /// Some(mut data) => {
+ /// // The lock is now locked and the data can be written
+ /// *data += 1;
+ /// // The lock is implicitly dropped
+ /// },
+ /// None => (), // no cigar
+ /// };
+ /// }
+ /// ```
+ #[inline]
+ pub fn try_write(&self) -> Option<RwLockWriteGuard<T, R>> {
+ self.try_write_internal(true)
+ }
+
+ /// Tries to obtain an upgradeable lock guard.
+ #[inline]
+ pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T, R>> {
+ if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
+ Some(RwLockUpgradableGuard {
+ phantom: PhantomData,
+ inner: self,
+ data: unsafe { &*self.data.get() },
+ })
+ } else {
+ // We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock.
+ // When they unlock, they will clear the bit.
+ None
+ }
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the `RwLock` mutably, no actual locking needs to
+ /// take place -- the mutable borrow statically guarantees no locks exist.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut lock = spin::RwLock::new(0);
+ /// *lock.get_mut() = 10;
+ /// assert_eq!(*lock.read(), 10);
+ /// ```
+ pub fn get_mut(&mut self) -> &mut T {
+ // We know statically that there are no other references to `self`, so
+ // there's no need to lock the inner lock.
+ unsafe { &mut *self.data.get() }
+ }
+}
+
+impl<T: ?Sized + fmt::Debug, R> fmt::Debug for RwLock<T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.try_read() {
+ Some(guard) => write!(f, "RwLock {{ data: ")
+ .and_then(|()| (&*guard).fmt(f))
+ .and_then(|()| write!(f, "}}")),
+ None => write!(f, "RwLock {{ <locked> }}"),
+ }
+ }
+}
+
+impl<T: ?Sized + Default, R> Default for RwLock<T, R> {
+ fn default() -> Self {
+ Self::new(Default::default())
+ }
+}
+
+impl<T, R> From<T> for RwLock<T, R> {
+ fn from(data: T) -> Self {
+ Self::new(data)
+ }
+}
+
+impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
+ /// Leak the lock guard, yielding a reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original lock for all but reading locks.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ ///
+ /// let data: &i32 = spin::RwLockReadGuard::leak(mylock.read());
+ ///
+ /// assert_eq!(*data, 0);
+ /// ```
+ #[inline]
+ pub fn leak(this: Self) -> &'rwlock T {
+ let this = ManuallyDrop::new(this);
+ // Safety: We know statically that only we are referencing data
+ unsafe { &*this.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'rwlock, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'rwlock, T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'rwlock, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'rwlock, T: ?Sized, R: RelaxStrategy> RwLockUpgradableGuard<'rwlock, T, R> {
+ /// Upgrades an upgradeable lock guard to a writable lock guard.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ ///
+ /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
+ /// let writable = upgradeable.upgrade();
+ /// ```
+ #[inline]
+ pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T, R> {
+ loop {
+ self = match self.try_upgrade_internal(false) {
+ Ok(guard) => return guard,
+ Err(e) => e,
+ };
+
+ R::relax();
+ }
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> RwLockUpgradableGuard<'rwlock, T, R> {
+ #[inline(always)]
+ fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
+ if compare_exchange(
+ &self.inner.lock,
+ UPGRADED,
+ WRITER,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ strong,
+ )
+ .is_ok()
+ {
+ let inner = self.inner;
+
+ // Forget the old guard so its destructor doesn't run (before mutably aliasing data below)
+ mem::forget(self);
+
+ // Upgrade successful
+ Ok(RwLockWriteGuard {
+ phantom: PhantomData,
+ inner,
+ data: unsafe { &mut *inner.data.get() },
+ })
+ } else {
+ Err(self)
+ }
+ }
+
+ /// Tries to upgrade an upgradeable lock guard to a writable lock guard.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
+ ///
+ /// match upgradeable.try_upgrade() {
+ /// Ok(writable) => /* upgrade successful - use writable lock guard */ (),
+ /// Err(upgradeable) => /* upgrade unsuccessful */ (),
+ /// };
+ /// ```
+ #[inline]
+ pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
+ self.try_upgrade_internal(true)
+ }
+
+ #[inline]
+ /// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(1);
+ ///
+ /// let upgradeable = mylock.upgradeable_read();
+ /// assert!(mylock.try_read().is_none());
+ /// assert_eq!(*upgradeable, 1);
+ ///
+ /// let readable = upgradeable.downgrade(); // This is guaranteed not to spin
+ /// assert!(mylock.try_read().is_some());
+ /// assert_eq!(*readable, 1);
+ /// ```
+ pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
+ // Reserve the read guard for ourselves
+ self.inner.acquire_reader();
+
+ let inner = self.inner;
+
+ // Dropping self removes the UPGRADED bit
+ mem::drop(self);
+
+ RwLockReadGuard {
+ lock: &inner.lock,
+ data: unsafe { &*inner.data.get() },
+ }
+ }
+
+ /// Leak the lock guard, yielding a reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original lock.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ ///
+ /// let data: &i32 = spin::RwLockUpgradableGuard::leak(mylock.upgradeable_read());
+ ///
+ /// assert_eq!(*data, 0);
+ /// ```
+ #[inline]
+ pub fn leak(this: Self) -> &'rwlock T {
+ let this = ManuallyDrop::new(this);
+ // Safety: We know statically that only we are referencing data
+ unsafe { &*this.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockUpgradableGuard<'rwlock, T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockUpgradableGuard<'rwlock, T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> RwLockWriteGuard<'rwlock, T, R> {
+ /// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ ///
+ /// let mut writable = mylock.write();
+ /// *writable = 1;
+ ///
+ /// let readable = writable.downgrade(); // This is guaranteed not to spin
+ /// # let readable_2 = mylock.try_read().unwrap();
+ /// assert_eq!(*readable, 1);
+ /// ```
+ #[inline]
+ pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
+ // Reserve the read guard for ourselves
+ self.inner.acquire_reader();
+
+ let inner = self.inner;
+
+ // Dropping self removes the UPGRADED bit
+ mem::drop(self);
+
+ RwLockReadGuard {
+ lock: &inner.lock,
+ data: unsafe { &*inner.data.get() },
+ }
+ }
+
+ /// Downgrades the writable lock guard to an upgradable, shared lock guard. Cannot fail and is guaranteed not to spin.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ ///
+ /// let mut writable = mylock.write();
+ /// *writable = 1;
+ ///
+ /// let readable = writable.downgrade_to_upgradeable(); // This is guaranteed not to spin
+ /// assert_eq!(*readable, 1);
+ /// ```
+ #[inline]
+ pub fn downgrade_to_upgradeable(self) -> RwLockUpgradableGuard<'rwlock, T, R> {
+ debug_assert_eq!(
+ self.inner.lock.load(Ordering::Acquire) & (WRITER | UPGRADED),
+ WRITER
+ );
+
+ // Reserve the read guard for ourselves
+ self.inner.lock.store(UPGRADED, Ordering::Release);
+
+ let inner = self.inner;
+
+ // Dropping self removes the UPGRADED bit
+ mem::forget(self);
+
+ RwLockUpgradableGuard {
+ phantom: PhantomData,
+ inner,
+ data: unsafe { &*inner.data.get() },
+ }
+ }
+
+ /// Leak the lock guard, yielding a mutable reference to the underlying data.
+ ///
+ /// Note that this function will permanently lock the original lock.
+ ///
+ /// ```
+ /// let mylock = spin::RwLock::new(0);
+ ///
+ /// let data: &mut i32 = spin::RwLockWriteGuard::leak(mylock.write());
+ ///
+ /// *data = 1;
+ /// assert_eq!(*data, 1);
+ /// ```
+ #[inline]
+ pub fn leak(this: Self) -> &'rwlock mut T {
+ let mut this = ManuallyDrop::new(this);
+ // Safety: We know statically that only we are referencing data
+ unsafe { &mut *this.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockWriteGuard<'rwlock, T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockWriteGuard<'rwlock, T, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // Safety: We know statically that only we are referencing data
+ unsafe { &*self.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> Deref for RwLockUpgradableGuard<'rwlock, T, R> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // Safety: We know statically that only we are referencing data
+ unsafe { &*self.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> Deref for RwLockWriteGuard<'rwlock, T, R> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // Safety: We know statically that only we are referencing data
+ unsafe { &*self.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> DerefMut for RwLockWriteGuard<'rwlock, T, R> {
+ fn deref_mut(&mut self) -> &mut T {
+ // Safety: We know statically that only we are referencing data
+ unsafe { &mut *self.data }
+ }
+}
+
+impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> {
+ fn drop(&mut self) {
+ debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
+ self.lock.fetch_sub(READER, Ordering::Release);
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> Drop for RwLockUpgradableGuard<'rwlock, T, R> {
+ fn drop(&mut self) {
+ debug_assert_eq!(
+ self.inner.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED),
+ UPGRADED
+ );
+ self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
+ }
+}
+
+impl<'rwlock, T: ?Sized, R> Drop for RwLockWriteGuard<'rwlock, T, R> {
+ fn drop(&mut self) {
+ debug_assert_eq!(self.inner.lock.load(Ordering::Relaxed) & WRITER, WRITER);
+
+ // Writer is responsible for clearing both WRITER and UPGRADED bits.
+ // The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held.
+ self.inner
+ .lock
+ .fetch_and(!(WRITER | UPGRADED), Ordering::Release);
+ }
+}
+
+#[inline(always)]
+fn compare_exchange(
+ atomic: &AtomicUsize,
+ current: usize,
+ new: usize,
+ success: Ordering,
+ failure: Ordering,
+ strong: bool,
+) -> Result<usize, usize> {
+ if strong {
+ atomic.compare_exchange(current, new, success, failure)
+ } else {
+ atomic.compare_exchange_weak(current, new, success, failure)
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLock for RwLock<(), R> {
+ type GuardMarker = lock_api_crate::GuardSend;
+
+ const INIT: Self = Self::new(());
+
+ #[inline(always)]
+ fn lock_exclusive(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(self.write());
+ }
+
+ #[inline(always)]
+ fn try_lock_exclusive(&self) -> bool {
+ // Prevent guard destructor running
+ self.try_write().map(|g| core::mem::forget(g)).is_some()
+ }
+
+ #[inline(always)]
+ unsafe fn unlock_exclusive(&self) {
+ drop(RwLockWriteGuard {
+ inner: self,
+ data: &mut (),
+ phantom: PhantomData,
+ });
+ }
+
+ #[inline(always)]
+ fn lock_shared(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(self.read());
+ }
+
+ #[inline(always)]
+ fn try_lock_shared(&self) -> bool {
+ // Prevent guard destructor running
+ self.try_read().map(|g| core::mem::forget(g)).is_some()
+ }
+
+ #[inline(always)]
+ unsafe fn unlock_shared(&self) {
+ drop(RwLockReadGuard {
+ lock: &self.lock,
+ data: &(),
+ });
+ }
+
+ #[inline(always)]
+ fn is_locked(&self) -> bool {
+ self.lock.load(Ordering::Relaxed) != 0
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockUpgrade for RwLock<(), R> {
+ #[inline(always)]
+ fn lock_upgradable(&self) {
+ // Prevent guard destructor running
+ core::mem::forget(self.upgradeable_read());
+ }
+
+ #[inline(always)]
+ fn try_lock_upgradable(&self) -> bool {
+ // Prevent guard destructor running
+ self.try_upgradeable_read()
+ .map(|g| core::mem::forget(g))
+ .is_some()
+ }
+
+ #[inline(always)]
+ unsafe fn unlock_upgradable(&self) {
+ drop(RwLockUpgradableGuard {
+ inner: self,
+ data: &(),
+ phantom: PhantomData,
+ });
+ }
+
+ #[inline(always)]
+ unsafe fn upgrade(&self) {
+ let tmp_guard = RwLockUpgradableGuard {
+ inner: self,
+ data: &(),
+ phantom: PhantomData,
+ };
+ core::mem::forget(tmp_guard.upgrade());
+ }
+
+ #[inline(always)]
+ unsafe fn try_upgrade(&self) -> bool {
+ let tmp_guard = RwLockUpgradableGuard {
+ inner: self,
+ data: &(),
+ phantom: PhantomData,
+ };
+ tmp_guard
+ .try_upgrade()
+ .map(|g| core::mem::forget(g))
+ .is_ok()
+ }
+}
+
+#[cfg(feature = "lock_api")]
+unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockDowngrade for RwLock<(), R> {
+ unsafe fn downgrade(&self) {
+ let tmp_guard = RwLockWriteGuard {
+ inner: self,
+ data: &mut (),
+ phantom: PhantomData,
+ };
+ core::mem::forget(tmp_guard.downgrade());
+ }
+}
+
+#[cfg(feature = "lock_api1")]
+unsafe impl lock_api::RawRwLockUpgradeDowngrade for RwLock<()> {
+ unsafe fn downgrade_upgradable(&self) {
+ let tmp_guard = RwLockUpgradableGuard {
+ inner: self,
+ data: &(),
+ phantom: PhantomData,
+ };
+ core::mem::forget(tmp_guard.downgrade());
+ }
+
+ unsafe fn downgrade_to_upgradable(&self) {
+ let tmp_guard = RwLockWriteGuard {
+ inner: self,
+ data: &mut (),
+ phantom: PhantomData,
+ };
+ core::mem::forget(tmp_guard.downgrade_to_upgradeable());
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use std::prelude::v1::*;
+
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ type RwLock<T> = super::RwLock<T>;
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let l = RwLock::new(());
+ drop(l.read());
+ drop(l.write());
+ drop((l.read(), l.read()));
+ drop(l.write());
+ }
+
+ // TODO: needs RNG
+ //#[test]
+ //fn frob() {
+ // static R: RwLock = RwLock::new();
+ // const N: usize = 10;
+ // const M: usize = 1000;
+ //
+ // let (tx, rx) = channel::<()>();
+ // for _ in 0..N {
+ // let tx = tx.clone();
+ // thread::spawn(move|| {
+ // let mut rng = rand::thread_rng();
+ // for _ in 0..M {
+ // if rng.gen_weighted_bool(N) {
+ // drop(R.write());
+ // } else {
+ // drop(R.read());
+ // }
+ // }
+ // drop(tx);
+ // });
+ // }
+ // drop(tx);
+ // let _ = rx.recv();
+ // unsafe { R.destroy(); }
+ //}
+
+ #[test]
+ fn test_rw_arc() {
+ let arc = Arc::new(RwLock::new(0));
+ let arc2 = arc.clone();
+ let (tx, rx) = channel();
+
+ let t = thread::spawn(move || {
+ let mut lock = arc2.write();
+ for _ in 0..10 {
+ let tmp = *lock;
+ *lock = -1;
+ thread::yield_now();
+ *lock = tmp + 1;
+ }
+ tx.send(()).unwrap();
+ });
+
+ // Readers try to catch the writer in the act
+ let mut children = Vec::new();
+ for _ in 0..5 {
+ let arc3 = arc.clone();
+ children.push(thread::spawn(move || {
+ let lock = arc3.read();
+ assert!(*lock >= 0);
+ }));
+ }
+
+ // Wait for children to pass their asserts
+ for r in children {
+ assert!(r.join().is_ok());
+ }
+
+ // Wait for writer to finish
+ rx.recv().unwrap();
+ let lock = arc.read();
+ assert_eq!(*lock, 10);
+
+ assert!(t.join().is_ok());
+ }
+
+ #[test]
+ fn test_rw_access_in_unwind() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || -> () {
+ struct Unwinder {
+ i: Arc<RwLock<isize>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ let mut lock = self.i.write();
+ *lock += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.read();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_rwlock_unsized() {
+ let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
+ {
+ let b = &mut *rw.write();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*rw.read(), comp);
+ }
+
+ #[test]
+ fn test_rwlock_try_write() {
+ use std::mem::drop;
+
+ let lock = RwLock::new(0isize);
+ let read_guard = lock.read();
+
+ let write_result = lock.try_write();
+ match write_result {
+ None => (),
+ Some(_) => assert!(
+ false,
+ "try_write should not succeed while read_guard is in scope"
+ ),
+ }
+
+ drop(read_guard);
+ }
+
+ #[test]
+ fn test_rw_try_read() {
+ let m = RwLock::new(0);
+ ::std::mem::forget(m.write());
+ assert!(m.try_read().is_none());
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = RwLock::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = RwLock::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_force_read_decrement() {
+ let m = RwLock::new(());
+ ::std::mem::forget(m.read());
+ ::std::mem::forget(m.read());
+ ::std::mem::forget(m.read());
+ assert!(m.try_write().is_none());
+ unsafe {
+ m.force_read_decrement();
+ m.force_read_decrement();
+ }
+ assert!(m.try_write().is_none());
+ unsafe {
+ m.force_read_decrement();
+ }
+ assert!(m.try_write().is_some());
+ }
+
+ #[test]
+ fn test_force_write_unlock() {
+ let m = RwLock::new(());
+ ::std::mem::forget(m.write());
+ assert!(m.try_read().is_none());
+ unsafe {
+ m.force_write_unlock();
+ }
+ assert!(m.try_read().is_some());
+ }
+
+ #[test]
+ fn test_upgrade_downgrade() {
+ let m = RwLock::new(());
+ {
+ let _r = m.read();
+ let upg = m.try_upgradeable_read().unwrap();
+ assert!(m.try_read().is_none());
+ assert!(m.try_write().is_none());
+ assert!(upg.try_upgrade().is_err());
+ }
+ {
+ let w = m.write();
+ assert!(m.try_upgradeable_read().is_none());
+ let _r = w.downgrade();
+ assert!(m.try_upgradeable_read().is_some());
+ assert!(m.try_read().is_some());
+ assert!(m.try_write().is_none());
+ }
+ {
+ let _u = m.upgradeable_read();
+ assert!(m.try_upgradeable_read().is_none());
+ }
+
+ assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok());
+ }
+}