diff options
Diffstat (limited to 'vendor/spin/src')
-rw-r--r-- | vendor/spin/src/barrier.rs | 239 | ||||
-rw-r--r-- | vendor/spin/src/lazy.rs | 118 | ||||
-rw-r--r-- | vendor/spin/src/lib.rs | 221 | ||||
-rw-r--r-- | vendor/spin/src/mutex.rs | 340 | ||||
-rw-r--r-- | vendor/spin/src/mutex/fair.rs | 735 | ||||
-rw-r--r-- | vendor/spin/src/mutex/spin.rs | 543 | ||||
-rw-r--r-- | vendor/spin/src/mutex/ticket.rs | 537 | ||||
-rw-r--r-- | vendor/spin/src/once.rs | 789 | ||||
-rw-r--r-- | vendor/spin/src/relax.rs | 61 | ||||
-rw-r--r-- | vendor/spin/src/rwlock.rs | 1165 |
10 files changed, 4748 insertions, 0 deletions
diff --git a/vendor/spin/src/barrier.rs b/vendor/spin/src/barrier.rs new file mode 100644 index 0000000..c3a1c92 --- /dev/null +++ b/vendor/spin/src/barrier.rs @@ -0,0 +1,239 @@ +//! Synchronization primitive allowing multiple threads to synchronize the +//! beginning of some computation. +//! +//! Implementation adapted from the 'Barrier' type of the standard library. See: +//! <https://doc.rust-lang.org/std/sync/struct.Barrier.html> +//! +//! Copyright 2014 The Rust Project Developers. See the COPYRIGHT +//! file at the top-level directory of this distribution and at +//! <http://rust-lang.org/COPYRIGHT>. +//! +//! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +//! <http://www.apache.org/licenses/LICENSE-2.0>> or the MIT license +//! <LICENSE-MIT or <http://opensource.org/licenses/MIT>>, at your +//! option. This file may not be copied, modified, or distributed +//! except according to those terms. + +use crate::{mutex::Mutex, RelaxStrategy, Spin}; + +/// A primitive that synchronizes the execution of multiple threads. +/// +/// # Example +/// +/// ``` +/// use spin; +/// use std::sync::Arc; +/// use std::thread; +/// +/// let mut handles = Vec::with_capacity(10); +/// let barrier = Arc::new(spin::Barrier::new(10)); +/// for _ in 0..10 { +/// let c = barrier.clone(); +/// // The same messages will be printed together. +/// // You will NOT see any interleaving. +/// handles.push(thread::spawn(move|| { +/// println!("before wait"); +/// c.wait(); +/// println!("after wait"); +/// })); +/// } +/// // Wait for other threads to finish. +/// for handle in handles { +/// handle.join().unwrap(); +/// } +/// ``` +pub struct Barrier<R = Spin> { + lock: Mutex<BarrierState, R>, + num_threads: usize, +} + +// The inner state of a double barrier +struct BarrierState { + count: usize, + generation_id: usize, +} + +/// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`] +/// have rendezvoused. +/// +/// [`wait`]: struct.Barrier.html#method.wait +/// [`Barrier`]: struct.Barrier.html +/// +/// # Examples +/// +/// ``` +/// use spin; +/// +/// let barrier = spin::Barrier::new(1); +/// let barrier_wait_result = barrier.wait(); +/// ``` +pub struct BarrierWaitResult(bool); + +impl<R: RelaxStrategy> Barrier<R> { + /// Blocks the current thread until all threads have rendezvoused here. + /// + /// Barriers are re-usable after all threads have rendezvoused once, and can + /// be used continuously. + /// + /// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that + /// returns `true` from [`is_leader`] when returning from this function, and + /// all other threads will receive a result that will return `false` from + /// [`is_leader`]. + /// + /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html + /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader + /// + /// # Examples + /// + /// ``` + /// use spin; + /// use std::sync::Arc; + /// use std::thread; + /// + /// let mut handles = Vec::with_capacity(10); + /// let barrier = Arc::new(spin::Barrier::new(10)); + /// for _ in 0..10 { + /// let c = barrier.clone(); + /// // The same messages will be printed together. + /// // You will NOT see any interleaving. + /// handles.push(thread::spawn(move|| { + /// println!("before wait"); + /// c.wait(); + /// println!("after wait"); + /// })); + /// } + /// // Wait for other threads to finish. + /// for handle in handles { + /// handle.join().unwrap(); + /// } + /// ``` + pub fn wait(&self) -> BarrierWaitResult { + let mut lock = self.lock.lock(); + lock.count += 1; + + if lock.count < self.num_threads { + // not the leader + let local_gen = lock.generation_id; + + while local_gen == lock.generation_id && lock.count < self.num_threads { + drop(lock); + R::relax(); + lock = self.lock.lock(); + } + BarrierWaitResult(false) + } else { + // this thread is the leader, + // and is responsible for incrementing the generation + lock.count = 0; + lock.generation_id = lock.generation_id.wrapping_add(1); + BarrierWaitResult(true) + } + } +} + +impl<R> Barrier<R> { + /// Creates a new barrier that can block a given number of threads. + /// + /// A barrier will block `n`-1 threads which call [`wait`] and then wake up + /// all threads at once when the `n`th thread calls [`wait`]. A Barrier created + /// with n = 0 will behave identically to one created with n = 1. + /// + /// [`wait`]: #method.wait + /// + /// # Examples + /// + /// ``` + /// use spin; + /// + /// let barrier = spin::Barrier::new(10); + /// ``` + pub const fn new(n: usize) -> Self { + Self { + lock: Mutex::new(BarrierState { + count: 0, + generation_id: 0, + }), + num_threads: n, + } + } +} + +impl BarrierWaitResult { + /// Returns whether this thread from [`wait`] is the "leader thread". + /// + /// Only one thread will have `true` returned from their result, all other + /// threads will have `false` returned. + /// + /// [`wait`]: struct.Barrier.html#method.wait + /// + /// # Examples + /// + /// ``` + /// use spin; + /// + /// let barrier = spin::Barrier::new(1); + /// let barrier_wait_result = barrier.wait(); + /// println!("{:?}", barrier_wait_result.is_leader()); + /// ``` + pub fn is_leader(&self) -> bool { + self.0 + } +} + +#[cfg(test)] +mod tests { + use std::prelude::v1::*; + + use std::sync::mpsc::{channel, TryRecvError}; + use std::sync::Arc; + use std::thread; + + type Barrier = super::Barrier; + + fn use_barrier(n: usize, barrier: Arc<Barrier>) { + let (tx, rx) = channel(); + + let mut ts = Vec::new(); + for _ in 0..n - 1 { + let c = barrier.clone(); + let tx = tx.clone(); + ts.push(thread::spawn(move || { + tx.send(c.wait().is_leader()).unwrap(); + })); + } + + // At this point, all spawned threads should be blocked, + // so we shouldn't get anything from the port + assert!(match rx.try_recv() { + Err(TryRecvError::Empty) => true, + _ => false, + }); + + let mut leader_found = barrier.wait().is_leader(); + + // Now, the barrier is cleared and we should get data. + for _ in 0..n - 1 { + if rx.recv().unwrap() { + assert!(!leader_found); + leader_found = true; + } + } + assert!(leader_found); + + for t in ts { + t.join().unwrap(); + } + } + + #[test] + fn test_barrier() { + const N: usize = 10; + + let barrier = Arc::new(Barrier::new(N)); + + use_barrier(N, barrier.clone()); + + // use barrier twice to ensure it is reusable + use_barrier(N, barrier.clone()); + } +} diff --git a/vendor/spin/src/lazy.rs b/vendor/spin/src/lazy.rs new file mode 100644 index 0000000..6e5efe4 --- /dev/null +++ b/vendor/spin/src/lazy.rs @@ -0,0 +1,118 @@ +//! Synchronization primitives for lazy evaluation. +//! +//! Implementation adapted from the `SyncLazy` type of the standard library. See: +//! <https://doc.rust-lang.org/std/lazy/struct.SyncLazy.html> + +use crate::{once::Once, RelaxStrategy, Spin}; +use core::{cell::Cell, fmt, ops::Deref}; + +/// A value which is initialized on the first access. +/// +/// This type is a thread-safe `Lazy`, and can be used in statics. +/// +/// # Examples +/// +/// ``` +/// use std::collections::HashMap; +/// use spin::Lazy; +/// +/// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| { +/// println!("initializing"); +/// let mut m = HashMap::new(); +/// m.insert(13, "Spica".to_string()); +/// m.insert(74, "Hoyten".to_string()); +/// m +/// }); +/// +/// fn main() { +/// println!("ready"); +/// std::thread::spawn(|| { +/// println!("{:?}", HASHMAP.get(&13)); +/// }).join().unwrap(); +/// println!("{:?}", HASHMAP.get(&74)); +/// +/// // Prints: +/// // ready +/// // initializing +/// // Some("Spica") +/// // Some("Hoyten") +/// } +/// ``` +pub struct Lazy<T, F = fn() -> T, R = Spin> { + cell: Once<T, R>, + init: Cell<Option<F>>, +} + +impl<T: fmt::Debug, F, R> fmt::Debug for Lazy<T, F, R> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("Lazy") + .field("cell", &self.cell) + .field("init", &"..") + .finish() + } +} + +// We never create a `&F` from a `&Lazy<T, F>` so it is fine +// to not impl `Sync` for `F` +// we do create a `&mut Option<F>` in `force`, but this is +// properly synchronized, so it only happens once +// so it also does not contribute to this impl. +unsafe impl<T, F: Send> Sync for Lazy<T, F> where Once<T>: Sync {} +// auto-derived `Send` impl is OK. + +impl<T, F, R> Lazy<T, F, R> { + /// Creates a new lazy value with the given initializing + /// function. + pub const fn new(f: F) -> Self { + Self { + cell: Once::new(), + init: Cell::new(Some(f)), + } + } + /// Retrieves a mutable pointer to the inner data. + /// + /// This is especially useful when interfacing with low level code or FFI where the caller + /// explicitly knows that it has exclusive access to the inner data. Note that reading from + /// this pointer is UB until initialized or directly written to. + pub fn as_mut_ptr(&self) -> *mut T { + self.cell.as_mut_ptr() + } +} + +impl<T, F: FnOnce() -> T, R: RelaxStrategy> Lazy<T, F, R> { + /// Forces the evaluation of this lazy value and + /// returns a reference to result. This is equivalent + /// to the `Deref` impl, but is explicit. + /// + /// # Examples + /// + /// ``` + /// use spin::Lazy; + /// + /// let lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::force(&lazy), &92); + /// assert_eq!(&*lazy, &92); + /// ``` + pub fn force(this: &Self) -> &T { + this.cell.call_once(|| match this.init.take() { + Some(f) => f(), + None => panic!("Lazy instance has previously been poisoned"), + }) + } +} + +impl<T, F: FnOnce() -> T, R: RelaxStrategy> Deref for Lazy<T, F, R> { + type Target = T; + + fn deref(&self) -> &T { + Self::force(self) + } +} + +impl<T: Default, R> Default for Lazy<T, fn() -> T, R> { + /// Creates a new lazy value using `Default` as the initializing function. + fn default() -> Self { + Self::new(T::default) + } +} diff --git a/vendor/spin/src/lib.rs b/vendor/spin/src/lib.rs new file mode 100644 index 0000000..50768bc --- /dev/null +++ b/vendor/spin/src/lib.rs @@ -0,0 +1,221 @@ +#![cfg_attr(all(not(feature = "std"), not(test)), no_std)] +#![cfg_attr(docsrs, feature(doc_cfg))] +#![deny(missing_docs)] + +//! This crate provides [spin-based](https://en.wikipedia.org/wiki/Spinlock) versions of the +//! primitives in `std::sync` and `std::lazy`. Because synchronization is done through spinning, +//! the primitives are suitable for use in `no_std` environments. +//! +//! # Features +//! +//! - `Mutex`, `RwLock`, `Once`/`SyncOnceCell`, and `SyncLazy` equivalents +//! +//! - Support for `no_std` environments +//! +//! - [`lock_api`](https://crates.io/crates/lock_api) compatibility +//! +//! - Upgradeable `RwLock` guards +//! +//! - Guards can be sent and shared between threads +//! +//! - Guard leaking +//! +//! - Ticket locks +//! +//! - Different strategies for dealing with contention +//! +//! # Relationship with `std::sync` +//! +//! While `spin` is not a drop-in replacement for `std::sync` (and +//! [should not be considered as such](https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html)) +//! an effort is made to keep this crate reasonably consistent with `std::sync`. +//! +//! Many of the types defined in this crate have 'additional capabilities' when compared to `std::sync`: +//! +//! - Because spinning does not depend on the thread-driven model of `std::sync`, guards ([`MutexGuard`], +//! [`RwLockReadGuard`], [`RwLockWriteGuard`], etc.) may be sent and shared between threads. +//! +//! - [`RwLockUpgradableGuard`] supports being upgraded into a [`RwLockWriteGuard`]. +//! +//! - Guards support [leaking](https://doc.rust-lang.org/nomicon/leaking.html). +//! +//! - [`Once`] owns the value returned by its `call_once` initializer. +//! +//! - [`RwLock`] supports counting readers and writers. +//! +//! Conversely, the types in this crate do not have some of the features `std::sync` has: +//! +//! - Locks do not track [panic poisoning](https://doc.rust-lang.org/nomicon/poisoning.html). +//! +//! ## Feature flags +//! +//! The crate comes with a few feature flags that you may wish to use. +//! +//! - `lock_api` enables support for [`lock_api`](https://crates.io/crates/lock_api) +//! +//! - `ticket_mutex` uses a ticket lock for the implementation of `Mutex` +//! +//! - `fair_mutex` enables a fairer implementation of `Mutex` that uses eventual fairness to avoid +//! starvation +//! +//! - `std` enables support for thread yielding instead of spinning + +#[cfg(any(test, feature = "std"))] +extern crate core; + +#[cfg(feature = "portable_atomic")] +extern crate portable_atomic; + +#[cfg(not(feature = "portable_atomic"))] +use core::sync::atomic; +#[cfg(feature = "portable_atomic")] +use portable_atomic as atomic; + +#[cfg(feature = "barrier")] +#[cfg_attr(docsrs, doc(cfg(feature = "barrier")))] +pub mod barrier; +#[cfg(feature = "lazy")] +#[cfg_attr(docsrs, doc(cfg(feature = "lazy")))] +pub mod lazy; +#[cfg(feature = "mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] +pub mod mutex; +#[cfg(feature = "once")] +#[cfg_attr(docsrs, doc(cfg(feature = "once")))] +pub mod once; +pub mod relax; +#[cfg(feature = "rwlock")] +#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] +pub mod rwlock; + +#[cfg(feature = "mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] +pub use mutex::MutexGuard; +#[cfg(feature = "std")] +#[cfg_attr(docsrs, doc(cfg(feature = "std")))] +pub use relax::Yield; +pub use relax::{RelaxStrategy, Spin}; +#[cfg(feature = "rwlock")] +#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] +pub use rwlock::RwLockReadGuard; + +// Avoid confusing inference errors by aliasing away the relax strategy parameter. Users that need to use a different +// relax strategy can do so by accessing the types through their fully-qualified path. This is a little bit horrible +// but sadly adding a default type parameter is *still* a breaking change in Rust (for understandable reasons). + +/// A primitive that synchronizes the execution of multiple threads. See [`barrier::Barrier`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "barrier")] +#[cfg_attr(docsrs, doc(cfg(feature = "barrier")))] +pub type Barrier = crate::barrier::Barrier; + +/// A value which is initialized on the first access. See [`lazy::Lazy`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "lazy")] +#[cfg_attr(docsrs, doc(cfg(feature = "lazy")))] +pub type Lazy<T, F = fn() -> T> = crate::lazy::Lazy<T, F>; + +/// A primitive that synchronizes the execution of multiple threads. See [`mutex::Mutex`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] +pub type Mutex<T> = crate::mutex::Mutex<T>; + +/// A primitive that provides lazy one-time initialization. See [`once::Once`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "once")] +#[cfg_attr(docsrs, doc(cfg(feature = "once")))] +pub type Once<T = ()> = crate::once::Once<T>; + +/// A lock that provides data access to either one writer or many readers. See [`rwlock::RwLock`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "rwlock")] +#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] +pub type RwLock<T> = crate::rwlock::RwLock<T>; + +/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`]. See +/// [`rwlock::RwLockUpgradableGuard`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "rwlock")] +#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] +pub type RwLockUpgradableGuard<'a, T> = crate::rwlock::RwLockUpgradableGuard<'a, T>; + +/// A guard that provides mutable data access. See [`rwlock::RwLockWriteGuard`] for documentation. +/// +/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax +/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. +#[cfg(feature = "rwlock")] +#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] +pub type RwLockWriteGuard<'a, T> = crate::rwlock::RwLockWriteGuard<'a, T>; + +/// Spin synchronisation primitives, but compatible with [`lock_api`](https://crates.io/crates/lock_api). +#[cfg(feature = "lock_api")] +#[cfg_attr(docsrs, doc(cfg(feature = "lock_api")))] +pub mod lock_api { + /// A lock that provides mutually exclusive data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). + #[cfg(feature = "mutex")] + #[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] + pub type Mutex<T> = lock_api_crate::Mutex<crate::Mutex<()>, T>; + + /// A guard that provides mutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). + #[cfg(feature = "mutex")] + #[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] + pub type MutexGuard<'a, T> = lock_api_crate::MutexGuard<'a, crate::Mutex<()>, T>; + + /// A lock that provides data access to either one writer or many readers (compatible with [`lock_api`](https://crates.io/crates/lock_api)). + #[cfg(feature = "rwlock")] + #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] + pub type RwLock<T> = lock_api_crate::RwLock<crate::RwLock<()>, T>; + + /// A guard that provides immutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). + #[cfg(feature = "rwlock")] + #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] + pub type RwLockReadGuard<'a, T> = lock_api_crate::RwLockReadGuard<'a, crate::RwLock<()>, T>; + + /// A guard that provides mutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). + #[cfg(feature = "rwlock")] + #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] + pub type RwLockWriteGuard<'a, T> = lock_api_crate::RwLockWriteGuard<'a, crate::RwLock<()>, T>; + + /// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`] (compatible with [`lock_api`](https://crates.io/crates/lock_api)). + #[cfg(feature = "rwlock")] + #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] + pub type RwLockUpgradableReadGuard<'a, T> = + lock_api_crate::RwLockUpgradableReadGuard<'a, crate::RwLock<()>, T>; +} + +/// In the event of an invalid operation, it's best to abort the current process. +#[cfg(feature = "fair_mutex")] +fn abort() -> ! { + #[cfg(not(feature = "std"))] + { + // Panicking while panicking is defined by Rust to result in an abort. + struct Panic; + + impl Drop for Panic { + fn drop(&mut self) { + panic!("aborting due to invalid operation"); + } + } + + let _panic = Panic; + panic!("aborting due to invalid operation"); + } + + #[cfg(feature = "std")] + { + std::process::abort(); + } +} diff --git a/vendor/spin/src/mutex.rs b/vendor/spin/src/mutex.rs new file mode 100644 index 0000000..e333d8a --- /dev/null +++ b/vendor/spin/src/mutex.rs @@ -0,0 +1,340 @@ +//! Locks that have the same behaviour as a mutex. +//! +//! The [`Mutex`] in the root of the crate, can be configured using the `ticket_mutex` feature. +//! If it's enabled, [`TicketMutex`] and [`TicketMutexGuard`] will be re-exported as [`Mutex`] +//! and [`MutexGuard`], otherwise the [`SpinMutex`] and guard will be re-exported. +//! +//! `ticket_mutex` is disabled by default. +//! +//! [`Mutex`]: ../struct.Mutex.html +//! [`MutexGuard`]: ../struct.MutexGuard.html +//! [`TicketMutex`]: ./struct.TicketMutex.html +//! [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html +//! [`SpinMutex`]: ./struct.SpinMutex.html +//! [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html + +#[cfg(feature = "spin_mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))] +pub mod spin; +#[cfg(feature = "spin_mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))] +pub use self::spin::{SpinMutex, SpinMutexGuard}; + +#[cfg(feature = "ticket_mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))] +pub mod ticket; +#[cfg(feature = "ticket_mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))] +pub use self::ticket::{TicketMutex, TicketMutexGuard}; + +#[cfg(feature = "fair_mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))] +pub mod fair; +#[cfg(feature = "fair_mutex")] +#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))] +pub use self::fair::{FairMutex, FairMutexGuard, Starvation}; + +use crate::{RelaxStrategy, Spin}; +use core::{ + fmt, + ops::{Deref, DerefMut}, +}; + +#[cfg(all(not(feature = "spin_mutex"), not(feature = "use_ticket_mutex")))] +compile_error!("The `mutex` feature flag was used (perhaps through another feature?) without either `spin_mutex` or `use_ticket_mutex`. One of these is required."); + +#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))] +type InnerMutex<T, R> = self::spin::SpinMutex<T, R>; +#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))] +type InnerMutexGuard<'a, T> = self::spin::SpinMutexGuard<'a, T>; + +#[cfg(feature = "use_ticket_mutex")] +type InnerMutex<T, R> = self::ticket::TicketMutex<T, R>; +#[cfg(feature = "use_ticket_mutex")] +type InnerMutexGuard<'a, T> = self::ticket::TicketMutexGuard<'a, T>; + +/// A spin-based lock providing mutually exclusive access to data. +/// +/// The implementation uses either a ticket mutex or a regular spin mutex depending on whether the `spin_mutex` or +/// `ticket_mutex` feature flag is enabled. +/// +/// # Example +/// +/// ``` +/// use spin; +/// +/// let lock = spin::Mutex::new(0); +/// +/// // Modify the data +/// *lock.lock() = 2; +/// +/// // Read the data +/// let answer = *lock.lock(); +/// assert_eq!(answer, 2); +/// ``` +/// +/// # Thread safety example +/// +/// ``` +/// use spin; +/// use std::sync::{Arc, Barrier}; +/// +/// let thread_count = 1000; +/// let spin_mutex = Arc::new(spin::Mutex::new(0)); +/// +/// // We use a barrier to ensure the readout happens after all writing +/// let barrier = Arc::new(Barrier::new(thread_count + 1)); +/// +/// # let mut ts = Vec::new(); +/// for _ in (0..thread_count) { +/// let my_barrier = barrier.clone(); +/// let my_lock = spin_mutex.clone(); +/// # let t = +/// std::thread::spawn(move || { +/// let mut guard = my_lock.lock(); +/// *guard += 1; +/// +/// // Release the lock to prevent a deadlock +/// drop(guard); +/// my_barrier.wait(); +/// }); +/// # ts.push(t); +/// } +/// +/// barrier.wait(); +/// +/// let answer = { *spin_mutex.lock() }; +/// assert_eq!(answer, thread_count); +/// +/// # for t in ts { +/// # t.join().unwrap(); +/// # } +/// ``` +pub struct Mutex<T: ?Sized, R = Spin> { + inner: InnerMutex<T, R>, +} + +unsafe impl<T: ?Sized + Send, R> Sync for Mutex<T, R> {} +unsafe impl<T: ?Sized + Send, R> Send for Mutex<T, R> {} + +/// A generic guard that will protect some data access and +/// uses either a ticket lock or a normal spin mutex. +/// +/// For more info see [`TicketMutexGuard`] or [`SpinMutexGuard`]. +/// +/// [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html +/// [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html +pub struct MutexGuard<'a, T: 'a + ?Sized> { + inner: InnerMutexGuard<'a, T>, +} + +impl<T, R> Mutex<T, R> { + /// Creates a new [`Mutex`] wrapping the supplied data. + /// + /// # Example + /// + /// ``` + /// use spin::Mutex; + /// + /// static MUTEX: Mutex<()> = Mutex::new(()); + /// + /// fn demo() { + /// let lock = MUTEX.lock(); + /// // do something with lock + /// drop(lock); + /// } + /// ``` + #[inline(always)] + pub const fn new(value: T) -> Self { + Self { + inner: InnerMutex::new(value), + } + } + + /// Consumes this [`Mutex`] and unwraps the underlying data. + /// + /// # Example + /// + /// ``` + /// let lock = spin::Mutex::new(42); + /// assert_eq!(42, lock.into_inner()); + /// ``` + #[inline(always)] + pub fn into_inner(self) -> T { + self.inner.into_inner() + } +} + +impl<T: ?Sized, R: RelaxStrategy> Mutex<T, R> { + /// Locks the [`Mutex`] and returns a guard that permits access to the inner data. + /// + /// The returned value may be dereferenced for data access + /// and the lock will be dropped when the guard falls out of scope. + /// + /// ``` + /// let lock = spin::Mutex::new(0); + /// { + /// let mut data = lock.lock(); + /// // The lock is now locked and the data can be accessed + /// *data += 1; + /// // The lock is implicitly dropped at the end of the scope + /// } + /// ``` + #[inline(always)] + pub fn lock(&self) -> MutexGuard<T> { + MutexGuard { + inner: self.inner.lock(), + } + } +} + +impl<T: ?Sized, R> Mutex<T, R> { + /// Returns `true` if the lock is currently held. + /// + /// # Safety + /// + /// This function provides no synchronization guarantees and so its result should be considered 'out of date' + /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. + #[inline(always)] + pub fn is_locked(&self) -> bool { + self.inner.is_locked() + } + + /// Force unlock this [`Mutex`]. + /// + /// # Safety + /// + /// This is *extremely* unsafe if the lock is not held by the current + /// thread. However, this can be useful in some instances for exposing the + /// lock to FFI that doesn't know how to deal with RAII. + #[inline(always)] + pub unsafe fn force_unlock(&self) { + self.inner.force_unlock() + } + + /// Try to lock this [`Mutex`], returning a lock guard if successful. + /// + /// # Example + /// + /// ``` + /// let lock = spin::Mutex::new(42); + /// + /// let maybe_guard = lock.try_lock(); + /// assert!(maybe_guard.is_some()); + /// + /// // `maybe_guard` is still held, so the second call fails + /// let maybe_guard2 = lock.try_lock(); + /// assert!(maybe_guard2.is_none()); + /// ``` + #[inline(always)] + pub fn try_lock(&self) -> Option<MutexGuard<T>> { + self.inner + .try_lock() + .map(|guard| MutexGuard { inner: guard }) + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in Rust, + /// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such, + /// this is a 'zero-cost' operation. + /// + /// # Example + /// + /// ``` + /// let mut lock = spin::Mutex::new(0); + /// *lock.get_mut() = 10; + /// assert_eq!(*lock.lock(), 10); + /// ``` + #[inline(always)] + pub fn get_mut(&mut self) -> &mut T { + self.inner.get_mut() + } +} + +impl<T: ?Sized + fmt::Debug, R> fmt::Debug for Mutex<T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&self.inner, f) + } +} + +impl<T: ?Sized + Default, R> Default for Mutex<T, R> { + fn default() -> Self { + Self::new(Default::default()) + } +} + +impl<T, R> From<T> for Mutex<T, R> { + fn from(data: T) -> Self { + Self::new(data) + } +} + +impl<'a, T: ?Sized> MutexGuard<'a, T> { + /// Leak the lock guard, yielding a mutable reference to the underlying data. + /// + /// Note that this function will permanently lock the original [`Mutex`]. + /// + /// ``` + /// let mylock = spin::Mutex::new(0); + /// + /// let data: &mut i32 = spin::MutexGuard::leak(mylock.lock()); + /// + /// *data = 1; + /// assert_eq!(*data, 1); + /// ``` + #[inline(always)] + pub fn leak(this: Self) -> &'a mut T { + InnerMutexGuard::leak(this.inner) + } +} + +impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> { + type Target = T; + fn deref(&self) -> &T { + &*self.inner + } +} + +impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> { + fn deref_mut(&mut self) -> &mut T { + &mut *self.inner + } +} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for Mutex<(), R> { + type GuardMarker = lock_api_crate::GuardSend; + + const INIT: Self = Self::new(()); + + fn lock(&self) { + // Prevent guard destructor running + core::mem::forget(Self::lock(self)); + } + + fn try_lock(&self) -> bool { + // Prevent guard destructor running + Self::try_lock(self).map(core::mem::forget).is_some() + } + + unsafe fn unlock(&self) { + self.force_unlock(); + } + + fn is_locked(&self) -> bool { + self.inner.is_locked() + } +} diff --git a/vendor/spin/src/mutex/fair.rs b/vendor/spin/src/mutex/fair.rs new file mode 100644 index 0000000..db07ad6 --- /dev/null +++ b/vendor/spin/src/mutex/fair.rs @@ -0,0 +1,735 @@ +//! A spinning mutex with a fairer unlock algorithm. +//! +//! This mutex is similar to the `SpinMutex` in that it uses spinning to avoid +//! context switches. However, it uses a fairer unlock algorithm that avoids +//! starvation of threads that are waiting for the lock. + +use crate::{ + atomic::{AtomicUsize, Ordering}, + RelaxStrategy, Spin, +}; +use core::{ + cell::UnsafeCell, + fmt, + marker::PhantomData, + mem::ManuallyDrop, + ops::{Deref, DerefMut}, +}; + +// The lowest bit of `lock` is used to indicate whether the mutex is locked or not. The rest of the bits are used to +// store the number of starving threads. +const LOCKED: usize = 1; +const STARVED: usize = 2; + +/// Number chosen by fair roll of the dice, adjust as needed. +const STARVATION_SPINS: usize = 1024; + +/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data, but with a fairer +/// algorithm. +/// +/// # Example +/// +/// ``` +/// use spin; +/// +/// let lock = spin::mutex::FairMutex::<_>::new(0); +/// +/// // Modify the data +/// *lock.lock() = 2; +/// +/// // Read the data +/// let answer = *lock.lock(); +/// assert_eq!(answer, 2); +/// ``` +/// +/// # Thread safety example +/// +/// ``` +/// use spin; +/// use std::sync::{Arc, Barrier}; +/// +/// let thread_count = 1000; +/// let spin_mutex = Arc::new(spin::mutex::FairMutex::<_>::new(0)); +/// +/// // We use a barrier to ensure the readout happens after all writing +/// let barrier = Arc::new(Barrier::new(thread_count + 1)); +/// +/// for _ in (0..thread_count) { +/// let my_barrier = barrier.clone(); +/// let my_lock = spin_mutex.clone(); +/// std::thread::spawn(move || { +/// let mut guard = my_lock.lock(); +/// *guard += 1; +/// +/// // Release the lock to prevent a deadlock +/// drop(guard); +/// my_barrier.wait(); +/// }); +/// } +/// +/// barrier.wait(); +/// +/// let answer = { *spin_mutex.lock() }; +/// assert_eq!(answer, thread_count); +/// ``` +pub struct FairMutex<T: ?Sized, R = Spin> { + phantom: PhantomData<R>, + pub(crate) lock: AtomicUsize, + data: UnsafeCell<T>, +} + +/// A guard that provides mutable data access. +/// +/// When the guard falls out of scope it will release the lock. +pub struct FairMutexGuard<'a, T: ?Sized + 'a> { + lock: &'a AtomicUsize, + data: *mut T, +} + +/// A handle that indicates that we have been trying to acquire the lock for a while. +/// +/// This handle is used to prevent starvation. +pub struct Starvation<'a, T: ?Sized + 'a, R> { + lock: &'a FairMutex<T, R>, +} + +/// Indicates whether a lock was rejected due to the lock being held by another thread or due to starvation. +#[derive(Debug)] +pub enum LockRejectReason { + /// The lock was rejected due to the lock being held by another thread. + Locked, + + /// The lock was rejected due to starvation. + Starved, +} + +// Same unsafe impls as `std::sync::Mutex` +unsafe impl<T: ?Sized + Send, R> Sync for FairMutex<T, R> {} +unsafe impl<T: ?Sized + Send, R> Send for FairMutex<T, R> {} + +unsafe impl<T: ?Sized + Sync> Sync for FairMutexGuard<'_, T> {} +unsafe impl<T: ?Sized + Send> Send for FairMutexGuard<'_, T> {} + +impl<T, R> FairMutex<T, R> { + /// Creates a new [`FairMutex`] wrapping the supplied data. + /// + /// # Example + /// + /// ``` + /// use spin::mutex::FairMutex; + /// + /// static MUTEX: FairMutex<()> = FairMutex::<_>::new(()); + /// + /// fn demo() { + /// let lock = MUTEX.lock(); + /// // do something with lock + /// drop(lock); + /// } + /// ``` + #[inline(always)] + pub const fn new(data: T) -> Self { + FairMutex { + lock: AtomicUsize::new(0), + data: UnsafeCell::new(data), + phantom: PhantomData, + } + } + + /// Consumes this [`FairMutex`] and unwraps the underlying data. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::FairMutex::<_>::new(42); + /// assert_eq!(42, lock.into_inner()); + /// ``` + #[inline(always)] + pub fn into_inner(self) -> T { + // We know statically that there are no outstanding references to + // `self` so there's no need to lock. + let FairMutex { data, .. } = self; + data.into_inner() + } + + /// Returns a mutable pointer to the underlying data. + /// + /// This is mostly meant to be used for applications which require manual unlocking, but where + /// storing both the lock and the pointer to the inner data gets inefficient. + /// + /// # Example + /// ``` + /// let lock = spin::mutex::FairMutex::<_>::new(42); + /// + /// unsafe { + /// core::mem::forget(lock.lock()); + /// + /// assert_eq!(lock.as_mut_ptr().read(), 42); + /// lock.as_mut_ptr().write(58); + /// + /// lock.force_unlock(); + /// } + /// + /// assert_eq!(*lock.lock(), 58); + /// + /// ``` + #[inline(always)] + pub fn as_mut_ptr(&self) -> *mut T { + self.data.get() + } +} + +impl<T: ?Sized, R: RelaxStrategy> FairMutex<T, R> { + /// Locks the [`FairMutex`] and returns a guard that permits access to the inner data. + /// + /// The returned value may be dereferenced for data access + /// and the lock will be dropped when the guard falls out of scope. + /// + /// ``` + /// let lock = spin::mutex::FairMutex::<_>::new(0); + /// { + /// let mut data = lock.lock(); + /// // The lock is now locked and the data can be accessed + /// *data += 1; + /// // The lock is implicitly dropped at the end of the scope + /// } + /// ``` + #[inline(always)] + pub fn lock(&self) -> FairMutexGuard<T> { + // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock` + // when called in a loop. + let mut spins = 0; + while self + .lock + .compare_exchange_weak(0, 1, Ordering::Acquire, Ordering::Relaxed) + .is_err() + { + // Wait until the lock looks unlocked before retrying + while self.is_locked() { + R::relax(); + + // If we've been spinning for a while, switch to a fairer strategy that will prevent + // newer users from stealing our lock from us. + if spins > STARVATION_SPINS { + return self.starve().lock(); + } + spins += 1; + } + } + + FairMutexGuard { + lock: &self.lock, + data: unsafe { &mut *self.data.get() }, + } + } +} + +impl<T: ?Sized, R> FairMutex<T, R> { + /// Returns `true` if the lock is currently held. + /// + /// # Safety + /// + /// This function provides no synchronization guarantees and so its result should be considered 'out of date' + /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. + #[inline(always)] + pub fn is_locked(&self) -> bool { + self.lock.load(Ordering::Relaxed) & LOCKED != 0 + } + + /// Force unlock this [`FairMutex`]. + /// + /// # Safety + /// + /// This is *extremely* unsafe if the lock is not held by the current + /// thread. However, this can be useful in some instances for exposing the + /// lock to FFI that doesn't know how to deal with RAII. + #[inline(always)] + pub unsafe fn force_unlock(&self) { + self.lock.fetch_and(!LOCKED, Ordering::Release); + } + + /// Try to lock this [`FairMutex`], returning a lock guard if successful. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::FairMutex::<_>::new(42); + /// + /// let maybe_guard = lock.try_lock(); + /// assert!(maybe_guard.is_some()); + /// + /// // `maybe_guard` is still held, so the second call fails + /// let maybe_guard2 = lock.try_lock(); + /// assert!(maybe_guard2.is_none()); + /// ``` + #[inline(always)] + pub fn try_lock(&self) -> Option<FairMutexGuard<T>> { + self.try_lock_starver().ok() + } + + /// Tries to lock this [`FairMutex`] and returns a result that indicates whether the lock was + /// rejected due to a starver or not. + #[inline(always)] + pub fn try_lock_starver(&self) -> Result<FairMutexGuard<T>, LockRejectReason> { + match self + .lock + .compare_exchange(0, LOCKED, Ordering::Acquire, Ordering::Relaxed) + .unwrap_or_else(|x| x) + { + 0 => Ok(FairMutexGuard { + lock: &self.lock, + data: unsafe { &mut *self.data.get() }, + }), + LOCKED => Err(LockRejectReason::Locked), + _ => Err(LockRejectReason::Starved), + } + } + + /// Indicates that the current user has been waiting for the lock for a while + /// and that the lock should yield to this thread over a newly arriving thread. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::FairMutex::<_>::new(42); + /// + /// // Lock the mutex to simulate it being used by another user. + /// let guard1 = lock.lock(); + /// + /// // Try to lock the mutex. + /// let guard2 = lock.try_lock(); + /// assert!(guard2.is_none()); + /// + /// // Wait for a while. + /// wait_for_a_while(); + /// + /// // We are now starved, indicate as such. + /// let starve = lock.starve(); + /// + /// // Once the lock is released, another user trying to lock it will + /// // fail. + /// drop(guard1); + /// let guard3 = lock.try_lock(); + /// assert!(guard3.is_none()); + /// + /// // However, we will be able to lock it. + /// let guard4 = starve.try_lock(); + /// assert!(guard4.is_ok()); + /// + /// # fn wait_for_a_while() {} + /// ``` + pub fn starve(&self) -> Starvation<'_, T, R> { + // Add a new starver to the state. + if self.lock.fetch_add(STARVED, Ordering::Relaxed) > (core::isize::MAX - 1) as usize { + // In the event of a potential lock overflow, abort. + crate::abort(); + } + + Starvation { lock: self } + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the [`FairMutex`] mutably, and a mutable reference is guaranteed to be exclusive in + /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As + /// such, this is a 'zero-cost' operation. + /// + /// # Example + /// + /// ``` + /// let mut lock = spin::mutex::FairMutex::<_>::new(0); + /// *lock.get_mut() = 10; + /// assert_eq!(*lock.lock(), 10); + /// ``` + #[inline(always)] + pub fn get_mut(&mut self) -> &mut T { + // We know statically that there are no other references to `self`, so + // there's no need to lock the inner mutex. + unsafe { &mut *self.data.get() } + } +} + +impl<T: ?Sized + fmt::Debug, R> fmt::Debug for FairMutex<T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + struct LockWrapper<'a, T: ?Sized + fmt::Debug>(Option<FairMutexGuard<'a, T>>); + + impl<T: ?Sized + fmt::Debug> fmt::Debug for LockWrapper<'_, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match &self.0 { + Some(guard) => fmt::Debug::fmt(guard, f), + None => f.write_str("<locked>"), + } + } + } + + f.debug_struct("FairMutex") + .field("data", &LockWrapper(self.try_lock())) + .finish() + } +} + +impl<T: ?Sized + Default, R> Default for FairMutex<T, R> { + fn default() -> Self { + Self::new(Default::default()) + } +} + +impl<T, R> From<T> for FairMutex<T, R> { + fn from(data: T) -> Self { + Self::new(data) + } +} + +impl<'a, T: ?Sized> FairMutexGuard<'a, T> { + /// Leak the lock guard, yielding a mutable reference to the underlying data. + /// + /// Note that this function will permanently lock the original [`FairMutex`]. + /// + /// ``` + /// let mylock = spin::mutex::FairMutex::<_>::new(0); + /// + /// let data: &mut i32 = spin::mutex::FairMutexGuard::leak(mylock.lock()); + /// + /// *data = 1; + /// assert_eq!(*data, 1); + /// ``` + #[inline(always)] + pub fn leak(this: Self) -> &'a mut T { + // Use ManuallyDrop to avoid stacked-borrow invalidation + let mut this = ManuallyDrop::new(this); + // We know statically that only we are referencing data + unsafe { &mut *this.data } + } +} + +impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for FairMutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized + fmt::Display> fmt::Display for FairMutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized> Deref for FairMutexGuard<'a, T> { + type Target = T; + fn deref(&self) -> &T { + // We know statically that only we are referencing data + unsafe { &*self.data } + } +} + +impl<'a, T: ?Sized> DerefMut for FairMutexGuard<'a, T> { + fn deref_mut(&mut self) -> &mut T { + // We know statically that only we are referencing data + unsafe { &mut *self.data } + } +} + +impl<'a, T: ?Sized> Drop for FairMutexGuard<'a, T> { + /// The dropping of the MutexGuard will release the lock it was created from. + fn drop(&mut self) { + self.lock.fetch_and(!LOCKED, Ordering::Release); + } +} + +impl<'a, T: ?Sized, R> Starvation<'a, T, R> { + /// Attempts the lock the mutex if we are the only starving user. + /// + /// This allows another user to lock the mutex if they are starving as well. + pub fn try_lock_fair(self) -> Result<FairMutexGuard<'a, T>, Self> { + // Try to lock the mutex. + if self + .lock + .lock + .compare_exchange( + STARVED, + STARVED | LOCKED, + Ordering::Acquire, + Ordering::Relaxed, + ) + .is_ok() + { + // We are the only starving user, lock the mutex. + Ok(FairMutexGuard { + lock: &self.lock.lock, + data: self.lock.data.get(), + }) + } else { + // Another user is starving, fail. + Err(self) + } + } + + /// Attempts to lock the mutex. + /// + /// If the lock is currently held by another thread, this will return `None`. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::FairMutex::<_>::new(42); + /// + /// // Lock the mutex to simulate it being used by another user. + /// let guard1 = lock.lock(); + /// + /// // Try to lock the mutex. + /// let guard2 = lock.try_lock(); + /// assert!(guard2.is_none()); + /// + /// // Wait for a while. + /// wait_for_a_while(); + /// + /// // We are now starved, indicate as such. + /// let starve = lock.starve(); + /// + /// // Once the lock is released, another user trying to lock it will + /// // fail. + /// drop(guard1); + /// let guard3 = lock.try_lock(); + /// assert!(guard3.is_none()); + /// + /// // However, we will be able to lock it. + /// let guard4 = starve.try_lock(); + /// assert!(guard4.is_ok()); + /// + /// # fn wait_for_a_while() {} + /// ``` + pub fn try_lock(self) -> Result<FairMutexGuard<'a, T>, Self> { + // Try to lock the mutex. + if self.lock.lock.fetch_or(LOCKED, Ordering::Acquire) & LOCKED == 0 { + // We have successfully locked the mutex. + // By dropping `self` here, we decrement the starvation count. + Ok(FairMutexGuard { + lock: &self.lock.lock, + data: self.lock.data.get(), + }) + } else { + Err(self) + } + } +} + +impl<'a, T: ?Sized, R: RelaxStrategy> Starvation<'a, T, R> { + /// Locks the mutex. + pub fn lock(mut self) -> FairMutexGuard<'a, T> { + // Try to lock the mutex. + loop { + match self.try_lock() { + Ok(lock) => return lock, + Err(starve) => self = starve, + } + + // Relax until the lock is released. + while self.lock.is_locked() { + R::relax(); + } + } + } +} + +impl<'a, T: ?Sized, R> Drop for Starvation<'a, T, R> { + fn drop(&mut self) { + // As there is no longer a user being starved, we decrement the starver count. + self.lock.lock.fetch_sub(STARVED, Ordering::Release); + } +} + +impl fmt::Display for LockRejectReason { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self { + LockRejectReason::Locked => write!(f, "locked"), + LockRejectReason::Starved => write!(f, "starved"), + } + } +} + +#[cfg(feature = "std")] +impl std::error::Error for LockRejectReason {} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for FairMutex<(), R> { + type GuardMarker = lock_api_crate::GuardSend; + + const INIT: Self = Self::new(()); + + fn lock(&self) { + // Prevent guard destructor running + core::mem::forget(Self::lock(self)); + } + + fn try_lock(&self) -> bool { + // Prevent guard destructor running + Self::try_lock(self).map(core::mem::forget).is_some() + } + + unsafe fn unlock(&self) { + self.force_unlock(); + } + + fn is_locked(&self) -> bool { + Self::is_locked(self) + } +} + +#[cfg(test)] +mod tests { + use std::prelude::v1::*; + + use std::sync::atomic::{AtomicUsize, Ordering}; + use std::sync::mpsc::channel; + use std::sync::Arc; + use std::thread; + + type FairMutex<T> = super::FairMutex<T>; + + #[derive(Eq, PartialEq, Debug)] + struct NonCopy(i32); + + #[test] + fn smoke() { + let m = FairMutex::<_>::new(()); + drop(m.lock()); + drop(m.lock()); + } + + #[test] + fn lots_and_lots() { + static M: FairMutex<()> = FairMutex::<_>::new(()); + static mut CNT: u32 = 0; + const J: u32 = 1000; + const K: u32 = 3; + + fn inc() { + for _ in 0..J { + unsafe { + let _g = M.lock(); + CNT += 1; + } + } + } + + let (tx, rx) = channel(); + for _ in 0..K { + let tx2 = tx.clone(); + thread::spawn(move || { + inc(); + tx2.send(()).unwrap(); + }); + let tx2 = tx.clone(); + thread::spawn(move || { + inc(); + tx2.send(()).unwrap(); + }); + } + + drop(tx); + for _ in 0..2 * K { + rx.recv().unwrap(); + } + assert_eq!(unsafe { CNT }, J * K * 2); + } + + #[test] + fn try_lock() { + let mutex = FairMutex::<_>::new(42); + + // First lock succeeds + let a = mutex.try_lock(); + assert_eq!(a.as_ref().map(|r| **r), Some(42)); + + // Additional lock fails + let b = mutex.try_lock(); + assert!(b.is_none()); + + // After dropping lock, it succeeds again + ::core::mem::drop(a); + let c = mutex.try_lock(); + assert_eq!(c.as_ref().map(|r| **r), Some(42)); + } + + #[test] + fn test_into_inner() { + let m = FairMutex::<_>::new(NonCopy(10)); + assert_eq!(m.into_inner(), NonCopy(10)); + } + + #[test] + fn test_into_inner_drop() { + struct Foo(Arc<AtomicUsize>); + impl Drop for Foo { + fn drop(&mut self) { + self.0.fetch_add(1, Ordering::SeqCst); + } + } + let num_drops = Arc::new(AtomicUsize::new(0)); + let m = FairMutex::<_>::new(Foo(num_drops.clone())); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + { + let _inner = m.into_inner(); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + } + assert_eq!(num_drops.load(Ordering::SeqCst), 1); + } + + #[test] + fn test_mutex_arc_nested() { + // Tests nested mutexes and access + // to underlying data. + let arc = Arc::new(FairMutex::<_>::new(1)); + let arc2 = Arc::new(FairMutex::<_>::new(arc)); + let (tx, rx) = channel(); + let _t = thread::spawn(move || { + let lock = arc2.lock(); + let lock2 = lock.lock(); + assert_eq!(*lock2, 1); + tx.send(()).unwrap(); + }); + rx.recv().unwrap(); + } + + #[test] + fn test_mutex_arc_access_in_unwind() { + let arc = Arc::new(FairMutex::<_>::new(1)); + let arc2 = arc.clone(); + let _ = thread::spawn(move || -> () { + struct Unwinder { + i: Arc<FairMutex<i32>>, + } + impl Drop for Unwinder { + fn drop(&mut self) { + *self.i.lock() += 1; + } + } + let _u = Unwinder { i: arc2 }; + panic!(); + }) + .join(); + let lock = arc.lock(); + assert_eq!(*lock, 2); + } + + #[test] + fn test_mutex_unsized() { + let mutex: &FairMutex<[i32]> = &FairMutex::<_>::new([1, 2, 3]); + { + let b = &mut *mutex.lock(); + b[0] = 4; + b[2] = 5; + } + let comp: &[i32] = &[4, 2, 5]; + assert_eq!(&*mutex.lock(), comp); + } + + #[test] + fn test_mutex_force_lock() { + let lock = FairMutex::<_>::new(()); + ::std::mem::forget(lock.lock()); + unsafe { + lock.force_unlock(); + } + assert!(lock.try_lock().is_some()); + } +} diff --git a/vendor/spin/src/mutex/spin.rs b/vendor/spin/src/mutex/spin.rs new file mode 100644 index 0000000..fc97472 --- /dev/null +++ b/vendor/spin/src/mutex/spin.rs @@ -0,0 +1,543 @@ +//! A naïve spinning mutex. +//! +//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case +//! latency is theoretically infinite. + +use crate::{ + atomic::{AtomicBool, Ordering}, + RelaxStrategy, Spin, +}; +use core::{ + cell::UnsafeCell, + fmt, + marker::PhantomData, + mem::ManuallyDrop, + ops::{Deref, DerefMut}, +}; + +/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data. +/// +/// # Example +/// +/// ``` +/// use spin; +/// +/// let lock = spin::mutex::SpinMutex::<_>::new(0); +/// +/// // Modify the data +/// *lock.lock() = 2; +/// +/// // Read the data +/// let answer = *lock.lock(); +/// assert_eq!(answer, 2); +/// ``` +/// +/// # Thread safety example +/// +/// ``` +/// use spin; +/// use std::sync::{Arc, Barrier}; +/// +/// let thread_count = 1000; +/// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0)); +/// +/// // We use a barrier to ensure the readout happens after all writing +/// let barrier = Arc::new(Barrier::new(thread_count + 1)); +/// +/// # let mut ts = Vec::new(); +/// for _ in (0..thread_count) { +/// let my_barrier = barrier.clone(); +/// let my_lock = spin_mutex.clone(); +/// # let t = +/// std::thread::spawn(move || { +/// let mut guard = my_lock.lock(); +/// *guard += 1; +/// +/// // Release the lock to prevent a deadlock +/// drop(guard); +/// my_barrier.wait(); +/// }); +/// # ts.push(t); +/// } +/// +/// barrier.wait(); +/// +/// let answer = { *spin_mutex.lock() }; +/// assert_eq!(answer, thread_count); +/// +/// # for t in ts { +/// # t.join().unwrap(); +/// # } +/// ``` +pub struct SpinMutex<T: ?Sized, R = Spin> { + phantom: PhantomData<R>, + pub(crate) lock: AtomicBool, + data: UnsafeCell<T>, +} + +/// A guard that provides mutable data access. +/// +/// When the guard falls out of scope it will release the lock. +pub struct SpinMutexGuard<'a, T: ?Sized + 'a> { + lock: &'a AtomicBool, + data: *mut T, +} + +// Same unsafe impls as `std::sync::Mutex` +unsafe impl<T: ?Sized + Send, R> Sync for SpinMutex<T, R> {} +unsafe impl<T: ?Sized + Send, R> Send for SpinMutex<T, R> {} + +unsafe impl<T: ?Sized + Sync> Sync for SpinMutexGuard<'_, T> {} +unsafe impl<T: ?Sized + Send> Send for SpinMutexGuard<'_, T> {} + +impl<T, R> SpinMutex<T, R> { + /// Creates a new [`SpinMutex`] wrapping the supplied data. + /// + /// # Example + /// + /// ``` + /// use spin::mutex::SpinMutex; + /// + /// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(()); + /// + /// fn demo() { + /// let lock = MUTEX.lock(); + /// // do something with lock + /// drop(lock); + /// } + /// ``` + #[inline(always)] + pub const fn new(data: T) -> Self { + SpinMutex { + lock: AtomicBool::new(false), + data: UnsafeCell::new(data), + phantom: PhantomData, + } + } + + /// Consumes this [`SpinMutex`] and unwraps the underlying data. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::SpinMutex::<_>::new(42); + /// assert_eq!(42, lock.into_inner()); + /// ``` + #[inline(always)] + pub fn into_inner(self) -> T { + // We know statically that there are no outstanding references to + // `self` so there's no need to lock. + let SpinMutex { data, .. } = self; + data.into_inner() + } + + /// Returns a mutable pointer to the underlying data. + /// + /// This is mostly meant to be used for applications which require manual unlocking, but where + /// storing both the lock and the pointer to the inner data gets inefficient. + /// + /// # Example + /// ``` + /// let lock = spin::mutex::SpinMutex::<_>::new(42); + /// + /// unsafe { + /// core::mem::forget(lock.lock()); + /// + /// assert_eq!(lock.as_mut_ptr().read(), 42); + /// lock.as_mut_ptr().write(58); + /// + /// lock.force_unlock(); + /// } + /// + /// assert_eq!(*lock.lock(), 58); + /// + /// ``` + #[inline(always)] + pub fn as_mut_ptr(&self) -> *mut T { + self.data.get() + } +} + +impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R> { + /// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data. + /// + /// The returned value may be dereferenced for data access + /// and the lock will be dropped when the guard falls out of scope. + /// + /// ``` + /// let lock = spin::mutex::SpinMutex::<_>::new(0); + /// { + /// let mut data = lock.lock(); + /// // The lock is now locked and the data can be accessed + /// *data += 1; + /// // The lock is implicitly dropped at the end of the scope + /// } + /// ``` + #[inline(always)] + pub fn lock(&self) -> SpinMutexGuard<T> { + // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock` + // when called in a loop. + while self + .lock + .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed) + .is_err() + { + // Wait until the lock looks unlocked before retrying + while self.is_locked() { + R::relax(); + } + } + + SpinMutexGuard { + lock: &self.lock, + data: unsafe { &mut *self.data.get() }, + } + } +} + +impl<T: ?Sized, R> SpinMutex<T, R> { + /// Returns `true` if the lock is currently held. + /// + /// # Safety + /// + /// This function provides no synchronization guarantees and so its result should be considered 'out of date' + /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. + #[inline(always)] + pub fn is_locked(&self) -> bool { + self.lock.load(Ordering::Relaxed) + } + + /// Force unlock this [`SpinMutex`]. + /// + /// # Safety + /// + /// This is *extremely* unsafe if the lock is not held by the current + /// thread. However, this can be useful in some instances for exposing the + /// lock to FFI that doesn't know how to deal with RAII. + #[inline(always)] + pub unsafe fn force_unlock(&self) { + self.lock.store(false, Ordering::Release); + } + + /// Try to lock this [`SpinMutex`], returning a lock guard if successful. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::SpinMutex::<_>::new(42); + /// + /// let maybe_guard = lock.try_lock(); + /// assert!(maybe_guard.is_some()); + /// + /// // `maybe_guard` is still held, so the second call fails + /// let maybe_guard2 = lock.try_lock(); + /// assert!(maybe_guard2.is_none()); + /// ``` + #[inline(always)] + pub fn try_lock(&self) -> Option<SpinMutexGuard<T>> { + // The reason for using a strong compare_exchange is explained here: + // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107 + if self + .lock + .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed) + .is_ok() + { + Some(SpinMutexGuard { + lock: &self.lock, + data: unsafe { &mut *self.data.get() }, + }) + } else { + None + } + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in + /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As + /// such, this is a 'zero-cost' operation. + /// + /// # Example + /// + /// ``` + /// let mut lock = spin::mutex::SpinMutex::<_>::new(0); + /// *lock.get_mut() = 10; + /// assert_eq!(*lock.lock(), 10); + /// ``` + #[inline(always)] + pub fn get_mut(&mut self) -> &mut T { + // We know statically that there are no other references to `self`, so + // there's no need to lock the inner mutex. + unsafe { &mut *self.data.get() } + } +} + +impl<T: ?Sized + fmt::Debug, R> fmt::Debug for SpinMutex<T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.try_lock() { + Some(guard) => write!(f, "Mutex {{ data: ") + .and_then(|()| (&*guard).fmt(f)) + .and_then(|()| write!(f, "}}")), + None => write!(f, "Mutex {{ <locked> }}"), + } + } +} + +impl<T: ?Sized + Default, R> Default for SpinMutex<T, R> { + fn default() -> Self { + Self::new(Default::default()) + } +} + +impl<T, R> From<T> for SpinMutex<T, R> { + fn from(data: T) -> Self { + Self::new(data) + } +} + +impl<'a, T: ?Sized> SpinMutexGuard<'a, T> { + /// Leak the lock guard, yielding a mutable reference to the underlying data. + /// + /// Note that this function will permanently lock the original [`SpinMutex`]. + /// + /// ``` + /// let mylock = spin::mutex::SpinMutex::<_>::new(0); + /// + /// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock()); + /// + /// *data = 1; + /// assert_eq!(*data, 1); + /// ``` + #[inline(always)] + pub fn leak(this: Self) -> &'a mut T { + // Use ManuallyDrop to avoid stacked-borrow invalidation + let mut this = ManuallyDrop::new(this); + // We know statically that only we are referencing data + unsafe { &mut *this.data } + } +} + +impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> { + type Target = T; + fn deref(&self) -> &T { + // We know statically that only we are referencing data + unsafe { &*self.data } + } +} + +impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> { + fn deref_mut(&mut self) -> &mut T { + // We know statically that only we are referencing data + unsafe { &mut *self.data } + } +} + +impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> { + /// The dropping of the MutexGuard will release the lock it was created from. + fn drop(&mut self) { + self.lock.store(false, Ordering::Release); + } +} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for SpinMutex<(), R> { + type GuardMarker = lock_api_crate::GuardSend; + + const INIT: Self = Self::new(()); + + fn lock(&self) { + // Prevent guard destructor running + core::mem::forget(Self::lock(self)); + } + + fn try_lock(&self) -> bool { + // Prevent guard destructor running + Self::try_lock(self).map(core::mem::forget).is_some() + } + + unsafe fn unlock(&self) { + self.force_unlock(); + } + + fn is_locked(&self) -> bool { + Self::is_locked(self) + } +} + +#[cfg(test)] +mod tests { + use std::prelude::v1::*; + + use std::sync::atomic::{AtomicUsize, Ordering}; + use std::sync::mpsc::channel; + use std::sync::Arc; + use std::thread; + + type SpinMutex<T> = super::SpinMutex<T>; + + #[derive(Eq, PartialEq, Debug)] + struct NonCopy(i32); + + #[test] + fn smoke() { + let m = SpinMutex::<_>::new(()); + drop(m.lock()); + drop(m.lock()); + } + + #[test] + fn lots_and_lots() { + static M: SpinMutex<()> = SpinMutex::<_>::new(()); + static mut CNT: u32 = 0; + const J: u32 = 1000; + const K: u32 = 3; + + fn inc() { + for _ in 0..J { + unsafe { + let _g = M.lock(); + CNT += 1; + } + } + } + + let (tx, rx) = channel(); + let mut ts = Vec::new(); + for _ in 0..K { + let tx2 = tx.clone(); + ts.push(thread::spawn(move || { + inc(); + tx2.send(()).unwrap(); + })); + let tx2 = tx.clone(); + ts.push(thread::spawn(move || { + inc(); + tx2.send(()).unwrap(); + })); + } + + drop(tx); + for _ in 0..2 * K { + rx.recv().unwrap(); + } + assert_eq!(unsafe { CNT }, J * K * 2); + + for t in ts { + t.join().unwrap(); + } + } + + #[test] + fn try_lock() { + let mutex = SpinMutex::<_>::new(42); + + // First lock succeeds + let a = mutex.try_lock(); + assert_eq!(a.as_ref().map(|r| **r), Some(42)); + + // Additional lock fails + let b = mutex.try_lock(); + assert!(b.is_none()); + + // After dropping lock, it succeeds again + ::core::mem::drop(a); + let c = mutex.try_lock(); + assert_eq!(c.as_ref().map(|r| **r), Some(42)); + } + + #[test] + fn test_into_inner() { + let m = SpinMutex::<_>::new(NonCopy(10)); + assert_eq!(m.into_inner(), NonCopy(10)); + } + + #[test] + fn test_into_inner_drop() { + struct Foo(Arc<AtomicUsize>); + impl Drop for Foo { + fn drop(&mut self) { + self.0.fetch_add(1, Ordering::SeqCst); + } + } + let num_drops = Arc::new(AtomicUsize::new(0)); + let m = SpinMutex::<_>::new(Foo(num_drops.clone())); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + { + let _inner = m.into_inner(); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + } + assert_eq!(num_drops.load(Ordering::SeqCst), 1); + } + + #[test] + fn test_mutex_arc_nested() { + // Tests nested mutexes and access + // to underlying data. + let arc = Arc::new(SpinMutex::<_>::new(1)); + let arc2 = Arc::new(SpinMutex::<_>::new(arc)); + let (tx, rx) = channel(); + let t = thread::spawn(move || { + let lock = arc2.lock(); + let lock2 = lock.lock(); + assert_eq!(*lock2, 1); + tx.send(()).unwrap(); + }); + rx.recv().unwrap(); + t.join().unwrap(); + } + + #[test] + fn test_mutex_arc_access_in_unwind() { + let arc = Arc::new(SpinMutex::<_>::new(1)); + let arc2 = arc.clone(); + let _ = thread::spawn(move || -> () { + struct Unwinder { + i: Arc<SpinMutex<i32>>, + } + impl Drop for Unwinder { + fn drop(&mut self) { + *self.i.lock() += 1; + } + } + let _u = Unwinder { i: arc2 }; + panic!(); + }) + .join(); + let lock = arc.lock(); + assert_eq!(*lock, 2); + } + + #[test] + fn test_mutex_unsized() { + let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]); + { + let b = &mut *mutex.lock(); + b[0] = 4; + b[2] = 5; + } + let comp: &[i32] = &[4, 2, 5]; + assert_eq!(&*mutex.lock(), comp); + } + + #[test] + fn test_mutex_force_lock() { + let lock = SpinMutex::<_>::new(()); + ::std::mem::forget(lock.lock()); + unsafe { + lock.force_unlock(); + } + assert!(lock.try_lock().is_some()); + } +} diff --git a/vendor/spin/src/mutex/ticket.rs b/vendor/spin/src/mutex/ticket.rs new file mode 100644 index 0000000..c14869e --- /dev/null +++ b/vendor/spin/src/mutex/ticket.rs @@ -0,0 +1,537 @@ +//! A ticket-based mutex. +//! +//! Waiting threads take a 'ticket' from the lock in the order they arrive and gain access to the lock when their +//! ticket is next in the queue. Best-case latency is slightly worse than a regular spinning mutex, but worse-case +//! latency is infinitely better. Waiting threads simply need to wait for all threads that come before them in the +//! queue to finish. + +use crate::{ + atomic::{AtomicUsize, Ordering}, + RelaxStrategy, Spin, +}; +use core::{ + cell::UnsafeCell, + fmt, + marker::PhantomData, + ops::{Deref, DerefMut}, +}; + +/// A spin-based [ticket lock](https://en.wikipedia.org/wiki/Ticket_lock) providing mutually exclusive access to data. +/// +/// A ticket lock is analogous to a queue management system for lock requests. When a thread tries to take a lock, it +/// is assigned a 'ticket'. It then spins until its ticket becomes next in line. When the lock guard is released, the +/// next ticket will be processed. +/// +/// Ticket locks significantly reduce the worse-case performance of locking at the cost of slightly higher average-time +/// overhead. +/// +/// # Example +/// +/// ``` +/// use spin; +/// +/// let lock = spin::mutex::TicketMutex::<_>::new(0); +/// +/// // Modify the data +/// *lock.lock() = 2; +/// +/// // Read the data +/// let answer = *lock.lock(); +/// assert_eq!(answer, 2); +/// ``` +/// +/// # Thread safety example +/// +/// ``` +/// use spin; +/// use std::sync::{Arc, Barrier}; +/// +/// let thread_count = 1000; +/// let spin_mutex = Arc::new(spin::mutex::TicketMutex::<_>::new(0)); +/// +/// // We use a barrier to ensure the readout happens after all writing +/// let barrier = Arc::new(Barrier::new(thread_count + 1)); +/// +/// for _ in (0..thread_count) { +/// let my_barrier = barrier.clone(); +/// let my_lock = spin_mutex.clone(); +/// std::thread::spawn(move || { +/// let mut guard = my_lock.lock(); +/// *guard += 1; +/// +/// // Release the lock to prevent a deadlock +/// drop(guard); +/// my_barrier.wait(); +/// }); +/// } +/// +/// barrier.wait(); +/// +/// let answer = { *spin_mutex.lock() }; +/// assert_eq!(answer, thread_count); +/// ``` +pub struct TicketMutex<T: ?Sized, R = Spin> { + phantom: PhantomData<R>, + next_ticket: AtomicUsize, + next_serving: AtomicUsize, + data: UnsafeCell<T>, +} + +/// A guard that protects some data. +/// +/// When the guard is dropped, the next ticket will be processed. +pub struct TicketMutexGuard<'a, T: ?Sized + 'a> { + next_serving: &'a AtomicUsize, + ticket: usize, + data: &'a mut T, +} + +unsafe impl<T: ?Sized + Send, R> Sync for TicketMutex<T, R> {} +unsafe impl<T: ?Sized + Send, R> Send for TicketMutex<T, R> {} + +impl<T, R> TicketMutex<T, R> { + /// Creates a new [`TicketMutex`] wrapping the supplied data. + /// + /// # Example + /// + /// ``` + /// use spin::mutex::TicketMutex; + /// + /// static MUTEX: TicketMutex<()> = TicketMutex::<_>::new(()); + /// + /// fn demo() { + /// let lock = MUTEX.lock(); + /// // do something with lock + /// drop(lock); + /// } + /// ``` + #[inline(always)] + pub const fn new(data: T) -> Self { + Self { + phantom: PhantomData, + next_ticket: AtomicUsize::new(0), + next_serving: AtomicUsize::new(0), + data: UnsafeCell::new(data), + } + } + + /// Consumes this [`TicketMutex`] and unwraps the underlying data. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::TicketMutex::<_>::new(42); + /// assert_eq!(42, lock.into_inner()); + /// ``` + #[inline(always)] + pub fn into_inner(self) -> T { + self.data.into_inner() + } + /// Returns a mutable pointer to the underying data. + /// + /// This is mostly meant to be used for applications which require manual unlocking, but where + /// storing both the lock and the pointer to the inner data gets inefficient. + /// + /// # Example + /// ``` + /// let lock = spin::mutex::SpinMutex::<_>::new(42); + /// + /// unsafe { + /// core::mem::forget(lock.lock()); + /// + /// assert_eq!(lock.as_mut_ptr().read(), 42); + /// lock.as_mut_ptr().write(58); + /// + /// lock.force_unlock(); + /// } + /// + /// assert_eq!(*lock.lock(), 58); + /// + /// ``` + #[inline(always)] + pub fn as_mut_ptr(&self) -> *mut T { + self.data.get() + } +} + +impl<T: ?Sized + fmt::Debug, R> fmt::Debug for TicketMutex<T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.try_lock() { + Some(guard) => write!(f, "Mutex {{ data: ") + .and_then(|()| (&*guard).fmt(f)) + .and_then(|()| write!(f, "}}")), + None => write!(f, "Mutex {{ <locked> }}"), + } + } +} + +impl<T: ?Sized, R: RelaxStrategy> TicketMutex<T, R> { + /// Locks the [`TicketMutex`] and returns a guard that permits access to the inner data. + /// + /// The returned data may be dereferenced for data access + /// and the lock will be dropped when the guard falls out of scope. + /// + /// ``` + /// let lock = spin::mutex::TicketMutex::<_>::new(0); + /// { + /// let mut data = lock.lock(); + /// // The lock is now locked and the data can be accessed + /// *data += 1; + /// // The lock is implicitly dropped at the end of the scope + /// } + /// ``` + #[inline(always)] + pub fn lock(&self) -> TicketMutexGuard<T> { + let ticket = self.next_ticket.fetch_add(1, Ordering::Relaxed); + + while self.next_serving.load(Ordering::Acquire) != ticket { + R::relax(); + } + + TicketMutexGuard { + next_serving: &self.next_serving, + ticket, + // Safety + // We know that we are the next ticket to be served, + // so there's no other thread accessing the data. + // + // Every other thread has another ticket number so it's + // definitely stuck in the spin loop above. + data: unsafe { &mut *self.data.get() }, + } + } +} + +impl<T: ?Sized, R> TicketMutex<T, R> { + /// Returns `true` if the lock is currently held. + /// + /// # Safety + /// + /// This function provides no synchronization guarantees and so its result should be considered 'out of date' + /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. + #[inline(always)] + pub fn is_locked(&self) -> bool { + let ticket = self.next_ticket.load(Ordering::Relaxed); + self.next_serving.load(Ordering::Relaxed) != ticket + } + + /// Force unlock this [`TicketMutex`], by serving the next ticket. + /// + /// # Safety + /// + /// This is *extremely* unsafe if the lock is not held by the current + /// thread. However, this can be useful in some instances for exposing the + /// lock to FFI that doesn't know how to deal with RAII. + #[inline(always)] + pub unsafe fn force_unlock(&self) { + self.next_serving.fetch_add(1, Ordering::Release); + } + + /// Try to lock this [`TicketMutex`], returning a lock guard if successful. + /// + /// # Example + /// + /// ``` + /// let lock = spin::mutex::TicketMutex::<_>::new(42); + /// + /// let maybe_guard = lock.try_lock(); + /// assert!(maybe_guard.is_some()); + /// + /// // `maybe_guard` is still held, so the second call fails + /// let maybe_guard2 = lock.try_lock(); + /// assert!(maybe_guard2.is_none()); + /// ``` + #[inline(always)] + pub fn try_lock(&self) -> Option<TicketMutexGuard<T>> { + let ticket = self + .next_ticket + .fetch_update(Ordering::SeqCst, Ordering::SeqCst, |ticket| { + if self.next_serving.load(Ordering::Acquire) == ticket { + Some(ticket + 1) + } else { + None + } + }); + + ticket.ok().map(|ticket| TicketMutexGuard { + next_serving: &self.next_serving, + ticket, + // Safety + // We have a ticket that is equal to the next_serving ticket, so we know: + // - that no other thread can have the same ticket id as this thread + // - that we are the next one to be served so we have exclusive access to the data + data: unsafe { &mut *self.data.get() }, + }) + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the [`TicketMutex`] mutably, and a mutable reference is guaranteed to be exclusive in + /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As + /// such, this is a 'zero-cost' operation. + /// + /// # Example + /// + /// ``` + /// let mut lock = spin::mutex::TicketMutex::<_>::new(0); + /// *lock.get_mut() = 10; + /// assert_eq!(*lock.lock(), 10); + /// ``` + #[inline(always)] + pub fn get_mut(&mut self) -> &mut T { + // Safety: + // We know that there are no other references to `self`, + // so it's safe to return a exclusive reference to the data. + unsafe { &mut *self.data.get() } + } +} + +impl<T: ?Sized + Default, R> Default for TicketMutex<T, R> { + fn default() -> Self { + Self::new(Default::default()) + } +} + +impl<T, R> From<T> for TicketMutex<T, R> { + fn from(data: T) -> Self { + Self::new(data) + } +} + +impl<'a, T: ?Sized> TicketMutexGuard<'a, T> { + /// Leak the lock guard, yielding a mutable reference to the underlying data. + /// + /// Note that this function will permanently lock the original [`TicketMutex`]. + /// + /// ``` + /// let mylock = spin::mutex::TicketMutex::<_>::new(0); + /// + /// let data: &mut i32 = spin::mutex::TicketMutexGuard::leak(mylock.lock()); + /// + /// *data = 1; + /// assert_eq!(*data, 1); + /// ``` + #[inline(always)] + pub fn leak(this: Self) -> &'a mut T { + let data = this.data as *mut _; // Keep it in pointer form temporarily to avoid double-aliasing + core::mem::forget(this); + unsafe { &mut *data } + } +} + +impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for TicketMutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized + fmt::Display> fmt::Display for TicketMutexGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'a, T: ?Sized> Deref for TicketMutexGuard<'a, T> { + type Target = T; + fn deref(&self) -> &T { + self.data + } +} + +impl<'a, T: ?Sized> DerefMut for TicketMutexGuard<'a, T> { + fn deref_mut(&mut self) -> &mut T { + self.data + } +} + +impl<'a, T: ?Sized> Drop for TicketMutexGuard<'a, T> { + fn drop(&mut self) { + let new_ticket = self.ticket + 1; + self.next_serving.store(new_ticket, Ordering::Release); + } +} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for TicketMutex<(), R> { + type GuardMarker = lock_api_crate::GuardSend; + + const INIT: Self = Self::new(()); + + fn lock(&self) { + // Prevent guard destructor running + core::mem::forget(Self::lock(self)); + } + + fn try_lock(&self) -> bool { + // Prevent guard destructor running + Self::try_lock(self).map(core::mem::forget).is_some() + } + + unsafe fn unlock(&self) { + self.force_unlock(); + } + + fn is_locked(&self) -> bool { + Self::is_locked(self) + } +} + +#[cfg(test)] +mod tests { + use std::prelude::v1::*; + + use std::sync::atomic::{AtomicUsize, Ordering}; + use std::sync::mpsc::channel; + use std::sync::Arc; + use std::thread; + + type TicketMutex<T> = super::TicketMutex<T>; + + #[derive(Eq, PartialEq, Debug)] + struct NonCopy(i32); + + #[test] + fn smoke() { + let m = TicketMutex::<_>::new(()); + drop(m.lock()); + drop(m.lock()); + } + + #[test] + fn lots_and_lots() { + static M: TicketMutex<()> = TicketMutex::<_>::new(()); + static mut CNT: u32 = 0; + const J: u32 = 1000; + const K: u32 = 3; + + fn inc() { + for _ in 0..J { + unsafe { + let _g = M.lock(); + CNT += 1; + } + } + } + + let (tx, rx) = channel(); + for _ in 0..K { + let tx2 = tx.clone(); + thread::spawn(move || { + inc(); + tx2.send(()).unwrap(); + }); + let tx2 = tx.clone(); + thread::spawn(move || { + inc(); + tx2.send(()).unwrap(); + }); + } + + drop(tx); + for _ in 0..2 * K { + rx.recv().unwrap(); + } + assert_eq!(unsafe { CNT }, J * K * 2); + } + + #[test] + fn try_lock() { + let mutex = TicketMutex::<_>::new(42); + + // First lock succeeds + let a = mutex.try_lock(); + assert_eq!(a.as_ref().map(|r| **r), Some(42)); + + // Additional lock fails + let b = mutex.try_lock(); + assert!(b.is_none()); + + // After dropping lock, it succeeds again + ::core::mem::drop(a); + let c = mutex.try_lock(); + assert_eq!(c.as_ref().map(|r| **r), Some(42)); + } + + #[test] + fn test_into_inner() { + let m = TicketMutex::<_>::new(NonCopy(10)); + assert_eq!(m.into_inner(), NonCopy(10)); + } + + #[test] + fn test_into_inner_drop() { + struct Foo(Arc<AtomicUsize>); + impl Drop for Foo { + fn drop(&mut self) { + self.0.fetch_add(1, Ordering::SeqCst); + } + } + let num_drops = Arc::new(AtomicUsize::new(0)); + let m = TicketMutex::<_>::new(Foo(num_drops.clone())); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + { + let _inner = m.into_inner(); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + } + assert_eq!(num_drops.load(Ordering::SeqCst), 1); + } + + #[test] + fn test_mutex_arc_nested() { + // Tests nested mutexes and access + // to underlying data. + let arc = Arc::new(TicketMutex::<_>::new(1)); + let arc2 = Arc::new(TicketMutex::<_>::new(arc)); + let (tx, rx) = channel(); + let _t = thread::spawn(move || { + let lock = arc2.lock(); + let lock2 = lock.lock(); + assert_eq!(*lock2, 1); + tx.send(()).unwrap(); + }); + rx.recv().unwrap(); + } + + #[test] + fn test_mutex_arc_access_in_unwind() { + let arc = Arc::new(TicketMutex::<_>::new(1)); + let arc2 = arc.clone(); + let _ = thread::spawn(move || -> () { + struct Unwinder { + i: Arc<TicketMutex<i32>>, + } + impl Drop for Unwinder { + fn drop(&mut self) { + *self.i.lock() += 1; + } + } + let _u = Unwinder { i: arc2 }; + panic!(); + }) + .join(); + let lock = arc.lock(); + assert_eq!(*lock, 2); + } + + #[test] + fn test_mutex_unsized() { + let mutex: &TicketMutex<[i32]> = &TicketMutex::<_>::new([1, 2, 3]); + { + let b = &mut *mutex.lock(); + b[0] = 4; + b[2] = 5; + } + let comp: &[i32] = &[4, 2, 5]; + assert_eq!(&*mutex.lock(), comp); + } + + #[test] + fn is_locked() { + let mutex = TicketMutex::<_>::new(()); + assert!(!mutex.is_locked()); + let lock = mutex.lock(); + assert!(mutex.is_locked()); + drop(lock); + assert!(!mutex.is_locked()); + } +} diff --git a/vendor/spin/src/once.rs b/vendor/spin/src/once.rs new file mode 100644 index 0000000..31700dc --- /dev/null +++ b/vendor/spin/src/once.rs @@ -0,0 +1,789 @@ +//! Synchronization primitives for one-time evaluation. + +use crate::{ + atomic::{AtomicU8, Ordering}, + RelaxStrategy, Spin, +}; +use core::{cell::UnsafeCell, fmt, marker::PhantomData, mem::MaybeUninit}; + +/// A primitive that provides lazy one-time initialization. +/// +/// Unlike its `std::sync` equivalent, this is generalized such that the closure returns a +/// value to be stored by the [`Once`] (`std::sync::Once` can be trivially emulated with +/// `Once`). +/// +/// Because [`Once::new`] is `const`, this primitive may be used to safely initialize statics. +/// +/// # Examples +/// +/// ``` +/// use spin; +/// +/// static START: spin::Once = spin::Once::new(); +/// +/// START.call_once(|| { +/// // run initialization here +/// }); +/// ``` +pub struct Once<T = (), R = Spin> { + phantom: PhantomData<R>, + status: AtomicStatus, + data: UnsafeCell<MaybeUninit<T>>, +} + +impl<T, R> Default for Once<T, R> { + fn default() -> Self { + Self::new() + } +} + +impl<T: fmt::Debug, R> fmt::Debug for Once<T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.get() { + Some(s) => write!(f, "Once {{ data: ") + .and_then(|()| s.fmt(f)) + .and_then(|()| write!(f, "}}")), + None => write!(f, "Once {{ <uninitialized> }}"), + } + } +} + +// Same unsafe impls as `std::sync::RwLock`, because this also allows for +// concurrent reads. +unsafe impl<T: Send + Sync, R> Sync for Once<T, R> {} +unsafe impl<T: Send, R> Send for Once<T, R> {} + +mod status { + use super::*; + + // SAFETY: This structure has an invariant, namely that the inner atomic u8 must *always* have + // a value for which there exists a valid Status. This means that users of this API must only + // be allowed to load and store `Status`es. + #[repr(transparent)] + pub struct AtomicStatus(AtomicU8); + + // Four states that a Once can be in, encoded into the lower bits of `status` in + // the Once structure. + #[repr(u8)] + #[derive(Clone, Copy, Debug, PartialEq)] + pub enum Status { + Incomplete = 0x00, + Running = 0x01, + Complete = 0x02, + Panicked = 0x03, + } + impl Status { + // Construct a status from an inner u8 integer. + // + // # Safety + // + // For this to be safe, the inner number must have a valid corresponding enum variant. + unsafe fn new_unchecked(inner: u8) -> Self { + core::mem::transmute(inner) + } + } + + impl AtomicStatus { + #[inline(always)] + pub const fn new(status: Status) -> Self { + // SAFETY: We got the value directly from status, so transmuting back is fine. + Self(AtomicU8::new(status as u8)) + } + #[inline(always)] + pub fn load(&self, ordering: Ordering) -> Status { + // SAFETY: We know that the inner integer must have been constructed from a Status in + // the first place. + unsafe { Status::new_unchecked(self.0.load(ordering)) } + } + #[inline(always)] + pub fn store(&self, status: Status, ordering: Ordering) { + // SAFETY: While not directly unsafe, this is safe because the value was retrieved from + // a status, thus making transmutation safe. + self.0.store(status as u8, ordering); + } + #[inline(always)] + pub fn compare_exchange( + &self, + old: Status, + new: Status, + success: Ordering, + failure: Ordering, + ) -> Result<Status, Status> { + match self + .0 + .compare_exchange(old as u8, new as u8, success, failure) + { + // SAFETY: A compare exchange will always return a value that was later stored into + // the atomic u8, but due to the invariant that it must be a valid Status, we know + // that both Ok(_) and Err(_) will be safely transmutable. + Ok(ok) => Ok(unsafe { Status::new_unchecked(ok) }), + Err(err) => Err(unsafe { Status::new_unchecked(err) }), + } + } + #[inline(always)] + pub fn get_mut(&mut self) -> &mut Status { + // SAFETY: Since we know that the u8 inside must be a valid Status, we can safely cast + // it to a &mut Status. + unsafe { &mut *((self.0.get_mut() as *mut u8).cast::<Status>()) } + } + } +} +use self::status::{AtomicStatus, Status}; + +impl<T, R: RelaxStrategy> Once<T, R> { + /// Performs an initialization routine once and only once. The given closure + /// will be executed if this is the first time `call_once` has been called, + /// and otherwise the routine will *not* be invoked. + /// + /// This method will block the calling thread if another initialization + /// routine is currently running. + /// + /// When this function returns, it is guaranteed that some initialization + /// has run and completed (it may not be the closure specified). The + /// returned pointer will point to the result from the closure that was + /// run. + /// + /// # Panics + /// + /// This function will panic if the [`Once`] previously panicked while attempting + /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s + /// primitives. + /// + /// # Examples + /// + /// ``` + /// use spin; + /// + /// static INIT: spin::Once<usize> = spin::Once::new(); + /// + /// fn get_cached_val() -> usize { + /// *INIT.call_once(expensive_computation) + /// } + /// + /// fn expensive_computation() -> usize { + /// // ... + /// # 2 + /// } + /// ``` + pub fn call_once<F: FnOnce() -> T>(&self, f: F) -> &T { + match self.try_call_once(|| Ok::<T, core::convert::Infallible>(f())) { + Ok(x) => x, + Err(void) => match void {}, + } + } + + /// This method is similar to `call_once`, but allows the given closure to + /// fail, and lets the `Once` in a uninitialized state if it does. + /// + /// This method will block the calling thread if another initialization + /// routine is currently running. + /// + /// When this function returns without error, it is guaranteed that some + /// initialization has run and completed (it may not be the closure + /// specified). The returned reference will point to the result from the + /// closure that was run. + /// + /// # Panics + /// + /// This function will panic if the [`Once`] previously panicked while attempting + /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s + /// primitives. + /// + /// # Examples + /// + /// ``` + /// use spin; + /// + /// static INIT: spin::Once<usize> = spin::Once::new(); + /// + /// fn get_cached_val() -> Result<usize, String> { + /// INIT.try_call_once(expensive_fallible_computation).map(|x| *x) + /// } + /// + /// fn expensive_fallible_computation() -> Result<usize, String> { + /// // ... + /// # Ok(2) + /// } + /// ``` + pub fn try_call_once<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> { + if let Some(value) = self.get() { + Ok(value) + } else { + self.try_call_once_slow(f) + } + } + + #[cold] + fn try_call_once_slow<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> { + loop { + let xchg = self.status.compare_exchange( + Status::Incomplete, + Status::Running, + Ordering::Acquire, + Ordering::Acquire, + ); + + match xchg { + Ok(_must_be_state_incomplete) => { + // Impl is defined after the match for readability + } + Err(Status::Panicked) => panic!("Once panicked"), + Err(Status::Running) => match self.poll() { + Some(v) => return Ok(v), + None => continue, + }, + Err(Status::Complete) => { + return Ok(unsafe { + // SAFETY: The status is Complete + self.force_get() + }); + } + Err(Status::Incomplete) => { + // The compare_exchange failed, so this shouldn't ever be reached, + // however if we decide to switch to compare_exchange_weak it will + // be safer to leave this here than hit an unreachable + continue; + } + } + + // The compare-exchange succeeded, so we shall initialize it. + + // We use a guard (Finish) to catch panics caused by builder + let finish = Finish { + status: &self.status, + }; + let val = match f() { + Ok(val) => val, + Err(err) => { + // If an error occurs, clean up everything and leave. + core::mem::forget(finish); + self.status.store(Status::Incomplete, Ordering::Release); + return Err(err); + } + }; + unsafe { + // SAFETY: + // `UnsafeCell`/deref: currently the only accessor, mutably + // and immutably by cas exclusion. + // `write`: pointer comes from `MaybeUninit`. + (*self.data.get()).as_mut_ptr().write(val); + }; + // If there were to be a panic with unwind enabled, the code would + // short-circuit and never reach the point where it writes the inner data. + // The destructor for Finish will run, and poison the Once to ensure that other + // threads accessing it do not exhibit unwanted behavior, if there were to be + // any inconsistency in data structures caused by the panicking thread. + // + // However, f() is expected in the general case not to panic. In that case, we + // simply forget the guard, bypassing its destructor. We could theoretically + // clear a flag instead, but this eliminates the call to the destructor at + // compile time, and unconditionally poisons during an eventual panic, if + // unwinding is enabled. + core::mem::forget(finish); + + // SAFETY: Release is required here, so that all memory accesses done in the + // closure when initializing, become visible to other threads that perform Acquire + // loads. + // + // And, we also know that the changes this thread has done will not magically + // disappear from our cache, so it does not need to be AcqRel. + self.status.store(Status::Complete, Ordering::Release); + + // This next line is mainly an optimization. + return unsafe { Ok(self.force_get()) }; + } + } + + /// Spins until the [`Once`] contains a value. + /// + /// Note that in releases prior to `0.7`, this function had the behaviour of [`Once::poll`]. + /// + /// # Panics + /// + /// This function will panic if the [`Once`] previously panicked while attempting + /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s + /// primitives. + pub fn wait(&self) -> &T { + loop { + match self.poll() { + Some(x) => break x, + None => R::relax(), + } + } + } + + /// Like [`Once::get`], but will spin if the [`Once`] is in the process of being + /// initialized. If initialization has not even begun, `None` will be returned. + /// + /// Note that in releases prior to `0.7`, this function was named `wait`. + /// + /// # Panics + /// + /// This function will panic if the [`Once`] previously panicked while attempting + /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s + /// primitives. + pub fn poll(&self) -> Option<&T> { + loop { + // SAFETY: Acquire is safe here, because if the status is COMPLETE, then we want to make + // sure that all memory accessed done while initializing that value, are visible when + // we return a reference to the inner data after this load. + match self.status.load(Ordering::Acquire) { + Status::Incomplete => return None, + Status::Running => R::relax(), // We spin + Status::Complete => return Some(unsafe { self.force_get() }), + Status::Panicked => panic!("Once previously poisoned by a panicked"), + } + } + } +} + +impl<T, R> Once<T, R> { + /// Initialization constant of [`Once`]. + #[allow(clippy::declare_interior_mutable_const)] + pub const INIT: Self = Self { + phantom: PhantomData, + status: AtomicStatus::new(Status::Incomplete), + data: UnsafeCell::new(MaybeUninit::uninit()), + }; + + /// Creates a new [`Once`]. + pub const fn new() -> Self { + Self::INIT + } + + /// Creates a new initialized [`Once`]. + pub const fn initialized(data: T) -> Self { + Self { + phantom: PhantomData, + status: AtomicStatus::new(Status::Complete), + data: UnsafeCell::new(MaybeUninit::new(data)), + } + } + + /// Retrieve a pointer to the inner data. + /// + /// While this method itself is safe, accessing the pointer before the [`Once`] has been + /// initialized is UB, unless this method has already been written to from a pointer coming + /// from this method. + pub fn as_mut_ptr(&self) -> *mut T { + // SAFETY: + // * MaybeUninit<T> always has exactly the same layout as T + self.data.get().cast::<T>() + } + + /// Get a reference to the initialized instance. Must only be called once COMPLETE. + unsafe fn force_get(&self) -> &T { + // SAFETY: + // * `UnsafeCell`/inner deref: data never changes again + // * `MaybeUninit`/outer deref: data was initialized + &*(*self.data.get()).as_ptr() + } + + /// Get a reference to the initialized instance. Must only be called once COMPLETE. + unsafe fn force_get_mut(&mut self) -> &mut T { + // SAFETY: + // * `UnsafeCell`/inner deref: data never changes again + // * `MaybeUninit`/outer deref: data was initialized + &mut *(*self.data.get()).as_mut_ptr() + } + + /// Get a reference to the initialized instance. Must only be called once COMPLETE. + unsafe fn force_into_inner(self) -> T { + // SAFETY: + // * `UnsafeCell`/inner deref: data never changes again + // * `MaybeUninit`/outer deref: data was initialized + (*self.data.get()).as_ptr().read() + } + + /// Returns a reference to the inner value if the [`Once`] has been initialized. + pub fn get(&self) -> Option<&T> { + // SAFETY: Just as with `poll`, Acquire is safe here because we want to be able to see the + // nonatomic stores done when initializing, once we have loaded and checked the status. + match self.status.load(Ordering::Acquire) { + Status::Complete => Some(unsafe { self.force_get() }), + _ => None, + } + } + + /// Returns a reference to the inner value on the unchecked assumption that the [`Once`] has been initialized. + /// + /// # Safety + /// + /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized + /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused). + /// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically + /// checking initialization is unacceptable and the `Once` has already been initialized. + pub unsafe fn get_unchecked(&self) -> &T { + debug_assert_eq!( + self.status.load(Ordering::SeqCst), + Status::Complete, + "Attempted to access an uninitialized Once. If this was run without debug checks, this would be undefined behaviour. This is a serious bug and you must fix it.", + ); + self.force_get() + } + + /// Returns a mutable reference to the inner value if the [`Once`] has been initialized. + /// + /// Because this method requires a mutable reference to the [`Once`], no synchronization + /// overhead is required to access the inner value. In effect, it is zero-cost. + pub fn get_mut(&mut self) -> Option<&mut T> { + match *self.status.get_mut() { + Status::Complete => Some(unsafe { self.force_get_mut() }), + _ => None, + } + } + + /// Returns a mutable reference to the inner value + /// + /// # Safety + /// + /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized + /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused). + /// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically + /// checking initialization is unacceptable and the `Once` has already been initialized. + pub unsafe fn get_mut_unchecked(&mut self) -> &mut T { + debug_assert_eq!( + self.status.load(Ordering::SeqCst), + Status::Complete, + "Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.", + ); + self.force_get_mut() + } + + /// Returns a the inner value if the [`Once`] has been initialized. + /// + /// Because this method requires ownership of the [`Once`], no synchronization overhead + /// is required to access the inner value. In effect, it is zero-cost. + pub fn try_into_inner(mut self) -> Option<T> { + match *self.status.get_mut() { + Status::Complete => Some(unsafe { self.force_into_inner() }), + _ => None, + } + } + + /// Returns a the inner value if the [`Once`] has been initialized. + /// # Safety + /// + /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized + /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused) + /// This can be useful, if `Once` has already been initialized, and you want to bypass an + /// option check. + pub unsafe fn into_inner_unchecked(self) -> T { + debug_assert_eq!( + self.status.load(Ordering::SeqCst), + Status::Complete, + "Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.", + ); + self.force_into_inner() + } + + /// Checks whether the value has been initialized. + /// + /// This is done using [`Acquire`](core::sync::atomic::Ordering::Acquire) ordering, and + /// therefore it is safe to access the value directly via + /// [`get_unchecked`](Self::get_unchecked) if this returns true. + pub fn is_completed(&self) -> bool { + // TODO: Add a similar variant for Relaxed? + self.status.load(Ordering::Acquire) == Status::Complete + } +} + +impl<T, R> From<T> for Once<T, R> { + fn from(data: T) -> Self { + Self::initialized(data) + } +} + +impl<T, R> Drop for Once<T, R> { + fn drop(&mut self) { + // No need to do any atomic access here, we have &mut! + if *self.status.get_mut() == Status::Complete { + unsafe { + //TODO: Use MaybeUninit::assume_init_drop once stabilised + core::ptr::drop_in_place((*self.data.get()).as_mut_ptr()); + } + } + } +} + +struct Finish<'a> { + status: &'a AtomicStatus, +} + +impl<'a> Drop for Finish<'a> { + fn drop(&mut self) { + // While using Relaxed here would most likely not be an issue, we use SeqCst anyway. + // This is mainly because panics are not meant to be fast at all, but also because if + // there were to be a compiler bug which reorders accesses within the same thread, + // where it should not, we want to be sure that the panic really is handled, and does + // not cause additional problems. SeqCst will therefore help guarding against such + // bugs. + self.status.store(Status::Panicked, Ordering::SeqCst); + } +} + +#[cfg(test)] +mod tests { + use std::prelude::v1::*; + + use std::sync::atomic::AtomicU32; + use std::sync::mpsc::channel; + use std::sync::Arc; + use std::thread; + + use super::*; + + #[test] + fn smoke_once() { + static O: Once = Once::new(); + let mut a = 0; + O.call_once(|| a += 1); + assert_eq!(a, 1); + O.call_once(|| a += 1); + assert_eq!(a, 1); + } + + #[test] + fn smoke_once_value() { + static O: Once<usize> = Once::new(); + let a = O.call_once(|| 1); + assert_eq!(*a, 1); + let b = O.call_once(|| 2); + assert_eq!(*b, 1); + } + + #[test] + fn stampede_once() { + static O: Once = Once::new(); + static mut RUN: bool = false; + + let (tx, rx) = channel(); + let mut ts = Vec::new(); + for _ in 0..10 { + let tx = tx.clone(); + ts.push(thread::spawn(move || { + for _ in 0..4 { + thread::yield_now() + } + unsafe { + O.call_once(|| { + assert!(!RUN); + RUN = true; + }); + assert!(RUN); + } + tx.send(()).unwrap(); + })); + } + + unsafe { + O.call_once(|| { + assert!(!RUN); + RUN = true; + }); + assert!(RUN); + } + + for _ in 0..10 { + rx.recv().unwrap(); + } + + for t in ts { + t.join().unwrap(); + } + } + + #[test] + fn get() { + static INIT: Once<usize> = Once::new(); + + assert!(INIT.get().is_none()); + INIT.call_once(|| 2); + assert_eq!(INIT.get().map(|r| *r), Some(2)); + } + + #[test] + fn get_no_wait() { + static INIT: Once<usize> = Once::new(); + + assert!(INIT.get().is_none()); + let t = thread::spawn(move || { + INIT.call_once(|| { + thread::sleep(std::time::Duration::from_secs(3)); + 42 + }); + }); + assert!(INIT.get().is_none()); + + t.join().unwrap(); + } + + #[test] + fn poll() { + static INIT: Once<usize> = Once::new(); + + assert!(INIT.poll().is_none()); + INIT.call_once(|| 3); + assert_eq!(INIT.poll().map(|r| *r), Some(3)); + } + + #[test] + fn wait() { + static INIT: Once<usize> = Once::new(); + + let t = std::thread::spawn(|| { + assert_eq!(*INIT.wait(), 3); + assert!(INIT.is_completed()); + }); + + for _ in 0..4 { + thread::yield_now() + } + + assert!(INIT.poll().is_none()); + INIT.call_once(|| 3); + + t.join().unwrap(); + } + + #[test] + fn panic() { + use std::panic; + + static INIT: Once = Once::new(); + + // poison the once + let t = panic::catch_unwind(|| { + INIT.call_once(|| panic!()); + }); + assert!(t.is_err()); + + // poisoning propagates + let t = panic::catch_unwind(|| { + INIT.call_once(|| {}); + }); + assert!(t.is_err()); + } + + #[test] + fn init_constant() { + static O: Once = Once::INIT; + let mut a = 0; + O.call_once(|| a += 1); + assert_eq!(a, 1); + O.call_once(|| a += 1); + assert_eq!(a, 1); + } + + static mut CALLED: bool = false; + + struct DropTest {} + + impl Drop for DropTest { + fn drop(&mut self) { + unsafe { + CALLED = true; + } + } + } + + #[test] + fn try_call_once_err() { + let once = Once::<_, Spin>::new(); + let shared = Arc::new((once, AtomicU32::new(0))); + + let (tx, rx) = channel(); + + let t0 = { + let shared = shared.clone(); + thread::spawn(move || { + let (once, called) = &*shared; + + once.try_call_once(|| { + called.fetch_add(1, Ordering::AcqRel); + tx.send(()).unwrap(); + thread::sleep(std::time::Duration::from_millis(50)); + Err(()) + }) + .ok(); + }) + }; + + let t1 = { + let shared = shared.clone(); + thread::spawn(move || { + rx.recv().unwrap(); + let (once, called) = &*shared; + assert_eq!( + called.load(Ordering::Acquire), + 1, + "leader thread did not run first" + ); + + once.call_once(|| { + called.fetch_add(1, Ordering::AcqRel); + }); + }) + }; + + t0.join().unwrap(); + t1.join().unwrap(); + + assert_eq!(shared.1.load(Ordering::Acquire), 2); + } + + // This is sort of two test cases, but if we write them as separate test methods + // they can be executed concurrently and then fail some small fraction of the + // time. + #[test] + fn drop_occurs_and_skip_uninit_drop() { + unsafe { + CALLED = false; + } + + { + let once = Once::<_>::new(); + once.call_once(|| DropTest {}); + } + + assert!(unsafe { CALLED }); + // Now test that we skip drops for the uninitialized case. + unsafe { + CALLED = false; + } + + let once = Once::<DropTest>::new(); + drop(once); + + assert!(unsafe { !CALLED }); + } + + #[test] + fn call_once_test() { + for _ in 0..20 { + use std::sync::atomic::AtomicUsize; + use std::sync::Arc; + use std::time::Duration; + let share = Arc::new(AtomicUsize::new(0)); + let once = Arc::new(Once::<_, Spin>::new()); + let mut hs = Vec::new(); + for _ in 0..8 { + let h = thread::spawn({ + let share = share.clone(); + let once = once.clone(); + move || { + thread::sleep(Duration::from_millis(10)); + once.call_once(|| { + share.fetch_add(1, Ordering::SeqCst); + }); + } + }); + hs.push(h); + } + for h in hs { + h.join().unwrap(); + } + assert_eq!(1, share.load(Ordering::SeqCst)); + } + } +} diff --git a/vendor/spin/src/relax.rs b/vendor/spin/src/relax.rs new file mode 100644 index 0000000..8842f80 --- /dev/null +++ b/vendor/spin/src/relax.rs @@ -0,0 +1,61 @@ +//! Strategies that determine the behaviour of locks when encountering contention. + +/// A trait implemented by spinning relax strategies. +pub trait RelaxStrategy { + /// Perform the relaxing operation during a period of contention. + fn relax(); +} + +/// A strategy that rapidly spins while informing the CPU that it should power down non-essential components via +/// [`core::hint::spin_loop`]. +/// +/// Note that spinning is a 'dumb' strategy and most schedulers cannot correctly differentiate it from useful work, +/// thereby misallocating even more CPU time to the spinning process. This is known as +/// ['priority inversion'](https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html). +/// +/// If you see signs that priority inversion is occurring, consider switching to [`Yield`] or, even better, not using a +/// spinlock at all and opting for a proper scheduler-aware lock. Remember also that different targets, operating +/// systems, schedulers, and even the same scheduler with different workloads will exhibit different behaviour. Just +/// because priority inversion isn't occurring in your tests does not mean that it will not occur. Use a scheduler- +/// aware lock if at all possible. +pub struct Spin; + +impl RelaxStrategy for Spin { + #[inline(always)] + fn relax() { + // Use the deprecated spin_loop_hint() to ensure that we don't get + // a higher MSRV than we need to. + #[allow(deprecated)] + core::sync::atomic::spin_loop_hint(); + } +} + +/// A strategy that yields the current time slice to the scheduler in favour of other threads or processes. +/// +/// This is generally used as a strategy for minimising power consumption and priority inversion on targets that have a +/// standard library available. Note that such targets have scheduler-integrated concurrency primitives available, and +/// you should generally use these instead, except in rare circumstances. +#[cfg(feature = "std")] +#[cfg_attr(docsrs, doc(cfg(feature = "std")))] +pub struct Yield; + +#[cfg(feature = "std")] +#[cfg_attr(docsrs, doc(cfg(feature = "std")))] +impl RelaxStrategy for Yield { + #[inline(always)] + fn relax() { + std::thread::yield_now(); + } +} + +/// A strategy that rapidly spins, without telling the CPU to do any powering down. +/// +/// You almost certainly do not want to use this. Use [`Spin`] instead. It exists for completeness and for targets +/// that, for some reason, miscompile or do not support spin hint intrinsics despite attempting to generate code for +/// them (i.e: this is a workaround for possible compiler bugs). +pub struct Loop; + +impl RelaxStrategy for Loop { + #[inline(always)] + fn relax() {} +} diff --git a/vendor/spin/src/rwlock.rs b/vendor/spin/src/rwlock.rs new file mode 100644 index 0000000..5dd3544 --- /dev/null +++ b/vendor/spin/src/rwlock.rs @@ -0,0 +1,1165 @@ +//! A lock that provides data access to either one writer or many readers. + +use crate::{ + atomic::{AtomicUsize, Ordering}, + RelaxStrategy, Spin, +}; +use core::{ + cell::UnsafeCell, + fmt, + marker::PhantomData, + mem, + mem::ManuallyDrop, + ops::{Deref, DerefMut}, +}; + +/// A lock that provides data access to either one writer or many readers. +/// +/// This lock behaves in a similar manner to its namesake `std::sync::RwLock` but uses +/// spinning for synchronisation instead. Unlike its namespace, this lock does not +/// track lock poisoning. +/// +/// This type of lock allows a number of readers or at most one writer at any +/// point in time. The write portion of this lock typically allows modification +/// of the underlying data (exclusive access) and the read portion of this lock +/// typically allows for read-only access (shared access). +/// +/// The type parameter `T` represents the data that this lock protects. It is +/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to +/// allow concurrent access through readers. The RAII guards returned from the +/// locking methods implement `Deref` (and `DerefMut` for the `write` methods) +/// to allow access to the contained of the lock. +/// +/// An [`RwLockUpgradableGuard`](RwLockUpgradableGuard) can be upgraded to a +/// writable guard through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) +/// [`RwLockUpgradableGuard::try_upgrade`](RwLockUpgradableGuard::try_upgrade) functions. +/// Writable or upgradeable guards can be downgraded through their respective `downgrade` +/// functions. +/// +/// Based on Facebook's +/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h). +/// This implementation is unfair to writers - if the lock always has readers, then no writers will +/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no +/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken +/// when there are existing readers. However if the lock is that highly contended and writes are +/// crucial then this implementation may be a poor choice. +/// +/// # Examples +/// +/// ``` +/// use spin; +/// +/// let lock = spin::RwLock::new(5); +/// +/// // many reader locks can be held at once +/// { +/// let r1 = lock.read(); +/// let r2 = lock.read(); +/// assert_eq!(*r1, 5); +/// assert_eq!(*r2, 5); +/// } // read locks are dropped at this point +/// +/// // only one write lock may be held, however +/// { +/// let mut w = lock.write(); +/// *w += 1; +/// assert_eq!(*w, 6); +/// } // write lock is dropped here +/// ``` +pub struct RwLock<T: ?Sized, R = Spin> { + phantom: PhantomData<R>, + lock: AtomicUsize, + data: UnsafeCell<T>, +} + +const READER: usize = 1 << 2; +const UPGRADED: usize = 1 << 1; +const WRITER: usize = 1; + +/// A guard that provides immutable data access. +/// +/// When the guard falls out of scope it will decrement the read count, +/// potentially releasing the lock. +pub struct RwLockReadGuard<'a, T: 'a + ?Sized> { + lock: &'a AtomicUsize, + data: *const T, +} + +/// A guard that provides mutable data access. +/// +/// When the guard falls out of scope it will release the lock. +pub struct RwLockWriteGuard<'a, T: 'a + ?Sized, R = Spin> { + phantom: PhantomData<R>, + inner: &'a RwLock<T, R>, + data: *mut T, +} + +/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`]. +/// +/// No writers or other upgradeable guards can exist while this is in scope. New reader +/// creation is prevented (to alleviate writer starvation) but there may be existing readers +/// when the lock is acquired. +/// +/// When the guard falls out of scope it will release the lock. +pub struct RwLockUpgradableGuard<'a, T: 'a + ?Sized, R = Spin> { + phantom: PhantomData<R>, + inner: &'a RwLock<T, R>, + data: *const T, +} + +// Same unsafe impls as `std::sync::RwLock` +unsafe impl<T: ?Sized + Send, R> Send for RwLock<T, R> {} +unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLock<T, R> {} + +unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockWriteGuard<'_, T, R> {} +unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockWriteGuard<'_, T, R> {} + +unsafe impl<T: ?Sized + Sync> Send for RwLockReadGuard<'_, T> {} +unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {} + +unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockUpgradableGuard<'_, T, R> {} +unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockUpgradableGuard<'_, T, R> {} + +impl<T, R> RwLock<T, R> { + /// Creates a new spinlock wrapping the supplied data. + /// + /// May be used statically: + /// + /// ``` + /// use spin; + /// + /// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(()); + /// + /// fn demo() { + /// let lock = RW_LOCK.read(); + /// // do something with lock + /// drop(lock); + /// } + /// ``` + #[inline] + pub const fn new(data: T) -> Self { + RwLock { + phantom: PhantomData, + lock: AtomicUsize::new(0), + data: UnsafeCell::new(data), + } + } + + /// Consumes this `RwLock`, returning the underlying data. + #[inline] + pub fn into_inner(self) -> T { + // We know statically that there are no outstanding references to + // `self` so there's no need to lock. + let RwLock { data, .. } = self; + data.into_inner() + } + /// Returns a mutable pointer to the underying data. + /// + /// This is mostly meant to be used for applications which require manual unlocking, but where + /// storing both the lock and the pointer to the inner data gets inefficient. + /// + /// While this is safe, writing to the data is undefined behavior unless the current thread has + /// acquired a write lock, and reading requires either a read or write lock. + /// + /// # Example + /// ``` + /// let lock = spin::RwLock::new(42); + /// + /// unsafe { + /// core::mem::forget(lock.write()); + /// + /// assert_eq!(lock.as_mut_ptr().read(), 42); + /// lock.as_mut_ptr().write(58); + /// + /// lock.force_write_unlock(); + /// } + /// + /// assert_eq!(*lock.read(), 58); + /// + /// ``` + #[inline(always)] + pub fn as_mut_ptr(&self) -> *mut T { + self.data.get() + } +} + +impl<T: ?Sized, R: RelaxStrategy> RwLock<T, R> { + /// Locks this rwlock with shared read access, blocking the current thread + /// until it can be acquired. + /// + /// The calling thread will be blocked until there are no more writers which + /// hold the lock. There may be other readers currently inside the lock when + /// this method returns. This method does not provide any guarantees with + /// respect to the ordering of whether contentious readers or writers will + /// acquire the lock first. + /// + /// Returns an RAII guard which will release this thread's shared access + /// once it is dropped. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// { + /// let mut data = mylock.read(); + /// // The lock is now locked and the data can be read + /// println!("{}", *data); + /// // The lock is dropped + /// } + /// ``` + #[inline] + pub fn read(&self) -> RwLockReadGuard<T> { + loop { + match self.try_read() { + Some(guard) => return guard, + None => R::relax(), + } + } + } + + /// Lock this rwlock with exclusive write access, blocking the current + /// thread until it can be acquired. + /// + /// This function will not return while other writers or other readers + /// currently have access to the lock. + /// + /// Returns an RAII guard which will drop the write access of this rwlock + /// when dropped. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// { + /// let mut data = mylock.write(); + /// // The lock is now locked and the data can be written + /// *data += 1; + /// // The lock is dropped + /// } + /// ``` + #[inline] + pub fn write(&self) -> RwLockWriteGuard<T, R> { + loop { + match self.try_write_internal(false) { + Some(guard) => return guard, + None => R::relax(), + } + } + } + + /// Obtain a readable lock guard that can later be upgraded to a writable lock guard. + /// Upgrades can be done through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) method. + #[inline] + pub fn upgradeable_read(&self) -> RwLockUpgradableGuard<T, R> { + loop { + match self.try_upgradeable_read() { + Some(guard) => return guard, + None => R::relax(), + } + } + } +} + +impl<T: ?Sized, R> RwLock<T, R> { + // Acquire a read lock, returning the new lock value. + fn acquire_reader(&self) -> usize { + // An arbitrary cap that allows us to catch overflows long before they happen + const MAX_READERS: usize = core::usize::MAX / READER / 2; + + let value = self.lock.fetch_add(READER, Ordering::Acquire); + + if value > MAX_READERS * READER { + self.lock.fetch_sub(READER, Ordering::Relaxed); + panic!("Too many lock readers, cannot safely proceed"); + } else { + value + } + } + + /// Attempt to acquire this lock with shared read access. + /// + /// This function will never block and will return immediately if `read` + /// would otherwise succeed. Returns `Some` of an RAII guard which will + /// release the shared access of this thread when dropped, or `None` if the + /// access could not be granted. This method does not provide any + /// guarantees with respect to the ordering of whether contentious readers + /// or writers will acquire the lock first. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// { + /// match mylock.try_read() { + /// Some(data) => { + /// // The lock is now locked and the data can be read + /// println!("{}", *data); + /// // The lock is dropped + /// }, + /// None => (), // no cigar + /// }; + /// } + /// ``` + #[inline] + pub fn try_read(&self) -> Option<RwLockReadGuard<T>> { + let value = self.acquire_reader(); + + // We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held. + // This helps reduce writer starvation. + if value & (WRITER | UPGRADED) != 0 { + // Lock is taken, undo. + self.lock.fetch_sub(READER, Ordering::Release); + None + } else { + Some(RwLockReadGuard { + lock: &self.lock, + data: unsafe { &*self.data.get() }, + }) + } + } + + /// Return the number of readers that currently hold the lock (including upgradable readers). + /// + /// # Safety + /// + /// This function provides no synchronization guarantees and so its result should be considered 'out of date' + /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. + pub fn reader_count(&self) -> usize { + let state = self.lock.load(Ordering::Relaxed); + state / READER + (state & UPGRADED) / UPGRADED + } + + /// Return the number of writers that currently hold the lock. + /// + /// Because [`RwLock`] guarantees exclusive mutable access, this function may only return either `0` or `1`. + /// + /// # Safety + /// + /// This function provides no synchronization guarantees and so its result should be considered 'out of date' + /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. + pub fn writer_count(&self) -> usize { + (self.lock.load(Ordering::Relaxed) & WRITER) / WRITER + } + + /// Force decrement the reader count. + /// + /// # Safety + /// + /// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s + /// live, or if called more times than `read` has been called, but can be + /// useful in FFI contexts where the caller doesn't know how to deal with + /// RAII. The underlying atomic operation uses `Ordering::Release`. + #[inline] + pub unsafe fn force_read_decrement(&self) { + debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0); + self.lock.fetch_sub(READER, Ordering::Release); + } + + /// Force unlock exclusive write access. + /// + /// # Safety + /// + /// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s + /// live, or if called when there are current readers, but can be useful in + /// FFI contexts where the caller doesn't know how to deal with RAII. The + /// underlying atomic operation uses `Ordering::Release`. + #[inline] + pub unsafe fn force_write_unlock(&self) { + debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0); + self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release); + } + + #[inline(always)] + fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T, R>> { + if compare_exchange( + &self.lock, + 0, + WRITER, + Ordering::Acquire, + Ordering::Relaxed, + strong, + ) + .is_ok() + { + Some(RwLockWriteGuard { + phantom: PhantomData, + inner: self, + data: unsafe { &mut *self.data.get() }, + }) + } else { + None + } + } + + /// Attempt to lock this rwlock with exclusive write access. + /// + /// This function does not ever block, and it will return `None` if a call + /// to `write` would otherwise block. If successful, an RAII guard is + /// returned. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// { + /// match mylock.try_write() { + /// Some(mut data) => { + /// // The lock is now locked and the data can be written + /// *data += 1; + /// // The lock is implicitly dropped + /// }, + /// None => (), // no cigar + /// }; + /// } + /// ``` + #[inline] + pub fn try_write(&self) -> Option<RwLockWriteGuard<T, R>> { + self.try_write_internal(true) + } + + /// Tries to obtain an upgradeable lock guard. + #[inline] + pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T, R>> { + if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 { + Some(RwLockUpgradableGuard { + phantom: PhantomData, + inner: self, + data: unsafe { &*self.data.get() }, + }) + } else { + // We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock. + // When they unlock, they will clear the bit. + None + } + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the `RwLock` mutably, no actual locking needs to + /// take place -- the mutable borrow statically guarantees no locks exist. + /// + /// # Examples + /// + /// ``` + /// let mut lock = spin::RwLock::new(0); + /// *lock.get_mut() = 10; + /// assert_eq!(*lock.read(), 10); + /// ``` + pub fn get_mut(&mut self) -> &mut T { + // We know statically that there are no other references to `self`, so + // there's no need to lock the inner lock. + unsafe { &mut *self.data.get() } + } +} + +impl<T: ?Sized + fmt::Debug, R> fmt::Debug for RwLock<T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.try_read() { + Some(guard) => write!(f, "RwLock {{ data: ") + .and_then(|()| (&*guard).fmt(f)) + .and_then(|()| write!(f, "}}")), + None => write!(f, "RwLock {{ <locked> }}"), + } + } +} + +impl<T: ?Sized + Default, R> Default for RwLock<T, R> { + fn default() -> Self { + Self::new(Default::default()) + } +} + +impl<T, R> From<T> for RwLock<T, R> { + fn from(data: T) -> Self { + Self::new(data) + } +} + +impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> { + /// Leak the lock guard, yielding a reference to the underlying data. + /// + /// Note that this function will permanently lock the original lock for all but reading locks. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// + /// let data: &i32 = spin::RwLockReadGuard::leak(mylock.read()); + /// + /// assert_eq!(*data, 0); + /// ``` + #[inline] + pub fn leak(this: Self) -> &'rwlock T { + let this = ManuallyDrop::new(this); + // Safety: We know statically that only we are referencing data + unsafe { &*this.data } + } +} + +impl<'rwlock, T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'rwlock, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'rwlock, T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'rwlock, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'rwlock, T: ?Sized, R: RelaxStrategy> RwLockUpgradableGuard<'rwlock, T, R> { + /// Upgrades an upgradeable lock guard to a writable lock guard. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// + /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable + /// let writable = upgradeable.upgrade(); + /// ``` + #[inline] + pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T, R> { + loop { + self = match self.try_upgrade_internal(false) { + Ok(guard) => return guard, + Err(e) => e, + }; + + R::relax(); + } + } +} + +impl<'rwlock, T: ?Sized, R> RwLockUpgradableGuard<'rwlock, T, R> { + #[inline(always)] + fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> { + if compare_exchange( + &self.inner.lock, + UPGRADED, + WRITER, + Ordering::Acquire, + Ordering::Relaxed, + strong, + ) + .is_ok() + { + let inner = self.inner; + + // Forget the old guard so its destructor doesn't run (before mutably aliasing data below) + mem::forget(self); + + // Upgrade successful + Ok(RwLockWriteGuard { + phantom: PhantomData, + inner, + data: unsafe { &mut *inner.data.get() }, + }) + } else { + Err(self) + } + } + + /// Tries to upgrade an upgradeable lock guard to a writable lock guard. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable + /// + /// match upgradeable.try_upgrade() { + /// Ok(writable) => /* upgrade successful - use writable lock guard */ (), + /// Err(upgradeable) => /* upgrade unsuccessful */ (), + /// }; + /// ``` + #[inline] + pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> { + self.try_upgrade_internal(true) + } + + #[inline] + /// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin. + /// + /// ``` + /// let mylock = spin::RwLock::new(1); + /// + /// let upgradeable = mylock.upgradeable_read(); + /// assert!(mylock.try_read().is_none()); + /// assert_eq!(*upgradeable, 1); + /// + /// let readable = upgradeable.downgrade(); // This is guaranteed not to spin + /// assert!(mylock.try_read().is_some()); + /// assert_eq!(*readable, 1); + /// ``` + pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> { + // Reserve the read guard for ourselves + self.inner.acquire_reader(); + + let inner = self.inner; + + // Dropping self removes the UPGRADED bit + mem::drop(self); + + RwLockReadGuard { + lock: &inner.lock, + data: unsafe { &*inner.data.get() }, + } + } + + /// Leak the lock guard, yielding a reference to the underlying data. + /// + /// Note that this function will permanently lock the original lock. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// + /// let data: &i32 = spin::RwLockUpgradableGuard::leak(mylock.upgradeable_read()); + /// + /// assert_eq!(*data, 0); + /// ``` + #[inline] + pub fn leak(this: Self) -> &'rwlock T { + let this = ManuallyDrop::new(this); + // Safety: We know statically that only we are referencing data + unsafe { &*this.data } + } +} + +impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockUpgradableGuard<'rwlock, T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockUpgradableGuard<'rwlock, T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'rwlock, T: ?Sized, R> RwLockWriteGuard<'rwlock, T, R> { + /// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// + /// let mut writable = mylock.write(); + /// *writable = 1; + /// + /// let readable = writable.downgrade(); // This is guaranteed not to spin + /// # let readable_2 = mylock.try_read().unwrap(); + /// assert_eq!(*readable, 1); + /// ``` + #[inline] + pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> { + // Reserve the read guard for ourselves + self.inner.acquire_reader(); + + let inner = self.inner; + + // Dropping self removes the UPGRADED bit + mem::drop(self); + + RwLockReadGuard { + lock: &inner.lock, + data: unsafe { &*inner.data.get() }, + } + } + + /// Downgrades the writable lock guard to an upgradable, shared lock guard. Cannot fail and is guaranteed not to spin. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// + /// let mut writable = mylock.write(); + /// *writable = 1; + /// + /// let readable = writable.downgrade_to_upgradeable(); // This is guaranteed not to spin + /// assert_eq!(*readable, 1); + /// ``` + #[inline] + pub fn downgrade_to_upgradeable(self) -> RwLockUpgradableGuard<'rwlock, T, R> { + debug_assert_eq!( + self.inner.lock.load(Ordering::Acquire) & (WRITER | UPGRADED), + WRITER + ); + + // Reserve the read guard for ourselves + self.inner.lock.store(UPGRADED, Ordering::Release); + + let inner = self.inner; + + // Dropping self removes the UPGRADED bit + mem::forget(self); + + RwLockUpgradableGuard { + phantom: PhantomData, + inner, + data: unsafe { &*inner.data.get() }, + } + } + + /// Leak the lock guard, yielding a mutable reference to the underlying data. + /// + /// Note that this function will permanently lock the original lock. + /// + /// ``` + /// let mylock = spin::RwLock::new(0); + /// + /// let data: &mut i32 = spin::RwLockWriteGuard::leak(mylock.write()); + /// + /// *data = 1; + /// assert_eq!(*data, 1); + /// ``` + #[inline] + pub fn leak(this: Self) -> &'rwlock mut T { + let mut this = ManuallyDrop::new(this); + // Safety: We know statically that only we are referencing data + unsafe { &mut *this.data } + } +} + +impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockWriteGuard<'rwlock, T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockWriteGuard<'rwlock, T, R> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> { + type Target = T; + + fn deref(&self) -> &T { + // Safety: We know statically that only we are referencing data + unsafe { &*self.data } + } +} + +impl<'rwlock, T: ?Sized, R> Deref for RwLockUpgradableGuard<'rwlock, T, R> { + type Target = T; + + fn deref(&self) -> &T { + // Safety: We know statically that only we are referencing data + unsafe { &*self.data } + } +} + +impl<'rwlock, T: ?Sized, R> Deref for RwLockWriteGuard<'rwlock, T, R> { + type Target = T; + + fn deref(&self) -> &T { + // Safety: We know statically that only we are referencing data + unsafe { &*self.data } + } +} + +impl<'rwlock, T: ?Sized, R> DerefMut for RwLockWriteGuard<'rwlock, T, R> { + fn deref_mut(&mut self) -> &mut T { + // Safety: We know statically that only we are referencing data + unsafe { &mut *self.data } + } +} + +impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> { + fn drop(&mut self) { + debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0); + self.lock.fetch_sub(READER, Ordering::Release); + } +} + +impl<'rwlock, T: ?Sized, R> Drop for RwLockUpgradableGuard<'rwlock, T, R> { + fn drop(&mut self) { + debug_assert_eq!( + self.inner.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED), + UPGRADED + ); + self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel); + } +} + +impl<'rwlock, T: ?Sized, R> Drop for RwLockWriteGuard<'rwlock, T, R> { + fn drop(&mut self) { + debug_assert_eq!(self.inner.lock.load(Ordering::Relaxed) & WRITER, WRITER); + + // Writer is responsible for clearing both WRITER and UPGRADED bits. + // The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held. + self.inner + .lock + .fetch_and(!(WRITER | UPGRADED), Ordering::Release); + } +} + +#[inline(always)] +fn compare_exchange( + atomic: &AtomicUsize, + current: usize, + new: usize, + success: Ordering, + failure: Ordering, + strong: bool, +) -> Result<usize, usize> { + if strong { + atomic.compare_exchange(current, new, success, failure) + } else { + atomic.compare_exchange_weak(current, new, success, failure) + } +} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLock for RwLock<(), R> { + type GuardMarker = lock_api_crate::GuardSend; + + const INIT: Self = Self::new(()); + + #[inline(always)] + fn lock_exclusive(&self) { + // Prevent guard destructor running + core::mem::forget(self.write()); + } + + #[inline(always)] + fn try_lock_exclusive(&self) -> bool { + // Prevent guard destructor running + self.try_write().map(|g| core::mem::forget(g)).is_some() + } + + #[inline(always)] + unsafe fn unlock_exclusive(&self) { + drop(RwLockWriteGuard { + inner: self, + data: &mut (), + phantom: PhantomData, + }); + } + + #[inline(always)] + fn lock_shared(&self) { + // Prevent guard destructor running + core::mem::forget(self.read()); + } + + #[inline(always)] + fn try_lock_shared(&self) -> bool { + // Prevent guard destructor running + self.try_read().map(|g| core::mem::forget(g)).is_some() + } + + #[inline(always)] + unsafe fn unlock_shared(&self) { + drop(RwLockReadGuard { + lock: &self.lock, + data: &(), + }); + } + + #[inline(always)] + fn is_locked(&self) -> bool { + self.lock.load(Ordering::Relaxed) != 0 + } +} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockUpgrade for RwLock<(), R> { + #[inline(always)] + fn lock_upgradable(&self) { + // Prevent guard destructor running + core::mem::forget(self.upgradeable_read()); + } + + #[inline(always)] + fn try_lock_upgradable(&self) -> bool { + // Prevent guard destructor running + self.try_upgradeable_read() + .map(|g| core::mem::forget(g)) + .is_some() + } + + #[inline(always)] + unsafe fn unlock_upgradable(&self) { + drop(RwLockUpgradableGuard { + inner: self, + data: &(), + phantom: PhantomData, + }); + } + + #[inline(always)] + unsafe fn upgrade(&self) { + let tmp_guard = RwLockUpgradableGuard { + inner: self, + data: &(), + phantom: PhantomData, + }; + core::mem::forget(tmp_guard.upgrade()); + } + + #[inline(always)] + unsafe fn try_upgrade(&self) -> bool { + let tmp_guard = RwLockUpgradableGuard { + inner: self, + data: &(), + phantom: PhantomData, + }; + tmp_guard + .try_upgrade() + .map(|g| core::mem::forget(g)) + .is_ok() + } +} + +#[cfg(feature = "lock_api")] +unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockDowngrade for RwLock<(), R> { + unsafe fn downgrade(&self) { + let tmp_guard = RwLockWriteGuard { + inner: self, + data: &mut (), + phantom: PhantomData, + }; + core::mem::forget(tmp_guard.downgrade()); + } +} + +#[cfg(feature = "lock_api1")] +unsafe impl lock_api::RawRwLockUpgradeDowngrade for RwLock<()> { + unsafe fn downgrade_upgradable(&self) { + let tmp_guard = RwLockUpgradableGuard { + inner: self, + data: &(), + phantom: PhantomData, + }; + core::mem::forget(tmp_guard.downgrade()); + } + + unsafe fn downgrade_to_upgradable(&self) { + let tmp_guard = RwLockWriteGuard { + inner: self, + data: &mut (), + phantom: PhantomData, + }; + core::mem::forget(tmp_guard.downgrade_to_upgradeable()); + } +} + +#[cfg(test)] +mod tests { + use std::prelude::v1::*; + + use std::sync::atomic::{AtomicUsize, Ordering}; + use std::sync::mpsc::channel; + use std::sync::Arc; + use std::thread; + + type RwLock<T> = super::RwLock<T>; + + #[derive(Eq, PartialEq, Debug)] + struct NonCopy(i32); + + #[test] + fn smoke() { + let l = RwLock::new(()); + drop(l.read()); + drop(l.write()); + drop((l.read(), l.read())); + drop(l.write()); + } + + // TODO: needs RNG + //#[test] + //fn frob() { + // static R: RwLock = RwLock::new(); + // const N: usize = 10; + // const M: usize = 1000; + // + // let (tx, rx) = channel::<()>(); + // for _ in 0..N { + // let tx = tx.clone(); + // thread::spawn(move|| { + // let mut rng = rand::thread_rng(); + // for _ in 0..M { + // if rng.gen_weighted_bool(N) { + // drop(R.write()); + // } else { + // drop(R.read()); + // } + // } + // drop(tx); + // }); + // } + // drop(tx); + // let _ = rx.recv(); + // unsafe { R.destroy(); } + //} + + #[test] + fn test_rw_arc() { + let arc = Arc::new(RwLock::new(0)); + let arc2 = arc.clone(); + let (tx, rx) = channel(); + + let t = thread::spawn(move || { + let mut lock = arc2.write(); + for _ in 0..10 { + let tmp = *lock; + *lock = -1; + thread::yield_now(); + *lock = tmp + 1; + } + tx.send(()).unwrap(); + }); + + // Readers try to catch the writer in the act + let mut children = Vec::new(); + for _ in 0..5 { + let arc3 = arc.clone(); + children.push(thread::spawn(move || { + let lock = arc3.read(); + assert!(*lock >= 0); + })); + } + + // Wait for children to pass their asserts + for r in children { + assert!(r.join().is_ok()); + } + + // Wait for writer to finish + rx.recv().unwrap(); + let lock = arc.read(); + assert_eq!(*lock, 10); + + assert!(t.join().is_ok()); + } + + #[test] + fn test_rw_access_in_unwind() { + let arc = Arc::new(RwLock::new(1)); + let arc2 = arc.clone(); + let _ = thread::spawn(move || -> () { + struct Unwinder { + i: Arc<RwLock<isize>>, + } + impl Drop for Unwinder { + fn drop(&mut self) { + let mut lock = self.i.write(); + *lock += 1; + } + } + let _u = Unwinder { i: arc2 }; + panic!(); + }) + .join(); + let lock = arc.read(); + assert_eq!(*lock, 2); + } + + #[test] + fn test_rwlock_unsized() { + let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]); + { + let b = &mut *rw.write(); + b[0] = 4; + b[2] = 5; + } + let comp: &[i32] = &[4, 2, 5]; + assert_eq!(&*rw.read(), comp); + } + + #[test] + fn test_rwlock_try_write() { + use std::mem::drop; + + let lock = RwLock::new(0isize); + let read_guard = lock.read(); + + let write_result = lock.try_write(); + match write_result { + None => (), + Some(_) => assert!( + false, + "try_write should not succeed while read_guard is in scope" + ), + } + + drop(read_guard); + } + + #[test] + fn test_rw_try_read() { + let m = RwLock::new(0); + ::std::mem::forget(m.write()); + assert!(m.try_read().is_none()); + } + + #[test] + fn test_into_inner() { + let m = RwLock::new(NonCopy(10)); + assert_eq!(m.into_inner(), NonCopy(10)); + } + + #[test] + fn test_into_inner_drop() { + struct Foo(Arc<AtomicUsize>); + impl Drop for Foo { + fn drop(&mut self) { + self.0.fetch_add(1, Ordering::SeqCst); + } + } + let num_drops = Arc::new(AtomicUsize::new(0)); + let m = RwLock::new(Foo(num_drops.clone())); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + { + let _inner = m.into_inner(); + assert_eq!(num_drops.load(Ordering::SeqCst), 0); + } + assert_eq!(num_drops.load(Ordering::SeqCst), 1); + } + + #[test] + fn test_force_read_decrement() { + let m = RwLock::new(()); + ::std::mem::forget(m.read()); + ::std::mem::forget(m.read()); + ::std::mem::forget(m.read()); + assert!(m.try_write().is_none()); + unsafe { + m.force_read_decrement(); + m.force_read_decrement(); + } + assert!(m.try_write().is_none()); + unsafe { + m.force_read_decrement(); + } + assert!(m.try_write().is_some()); + } + + #[test] + fn test_force_write_unlock() { + let m = RwLock::new(()); + ::std::mem::forget(m.write()); + assert!(m.try_read().is_none()); + unsafe { + m.force_write_unlock(); + } + assert!(m.try_read().is_some()); + } + + #[test] + fn test_upgrade_downgrade() { + let m = RwLock::new(()); + { + let _r = m.read(); + let upg = m.try_upgradeable_read().unwrap(); + assert!(m.try_read().is_none()); + assert!(m.try_write().is_none()); + assert!(upg.try_upgrade().is_err()); + } + { + let w = m.write(); + assert!(m.try_upgradeable_read().is_none()); + let _r = w.downgrade(); + assert!(m.try_upgradeable_read().is_some()); + assert!(m.try_read().is_some()); + assert!(m.try_write().is_none()); + } + { + let _u = m.upgradeable_read(); + assert!(m.try_upgradeable_read().is_none()); + } + + assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok()); + } +} |