diff options
Diffstat (limited to 'vendor/spin/src')
-rw-r--r-- | vendor/spin/src/barrier.rs | 239 | ||||
-rw-r--r-- | vendor/spin/src/lazy.rs | 118 | ||||
-rw-r--r-- | vendor/spin/src/lib.rs | 221 | ||||
-rw-r--r-- | vendor/spin/src/mutex.rs | 340 | ||||
-rw-r--r-- | vendor/spin/src/mutex/fair.rs | 735 | ||||
-rw-r--r-- | vendor/spin/src/mutex/spin.rs | 543 | ||||
-rw-r--r-- | vendor/spin/src/mutex/ticket.rs | 537 | ||||
-rw-r--r-- | vendor/spin/src/once.rs | 789 | ||||
-rw-r--r-- | vendor/spin/src/relax.rs | 61 | ||||
-rw-r--r-- | vendor/spin/src/rwlock.rs | 1165 |
10 files changed, 0 insertions, 4748 deletions
diff --git a/vendor/spin/src/barrier.rs b/vendor/spin/src/barrier.rs deleted file mode 100644 index c3a1c92..0000000 --- a/vendor/spin/src/barrier.rs +++ /dev/null @@ -1,239 +0,0 @@ -//! Synchronization primitive allowing multiple threads to synchronize the -//! beginning of some computation. -//! -//! Implementation adapted from the 'Barrier' type of the standard library. See: -//! <https://doc.rust-lang.org/std/sync/struct.Barrier.html> -//! -//! Copyright 2014 The Rust Project Developers. See the COPYRIGHT -//! file at the top-level directory of this distribution and at -//! <http://rust-lang.org/COPYRIGHT>. -//! -//! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -//! <http://www.apache.org/licenses/LICENSE-2.0>> or the MIT license -//! <LICENSE-MIT or <http://opensource.org/licenses/MIT>>, at your -//! option. This file may not be copied, modified, or distributed -//! except according to those terms. - -use crate::{mutex::Mutex, RelaxStrategy, Spin}; - -/// A primitive that synchronizes the execution of multiple threads. -/// -/// # Example -/// -/// ``` -/// use spin; -/// use std::sync::Arc; -/// use std::thread; -/// -/// let mut handles = Vec::with_capacity(10); -/// let barrier = Arc::new(spin::Barrier::new(10)); -/// for _ in 0..10 { -/// let c = barrier.clone(); -/// // The same messages will be printed together. -/// // You will NOT see any interleaving. -/// handles.push(thread::spawn(move|| { -/// println!("before wait"); -/// c.wait(); -/// println!("after wait"); -/// })); -/// } -/// // Wait for other threads to finish. -/// for handle in handles { -/// handle.join().unwrap(); -/// } -/// ``` -pub struct Barrier<R = Spin> { - lock: Mutex<BarrierState, R>, - num_threads: usize, -} - -// The inner state of a double barrier -struct BarrierState { - count: usize, - generation_id: usize, -} - -/// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`] -/// have rendezvoused. -/// -/// [`wait`]: struct.Barrier.html#method.wait -/// [`Barrier`]: struct.Barrier.html -/// -/// # Examples -/// -/// ``` -/// use spin; -/// -/// let barrier = spin::Barrier::new(1); -/// let barrier_wait_result = barrier.wait(); -/// ``` -pub struct BarrierWaitResult(bool); - -impl<R: RelaxStrategy> Barrier<R> { - /// Blocks the current thread until all threads have rendezvoused here. - /// - /// Barriers are re-usable after all threads have rendezvoused once, and can - /// be used continuously. - /// - /// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that - /// returns `true` from [`is_leader`] when returning from this function, and - /// all other threads will receive a result that will return `false` from - /// [`is_leader`]. - /// - /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html - /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader - /// - /// # Examples - /// - /// ``` - /// use spin; - /// use std::sync::Arc; - /// use std::thread; - /// - /// let mut handles = Vec::with_capacity(10); - /// let barrier = Arc::new(spin::Barrier::new(10)); - /// for _ in 0..10 { - /// let c = barrier.clone(); - /// // The same messages will be printed together. - /// // You will NOT see any interleaving. - /// handles.push(thread::spawn(move|| { - /// println!("before wait"); - /// c.wait(); - /// println!("after wait"); - /// })); - /// } - /// // Wait for other threads to finish. - /// for handle in handles { - /// handle.join().unwrap(); - /// } - /// ``` - pub fn wait(&self) -> BarrierWaitResult { - let mut lock = self.lock.lock(); - lock.count += 1; - - if lock.count < self.num_threads { - // not the leader - let local_gen = lock.generation_id; - - while local_gen == lock.generation_id && lock.count < self.num_threads { - drop(lock); - R::relax(); - lock = self.lock.lock(); - } - BarrierWaitResult(false) - } else { - // this thread is the leader, - // and is responsible for incrementing the generation - lock.count = 0; - lock.generation_id = lock.generation_id.wrapping_add(1); - BarrierWaitResult(true) - } - } -} - -impl<R> Barrier<R> { - /// Creates a new barrier that can block a given number of threads. - /// - /// A barrier will block `n`-1 threads which call [`wait`] and then wake up - /// all threads at once when the `n`th thread calls [`wait`]. A Barrier created - /// with n = 0 will behave identically to one created with n = 1. - /// - /// [`wait`]: #method.wait - /// - /// # Examples - /// - /// ``` - /// use spin; - /// - /// let barrier = spin::Barrier::new(10); - /// ``` - pub const fn new(n: usize) -> Self { - Self { - lock: Mutex::new(BarrierState { - count: 0, - generation_id: 0, - }), - num_threads: n, - } - } -} - -impl BarrierWaitResult { - /// Returns whether this thread from [`wait`] is the "leader thread". - /// - /// Only one thread will have `true` returned from their result, all other - /// threads will have `false` returned. - /// - /// [`wait`]: struct.Barrier.html#method.wait - /// - /// # Examples - /// - /// ``` - /// use spin; - /// - /// let barrier = spin::Barrier::new(1); - /// let barrier_wait_result = barrier.wait(); - /// println!("{:?}", barrier_wait_result.is_leader()); - /// ``` - pub fn is_leader(&self) -> bool { - self.0 - } -} - -#[cfg(test)] -mod tests { - use std::prelude::v1::*; - - use std::sync::mpsc::{channel, TryRecvError}; - use std::sync::Arc; - use std::thread; - - type Barrier = super::Barrier; - - fn use_barrier(n: usize, barrier: Arc<Barrier>) { - let (tx, rx) = channel(); - - let mut ts = Vec::new(); - for _ in 0..n - 1 { - let c = barrier.clone(); - let tx = tx.clone(); - ts.push(thread::spawn(move || { - tx.send(c.wait().is_leader()).unwrap(); - })); - } - - // At this point, all spawned threads should be blocked, - // so we shouldn't get anything from the port - assert!(match rx.try_recv() { - Err(TryRecvError::Empty) => true, - _ => false, - }); - - let mut leader_found = barrier.wait().is_leader(); - - // Now, the barrier is cleared and we should get data. - for _ in 0..n - 1 { - if rx.recv().unwrap() { - assert!(!leader_found); - leader_found = true; - } - } - assert!(leader_found); - - for t in ts { - t.join().unwrap(); - } - } - - #[test] - fn test_barrier() { - const N: usize = 10; - - let barrier = Arc::new(Barrier::new(N)); - - use_barrier(N, barrier.clone()); - - // use barrier twice to ensure it is reusable - use_barrier(N, barrier.clone()); - } -} diff --git a/vendor/spin/src/lazy.rs b/vendor/spin/src/lazy.rs deleted file mode 100644 index 6e5efe4..0000000 --- a/vendor/spin/src/lazy.rs +++ /dev/null @@ -1,118 +0,0 @@ -//! Synchronization primitives for lazy evaluation. -//! -//! Implementation adapted from the `SyncLazy` type of the standard library. See: -//! <https://doc.rust-lang.org/std/lazy/struct.SyncLazy.html> - -use crate::{once::Once, RelaxStrategy, Spin}; -use core::{cell::Cell, fmt, ops::Deref}; - -/// A value which is initialized on the first access. -/// -/// This type is a thread-safe `Lazy`, and can be used in statics. -/// -/// # Examples -/// -/// ``` -/// use std::collections::HashMap; -/// use spin::Lazy; -/// -/// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| { -/// println!("initializing"); -/// let mut m = HashMap::new(); -/// m.insert(13, "Spica".to_string()); -/// m.insert(74, "Hoyten".to_string()); -/// m -/// }); -/// -/// fn main() { -/// println!("ready"); -/// std::thread::spawn(|| { -/// println!("{:?}", HASHMAP.get(&13)); -/// }).join().unwrap(); -/// println!("{:?}", HASHMAP.get(&74)); -/// -/// // Prints: -/// // ready -/// // initializing -/// // Some("Spica") -/// // Some("Hoyten") -/// } -/// ``` -pub struct Lazy<T, F = fn() -> T, R = Spin> { - cell: Once<T, R>, - init: Cell<Option<F>>, -} - -impl<T: fmt::Debug, F, R> fmt::Debug for Lazy<T, F, R> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("Lazy") - .field("cell", &self.cell) - .field("init", &"..") - .finish() - } -} - -// We never create a `&F` from a `&Lazy<T, F>` so it is fine -// to not impl `Sync` for `F` -// we do create a `&mut Option<F>` in `force`, but this is -// properly synchronized, so it only happens once -// so it also does not contribute to this impl. -unsafe impl<T, F: Send> Sync for Lazy<T, F> where Once<T>: Sync {} -// auto-derived `Send` impl is OK. - -impl<T, F, R> Lazy<T, F, R> { - /// Creates a new lazy value with the given initializing - /// function. - pub const fn new(f: F) -> Self { - Self { - cell: Once::new(), - init: Cell::new(Some(f)), - } - } - /// Retrieves a mutable pointer to the inner data. - /// - /// This is especially useful when interfacing with low level code or FFI where the caller - /// explicitly knows that it has exclusive access to the inner data. Note that reading from - /// this pointer is UB until initialized or directly written to. - pub fn as_mut_ptr(&self) -> *mut T { - self.cell.as_mut_ptr() - } -} - -impl<T, F: FnOnce() -> T, R: RelaxStrategy> Lazy<T, F, R> { - /// Forces the evaluation of this lazy value and - /// returns a reference to result. This is equivalent - /// to the `Deref` impl, but is explicit. - /// - /// # Examples - /// - /// ``` - /// use spin::Lazy; - /// - /// let lazy = Lazy::new(|| 92); - /// - /// assert_eq!(Lazy::force(&lazy), &92); - /// assert_eq!(&*lazy, &92); - /// ``` - pub fn force(this: &Self) -> &T { - this.cell.call_once(|| match this.init.take() { - Some(f) => f(), - None => panic!("Lazy instance has previously been poisoned"), - }) - } -} - -impl<T, F: FnOnce() -> T, R: RelaxStrategy> Deref for Lazy<T, F, R> { - type Target = T; - - fn deref(&self) -> &T { - Self::force(self) - } -} - -impl<T: Default, R> Default for Lazy<T, fn() -> T, R> { - /// Creates a new lazy value using `Default` as the initializing function. - fn default() -> Self { - Self::new(T::default) - } -} diff --git a/vendor/spin/src/lib.rs b/vendor/spin/src/lib.rs deleted file mode 100644 index 50768bc..0000000 --- a/vendor/spin/src/lib.rs +++ /dev/null @@ -1,221 +0,0 @@ -#![cfg_attr(all(not(feature = "std"), not(test)), no_std)] -#![cfg_attr(docsrs, feature(doc_cfg))] -#![deny(missing_docs)] - -//! This crate provides [spin-based](https://en.wikipedia.org/wiki/Spinlock) versions of the -//! primitives in `std::sync` and `std::lazy`. Because synchronization is done through spinning, -//! the primitives are suitable for use in `no_std` environments. -//! -//! # Features -//! -//! - `Mutex`, `RwLock`, `Once`/`SyncOnceCell`, and `SyncLazy` equivalents -//! -//! - Support for `no_std` environments -//! -//! - [`lock_api`](https://crates.io/crates/lock_api) compatibility -//! -//! - Upgradeable `RwLock` guards -//! -//! - Guards can be sent and shared between threads -//! -//! - Guard leaking -//! -//! - Ticket locks -//! -//! - Different strategies for dealing with contention -//! -//! # Relationship with `std::sync` -//! -//! While `spin` is not a drop-in replacement for `std::sync` (and -//! [should not be considered as such](https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html)) -//! an effort is made to keep this crate reasonably consistent with `std::sync`. -//! -//! Many of the types defined in this crate have 'additional capabilities' when compared to `std::sync`: -//! -//! - Because spinning does not depend on the thread-driven model of `std::sync`, guards ([`MutexGuard`], -//! [`RwLockReadGuard`], [`RwLockWriteGuard`], etc.) may be sent and shared between threads. -//! -//! - [`RwLockUpgradableGuard`] supports being upgraded into a [`RwLockWriteGuard`]. -//! -//! - Guards support [leaking](https://doc.rust-lang.org/nomicon/leaking.html). -//! -//! - [`Once`] owns the value returned by its `call_once` initializer. -//! -//! - [`RwLock`] supports counting readers and writers. -//! -//! Conversely, the types in this crate do not have some of the features `std::sync` has: -//! -//! - Locks do not track [panic poisoning](https://doc.rust-lang.org/nomicon/poisoning.html). -//! -//! ## Feature flags -//! -//! The crate comes with a few feature flags that you may wish to use. -//! -//! - `lock_api` enables support for [`lock_api`](https://crates.io/crates/lock_api) -//! -//! - `ticket_mutex` uses a ticket lock for the implementation of `Mutex` -//! -//! - `fair_mutex` enables a fairer implementation of `Mutex` that uses eventual fairness to avoid -//! starvation -//! -//! - `std` enables support for thread yielding instead of spinning - -#[cfg(any(test, feature = "std"))] -extern crate core; - -#[cfg(feature = "portable_atomic")] -extern crate portable_atomic; - -#[cfg(not(feature = "portable_atomic"))] -use core::sync::atomic; -#[cfg(feature = "portable_atomic")] -use portable_atomic as atomic; - -#[cfg(feature = "barrier")] -#[cfg_attr(docsrs, doc(cfg(feature = "barrier")))] -pub mod barrier; -#[cfg(feature = "lazy")] -#[cfg_attr(docsrs, doc(cfg(feature = "lazy")))] -pub mod lazy; -#[cfg(feature = "mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] -pub mod mutex; -#[cfg(feature = "once")] -#[cfg_attr(docsrs, doc(cfg(feature = "once")))] -pub mod once; -pub mod relax; -#[cfg(feature = "rwlock")] -#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] -pub mod rwlock; - -#[cfg(feature = "mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] -pub use mutex::MutexGuard; -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -pub use relax::Yield; -pub use relax::{RelaxStrategy, Spin}; -#[cfg(feature = "rwlock")] -#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] -pub use rwlock::RwLockReadGuard; - -// Avoid confusing inference errors by aliasing away the relax strategy parameter. Users that need to use a different -// relax strategy can do so by accessing the types through their fully-qualified path. This is a little bit horrible -// but sadly adding a default type parameter is *still* a breaking change in Rust (for understandable reasons). - -/// A primitive that synchronizes the execution of multiple threads. See [`barrier::Barrier`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "barrier")] -#[cfg_attr(docsrs, doc(cfg(feature = "barrier")))] -pub type Barrier = crate::barrier::Barrier; - -/// A value which is initialized on the first access. See [`lazy::Lazy`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "lazy")] -#[cfg_attr(docsrs, doc(cfg(feature = "lazy")))] -pub type Lazy<T, F = fn() -> T> = crate::lazy::Lazy<T, F>; - -/// A primitive that synchronizes the execution of multiple threads. See [`mutex::Mutex`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] -pub type Mutex<T> = crate::mutex::Mutex<T>; - -/// A primitive that provides lazy one-time initialization. See [`once::Once`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "once")] -#[cfg_attr(docsrs, doc(cfg(feature = "once")))] -pub type Once<T = ()> = crate::once::Once<T>; - -/// A lock that provides data access to either one writer or many readers. See [`rwlock::RwLock`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "rwlock")] -#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] -pub type RwLock<T> = crate::rwlock::RwLock<T>; - -/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`]. See -/// [`rwlock::RwLockUpgradableGuard`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "rwlock")] -#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] -pub type RwLockUpgradableGuard<'a, T> = crate::rwlock::RwLockUpgradableGuard<'a, T>; - -/// A guard that provides mutable data access. See [`rwlock::RwLockWriteGuard`] for documentation. -/// -/// A note for advanced users: this alias exists to avoid subtle type inference errors due to the default relax -/// strategy type parameter. If you need a non-default relax strategy, use the fully-qualified path. -#[cfg(feature = "rwlock")] -#[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] -pub type RwLockWriteGuard<'a, T> = crate::rwlock::RwLockWriteGuard<'a, T>; - -/// Spin synchronisation primitives, but compatible with [`lock_api`](https://crates.io/crates/lock_api). -#[cfg(feature = "lock_api")] -#[cfg_attr(docsrs, doc(cfg(feature = "lock_api")))] -pub mod lock_api { - /// A lock that provides mutually exclusive data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). - #[cfg(feature = "mutex")] - #[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] - pub type Mutex<T> = lock_api_crate::Mutex<crate::Mutex<()>, T>; - - /// A guard that provides mutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). - #[cfg(feature = "mutex")] - #[cfg_attr(docsrs, doc(cfg(feature = "mutex")))] - pub type MutexGuard<'a, T> = lock_api_crate::MutexGuard<'a, crate::Mutex<()>, T>; - - /// A lock that provides data access to either one writer or many readers (compatible with [`lock_api`](https://crates.io/crates/lock_api)). - #[cfg(feature = "rwlock")] - #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] - pub type RwLock<T> = lock_api_crate::RwLock<crate::RwLock<()>, T>; - - /// A guard that provides immutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). - #[cfg(feature = "rwlock")] - #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] - pub type RwLockReadGuard<'a, T> = lock_api_crate::RwLockReadGuard<'a, crate::RwLock<()>, T>; - - /// A guard that provides mutable data access (compatible with [`lock_api`](https://crates.io/crates/lock_api)). - #[cfg(feature = "rwlock")] - #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] - pub type RwLockWriteGuard<'a, T> = lock_api_crate::RwLockWriteGuard<'a, crate::RwLock<()>, T>; - - /// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`] (compatible with [`lock_api`](https://crates.io/crates/lock_api)). - #[cfg(feature = "rwlock")] - #[cfg_attr(docsrs, doc(cfg(feature = "rwlock")))] - pub type RwLockUpgradableReadGuard<'a, T> = - lock_api_crate::RwLockUpgradableReadGuard<'a, crate::RwLock<()>, T>; -} - -/// In the event of an invalid operation, it's best to abort the current process. -#[cfg(feature = "fair_mutex")] -fn abort() -> ! { - #[cfg(not(feature = "std"))] - { - // Panicking while panicking is defined by Rust to result in an abort. - struct Panic; - - impl Drop for Panic { - fn drop(&mut self) { - panic!("aborting due to invalid operation"); - } - } - - let _panic = Panic; - panic!("aborting due to invalid operation"); - } - - #[cfg(feature = "std")] - { - std::process::abort(); - } -} diff --git a/vendor/spin/src/mutex.rs b/vendor/spin/src/mutex.rs deleted file mode 100644 index e333d8a..0000000 --- a/vendor/spin/src/mutex.rs +++ /dev/null @@ -1,340 +0,0 @@ -//! Locks that have the same behaviour as a mutex. -//! -//! The [`Mutex`] in the root of the crate, can be configured using the `ticket_mutex` feature. -//! If it's enabled, [`TicketMutex`] and [`TicketMutexGuard`] will be re-exported as [`Mutex`] -//! and [`MutexGuard`], otherwise the [`SpinMutex`] and guard will be re-exported. -//! -//! `ticket_mutex` is disabled by default. -//! -//! [`Mutex`]: ../struct.Mutex.html -//! [`MutexGuard`]: ../struct.MutexGuard.html -//! [`TicketMutex`]: ./struct.TicketMutex.html -//! [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html -//! [`SpinMutex`]: ./struct.SpinMutex.html -//! [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html - -#[cfg(feature = "spin_mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))] -pub mod spin; -#[cfg(feature = "spin_mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))] -pub use self::spin::{SpinMutex, SpinMutexGuard}; - -#[cfg(feature = "ticket_mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))] -pub mod ticket; -#[cfg(feature = "ticket_mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))] -pub use self::ticket::{TicketMutex, TicketMutexGuard}; - -#[cfg(feature = "fair_mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))] -pub mod fair; -#[cfg(feature = "fair_mutex")] -#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))] -pub use self::fair::{FairMutex, FairMutexGuard, Starvation}; - -use crate::{RelaxStrategy, Spin}; -use core::{ - fmt, - ops::{Deref, DerefMut}, -}; - -#[cfg(all(not(feature = "spin_mutex"), not(feature = "use_ticket_mutex")))] -compile_error!("The `mutex` feature flag was used (perhaps through another feature?) without either `spin_mutex` or `use_ticket_mutex`. One of these is required."); - -#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))] -type InnerMutex<T, R> = self::spin::SpinMutex<T, R>; -#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))] -type InnerMutexGuard<'a, T> = self::spin::SpinMutexGuard<'a, T>; - -#[cfg(feature = "use_ticket_mutex")] -type InnerMutex<T, R> = self::ticket::TicketMutex<T, R>; -#[cfg(feature = "use_ticket_mutex")] -type InnerMutexGuard<'a, T> = self::ticket::TicketMutexGuard<'a, T>; - -/// A spin-based lock providing mutually exclusive access to data. -/// -/// The implementation uses either a ticket mutex or a regular spin mutex depending on whether the `spin_mutex` or -/// `ticket_mutex` feature flag is enabled. -/// -/// # Example -/// -/// ``` -/// use spin; -/// -/// let lock = spin::Mutex::new(0); -/// -/// // Modify the data -/// *lock.lock() = 2; -/// -/// // Read the data -/// let answer = *lock.lock(); -/// assert_eq!(answer, 2); -/// ``` -/// -/// # Thread safety example -/// -/// ``` -/// use spin; -/// use std::sync::{Arc, Barrier}; -/// -/// let thread_count = 1000; -/// let spin_mutex = Arc::new(spin::Mutex::new(0)); -/// -/// // We use a barrier to ensure the readout happens after all writing -/// let barrier = Arc::new(Barrier::new(thread_count + 1)); -/// -/// # let mut ts = Vec::new(); -/// for _ in (0..thread_count) { -/// let my_barrier = barrier.clone(); -/// let my_lock = spin_mutex.clone(); -/// # let t = -/// std::thread::spawn(move || { -/// let mut guard = my_lock.lock(); -/// *guard += 1; -/// -/// // Release the lock to prevent a deadlock -/// drop(guard); -/// my_barrier.wait(); -/// }); -/// # ts.push(t); -/// } -/// -/// barrier.wait(); -/// -/// let answer = { *spin_mutex.lock() }; -/// assert_eq!(answer, thread_count); -/// -/// # for t in ts { -/// # t.join().unwrap(); -/// # } -/// ``` -pub struct Mutex<T: ?Sized, R = Spin> { - inner: InnerMutex<T, R>, -} - -unsafe impl<T: ?Sized + Send, R> Sync for Mutex<T, R> {} -unsafe impl<T: ?Sized + Send, R> Send for Mutex<T, R> {} - -/// A generic guard that will protect some data access and -/// uses either a ticket lock or a normal spin mutex. -/// -/// For more info see [`TicketMutexGuard`] or [`SpinMutexGuard`]. -/// -/// [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html -/// [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html -pub struct MutexGuard<'a, T: 'a + ?Sized> { - inner: InnerMutexGuard<'a, T>, -} - -impl<T, R> Mutex<T, R> { - /// Creates a new [`Mutex`] wrapping the supplied data. - /// - /// # Example - /// - /// ``` - /// use spin::Mutex; - /// - /// static MUTEX: Mutex<()> = Mutex::new(()); - /// - /// fn demo() { - /// let lock = MUTEX.lock(); - /// // do something with lock - /// drop(lock); - /// } - /// ``` - #[inline(always)] - pub const fn new(value: T) -> Self { - Self { - inner: InnerMutex::new(value), - } - } - - /// Consumes this [`Mutex`] and unwraps the underlying data. - /// - /// # Example - /// - /// ``` - /// let lock = spin::Mutex::new(42); - /// assert_eq!(42, lock.into_inner()); - /// ``` - #[inline(always)] - pub fn into_inner(self) -> T { - self.inner.into_inner() - } -} - -impl<T: ?Sized, R: RelaxStrategy> Mutex<T, R> { - /// Locks the [`Mutex`] and returns a guard that permits access to the inner data. - /// - /// The returned value may be dereferenced for data access - /// and the lock will be dropped when the guard falls out of scope. - /// - /// ``` - /// let lock = spin::Mutex::new(0); - /// { - /// let mut data = lock.lock(); - /// // The lock is now locked and the data can be accessed - /// *data += 1; - /// // The lock is implicitly dropped at the end of the scope - /// } - /// ``` - #[inline(always)] - pub fn lock(&self) -> MutexGuard<T> { - MutexGuard { - inner: self.inner.lock(), - } - } -} - -impl<T: ?Sized, R> Mutex<T, R> { - /// Returns `true` if the lock is currently held. - /// - /// # Safety - /// - /// This function provides no synchronization guarantees and so its result should be considered 'out of date' - /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. - #[inline(always)] - pub fn is_locked(&self) -> bool { - self.inner.is_locked() - } - - /// Force unlock this [`Mutex`]. - /// - /// # Safety - /// - /// This is *extremely* unsafe if the lock is not held by the current - /// thread. However, this can be useful in some instances for exposing the - /// lock to FFI that doesn't know how to deal with RAII. - #[inline(always)] - pub unsafe fn force_unlock(&self) { - self.inner.force_unlock() - } - - /// Try to lock this [`Mutex`], returning a lock guard if successful. - /// - /// # Example - /// - /// ``` - /// let lock = spin::Mutex::new(42); - /// - /// let maybe_guard = lock.try_lock(); - /// assert!(maybe_guard.is_some()); - /// - /// // `maybe_guard` is still held, so the second call fails - /// let maybe_guard2 = lock.try_lock(); - /// assert!(maybe_guard2.is_none()); - /// ``` - #[inline(always)] - pub fn try_lock(&self) -> Option<MutexGuard<T>> { - self.inner - .try_lock() - .map(|guard| MutexGuard { inner: guard }) - } - - /// Returns a mutable reference to the underlying data. - /// - /// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in Rust, - /// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such, - /// this is a 'zero-cost' operation. - /// - /// # Example - /// - /// ``` - /// let mut lock = spin::Mutex::new(0); - /// *lock.get_mut() = 10; - /// assert_eq!(*lock.lock(), 10); - /// ``` - #[inline(always)] - pub fn get_mut(&mut self) -> &mut T { - self.inner.get_mut() - } -} - -impl<T: ?Sized + fmt::Debug, R> fmt::Debug for Mutex<T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&self.inner, f) - } -} - -impl<T: ?Sized + Default, R> Default for Mutex<T, R> { - fn default() -> Self { - Self::new(Default::default()) - } -} - -impl<T, R> From<T> for Mutex<T, R> { - fn from(data: T) -> Self { - Self::new(data) - } -} - -impl<'a, T: ?Sized> MutexGuard<'a, T> { - /// Leak the lock guard, yielding a mutable reference to the underlying data. - /// - /// Note that this function will permanently lock the original [`Mutex`]. - /// - /// ``` - /// let mylock = spin::Mutex::new(0); - /// - /// let data: &mut i32 = spin::MutexGuard::leak(mylock.lock()); - /// - /// *data = 1; - /// assert_eq!(*data, 1); - /// ``` - #[inline(always)] - pub fn leak(this: Self) -> &'a mut T { - InnerMutexGuard::leak(this.inner) - } -} - -impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> { - type Target = T; - fn deref(&self) -> &T { - &*self.inner - } -} - -impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> { - fn deref_mut(&mut self) -> &mut T { - &mut *self.inner - } -} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for Mutex<(), R> { - type GuardMarker = lock_api_crate::GuardSend; - - const INIT: Self = Self::new(()); - - fn lock(&self) { - // Prevent guard destructor running - core::mem::forget(Self::lock(self)); - } - - fn try_lock(&self) -> bool { - // Prevent guard destructor running - Self::try_lock(self).map(core::mem::forget).is_some() - } - - unsafe fn unlock(&self) { - self.force_unlock(); - } - - fn is_locked(&self) -> bool { - self.inner.is_locked() - } -} diff --git a/vendor/spin/src/mutex/fair.rs b/vendor/spin/src/mutex/fair.rs deleted file mode 100644 index db07ad6..0000000 --- a/vendor/spin/src/mutex/fair.rs +++ /dev/null @@ -1,735 +0,0 @@ -//! A spinning mutex with a fairer unlock algorithm. -//! -//! This mutex is similar to the `SpinMutex` in that it uses spinning to avoid -//! context switches. However, it uses a fairer unlock algorithm that avoids -//! starvation of threads that are waiting for the lock. - -use crate::{ - atomic::{AtomicUsize, Ordering}, - RelaxStrategy, Spin, -}; -use core::{ - cell::UnsafeCell, - fmt, - marker::PhantomData, - mem::ManuallyDrop, - ops::{Deref, DerefMut}, -}; - -// The lowest bit of `lock` is used to indicate whether the mutex is locked or not. The rest of the bits are used to -// store the number of starving threads. -const LOCKED: usize = 1; -const STARVED: usize = 2; - -/// Number chosen by fair roll of the dice, adjust as needed. -const STARVATION_SPINS: usize = 1024; - -/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data, but with a fairer -/// algorithm. -/// -/// # Example -/// -/// ``` -/// use spin; -/// -/// let lock = spin::mutex::FairMutex::<_>::new(0); -/// -/// // Modify the data -/// *lock.lock() = 2; -/// -/// // Read the data -/// let answer = *lock.lock(); -/// assert_eq!(answer, 2); -/// ``` -/// -/// # Thread safety example -/// -/// ``` -/// use spin; -/// use std::sync::{Arc, Barrier}; -/// -/// let thread_count = 1000; -/// let spin_mutex = Arc::new(spin::mutex::FairMutex::<_>::new(0)); -/// -/// // We use a barrier to ensure the readout happens after all writing -/// let barrier = Arc::new(Barrier::new(thread_count + 1)); -/// -/// for _ in (0..thread_count) { -/// let my_barrier = barrier.clone(); -/// let my_lock = spin_mutex.clone(); -/// std::thread::spawn(move || { -/// let mut guard = my_lock.lock(); -/// *guard += 1; -/// -/// // Release the lock to prevent a deadlock -/// drop(guard); -/// my_barrier.wait(); -/// }); -/// } -/// -/// barrier.wait(); -/// -/// let answer = { *spin_mutex.lock() }; -/// assert_eq!(answer, thread_count); -/// ``` -pub struct FairMutex<T: ?Sized, R = Spin> { - phantom: PhantomData<R>, - pub(crate) lock: AtomicUsize, - data: UnsafeCell<T>, -} - -/// A guard that provides mutable data access. -/// -/// When the guard falls out of scope it will release the lock. -pub struct FairMutexGuard<'a, T: ?Sized + 'a> { - lock: &'a AtomicUsize, - data: *mut T, -} - -/// A handle that indicates that we have been trying to acquire the lock for a while. -/// -/// This handle is used to prevent starvation. -pub struct Starvation<'a, T: ?Sized + 'a, R> { - lock: &'a FairMutex<T, R>, -} - -/// Indicates whether a lock was rejected due to the lock being held by another thread or due to starvation. -#[derive(Debug)] -pub enum LockRejectReason { - /// The lock was rejected due to the lock being held by another thread. - Locked, - - /// The lock was rejected due to starvation. - Starved, -} - -// Same unsafe impls as `std::sync::Mutex` -unsafe impl<T: ?Sized + Send, R> Sync for FairMutex<T, R> {} -unsafe impl<T: ?Sized + Send, R> Send for FairMutex<T, R> {} - -unsafe impl<T: ?Sized + Sync> Sync for FairMutexGuard<'_, T> {} -unsafe impl<T: ?Sized + Send> Send for FairMutexGuard<'_, T> {} - -impl<T, R> FairMutex<T, R> { - /// Creates a new [`FairMutex`] wrapping the supplied data. - /// - /// # Example - /// - /// ``` - /// use spin::mutex::FairMutex; - /// - /// static MUTEX: FairMutex<()> = FairMutex::<_>::new(()); - /// - /// fn demo() { - /// let lock = MUTEX.lock(); - /// // do something with lock - /// drop(lock); - /// } - /// ``` - #[inline(always)] - pub const fn new(data: T) -> Self { - FairMutex { - lock: AtomicUsize::new(0), - data: UnsafeCell::new(data), - phantom: PhantomData, - } - } - - /// Consumes this [`FairMutex`] and unwraps the underlying data. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::FairMutex::<_>::new(42); - /// assert_eq!(42, lock.into_inner()); - /// ``` - #[inline(always)] - pub fn into_inner(self) -> T { - // We know statically that there are no outstanding references to - // `self` so there's no need to lock. - let FairMutex { data, .. } = self; - data.into_inner() - } - - /// Returns a mutable pointer to the underlying data. - /// - /// This is mostly meant to be used for applications which require manual unlocking, but where - /// storing both the lock and the pointer to the inner data gets inefficient. - /// - /// # Example - /// ``` - /// let lock = spin::mutex::FairMutex::<_>::new(42); - /// - /// unsafe { - /// core::mem::forget(lock.lock()); - /// - /// assert_eq!(lock.as_mut_ptr().read(), 42); - /// lock.as_mut_ptr().write(58); - /// - /// lock.force_unlock(); - /// } - /// - /// assert_eq!(*lock.lock(), 58); - /// - /// ``` - #[inline(always)] - pub fn as_mut_ptr(&self) -> *mut T { - self.data.get() - } -} - -impl<T: ?Sized, R: RelaxStrategy> FairMutex<T, R> { - /// Locks the [`FairMutex`] and returns a guard that permits access to the inner data. - /// - /// The returned value may be dereferenced for data access - /// and the lock will be dropped when the guard falls out of scope. - /// - /// ``` - /// let lock = spin::mutex::FairMutex::<_>::new(0); - /// { - /// let mut data = lock.lock(); - /// // The lock is now locked and the data can be accessed - /// *data += 1; - /// // The lock is implicitly dropped at the end of the scope - /// } - /// ``` - #[inline(always)] - pub fn lock(&self) -> FairMutexGuard<T> { - // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock` - // when called in a loop. - let mut spins = 0; - while self - .lock - .compare_exchange_weak(0, 1, Ordering::Acquire, Ordering::Relaxed) - .is_err() - { - // Wait until the lock looks unlocked before retrying - while self.is_locked() { - R::relax(); - - // If we've been spinning for a while, switch to a fairer strategy that will prevent - // newer users from stealing our lock from us. - if spins > STARVATION_SPINS { - return self.starve().lock(); - } - spins += 1; - } - } - - FairMutexGuard { - lock: &self.lock, - data: unsafe { &mut *self.data.get() }, - } - } -} - -impl<T: ?Sized, R> FairMutex<T, R> { - /// Returns `true` if the lock is currently held. - /// - /// # Safety - /// - /// This function provides no synchronization guarantees and so its result should be considered 'out of date' - /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. - #[inline(always)] - pub fn is_locked(&self) -> bool { - self.lock.load(Ordering::Relaxed) & LOCKED != 0 - } - - /// Force unlock this [`FairMutex`]. - /// - /// # Safety - /// - /// This is *extremely* unsafe if the lock is not held by the current - /// thread. However, this can be useful in some instances for exposing the - /// lock to FFI that doesn't know how to deal with RAII. - #[inline(always)] - pub unsafe fn force_unlock(&self) { - self.lock.fetch_and(!LOCKED, Ordering::Release); - } - - /// Try to lock this [`FairMutex`], returning a lock guard if successful. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::FairMutex::<_>::new(42); - /// - /// let maybe_guard = lock.try_lock(); - /// assert!(maybe_guard.is_some()); - /// - /// // `maybe_guard` is still held, so the second call fails - /// let maybe_guard2 = lock.try_lock(); - /// assert!(maybe_guard2.is_none()); - /// ``` - #[inline(always)] - pub fn try_lock(&self) -> Option<FairMutexGuard<T>> { - self.try_lock_starver().ok() - } - - /// Tries to lock this [`FairMutex`] and returns a result that indicates whether the lock was - /// rejected due to a starver or not. - #[inline(always)] - pub fn try_lock_starver(&self) -> Result<FairMutexGuard<T>, LockRejectReason> { - match self - .lock - .compare_exchange(0, LOCKED, Ordering::Acquire, Ordering::Relaxed) - .unwrap_or_else(|x| x) - { - 0 => Ok(FairMutexGuard { - lock: &self.lock, - data: unsafe { &mut *self.data.get() }, - }), - LOCKED => Err(LockRejectReason::Locked), - _ => Err(LockRejectReason::Starved), - } - } - - /// Indicates that the current user has been waiting for the lock for a while - /// and that the lock should yield to this thread over a newly arriving thread. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::FairMutex::<_>::new(42); - /// - /// // Lock the mutex to simulate it being used by another user. - /// let guard1 = lock.lock(); - /// - /// // Try to lock the mutex. - /// let guard2 = lock.try_lock(); - /// assert!(guard2.is_none()); - /// - /// // Wait for a while. - /// wait_for_a_while(); - /// - /// // We are now starved, indicate as such. - /// let starve = lock.starve(); - /// - /// // Once the lock is released, another user trying to lock it will - /// // fail. - /// drop(guard1); - /// let guard3 = lock.try_lock(); - /// assert!(guard3.is_none()); - /// - /// // However, we will be able to lock it. - /// let guard4 = starve.try_lock(); - /// assert!(guard4.is_ok()); - /// - /// # fn wait_for_a_while() {} - /// ``` - pub fn starve(&self) -> Starvation<'_, T, R> { - // Add a new starver to the state. - if self.lock.fetch_add(STARVED, Ordering::Relaxed) > (core::isize::MAX - 1) as usize { - // In the event of a potential lock overflow, abort. - crate::abort(); - } - - Starvation { lock: self } - } - - /// Returns a mutable reference to the underlying data. - /// - /// Since this call borrows the [`FairMutex`] mutably, and a mutable reference is guaranteed to be exclusive in - /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As - /// such, this is a 'zero-cost' operation. - /// - /// # Example - /// - /// ``` - /// let mut lock = spin::mutex::FairMutex::<_>::new(0); - /// *lock.get_mut() = 10; - /// assert_eq!(*lock.lock(), 10); - /// ``` - #[inline(always)] - pub fn get_mut(&mut self) -> &mut T { - // We know statically that there are no other references to `self`, so - // there's no need to lock the inner mutex. - unsafe { &mut *self.data.get() } - } -} - -impl<T: ?Sized + fmt::Debug, R> fmt::Debug for FairMutex<T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - struct LockWrapper<'a, T: ?Sized + fmt::Debug>(Option<FairMutexGuard<'a, T>>); - - impl<T: ?Sized + fmt::Debug> fmt::Debug for LockWrapper<'_, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - match &self.0 { - Some(guard) => fmt::Debug::fmt(guard, f), - None => f.write_str("<locked>"), - } - } - } - - f.debug_struct("FairMutex") - .field("data", &LockWrapper(self.try_lock())) - .finish() - } -} - -impl<T: ?Sized + Default, R> Default for FairMutex<T, R> { - fn default() -> Self { - Self::new(Default::default()) - } -} - -impl<T, R> From<T> for FairMutex<T, R> { - fn from(data: T) -> Self { - Self::new(data) - } -} - -impl<'a, T: ?Sized> FairMutexGuard<'a, T> { - /// Leak the lock guard, yielding a mutable reference to the underlying data. - /// - /// Note that this function will permanently lock the original [`FairMutex`]. - /// - /// ``` - /// let mylock = spin::mutex::FairMutex::<_>::new(0); - /// - /// let data: &mut i32 = spin::mutex::FairMutexGuard::leak(mylock.lock()); - /// - /// *data = 1; - /// assert_eq!(*data, 1); - /// ``` - #[inline(always)] - pub fn leak(this: Self) -> &'a mut T { - // Use ManuallyDrop to avoid stacked-borrow invalidation - let mut this = ManuallyDrop::new(this); - // We know statically that only we are referencing data - unsafe { &mut *this.data } - } -} - -impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for FairMutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized + fmt::Display> fmt::Display for FairMutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized> Deref for FairMutexGuard<'a, T> { - type Target = T; - fn deref(&self) -> &T { - // We know statically that only we are referencing data - unsafe { &*self.data } - } -} - -impl<'a, T: ?Sized> DerefMut for FairMutexGuard<'a, T> { - fn deref_mut(&mut self) -> &mut T { - // We know statically that only we are referencing data - unsafe { &mut *self.data } - } -} - -impl<'a, T: ?Sized> Drop for FairMutexGuard<'a, T> { - /// The dropping of the MutexGuard will release the lock it was created from. - fn drop(&mut self) { - self.lock.fetch_and(!LOCKED, Ordering::Release); - } -} - -impl<'a, T: ?Sized, R> Starvation<'a, T, R> { - /// Attempts the lock the mutex if we are the only starving user. - /// - /// This allows another user to lock the mutex if they are starving as well. - pub fn try_lock_fair(self) -> Result<FairMutexGuard<'a, T>, Self> { - // Try to lock the mutex. - if self - .lock - .lock - .compare_exchange( - STARVED, - STARVED | LOCKED, - Ordering::Acquire, - Ordering::Relaxed, - ) - .is_ok() - { - // We are the only starving user, lock the mutex. - Ok(FairMutexGuard { - lock: &self.lock.lock, - data: self.lock.data.get(), - }) - } else { - // Another user is starving, fail. - Err(self) - } - } - - /// Attempts to lock the mutex. - /// - /// If the lock is currently held by another thread, this will return `None`. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::FairMutex::<_>::new(42); - /// - /// // Lock the mutex to simulate it being used by another user. - /// let guard1 = lock.lock(); - /// - /// // Try to lock the mutex. - /// let guard2 = lock.try_lock(); - /// assert!(guard2.is_none()); - /// - /// // Wait for a while. - /// wait_for_a_while(); - /// - /// // We are now starved, indicate as such. - /// let starve = lock.starve(); - /// - /// // Once the lock is released, another user trying to lock it will - /// // fail. - /// drop(guard1); - /// let guard3 = lock.try_lock(); - /// assert!(guard3.is_none()); - /// - /// // However, we will be able to lock it. - /// let guard4 = starve.try_lock(); - /// assert!(guard4.is_ok()); - /// - /// # fn wait_for_a_while() {} - /// ``` - pub fn try_lock(self) -> Result<FairMutexGuard<'a, T>, Self> { - // Try to lock the mutex. - if self.lock.lock.fetch_or(LOCKED, Ordering::Acquire) & LOCKED == 0 { - // We have successfully locked the mutex. - // By dropping `self` here, we decrement the starvation count. - Ok(FairMutexGuard { - lock: &self.lock.lock, - data: self.lock.data.get(), - }) - } else { - Err(self) - } - } -} - -impl<'a, T: ?Sized, R: RelaxStrategy> Starvation<'a, T, R> { - /// Locks the mutex. - pub fn lock(mut self) -> FairMutexGuard<'a, T> { - // Try to lock the mutex. - loop { - match self.try_lock() { - Ok(lock) => return lock, - Err(starve) => self = starve, - } - - // Relax until the lock is released. - while self.lock.is_locked() { - R::relax(); - } - } - } -} - -impl<'a, T: ?Sized, R> Drop for Starvation<'a, T, R> { - fn drop(&mut self) { - // As there is no longer a user being starved, we decrement the starver count. - self.lock.lock.fetch_sub(STARVED, Ordering::Release); - } -} - -impl fmt::Display for LockRejectReason { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - match self { - LockRejectReason::Locked => write!(f, "locked"), - LockRejectReason::Starved => write!(f, "starved"), - } - } -} - -#[cfg(feature = "std")] -impl std::error::Error for LockRejectReason {} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for FairMutex<(), R> { - type GuardMarker = lock_api_crate::GuardSend; - - const INIT: Self = Self::new(()); - - fn lock(&self) { - // Prevent guard destructor running - core::mem::forget(Self::lock(self)); - } - - fn try_lock(&self) -> bool { - // Prevent guard destructor running - Self::try_lock(self).map(core::mem::forget).is_some() - } - - unsafe fn unlock(&self) { - self.force_unlock(); - } - - fn is_locked(&self) -> bool { - Self::is_locked(self) - } -} - -#[cfg(test)] -mod tests { - use std::prelude::v1::*; - - use std::sync::atomic::{AtomicUsize, Ordering}; - use std::sync::mpsc::channel; - use std::sync::Arc; - use std::thread; - - type FairMutex<T> = super::FairMutex<T>; - - #[derive(Eq, PartialEq, Debug)] - struct NonCopy(i32); - - #[test] - fn smoke() { - let m = FairMutex::<_>::new(()); - drop(m.lock()); - drop(m.lock()); - } - - #[test] - fn lots_and_lots() { - static M: FairMutex<()> = FairMutex::<_>::new(()); - static mut CNT: u32 = 0; - const J: u32 = 1000; - const K: u32 = 3; - - fn inc() { - for _ in 0..J { - unsafe { - let _g = M.lock(); - CNT += 1; - } - } - } - - let (tx, rx) = channel(); - for _ in 0..K { - let tx2 = tx.clone(); - thread::spawn(move || { - inc(); - tx2.send(()).unwrap(); - }); - let tx2 = tx.clone(); - thread::spawn(move || { - inc(); - tx2.send(()).unwrap(); - }); - } - - drop(tx); - for _ in 0..2 * K { - rx.recv().unwrap(); - } - assert_eq!(unsafe { CNT }, J * K * 2); - } - - #[test] - fn try_lock() { - let mutex = FairMutex::<_>::new(42); - - // First lock succeeds - let a = mutex.try_lock(); - assert_eq!(a.as_ref().map(|r| **r), Some(42)); - - // Additional lock fails - let b = mutex.try_lock(); - assert!(b.is_none()); - - // After dropping lock, it succeeds again - ::core::mem::drop(a); - let c = mutex.try_lock(); - assert_eq!(c.as_ref().map(|r| **r), Some(42)); - } - - #[test] - fn test_into_inner() { - let m = FairMutex::<_>::new(NonCopy(10)); - assert_eq!(m.into_inner(), NonCopy(10)); - } - - #[test] - fn test_into_inner_drop() { - struct Foo(Arc<AtomicUsize>); - impl Drop for Foo { - fn drop(&mut self) { - self.0.fetch_add(1, Ordering::SeqCst); - } - } - let num_drops = Arc::new(AtomicUsize::new(0)); - let m = FairMutex::<_>::new(Foo(num_drops.clone())); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - { - let _inner = m.into_inner(); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - } - assert_eq!(num_drops.load(Ordering::SeqCst), 1); - } - - #[test] - fn test_mutex_arc_nested() { - // Tests nested mutexes and access - // to underlying data. - let arc = Arc::new(FairMutex::<_>::new(1)); - let arc2 = Arc::new(FairMutex::<_>::new(arc)); - let (tx, rx) = channel(); - let _t = thread::spawn(move || { - let lock = arc2.lock(); - let lock2 = lock.lock(); - assert_eq!(*lock2, 1); - tx.send(()).unwrap(); - }); - rx.recv().unwrap(); - } - - #[test] - fn test_mutex_arc_access_in_unwind() { - let arc = Arc::new(FairMutex::<_>::new(1)); - let arc2 = arc.clone(); - let _ = thread::spawn(move || -> () { - struct Unwinder { - i: Arc<FairMutex<i32>>, - } - impl Drop for Unwinder { - fn drop(&mut self) { - *self.i.lock() += 1; - } - } - let _u = Unwinder { i: arc2 }; - panic!(); - }) - .join(); - let lock = arc.lock(); - assert_eq!(*lock, 2); - } - - #[test] - fn test_mutex_unsized() { - let mutex: &FairMutex<[i32]> = &FairMutex::<_>::new([1, 2, 3]); - { - let b = &mut *mutex.lock(); - b[0] = 4; - b[2] = 5; - } - let comp: &[i32] = &[4, 2, 5]; - assert_eq!(&*mutex.lock(), comp); - } - - #[test] - fn test_mutex_force_lock() { - let lock = FairMutex::<_>::new(()); - ::std::mem::forget(lock.lock()); - unsafe { - lock.force_unlock(); - } - assert!(lock.try_lock().is_some()); - } -} diff --git a/vendor/spin/src/mutex/spin.rs b/vendor/spin/src/mutex/spin.rs deleted file mode 100644 index fc97472..0000000 --- a/vendor/spin/src/mutex/spin.rs +++ /dev/null @@ -1,543 +0,0 @@ -//! A naïve spinning mutex. -//! -//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case -//! latency is theoretically infinite. - -use crate::{ - atomic::{AtomicBool, Ordering}, - RelaxStrategy, Spin, -}; -use core::{ - cell::UnsafeCell, - fmt, - marker::PhantomData, - mem::ManuallyDrop, - ops::{Deref, DerefMut}, -}; - -/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data. -/// -/// # Example -/// -/// ``` -/// use spin; -/// -/// let lock = spin::mutex::SpinMutex::<_>::new(0); -/// -/// // Modify the data -/// *lock.lock() = 2; -/// -/// // Read the data -/// let answer = *lock.lock(); -/// assert_eq!(answer, 2); -/// ``` -/// -/// # Thread safety example -/// -/// ``` -/// use spin; -/// use std::sync::{Arc, Barrier}; -/// -/// let thread_count = 1000; -/// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0)); -/// -/// // We use a barrier to ensure the readout happens after all writing -/// let barrier = Arc::new(Barrier::new(thread_count + 1)); -/// -/// # let mut ts = Vec::new(); -/// for _ in (0..thread_count) { -/// let my_barrier = barrier.clone(); -/// let my_lock = spin_mutex.clone(); -/// # let t = -/// std::thread::spawn(move || { -/// let mut guard = my_lock.lock(); -/// *guard += 1; -/// -/// // Release the lock to prevent a deadlock -/// drop(guard); -/// my_barrier.wait(); -/// }); -/// # ts.push(t); -/// } -/// -/// barrier.wait(); -/// -/// let answer = { *spin_mutex.lock() }; -/// assert_eq!(answer, thread_count); -/// -/// # for t in ts { -/// # t.join().unwrap(); -/// # } -/// ``` -pub struct SpinMutex<T: ?Sized, R = Spin> { - phantom: PhantomData<R>, - pub(crate) lock: AtomicBool, - data: UnsafeCell<T>, -} - -/// A guard that provides mutable data access. -/// -/// When the guard falls out of scope it will release the lock. -pub struct SpinMutexGuard<'a, T: ?Sized + 'a> { - lock: &'a AtomicBool, - data: *mut T, -} - -// Same unsafe impls as `std::sync::Mutex` -unsafe impl<T: ?Sized + Send, R> Sync for SpinMutex<T, R> {} -unsafe impl<T: ?Sized + Send, R> Send for SpinMutex<T, R> {} - -unsafe impl<T: ?Sized + Sync> Sync for SpinMutexGuard<'_, T> {} -unsafe impl<T: ?Sized + Send> Send for SpinMutexGuard<'_, T> {} - -impl<T, R> SpinMutex<T, R> { - /// Creates a new [`SpinMutex`] wrapping the supplied data. - /// - /// # Example - /// - /// ``` - /// use spin::mutex::SpinMutex; - /// - /// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(()); - /// - /// fn demo() { - /// let lock = MUTEX.lock(); - /// // do something with lock - /// drop(lock); - /// } - /// ``` - #[inline(always)] - pub const fn new(data: T) -> Self { - SpinMutex { - lock: AtomicBool::new(false), - data: UnsafeCell::new(data), - phantom: PhantomData, - } - } - - /// Consumes this [`SpinMutex`] and unwraps the underlying data. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::SpinMutex::<_>::new(42); - /// assert_eq!(42, lock.into_inner()); - /// ``` - #[inline(always)] - pub fn into_inner(self) -> T { - // We know statically that there are no outstanding references to - // `self` so there's no need to lock. - let SpinMutex { data, .. } = self; - data.into_inner() - } - - /// Returns a mutable pointer to the underlying data. - /// - /// This is mostly meant to be used for applications which require manual unlocking, but where - /// storing both the lock and the pointer to the inner data gets inefficient. - /// - /// # Example - /// ``` - /// let lock = spin::mutex::SpinMutex::<_>::new(42); - /// - /// unsafe { - /// core::mem::forget(lock.lock()); - /// - /// assert_eq!(lock.as_mut_ptr().read(), 42); - /// lock.as_mut_ptr().write(58); - /// - /// lock.force_unlock(); - /// } - /// - /// assert_eq!(*lock.lock(), 58); - /// - /// ``` - #[inline(always)] - pub fn as_mut_ptr(&self) -> *mut T { - self.data.get() - } -} - -impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R> { - /// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data. - /// - /// The returned value may be dereferenced for data access - /// and the lock will be dropped when the guard falls out of scope. - /// - /// ``` - /// let lock = spin::mutex::SpinMutex::<_>::new(0); - /// { - /// let mut data = lock.lock(); - /// // The lock is now locked and the data can be accessed - /// *data += 1; - /// // The lock is implicitly dropped at the end of the scope - /// } - /// ``` - #[inline(always)] - pub fn lock(&self) -> SpinMutexGuard<T> { - // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock` - // when called in a loop. - while self - .lock - .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed) - .is_err() - { - // Wait until the lock looks unlocked before retrying - while self.is_locked() { - R::relax(); - } - } - - SpinMutexGuard { - lock: &self.lock, - data: unsafe { &mut *self.data.get() }, - } - } -} - -impl<T: ?Sized, R> SpinMutex<T, R> { - /// Returns `true` if the lock is currently held. - /// - /// # Safety - /// - /// This function provides no synchronization guarantees and so its result should be considered 'out of date' - /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. - #[inline(always)] - pub fn is_locked(&self) -> bool { - self.lock.load(Ordering::Relaxed) - } - - /// Force unlock this [`SpinMutex`]. - /// - /// # Safety - /// - /// This is *extremely* unsafe if the lock is not held by the current - /// thread. However, this can be useful in some instances for exposing the - /// lock to FFI that doesn't know how to deal with RAII. - #[inline(always)] - pub unsafe fn force_unlock(&self) { - self.lock.store(false, Ordering::Release); - } - - /// Try to lock this [`SpinMutex`], returning a lock guard if successful. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::SpinMutex::<_>::new(42); - /// - /// let maybe_guard = lock.try_lock(); - /// assert!(maybe_guard.is_some()); - /// - /// // `maybe_guard` is still held, so the second call fails - /// let maybe_guard2 = lock.try_lock(); - /// assert!(maybe_guard2.is_none()); - /// ``` - #[inline(always)] - pub fn try_lock(&self) -> Option<SpinMutexGuard<T>> { - // The reason for using a strong compare_exchange is explained here: - // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107 - if self - .lock - .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed) - .is_ok() - { - Some(SpinMutexGuard { - lock: &self.lock, - data: unsafe { &mut *self.data.get() }, - }) - } else { - None - } - } - - /// Returns a mutable reference to the underlying data. - /// - /// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in - /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As - /// such, this is a 'zero-cost' operation. - /// - /// # Example - /// - /// ``` - /// let mut lock = spin::mutex::SpinMutex::<_>::new(0); - /// *lock.get_mut() = 10; - /// assert_eq!(*lock.lock(), 10); - /// ``` - #[inline(always)] - pub fn get_mut(&mut self) -> &mut T { - // We know statically that there are no other references to `self`, so - // there's no need to lock the inner mutex. - unsafe { &mut *self.data.get() } - } -} - -impl<T: ?Sized + fmt::Debug, R> fmt::Debug for SpinMutex<T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - match self.try_lock() { - Some(guard) => write!(f, "Mutex {{ data: ") - .and_then(|()| (&*guard).fmt(f)) - .and_then(|()| write!(f, "}}")), - None => write!(f, "Mutex {{ <locked> }}"), - } - } -} - -impl<T: ?Sized + Default, R> Default for SpinMutex<T, R> { - fn default() -> Self { - Self::new(Default::default()) - } -} - -impl<T, R> From<T> for SpinMutex<T, R> { - fn from(data: T) -> Self { - Self::new(data) - } -} - -impl<'a, T: ?Sized> SpinMutexGuard<'a, T> { - /// Leak the lock guard, yielding a mutable reference to the underlying data. - /// - /// Note that this function will permanently lock the original [`SpinMutex`]. - /// - /// ``` - /// let mylock = spin::mutex::SpinMutex::<_>::new(0); - /// - /// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock()); - /// - /// *data = 1; - /// assert_eq!(*data, 1); - /// ``` - #[inline(always)] - pub fn leak(this: Self) -> &'a mut T { - // Use ManuallyDrop to avoid stacked-borrow invalidation - let mut this = ManuallyDrop::new(this); - // We know statically that only we are referencing data - unsafe { &mut *this.data } - } -} - -impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> { - type Target = T; - fn deref(&self) -> &T { - // We know statically that only we are referencing data - unsafe { &*self.data } - } -} - -impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> { - fn deref_mut(&mut self) -> &mut T { - // We know statically that only we are referencing data - unsafe { &mut *self.data } - } -} - -impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> { - /// The dropping of the MutexGuard will release the lock it was created from. - fn drop(&mut self) { - self.lock.store(false, Ordering::Release); - } -} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for SpinMutex<(), R> { - type GuardMarker = lock_api_crate::GuardSend; - - const INIT: Self = Self::new(()); - - fn lock(&self) { - // Prevent guard destructor running - core::mem::forget(Self::lock(self)); - } - - fn try_lock(&self) -> bool { - // Prevent guard destructor running - Self::try_lock(self).map(core::mem::forget).is_some() - } - - unsafe fn unlock(&self) { - self.force_unlock(); - } - - fn is_locked(&self) -> bool { - Self::is_locked(self) - } -} - -#[cfg(test)] -mod tests { - use std::prelude::v1::*; - - use std::sync::atomic::{AtomicUsize, Ordering}; - use std::sync::mpsc::channel; - use std::sync::Arc; - use std::thread; - - type SpinMutex<T> = super::SpinMutex<T>; - - #[derive(Eq, PartialEq, Debug)] - struct NonCopy(i32); - - #[test] - fn smoke() { - let m = SpinMutex::<_>::new(()); - drop(m.lock()); - drop(m.lock()); - } - - #[test] - fn lots_and_lots() { - static M: SpinMutex<()> = SpinMutex::<_>::new(()); - static mut CNT: u32 = 0; - const J: u32 = 1000; - const K: u32 = 3; - - fn inc() { - for _ in 0..J { - unsafe { - let _g = M.lock(); - CNT += 1; - } - } - } - - let (tx, rx) = channel(); - let mut ts = Vec::new(); - for _ in 0..K { - let tx2 = tx.clone(); - ts.push(thread::spawn(move || { - inc(); - tx2.send(()).unwrap(); - })); - let tx2 = tx.clone(); - ts.push(thread::spawn(move || { - inc(); - tx2.send(()).unwrap(); - })); - } - - drop(tx); - for _ in 0..2 * K { - rx.recv().unwrap(); - } - assert_eq!(unsafe { CNT }, J * K * 2); - - for t in ts { - t.join().unwrap(); - } - } - - #[test] - fn try_lock() { - let mutex = SpinMutex::<_>::new(42); - - // First lock succeeds - let a = mutex.try_lock(); - assert_eq!(a.as_ref().map(|r| **r), Some(42)); - - // Additional lock fails - let b = mutex.try_lock(); - assert!(b.is_none()); - - // After dropping lock, it succeeds again - ::core::mem::drop(a); - let c = mutex.try_lock(); - assert_eq!(c.as_ref().map(|r| **r), Some(42)); - } - - #[test] - fn test_into_inner() { - let m = SpinMutex::<_>::new(NonCopy(10)); - assert_eq!(m.into_inner(), NonCopy(10)); - } - - #[test] - fn test_into_inner_drop() { - struct Foo(Arc<AtomicUsize>); - impl Drop for Foo { - fn drop(&mut self) { - self.0.fetch_add(1, Ordering::SeqCst); - } - } - let num_drops = Arc::new(AtomicUsize::new(0)); - let m = SpinMutex::<_>::new(Foo(num_drops.clone())); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - { - let _inner = m.into_inner(); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - } - assert_eq!(num_drops.load(Ordering::SeqCst), 1); - } - - #[test] - fn test_mutex_arc_nested() { - // Tests nested mutexes and access - // to underlying data. - let arc = Arc::new(SpinMutex::<_>::new(1)); - let arc2 = Arc::new(SpinMutex::<_>::new(arc)); - let (tx, rx) = channel(); - let t = thread::spawn(move || { - let lock = arc2.lock(); - let lock2 = lock.lock(); - assert_eq!(*lock2, 1); - tx.send(()).unwrap(); - }); - rx.recv().unwrap(); - t.join().unwrap(); - } - - #[test] - fn test_mutex_arc_access_in_unwind() { - let arc = Arc::new(SpinMutex::<_>::new(1)); - let arc2 = arc.clone(); - let _ = thread::spawn(move || -> () { - struct Unwinder { - i: Arc<SpinMutex<i32>>, - } - impl Drop for Unwinder { - fn drop(&mut self) { - *self.i.lock() += 1; - } - } - let _u = Unwinder { i: arc2 }; - panic!(); - }) - .join(); - let lock = arc.lock(); - assert_eq!(*lock, 2); - } - - #[test] - fn test_mutex_unsized() { - let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]); - { - let b = &mut *mutex.lock(); - b[0] = 4; - b[2] = 5; - } - let comp: &[i32] = &[4, 2, 5]; - assert_eq!(&*mutex.lock(), comp); - } - - #[test] - fn test_mutex_force_lock() { - let lock = SpinMutex::<_>::new(()); - ::std::mem::forget(lock.lock()); - unsafe { - lock.force_unlock(); - } - assert!(lock.try_lock().is_some()); - } -} diff --git a/vendor/spin/src/mutex/ticket.rs b/vendor/spin/src/mutex/ticket.rs deleted file mode 100644 index c14869e..0000000 --- a/vendor/spin/src/mutex/ticket.rs +++ /dev/null @@ -1,537 +0,0 @@ -//! A ticket-based mutex. -//! -//! Waiting threads take a 'ticket' from the lock in the order they arrive and gain access to the lock when their -//! ticket is next in the queue. Best-case latency is slightly worse than a regular spinning mutex, but worse-case -//! latency is infinitely better. Waiting threads simply need to wait for all threads that come before them in the -//! queue to finish. - -use crate::{ - atomic::{AtomicUsize, Ordering}, - RelaxStrategy, Spin, -}; -use core::{ - cell::UnsafeCell, - fmt, - marker::PhantomData, - ops::{Deref, DerefMut}, -}; - -/// A spin-based [ticket lock](https://en.wikipedia.org/wiki/Ticket_lock) providing mutually exclusive access to data. -/// -/// A ticket lock is analogous to a queue management system for lock requests. When a thread tries to take a lock, it -/// is assigned a 'ticket'. It then spins until its ticket becomes next in line. When the lock guard is released, the -/// next ticket will be processed. -/// -/// Ticket locks significantly reduce the worse-case performance of locking at the cost of slightly higher average-time -/// overhead. -/// -/// # Example -/// -/// ``` -/// use spin; -/// -/// let lock = spin::mutex::TicketMutex::<_>::new(0); -/// -/// // Modify the data -/// *lock.lock() = 2; -/// -/// // Read the data -/// let answer = *lock.lock(); -/// assert_eq!(answer, 2); -/// ``` -/// -/// # Thread safety example -/// -/// ``` -/// use spin; -/// use std::sync::{Arc, Barrier}; -/// -/// let thread_count = 1000; -/// let spin_mutex = Arc::new(spin::mutex::TicketMutex::<_>::new(0)); -/// -/// // We use a barrier to ensure the readout happens after all writing -/// let barrier = Arc::new(Barrier::new(thread_count + 1)); -/// -/// for _ in (0..thread_count) { -/// let my_barrier = barrier.clone(); -/// let my_lock = spin_mutex.clone(); -/// std::thread::spawn(move || { -/// let mut guard = my_lock.lock(); -/// *guard += 1; -/// -/// // Release the lock to prevent a deadlock -/// drop(guard); -/// my_barrier.wait(); -/// }); -/// } -/// -/// barrier.wait(); -/// -/// let answer = { *spin_mutex.lock() }; -/// assert_eq!(answer, thread_count); -/// ``` -pub struct TicketMutex<T: ?Sized, R = Spin> { - phantom: PhantomData<R>, - next_ticket: AtomicUsize, - next_serving: AtomicUsize, - data: UnsafeCell<T>, -} - -/// A guard that protects some data. -/// -/// When the guard is dropped, the next ticket will be processed. -pub struct TicketMutexGuard<'a, T: ?Sized + 'a> { - next_serving: &'a AtomicUsize, - ticket: usize, - data: &'a mut T, -} - -unsafe impl<T: ?Sized + Send, R> Sync for TicketMutex<T, R> {} -unsafe impl<T: ?Sized + Send, R> Send for TicketMutex<T, R> {} - -impl<T, R> TicketMutex<T, R> { - /// Creates a new [`TicketMutex`] wrapping the supplied data. - /// - /// # Example - /// - /// ``` - /// use spin::mutex::TicketMutex; - /// - /// static MUTEX: TicketMutex<()> = TicketMutex::<_>::new(()); - /// - /// fn demo() { - /// let lock = MUTEX.lock(); - /// // do something with lock - /// drop(lock); - /// } - /// ``` - #[inline(always)] - pub const fn new(data: T) -> Self { - Self { - phantom: PhantomData, - next_ticket: AtomicUsize::new(0), - next_serving: AtomicUsize::new(0), - data: UnsafeCell::new(data), - } - } - - /// Consumes this [`TicketMutex`] and unwraps the underlying data. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::TicketMutex::<_>::new(42); - /// assert_eq!(42, lock.into_inner()); - /// ``` - #[inline(always)] - pub fn into_inner(self) -> T { - self.data.into_inner() - } - /// Returns a mutable pointer to the underying data. - /// - /// This is mostly meant to be used for applications which require manual unlocking, but where - /// storing both the lock and the pointer to the inner data gets inefficient. - /// - /// # Example - /// ``` - /// let lock = spin::mutex::SpinMutex::<_>::new(42); - /// - /// unsafe { - /// core::mem::forget(lock.lock()); - /// - /// assert_eq!(lock.as_mut_ptr().read(), 42); - /// lock.as_mut_ptr().write(58); - /// - /// lock.force_unlock(); - /// } - /// - /// assert_eq!(*lock.lock(), 58); - /// - /// ``` - #[inline(always)] - pub fn as_mut_ptr(&self) -> *mut T { - self.data.get() - } -} - -impl<T: ?Sized + fmt::Debug, R> fmt::Debug for TicketMutex<T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - match self.try_lock() { - Some(guard) => write!(f, "Mutex {{ data: ") - .and_then(|()| (&*guard).fmt(f)) - .and_then(|()| write!(f, "}}")), - None => write!(f, "Mutex {{ <locked> }}"), - } - } -} - -impl<T: ?Sized, R: RelaxStrategy> TicketMutex<T, R> { - /// Locks the [`TicketMutex`] and returns a guard that permits access to the inner data. - /// - /// The returned data may be dereferenced for data access - /// and the lock will be dropped when the guard falls out of scope. - /// - /// ``` - /// let lock = spin::mutex::TicketMutex::<_>::new(0); - /// { - /// let mut data = lock.lock(); - /// // The lock is now locked and the data can be accessed - /// *data += 1; - /// // The lock is implicitly dropped at the end of the scope - /// } - /// ``` - #[inline(always)] - pub fn lock(&self) -> TicketMutexGuard<T> { - let ticket = self.next_ticket.fetch_add(1, Ordering::Relaxed); - - while self.next_serving.load(Ordering::Acquire) != ticket { - R::relax(); - } - - TicketMutexGuard { - next_serving: &self.next_serving, - ticket, - // Safety - // We know that we are the next ticket to be served, - // so there's no other thread accessing the data. - // - // Every other thread has another ticket number so it's - // definitely stuck in the spin loop above. - data: unsafe { &mut *self.data.get() }, - } - } -} - -impl<T: ?Sized, R> TicketMutex<T, R> { - /// Returns `true` if the lock is currently held. - /// - /// # Safety - /// - /// This function provides no synchronization guarantees and so its result should be considered 'out of date' - /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. - #[inline(always)] - pub fn is_locked(&self) -> bool { - let ticket = self.next_ticket.load(Ordering::Relaxed); - self.next_serving.load(Ordering::Relaxed) != ticket - } - - /// Force unlock this [`TicketMutex`], by serving the next ticket. - /// - /// # Safety - /// - /// This is *extremely* unsafe if the lock is not held by the current - /// thread. However, this can be useful in some instances for exposing the - /// lock to FFI that doesn't know how to deal with RAII. - #[inline(always)] - pub unsafe fn force_unlock(&self) { - self.next_serving.fetch_add(1, Ordering::Release); - } - - /// Try to lock this [`TicketMutex`], returning a lock guard if successful. - /// - /// # Example - /// - /// ``` - /// let lock = spin::mutex::TicketMutex::<_>::new(42); - /// - /// let maybe_guard = lock.try_lock(); - /// assert!(maybe_guard.is_some()); - /// - /// // `maybe_guard` is still held, so the second call fails - /// let maybe_guard2 = lock.try_lock(); - /// assert!(maybe_guard2.is_none()); - /// ``` - #[inline(always)] - pub fn try_lock(&self) -> Option<TicketMutexGuard<T>> { - let ticket = self - .next_ticket - .fetch_update(Ordering::SeqCst, Ordering::SeqCst, |ticket| { - if self.next_serving.load(Ordering::Acquire) == ticket { - Some(ticket + 1) - } else { - None - } - }); - - ticket.ok().map(|ticket| TicketMutexGuard { - next_serving: &self.next_serving, - ticket, - // Safety - // We have a ticket that is equal to the next_serving ticket, so we know: - // - that no other thread can have the same ticket id as this thread - // - that we are the next one to be served so we have exclusive access to the data - data: unsafe { &mut *self.data.get() }, - }) - } - - /// Returns a mutable reference to the underlying data. - /// - /// Since this call borrows the [`TicketMutex`] mutably, and a mutable reference is guaranteed to be exclusive in - /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As - /// such, this is a 'zero-cost' operation. - /// - /// # Example - /// - /// ``` - /// let mut lock = spin::mutex::TicketMutex::<_>::new(0); - /// *lock.get_mut() = 10; - /// assert_eq!(*lock.lock(), 10); - /// ``` - #[inline(always)] - pub fn get_mut(&mut self) -> &mut T { - // Safety: - // We know that there are no other references to `self`, - // so it's safe to return a exclusive reference to the data. - unsafe { &mut *self.data.get() } - } -} - -impl<T: ?Sized + Default, R> Default for TicketMutex<T, R> { - fn default() -> Self { - Self::new(Default::default()) - } -} - -impl<T, R> From<T> for TicketMutex<T, R> { - fn from(data: T) -> Self { - Self::new(data) - } -} - -impl<'a, T: ?Sized> TicketMutexGuard<'a, T> { - /// Leak the lock guard, yielding a mutable reference to the underlying data. - /// - /// Note that this function will permanently lock the original [`TicketMutex`]. - /// - /// ``` - /// let mylock = spin::mutex::TicketMutex::<_>::new(0); - /// - /// let data: &mut i32 = spin::mutex::TicketMutexGuard::leak(mylock.lock()); - /// - /// *data = 1; - /// assert_eq!(*data, 1); - /// ``` - #[inline(always)] - pub fn leak(this: Self) -> &'a mut T { - let data = this.data as *mut _; // Keep it in pointer form temporarily to avoid double-aliasing - core::mem::forget(this); - unsafe { &mut *data } - } -} - -impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for TicketMutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized + fmt::Display> fmt::Display for TicketMutexGuard<'a, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'a, T: ?Sized> Deref for TicketMutexGuard<'a, T> { - type Target = T; - fn deref(&self) -> &T { - self.data - } -} - -impl<'a, T: ?Sized> DerefMut for TicketMutexGuard<'a, T> { - fn deref_mut(&mut self) -> &mut T { - self.data - } -} - -impl<'a, T: ?Sized> Drop for TicketMutexGuard<'a, T> { - fn drop(&mut self) { - let new_ticket = self.ticket + 1; - self.next_serving.store(new_ticket, Ordering::Release); - } -} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for TicketMutex<(), R> { - type GuardMarker = lock_api_crate::GuardSend; - - const INIT: Self = Self::new(()); - - fn lock(&self) { - // Prevent guard destructor running - core::mem::forget(Self::lock(self)); - } - - fn try_lock(&self) -> bool { - // Prevent guard destructor running - Self::try_lock(self).map(core::mem::forget).is_some() - } - - unsafe fn unlock(&self) { - self.force_unlock(); - } - - fn is_locked(&self) -> bool { - Self::is_locked(self) - } -} - -#[cfg(test)] -mod tests { - use std::prelude::v1::*; - - use std::sync::atomic::{AtomicUsize, Ordering}; - use std::sync::mpsc::channel; - use std::sync::Arc; - use std::thread; - - type TicketMutex<T> = super::TicketMutex<T>; - - #[derive(Eq, PartialEq, Debug)] - struct NonCopy(i32); - - #[test] - fn smoke() { - let m = TicketMutex::<_>::new(()); - drop(m.lock()); - drop(m.lock()); - } - - #[test] - fn lots_and_lots() { - static M: TicketMutex<()> = TicketMutex::<_>::new(()); - static mut CNT: u32 = 0; - const J: u32 = 1000; - const K: u32 = 3; - - fn inc() { - for _ in 0..J { - unsafe { - let _g = M.lock(); - CNT += 1; - } - } - } - - let (tx, rx) = channel(); - for _ in 0..K { - let tx2 = tx.clone(); - thread::spawn(move || { - inc(); - tx2.send(()).unwrap(); - }); - let tx2 = tx.clone(); - thread::spawn(move || { - inc(); - tx2.send(()).unwrap(); - }); - } - - drop(tx); - for _ in 0..2 * K { - rx.recv().unwrap(); - } - assert_eq!(unsafe { CNT }, J * K * 2); - } - - #[test] - fn try_lock() { - let mutex = TicketMutex::<_>::new(42); - - // First lock succeeds - let a = mutex.try_lock(); - assert_eq!(a.as_ref().map(|r| **r), Some(42)); - - // Additional lock fails - let b = mutex.try_lock(); - assert!(b.is_none()); - - // After dropping lock, it succeeds again - ::core::mem::drop(a); - let c = mutex.try_lock(); - assert_eq!(c.as_ref().map(|r| **r), Some(42)); - } - - #[test] - fn test_into_inner() { - let m = TicketMutex::<_>::new(NonCopy(10)); - assert_eq!(m.into_inner(), NonCopy(10)); - } - - #[test] - fn test_into_inner_drop() { - struct Foo(Arc<AtomicUsize>); - impl Drop for Foo { - fn drop(&mut self) { - self.0.fetch_add(1, Ordering::SeqCst); - } - } - let num_drops = Arc::new(AtomicUsize::new(0)); - let m = TicketMutex::<_>::new(Foo(num_drops.clone())); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - { - let _inner = m.into_inner(); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - } - assert_eq!(num_drops.load(Ordering::SeqCst), 1); - } - - #[test] - fn test_mutex_arc_nested() { - // Tests nested mutexes and access - // to underlying data. - let arc = Arc::new(TicketMutex::<_>::new(1)); - let arc2 = Arc::new(TicketMutex::<_>::new(arc)); - let (tx, rx) = channel(); - let _t = thread::spawn(move || { - let lock = arc2.lock(); - let lock2 = lock.lock(); - assert_eq!(*lock2, 1); - tx.send(()).unwrap(); - }); - rx.recv().unwrap(); - } - - #[test] - fn test_mutex_arc_access_in_unwind() { - let arc = Arc::new(TicketMutex::<_>::new(1)); - let arc2 = arc.clone(); - let _ = thread::spawn(move || -> () { - struct Unwinder { - i: Arc<TicketMutex<i32>>, - } - impl Drop for Unwinder { - fn drop(&mut self) { - *self.i.lock() += 1; - } - } - let _u = Unwinder { i: arc2 }; - panic!(); - }) - .join(); - let lock = arc.lock(); - assert_eq!(*lock, 2); - } - - #[test] - fn test_mutex_unsized() { - let mutex: &TicketMutex<[i32]> = &TicketMutex::<_>::new([1, 2, 3]); - { - let b = &mut *mutex.lock(); - b[0] = 4; - b[2] = 5; - } - let comp: &[i32] = &[4, 2, 5]; - assert_eq!(&*mutex.lock(), comp); - } - - #[test] - fn is_locked() { - let mutex = TicketMutex::<_>::new(()); - assert!(!mutex.is_locked()); - let lock = mutex.lock(); - assert!(mutex.is_locked()); - drop(lock); - assert!(!mutex.is_locked()); - } -} diff --git a/vendor/spin/src/once.rs b/vendor/spin/src/once.rs deleted file mode 100644 index 31700dc..0000000 --- a/vendor/spin/src/once.rs +++ /dev/null @@ -1,789 +0,0 @@ -//! Synchronization primitives for one-time evaluation. - -use crate::{ - atomic::{AtomicU8, Ordering}, - RelaxStrategy, Spin, -}; -use core::{cell::UnsafeCell, fmt, marker::PhantomData, mem::MaybeUninit}; - -/// A primitive that provides lazy one-time initialization. -/// -/// Unlike its `std::sync` equivalent, this is generalized such that the closure returns a -/// value to be stored by the [`Once`] (`std::sync::Once` can be trivially emulated with -/// `Once`). -/// -/// Because [`Once::new`] is `const`, this primitive may be used to safely initialize statics. -/// -/// # Examples -/// -/// ``` -/// use spin; -/// -/// static START: spin::Once = spin::Once::new(); -/// -/// START.call_once(|| { -/// // run initialization here -/// }); -/// ``` -pub struct Once<T = (), R = Spin> { - phantom: PhantomData<R>, - status: AtomicStatus, - data: UnsafeCell<MaybeUninit<T>>, -} - -impl<T, R> Default for Once<T, R> { - fn default() -> Self { - Self::new() - } -} - -impl<T: fmt::Debug, R> fmt::Debug for Once<T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - match self.get() { - Some(s) => write!(f, "Once {{ data: ") - .and_then(|()| s.fmt(f)) - .and_then(|()| write!(f, "}}")), - None => write!(f, "Once {{ <uninitialized> }}"), - } - } -} - -// Same unsafe impls as `std::sync::RwLock`, because this also allows for -// concurrent reads. -unsafe impl<T: Send + Sync, R> Sync for Once<T, R> {} -unsafe impl<T: Send, R> Send for Once<T, R> {} - -mod status { - use super::*; - - // SAFETY: This structure has an invariant, namely that the inner atomic u8 must *always* have - // a value for which there exists a valid Status. This means that users of this API must only - // be allowed to load and store `Status`es. - #[repr(transparent)] - pub struct AtomicStatus(AtomicU8); - - // Four states that a Once can be in, encoded into the lower bits of `status` in - // the Once structure. - #[repr(u8)] - #[derive(Clone, Copy, Debug, PartialEq)] - pub enum Status { - Incomplete = 0x00, - Running = 0x01, - Complete = 0x02, - Panicked = 0x03, - } - impl Status { - // Construct a status from an inner u8 integer. - // - // # Safety - // - // For this to be safe, the inner number must have a valid corresponding enum variant. - unsafe fn new_unchecked(inner: u8) -> Self { - core::mem::transmute(inner) - } - } - - impl AtomicStatus { - #[inline(always)] - pub const fn new(status: Status) -> Self { - // SAFETY: We got the value directly from status, so transmuting back is fine. - Self(AtomicU8::new(status as u8)) - } - #[inline(always)] - pub fn load(&self, ordering: Ordering) -> Status { - // SAFETY: We know that the inner integer must have been constructed from a Status in - // the first place. - unsafe { Status::new_unchecked(self.0.load(ordering)) } - } - #[inline(always)] - pub fn store(&self, status: Status, ordering: Ordering) { - // SAFETY: While not directly unsafe, this is safe because the value was retrieved from - // a status, thus making transmutation safe. - self.0.store(status as u8, ordering); - } - #[inline(always)] - pub fn compare_exchange( - &self, - old: Status, - new: Status, - success: Ordering, - failure: Ordering, - ) -> Result<Status, Status> { - match self - .0 - .compare_exchange(old as u8, new as u8, success, failure) - { - // SAFETY: A compare exchange will always return a value that was later stored into - // the atomic u8, but due to the invariant that it must be a valid Status, we know - // that both Ok(_) and Err(_) will be safely transmutable. - Ok(ok) => Ok(unsafe { Status::new_unchecked(ok) }), - Err(err) => Err(unsafe { Status::new_unchecked(err) }), - } - } - #[inline(always)] - pub fn get_mut(&mut self) -> &mut Status { - // SAFETY: Since we know that the u8 inside must be a valid Status, we can safely cast - // it to a &mut Status. - unsafe { &mut *((self.0.get_mut() as *mut u8).cast::<Status>()) } - } - } -} -use self::status::{AtomicStatus, Status}; - -impl<T, R: RelaxStrategy> Once<T, R> { - /// Performs an initialization routine once and only once. The given closure - /// will be executed if this is the first time `call_once` has been called, - /// and otherwise the routine will *not* be invoked. - /// - /// This method will block the calling thread if another initialization - /// routine is currently running. - /// - /// When this function returns, it is guaranteed that some initialization - /// has run and completed (it may not be the closure specified). The - /// returned pointer will point to the result from the closure that was - /// run. - /// - /// # Panics - /// - /// This function will panic if the [`Once`] previously panicked while attempting - /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s - /// primitives. - /// - /// # Examples - /// - /// ``` - /// use spin; - /// - /// static INIT: spin::Once<usize> = spin::Once::new(); - /// - /// fn get_cached_val() -> usize { - /// *INIT.call_once(expensive_computation) - /// } - /// - /// fn expensive_computation() -> usize { - /// // ... - /// # 2 - /// } - /// ``` - pub fn call_once<F: FnOnce() -> T>(&self, f: F) -> &T { - match self.try_call_once(|| Ok::<T, core::convert::Infallible>(f())) { - Ok(x) => x, - Err(void) => match void {}, - } - } - - /// This method is similar to `call_once`, but allows the given closure to - /// fail, and lets the `Once` in a uninitialized state if it does. - /// - /// This method will block the calling thread if another initialization - /// routine is currently running. - /// - /// When this function returns without error, it is guaranteed that some - /// initialization has run and completed (it may not be the closure - /// specified). The returned reference will point to the result from the - /// closure that was run. - /// - /// # Panics - /// - /// This function will panic if the [`Once`] previously panicked while attempting - /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s - /// primitives. - /// - /// # Examples - /// - /// ``` - /// use spin; - /// - /// static INIT: spin::Once<usize> = spin::Once::new(); - /// - /// fn get_cached_val() -> Result<usize, String> { - /// INIT.try_call_once(expensive_fallible_computation).map(|x| *x) - /// } - /// - /// fn expensive_fallible_computation() -> Result<usize, String> { - /// // ... - /// # Ok(2) - /// } - /// ``` - pub fn try_call_once<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> { - if let Some(value) = self.get() { - Ok(value) - } else { - self.try_call_once_slow(f) - } - } - - #[cold] - fn try_call_once_slow<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> { - loop { - let xchg = self.status.compare_exchange( - Status::Incomplete, - Status::Running, - Ordering::Acquire, - Ordering::Acquire, - ); - - match xchg { - Ok(_must_be_state_incomplete) => { - // Impl is defined after the match for readability - } - Err(Status::Panicked) => panic!("Once panicked"), - Err(Status::Running) => match self.poll() { - Some(v) => return Ok(v), - None => continue, - }, - Err(Status::Complete) => { - return Ok(unsafe { - // SAFETY: The status is Complete - self.force_get() - }); - } - Err(Status::Incomplete) => { - // The compare_exchange failed, so this shouldn't ever be reached, - // however if we decide to switch to compare_exchange_weak it will - // be safer to leave this here than hit an unreachable - continue; - } - } - - // The compare-exchange succeeded, so we shall initialize it. - - // We use a guard (Finish) to catch panics caused by builder - let finish = Finish { - status: &self.status, - }; - let val = match f() { - Ok(val) => val, - Err(err) => { - // If an error occurs, clean up everything and leave. - core::mem::forget(finish); - self.status.store(Status::Incomplete, Ordering::Release); - return Err(err); - } - }; - unsafe { - // SAFETY: - // `UnsafeCell`/deref: currently the only accessor, mutably - // and immutably by cas exclusion. - // `write`: pointer comes from `MaybeUninit`. - (*self.data.get()).as_mut_ptr().write(val); - }; - // If there were to be a panic with unwind enabled, the code would - // short-circuit and never reach the point where it writes the inner data. - // The destructor for Finish will run, and poison the Once to ensure that other - // threads accessing it do not exhibit unwanted behavior, if there were to be - // any inconsistency in data structures caused by the panicking thread. - // - // However, f() is expected in the general case not to panic. In that case, we - // simply forget the guard, bypassing its destructor. We could theoretically - // clear a flag instead, but this eliminates the call to the destructor at - // compile time, and unconditionally poisons during an eventual panic, if - // unwinding is enabled. - core::mem::forget(finish); - - // SAFETY: Release is required here, so that all memory accesses done in the - // closure when initializing, become visible to other threads that perform Acquire - // loads. - // - // And, we also know that the changes this thread has done will not magically - // disappear from our cache, so it does not need to be AcqRel. - self.status.store(Status::Complete, Ordering::Release); - - // This next line is mainly an optimization. - return unsafe { Ok(self.force_get()) }; - } - } - - /// Spins until the [`Once`] contains a value. - /// - /// Note that in releases prior to `0.7`, this function had the behaviour of [`Once::poll`]. - /// - /// # Panics - /// - /// This function will panic if the [`Once`] previously panicked while attempting - /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s - /// primitives. - pub fn wait(&self) -> &T { - loop { - match self.poll() { - Some(x) => break x, - None => R::relax(), - } - } - } - - /// Like [`Once::get`], but will spin if the [`Once`] is in the process of being - /// initialized. If initialization has not even begun, `None` will be returned. - /// - /// Note that in releases prior to `0.7`, this function was named `wait`. - /// - /// # Panics - /// - /// This function will panic if the [`Once`] previously panicked while attempting - /// to initialize. This is similar to the poisoning behaviour of `std::sync`'s - /// primitives. - pub fn poll(&self) -> Option<&T> { - loop { - // SAFETY: Acquire is safe here, because if the status is COMPLETE, then we want to make - // sure that all memory accessed done while initializing that value, are visible when - // we return a reference to the inner data after this load. - match self.status.load(Ordering::Acquire) { - Status::Incomplete => return None, - Status::Running => R::relax(), // We spin - Status::Complete => return Some(unsafe { self.force_get() }), - Status::Panicked => panic!("Once previously poisoned by a panicked"), - } - } - } -} - -impl<T, R> Once<T, R> { - /// Initialization constant of [`Once`]. - #[allow(clippy::declare_interior_mutable_const)] - pub const INIT: Self = Self { - phantom: PhantomData, - status: AtomicStatus::new(Status::Incomplete), - data: UnsafeCell::new(MaybeUninit::uninit()), - }; - - /// Creates a new [`Once`]. - pub const fn new() -> Self { - Self::INIT - } - - /// Creates a new initialized [`Once`]. - pub const fn initialized(data: T) -> Self { - Self { - phantom: PhantomData, - status: AtomicStatus::new(Status::Complete), - data: UnsafeCell::new(MaybeUninit::new(data)), - } - } - - /// Retrieve a pointer to the inner data. - /// - /// While this method itself is safe, accessing the pointer before the [`Once`] has been - /// initialized is UB, unless this method has already been written to from a pointer coming - /// from this method. - pub fn as_mut_ptr(&self) -> *mut T { - // SAFETY: - // * MaybeUninit<T> always has exactly the same layout as T - self.data.get().cast::<T>() - } - - /// Get a reference to the initialized instance. Must only be called once COMPLETE. - unsafe fn force_get(&self) -> &T { - // SAFETY: - // * `UnsafeCell`/inner deref: data never changes again - // * `MaybeUninit`/outer deref: data was initialized - &*(*self.data.get()).as_ptr() - } - - /// Get a reference to the initialized instance. Must only be called once COMPLETE. - unsafe fn force_get_mut(&mut self) -> &mut T { - // SAFETY: - // * `UnsafeCell`/inner deref: data never changes again - // * `MaybeUninit`/outer deref: data was initialized - &mut *(*self.data.get()).as_mut_ptr() - } - - /// Get a reference to the initialized instance. Must only be called once COMPLETE. - unsafe fn force_into_inner(self) -> T { - // SAFETY: - // * `UnsafeCell`/inner deref: data never changes again - // * `MaybeUninit`/outer deref: data was initialized - (*self.data.get()).as_ptr().read() - } - - /// Returns a reference to the inner value if the [`Once`] has been initialized. - pub fn get(&self) -> Option<&T> { - // SAFETY: Just as with `poll`, Acquire is safe here because we want to be able to see the - // nonatomic stores done when initializing, once we have loaded and checked the status. - match self.status.load(Ordering::Acquire) { - Status::Complete => Some(unsafe { self.force_get() }), - _ => None, - } - } - - /// Returns a reference to the inner value on the unchecked assumption that the [`Once`] has been initialized. - /// - /// # Safety - /// - /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized - /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused). - /// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically - /// checking initialization is unacceptable and the `Once` has already been initialized. - pub unsafe fn get_unchecked(&self) -> &T { - debug_assert_eq!( - self.status.load(Ordering::SeqCst), - Status::Complete, - "Attempted to access an uninitialized Once. If this was run without debug checks, this would be undefined behaviour. This is a serious bug and you must fix it.", - ); - self.force_get() - } - - /// Returns a mutable reference to the inner value if the [`Once`] has been initialized. - /// - /// Because this method requires a mutable reference to the [`Once`], no synchronization - /// overhead is required to access the inner value. In effect, it is zero-cost. - pub fn get_mut(&mut self) -> Option<&mut T> { - match *self.status.get_mut() { - Status::Complete => Some(unsafe { self.force_get_mut() }), - _ => None, - } - } - - /// Returns a mutable reference to the inner value - /// - /// # Safety - /// - /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized - /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused). - /// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically - /// checking initialization is unacceptable and the `Once` has already been initialized. - pub unsafe fn get_mut_unchecked(&mut self) -> &mut T { - debug_assert_eq!( - self.status.load(Ordering::SeqCst), - Status::Complete, - "Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.", - ); - self.force_get_mut() - } - - /// Returns a the inner value if the [`Once`] has been initialized. - /// - /// Because this method requires ownership of the [`Once`], no synchronization overhead - /// is required to access the inner value. In effect, it is zero-cost. - pub fn try_into_inner(mut self) -> Option<T> { - match *self.status.get_mut() { - Status::Complete => Some(unsafe { self.force_into_inner() }), - _ => None, - } - } - - /// Returns a the inner value if the [`Once`] has been initialized. - /// # Safety - /// - /// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized - /// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused) - /// This can be useful, if `Once` has already been initialized, and you want to bypass an - /// option check. - pub unsafe fn into_inner_unchecked(self) -> T { - debug_assert_eq!( - self.status.load(Ordering::SeqCst), - Status::Complete, - "Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.", - ); - self.force_into_inner() - } - - /// Checks whether the value has been initialized. - /// - /// This is done using [`Acquire`](core::sync::atomic::Ordering::Acquire) ordering, and - /// therefore it is safe to access the value directly via - /// [`get_unchecked`](Self::get_unchecked) if this returns true. - pub fn is_completed(&self) -> bool { - // TODO: Add a similar variant for Relaxed? - self.status.load(Ordering::Acquire) == Status::Complete - } -} - -impl<T, R> From<T> for Once<T, R> { - fn from(data: T) -> Self { - Self::initialized(data) - } -} - -impl<T, R> Drop for Once<T, R> { - fn drop(&mut self) { - // No need to do any atomic access here, we have &mut! - if *self.status.get_mut() == Status::Complete { - unsafe { - //TODO: Use MaybeUninit::assume_init_drop once stabilised - core::ptr::drop_in_place((*self.data.get()).as_mut_ptr()); - } - } - } -} - -struct Finish<'a> { - status: &'a AtomicStatus, -} - -impl<'a> Drop for Finish<'a> { - fn drop(&mut self) { - // While using Relaxed here would most likely not be an issue, we use SeqCst anyway. - // This is mainly because panics are not meant to be fast at all, but also because if - // there were to be a compiler bug which reorders accesses within the same thread, - // where it should not, we want to be sure that the panic really is handled, and does - // not cause additional problems. SeqCst will therefore help guarding against such - // bugs. - self.status.store(Status::Panicked, Ordering::SeqCst); - } -} - -#[cfg(test)] -mod tests { - use std::prelude::v1::*; - - use std::sync::atomic::AtomicU32; - use std::sync::mpsc::channel; - use std::sync::Arc; - use std::thread; - - use super::*; - - #[test] - fn smoke_once() { - static O: Once = Once::new(); - let mut a = 0; - O.call_once(|| a += 1); - assert_eq!(a, 1); - O.call_once(|| a += 1); - assert_eq!(a, 1); - } - - #[test] - fn smoke_once_value() { - static O: Once<usize> = Once::new(); - let a = O.call_once(|| 1); - assert_eq!(*a, 1); - let b = O.call_once(|| 2); - assert_eq!(*b, 1); - } - - #[test] - fn stampede_once() { - static O: Once = Once::new(); - static mut RUN: bool = false; - - let (tx, rx) = channel(); - let mut ts = Vec::new(); - for _ in 0..10 { - let tx = tx.clone(); - ts.push(thread::spawn(move || { - for _ in 0..4 { - thread::yield_now() - } - unsafe { - O.call_once(|| { - assert!(!RUN); - RUN = true; - }); - assert!(RUN); - } - tx.send(()).unwrap(); - })); - } - - unsafe { - O.call_once(|| { - assert!(!RUN); - RUN = true; - }); - assert!(RUN); - } - - for _ in 0..10 { - rx.recv().unwrap(); - } - - for t in ts { - t.join().unwrap(); - } - } - - #[test] - fn get() { - static INIT: Once<usize> = Once::new(); - - assert!(INIT.get().is_none()); - INIT.call_once(|| 2); - assert_eq!(INIT.get().map(|r| *r), Some(2)); - } - - #[test] - fn get_no_wait() { - static INIT: Once<usize> = Once::new(); - - assert!(INIT.get().is_none()); - let t = thread::spawn(move || { - INIT.call_once(|| { - thread::sleep(std::time::Duration::from_secs(3)); - 42 - }); - }); - assert!(INIT.get().is_none()); - - t.join().unwrap(); - } - - #[test] - fn poll() { - static INIT: Once<usize> = Once::new(); - - assert!(INIT.poll().is_none()); - INIT.call_once(|| 3); - assert_eq!(INIT.poll().map(|r| *r), Some(3)); - } - - #[test] - fn wait() { - static INIT: Once<usize> = Once::new(); - - let t = std::thread::spawn(|| { - assert_eq!(*INIT.wait(), 3); - assert!(INIT.is_completed()); - }); - - for _ in 0..4 { - thread::yield_now() - } - - assert!(INIT.poll().is_none()); - INIT.call_once(|| 3); - - t.join().unwrap(); - } - - #[test] - fn panic() { - use std::panic; - - static INIT: Once = Once::new(); - - // poison the once - let t = panic::catch_unwind(|| { - INIT.call_once(|| panic!()); - }); - assert!(t.is_err()); - - // poisoning propagates - let t = panic::catch_unwind(|| { - INIT.call_once(|| {}); - }); - assert!(t.is_err()); - } - - #[test] - fn init_constant() { - static O: Once = Once::INIT; - let mut a = 0; - O.call_once(|| a += 1); - assert_eq!(a, 1); - O.call_once(|| a += 1); - assert_eq!(a, 1); - } - - static mut CALLED: bool = false; - - struct DropTest {} - - impl Drop for DropTest { - fn drop(&mut self) { - unsafe { - CALLED = true; - } - } - } - - #[test] - fn try_call_once_err() { - let once = Once::<_, Spin>::new(); - let shared = Arc::new((once, AtomicU32::new(0))); - - let (tx, rx) = channel(); - - let t0 = { - let shared = shared.clone(); - thread::spawn(move || { - let (once, called) = &*shared; - - once.try_call_once(|| { - called.fetch_add(1, Ordering::AcqRel); - tx.send(()).unwrap(); - thread::sleep(std::time::Duration::from_millis(50)); - Err(()) - }) - .ok(); - }) - }; - - let t1 = { - let shared = shared.clone(); - thread::spawn(move || { - rx.recv().unwrap(); - let (once, called) = &*shared; - assert_eq!( - called.load(Ordering::Acquire), - 1, - "leader thread did not run first" - ); - - once.call_once(|| { - called.fetch_add(1, Ordering::AcqRel); - }); - }) - }; - - t0.join().unwrap(); - t1.join().unwrap(); - - assert_eq!(shared.1.load(Ordering::Acquire), 2); - } - - // This is sort of two test cases, but if we write them as separate test methods - // they can be executed concurrently and then fail some small fraction of the - // time. - #[test] - fn drop_occurs_and_skip_uninit_drop() { - unsafe { - CALLED = false; - } - - { - let once = Once::<_>::new(); - once.call_once(|| DropTest {}); - } - - assert!(unsafe { CALLED }); - // Now test that we skip drops for the uninitialized case. - unsafe { - CALLED = false; - } - - let once = Once::<DropTest>::new(); - drop(once); - - assert!(unsafe { !CALLED }); - } - - #[test] - fn call_once_test() { - for _ in 0..20 { - use std::sync::atomic::AtomicUsize; - use std::sync::Arc; - use std::time::Duration; - let share = Arc::new(AtomicUsize::new(0)); - let once = Arc::new(Once::<_, Spin>::new()); - let mut hs = Vec::new(); - for _ in 0..8 { - let h = thread::spawn({ - let share = share.clone(); - let once = once.clone(); - move || { - thread::sleep(Duration::from_millis(10)); - once.call_once(|| { - share.fetch_add(1, Ordering::SeqCst); - }); - } - }); - hs.push(h); - } - for h in hs { - h.join().unwrap(); - } - assert_eq!(1, share.load(Ordering::SeqCst)); - } - } -} diff --git a/vendor/spin/src/relax.rs b/vendor/spin/src/relax.rs deleted file mode 100644 index 8842f80..0000000 --- a/vendor/spin/src/relax.rs +++ /dev/null @@ -1,61 +0,0 @@ -//! Strategies that determine the behaviour of locks when encountering contention. - -/// A trait implemented by spinning relax strategies. -pub trait RelaxStrategy { - /// Perform the relaxing operation during a period of contention. - fn relax(); -} - -/// A strategy that rapidly spins while informing the CPU that it should power down non-essential components via -/// [`core::hint::spin_loop`]. -/// -/// Note that spinning is a 'dumb' strategy and most schedulers cannot correctly differentiate it from useful work, -/// thereby misallocating even more CPU time to the spinning process. This is known as -/// ['priority inversion'](https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html). -/// -/// If you see signs that priority inversion is occurring, consider switching to [`Yield`] or, even better, not using a -/// spinlock at all and opting for a proper scheduler-aware lock. Remember also that different targets, operating -/// systems, schedulers, and even the same scheduler with different workloads will exhibit different behaviour. Just -/// because priority inversion isn't occurring in your tests does not mean that it will not occur. Use a scheduler- -/// aware lock if at all possible. -pub struct Spin; - -impl RelaxStrategy for Spin { - #[inline(always)] - fn relax() { - // Use the deprecated spin_loop_hint() to ensure that we don't get - // a higher MSRV than we need to. - #[allow(deprecated)] - core::sync::atomic::spin_loop_hint(); - } -} - -/// A strategy that yields the current time slice to the scheduler in favour of other threads or processes. -/// -/// This is generally used as a strategy for minimising power consumption and priority inversion on targets that have a -/// standard library available. Note that such targets have scheduler-integrated concurrency primitives available, and -/// you should generally use these instead, except in rare circumstances. -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -pub struct Yield; - -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -impl RelaxStrategy for Yield { - #[inline(always)] - fn relax() { - std::thread::yield_now(); - } -} - -/// A strategy that rapidly spins, without telling the CPU to do any powering down. -/// -/// You almost certainly do not want to use this. Use [`Spin`] instead. It exists for completeness and for targets -/// that, for some reason, miscompile or do not support spin hint intrinsics despite attempting to generate code for -/// them (i.e: this is a workaround for possible compiler bugs). -pub struct Loop; - -impl RelaxStrategy for Loop { - #[inline(always)] - fn relax() {} -} diff --git a/vendor/spin/src/rwlock.rs b/vendor/spin/src/rwlock.rs deleted file mode 100644 index 5dd3544..0000000 --- a/vendor/spin/src/rwlock.rs +++ /dev/null @@ -1,1165 +0,0 @@ -//! A lock that provides data access to either one writer or many readers. - -use crate::{ - atomic::{AtomicUsize, Ordering}, - RelaxStrategy, Spin, -}; -use core::{ - cell::UnsafeCell, - fmt, - marker::PhantomData, - mem, - mem::ManuallyDrop, - ops::{Deref, DerefMut}, -}; - -/// A lock that provides data access to either one writer or many readers. -/// -/// This lock behaves in a similar manner to its namesake `std::sync::RwLock` but uses -/// spinning for synchronisation instead. Unlike its namespace, this lock does not -/// track lock poisoning. -/// -/// This type of lock allows a number of readers or at most one writer at any -/// point in time. The write portion of this lock typically allows modification -/// of the underlying data (exclusive access) and the read portion of this lock -/// typically allows for read-only access (shared access). -/// -/// The type parameter `T` represents the data that this lock protects. It is -/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to -/// allow concurrent access through readers. The RAII guards returned from the -/// locking methods implement `Deref` (and `DerefMut` for the `write` methods) -/// to allow access to the contained of the lock. -/// -/// An [`RwLockUpgradableGuard`](RwLockUpgradableGuard) can be upgraded to a -/// writable guard through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) -/// [`RwLockUpgradableGuard::try_upgrade`](RwLockUpgradableGuard::try_upgrade) functions. -/// Writable or upgradeable guards can be downgraded through their respective `downgrade` -/// functions. -/// -/// Based on Facebook's -/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h). -/// This implementation is unfair to writers - if the lock always has readers, then no writers will -/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no -/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken -/// when there are existing readers. However if the lock is that highly contended and writes are -/// crucial then this implementation may be a poor choice. -/// -/// # Examples -/// -/// ``` -/// use spin; -/// -/// let lock = spin::RwLock::new(5); -/// -/// // many reader locks can be held at once -/// { -/// let r1 = lock.read(); -/// let r2 = lock.read(); -/// assert_eq!(*r1, 5); -/// assert_eq!(*r2, 5); -/// } // read locks are dropped at this point -/// -/// // only one write lock may be held, however -/// { -/// let mut w = lock.write(); -/// *w += 1; -/// assert_eq!(*w, 6); -/// } // write lock is dropped here -/// ``` -pub struct RwLock<T: ?Sized, R = Spin> { - phantom: PhantomData<R>, - lock: AtomicUsize, - data: UnsafeCell<T>, -} - -const READER: usize = 1 << 2; -const UPGRADED: usize = 1 << 1; -const WRITER: usize = 1; - -/// A guard that provides immutable data access. -/// -/// When the guard falls out of scope it will decrement the read count, -/// potentially releasing the lock. -pub struct RwLockReadGuard<'a, T: 'a + ?Sized> { - lock: &'a AtomicUsize, - data: *const T, -} - -/// A guard that provides mutable data access. -/// -/// When the guard falls out of scope it will release the lock. -pub struct RwLockWriteGuard<'a, T: 'a + ?Sized, R = Spin> { - phantom: PhantomData<R>, - inner: &'a RwLock<T, R>, - data: *mut T, -} - -/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`]. -/// -/// No writers or other upgradeable guards can exist while this is in scope. New reader -/// creation is prevented (to alleviate writer starvation) but there may be existing readers -/// when the lock is acquired. -/// -/// When the guard falls out of scope it will release the lock. -pub struct RwLockUpgradableGuard<'a, T: 'a + ?Sized, R = Spin> { - phantom: PhantomData<R>, - inner: &'a RwLock<T, R>, - data: *const T, -} - -// Same unsafe impls as `std::sync::RwLock` -unsafe impl<T: ?Sized + Send, R> Send for RwLock<T, R> {} -unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLock<T, R> {} - -unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockWriteGuard<'_, T, R> {} -unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockWriteGuard<'_, T, R> {} - -unsafe impl<T: ?Sized + Sync> Send for RwLockReadGuard<'_, T> {} -unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {} - -unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockUpgradableGuard<'_, T, R> {} -unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockUpgradableGuard<'_, T, R> {} - -impl<T, R> RwLock<T, R> { - /// Creates a new spinlock wrapping the supplied data. - /// - /// May be used statically: - /// - /// ``` - /// use spin; - /// - /// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(()); - /// - /// fn demo() { - /// let lock = RW_LOCK.read(); - /// // do something with lock - /// drop(lock); - /// } - /// ``` - #[inline] - pub const fn new(data: T) -> Self { - RwLock { - phantom: PhantomData, - lock: AtomicUsize::new(0), - data: UnsafeCell::new(data), - } - } - - /// Consumes this `RwLock`, returning the underlying data. - #[inline] - pub fn into_inner(self) -> T { - // We know statically that there are no outstanding references to - // `self` so there's no need to lock. - let RwLock { data, .. } = self; - data.into_inner() - } - /// Returns a mutable pointer to the underying data. - /// - /// This is mostly meant to be used for applications which require manual unlocking, but where - /// storing both the lock and the pointer to the inner data gets inefficient. - /// - /// While this is safe, writing to the data is undefined behavior unless the current thread has - /// acquired a write lock, and reading requires either a read or write lock. - /// - /// # Example - /// ``` - /// let lock = spin::RwLock::new(42); - /// - /// unsafe { - /// core::mem::forget(lock.write()); - /// - /// assert_eq!(lock.as_mut_ptr().read(), 42); - /// lock.as_mut_ptr().write(58); - /// - /// lock.force_write_unlock(); - /// } - /// - /// assert_eq!(*lock.read(), 58); - /// - /// ``` - #[inline(always)] - pub fn as_mut_ptr(&self) -> *mut T { - self.data.get() - } -} - -impl<T: ?Sized, R: RelaxStrategy> RwLock<T, R> { - /// Locks this rwlock with shared read access, blocking the current thread - /// until it can be acquired. - /// - /// The calling thread will be blocked until there are no more writers which - /// hold the lock. There may be other readers currently inside the lock when - /// this method returns. This method does not provide any guarantees with - /// respect to the ordering of whether contentious readers or writers will - /// acquire the lock first. - /// - /// Returns an RAII guard which will release this thread's shared access - /// once it is dropped. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// { - /// let mut data = mylock.read(); - /// // The lock is now locked and the data can be read - /// println!("{}", *data); - /// // The lock is dropped - /// } - /// ``` - #[inline] - pub fn read(&self) -> RwLockReadGuard<T> { - loop { - match self.try_read() { - Some(guard) => return guard, - None => R::relax(), - } - } - } - - /// Lock this rwlock with exclusive write access, blocking the current - /// thread until it can be acquired. - /// - /// This function will not return while other writers or other readers - /// currently have access to the lock. - /// - /// Returns an RAII guard which will drop the write access of this rwlock - /// when dropped. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// { - /// let mut data = mylock.write(); - /// // The lock is now locked and the data can be written - /// *data += 1; - /// // The lock is dropped - /// } - /// ``` - #[inline] - pub fn write(&self) -> RwLockWriteGuard<T, R> { - loop { - match self.try_write_internal(false) { - Some(guard) => return guard, - None => R::relax(), - } - } - } - - /// Obtain a readable lock guard that can later be upgraded to a writable lock guard. - /// Upgrades can be done through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) method. - #[inline] - pub fn upgradeable_read(&self) -> RwLockUpgradableGuard<T, R> { - loop { - match self.try_upgradeable_read() { - Some(guard) => return guard, - None => R::relax(), - } - } - } -} - -impl<T: ?Sized, R> RwLock<T, R> { - // Acquire a read lock, returning the new lock value. - fn acquire_reader(&self) -> usize { - // An arbitrary cap that allows us to catch overflows long before they happen - const MAX_READERS: usize = core::usize::MAX / READER / 2; - - let value = self.lock.fetch_add(READER, Ordering::Acquire); - - if value > MAX_READERS * READER { - self.lock.fetch_sub(READER, Ordering::Relaxed); - panic!("Too many lock readers, cannot safely proceed"); - } else { - value - } - } - - /// Attempt to acquire this lock with shared read access. - /// - /// This function will never block and will return immediately if `read` - /// would otherwise succeed. Returns `Some` of an RAII guard which will - /// release the shared access of this thread when dropped, or `None` if the - /// access could not be granted. This method does not provide any - /// guarantees with respect to the ordering of whether contentious readers - /// or writers will acquire the lock first. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// { - /// match mylock.try_read() { - /// Some(data) => { - /// // The lock is now locked and the data can be read - /// println!("{}", *data); - /// // The lock is dropped - /// }, - /// None => (), // no cigar - /// }; - /// } - /// ``` - #[inline] - pub fn try_read(&self) -> Option<RwLockReadGuard<T>> { - let value = self.acquire_reader(); - - // We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held. - // This helps reduce writer starvation. - if value & (WRITER | UPGRADED) != 0 { - // Lock is taken, undo. - self.lock.fetch_sub(READER, Ordering::Release); - None - } else { - Some(RwLockReadGuard { - lock: &self.lock, - data: unsafe { &*self.data.get() }, - }) - } - } - - /// Return the number of readers that currently hold the lock (including upgradable readers). - /// - /// # Safety - /// - /// This function provides no synchronization guarantees and so its result should be considered 'out of date' - /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. - pub fn reader_count(&self) -> usize { - let state = self.lock.load(Ordering::Relaxed); - state / READER + (state & UPGRADED) / UPGRADED - } - - /// Return the number of writers that currently hold the lock. - /// - /// Because [`RwLock`] guarantees exclusive mutable access, this function may only return either `0` or `1`. - /// - /// # Safety - /// - /// This function provides no synchronization guarantees and so its result should be considered 'out of date' - /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. - pub fn writer_count(&self) -> usize { - (self.lock.load(Ordering::Relaxed) & WRITER) / WRITER - } - - /// Force decrement the reader count. - /// - /// # Safety - /// - /// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s - /// live, or if called more times than `read` has been called, but can be - /// useful in FFI contexts where the caller doesn't know how to deal with - /// RAII. The underlying atomic operation uses `Ordering::Release`. - #[inline] - pub unsafe fn force_read_decrement(&self) { - debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0); - self.lock.fetch_sub(READER, Ordering::Release); - } - - /// Force unlock exclusive write access. - /// - /// # Safety - /// - /// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s - /// live, or if called when there are current readers, but can be useful in - /// FFI contexts where the caller doesn't know how to deal with RAII. The - /// underlying atomic operation uses `Ordering::Release`. - #[inline] - pub unsafe fn force_write_unlock(&self) { - debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0); - self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release); - } - - #[inline(always)] - fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T, R>> { - if compare_exchange( - &self.lock, - 0, - WRITER, - Ordering::Acquire, - Ordering::Relaxed, - strong, - ) - .is_ok() - { - Some(RwLockWriteGuard { - phantom: PhantomData, - inner: self, - data: unsafe { &mut *self.data.get() }, - }) - } else { - None - } - } - - /// Attempt to lock this rwlock with exclusive write access. - /// - /// This function does not ever block, and it will return `None` if a call - /// to `write` would otherwise block. If successful, an RAII guard is - /// returned. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// { - /// match mylock.try_write() { - /// Some(mut data) => { - /// // The lock is now locked and the data can be written - /// *data += 1; - /// // The lock is implicitly dropped - /// }, - /// None => (), // no cigar - /// }; - /// } - /// ``` - #[inline] - pub fn try_write(&self) -> Option<RwLockWriteGuard<T, R>> { - self.try_write_internal(true) - } - - /// Tries to obtain an upgradeable lock guard. - #[inline] - pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T, R>> { - if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 { - Some(RwLockUpgradableGuard { - phantom: PhantomData, - inner: self, - data: unsafe { &*self.data.get() }, - }) - } else { - // We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock. - // When they unlock, they will clear the bit. - None - } - } - - /// Returns a mutable reference to the underlying data. - /// - /// Since this call borrows the `RwLock` mutably, no actual locking needs to - /// take place -- the mutable borrow statically guarantees no locks exist. - /// - /// # Examples - /// - /// ``` - /// let mut lock = spin::RwLock::new(0); - /// *lock.get_mut() = 10; - /// assert_eq!(*lock.read(), 10); - /// ``` - pub fn get_mut(&mut self) -> &mut T { - // We know statically that there are no other references to `self`, so - // there's no need to lock the inner lock. - unsafe { &mut *self.data.get() } - } -} - -impl<T: ?Sized + fmt::Debug, R> fmt::Debug for RwLock<T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - match self.try_read() { - Some(guard) => write!(f, "RwLock {{ data: ") - .and_then(|()| (&*guard).fmt(f)) - .and_then(|()| write!(f, "}}")), - None => write!(f, "RwLock {{ <locked> }}"), - } - } -} - -impl<T: ?Sized + Default, R> Default for RwLock<T, R> { - fn default() -> Self { - Self::new(Default::default()) - } -} - -impl<T, R> From<T> for RwLock<T, R> { - fn from(data: T) -> Self { - Self::new(data) - } -} - -impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> { - /// Leak the lock guard, yielding a reference to the underlying data. - /// - /// Note that this function will permanently lock the original lock for all but reading locks. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// - /// let data: &i32 = spin::RwLockReadGuard::leak(mylock.read()); - /// - /// assert_eq!(*data, 0); - /// ``` - #[inline] - pub fn leak(this: Self) -> &'rwlock T { - let this = ManuallyDrop::new(this); - // Safety: We know statically that only we are referencing data - unsafe { &*this.data } - } -} - -impl<'rwlock, T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'rwlock, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'rwlock, T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'rwlock, T> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'rwlock, T: ?Sized, R: RelaxStrategy> RwLockUpgradableGuard<'rwlock, T, R> { - /// Upgrades an upgradeable lock guard to a writable lock guard. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// - /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable - /// let writable = upgradeable.upgrade(); - /// ``` - #[inline] - pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T, R> { - loop { - self = match self.try_upgrade_internal(false) { - Ok(guard) => return guard, - Err(e) => e, - }; - - R::relax(); - } - } -} - -impl<'rwlock, T: ?Sized, R> RwLockUpgradableGuard<'rwlock, T, R> { - #[inline(always)] - fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> { - if compare_exchange( - &self.inner.lock, - UPGRADED, - WRITER, - Ordering::Acquire, - Ordering::Relaxed, - strong, - ) - .is_ok() - { - let inner = self.inner; - - // Forget the old guard so its destructor doesn't run (before mutably aliasing data below) - mem::forget(self); - - // Upgrade successful - Ok(RwLockWriteGuard { - phantom: PhantomData, - inner, - data: unsafe { &mut *inner.data.get() }, - }) - } else { - Err(self) - } - } - - /// Tries to upgrade an upgradeable lock guard to a writable lock guard. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable - /// - /// match upgradeable.try_upgrade() { - /// Ok(writable) => /* upgrade successful - use writable lock guard */ (), - /// Err(upgradeable) => /* upgrade unsuccessful */ (), - /// }; - /// ``` - #[inline] - pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> { - self.try_upgrade_internal(true) - } - - #[inline] - /// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin. - /// - /// ``` - /// let mylock = spin::RwLock::new(1); - /// - /// let upgradeable = mylock.upgradeable_read(); - /// assert!(mylock.try_read().is_none()); - /// assert_eq!(*upgradeable, 1); - /// - /// let readable = upgradeable.downgrade(); // This is guaranteed not to spin - /// assert!(mylock.try_read().is_some()); - /// assert_eq!(*readable, 1); - /// ``` - pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> { - // Reserve the read guard for ourselves - self.inner.acquire_reader(); - - let inner = self.inner; - - // Dropping self removes the UPGRADED bit - mem::drop(self); - - RwLockReadGuard { - lock: &inner.lock, - data: unsafe { &*inner.data.get() }, - } - } - - /// Leak the lock guard, yielding a reference to the underlying data. - /// - /// Note that this function will permanently lock the original lock. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// - /// let data: &i32 = spin::RwLockUpgradableGuard::leak(mylock.upgradeable_read()); - /// - /// assert_eq!(*data, 0); - /// ``` - #[inline] - pub fn leak(this: Self) -> &'rwlock T { - let this = ManuallyDrop::new(this); - // Safety: We know statically that only we are referencing data - unsafe { &*this.data } - } -} - -impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockUpgradableGuard<'rwlock, T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockUpgradableGuard<'rwlock, T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'rwlock, T: ?Sized, R> RwLockWriteGuard<'rwlock, T, R> { - /// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// - /// let mut writable = mylock.write(); - /// *writable = 1; - /// - /// let readable = writable.downgrade(); // This is guaranteed not to spin - /// # let readable_2 = mylock.try_read().unwrap(); - /// assert_eq!(*readable, 1); - /// ``` - #[inline] - pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> { - // Reserve the read guard for ourselves - self.inner.acquire_reader(); - - let inner = self.inner; - - // Dropping self removes the UPGRADED bit - mem::drop(self); - - RwLockReadGuard { - lock: &inner.lock, - data: unsafe { &*inner.data.get() }, - } - } - - /// Downgrades the writable lock guard to an upgradable, shared lock guard. Cannot fail and is guaranteed not to spin. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// - /// let mut writable = mylock.write(); - /// *writable = 1; - /// - /// let readable = writable.downgrade_to_upgradeable(); // This is guaranteed not to spin - /// assert_eq!(*readable, 1); - /// ``` - #[inline] - pub fn downgrade_to_upgradeable(self) -> RwLockUpgradableGuard<'rwlock, T, R> { - debug_assert_eq!( - self.inner.lock.load(Ordering::Acquire) & (WRITER | UPGRADED), - WRITER - ); - - // Reserve the read guard for ourselves - self.inner.lock.store(UPGRADED, Ordering::Release); - - let inner = self.inner; - - // Dropping self removes the UPGRADED bit - mem::forget(self); - - RwLockUpgradableGuard { - phantom: PhantomData, - inner, - data: unsafe { &*inner.data.get() }, - } - } - - /// Leak the lock guard, yielding a mutable reference to the underlying data. - /// - /// Note that this function will permanently lock the original lock. - /// - /// ``` - /// let mylock = spin::RwLock::new(0); - /// - /// let data: &mut i32 = spin::RwLockWriteGuard::leak(mylock.write()); - /// - /// *data = 1; - /// assert_eq!(*data, 1); - /// ``` - #[inline] - pub fn leak(this: Self) -> &'rwlock mut T { - let mut this = ManuallyDrop::new(this); - // Safety: We know statically that only we are referencing data - unsafe { &mut *this.data } - } -} - -impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockWriteGuard<'rwlock, T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Debug::fmt(&**self, f) - } -} - -impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockWriteGuard<'rwlock, T, R> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(&**self, f) - } -} - -impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> { - type Target = T; - - fn deref(&self) -> &T { - // Safety: We know statically that only we are referencing data - unsafe { &*self.data } - } -} - -impl<'rwlock, T: ?Sized, R> Deref for RwLockUpgradableGuard<'rwlock, T, R> { - type Target = T; - - fn deref(&self) -> &T { - // Safety: We know statically that only we are referencing data - unsafe { &*self.data } - } -} - -impl<'rwlock, T: ?Sized, R> Deref for RwLockWriteGuard<'rwlock, T, R> { - type Target = T; - - fn deref(&self) -> &T { - // Safety: We know statically that only we are referencing data - unsafe { &*self.data } - } -} - -impl<'rwlock, T: ?Sized, R> DerefMut for RwLockWriteGuard<'rwlock, T, R> { - fn deref_mut(&mut self) -> &mut T { - // Safety: We know statically that only we are referencing data - unsafe { &mut *self.data } - } -} - -impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> { - fn drop(&mut self) { - debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0); - self.lock.fetch_sub(READER, Ordering::Release); - } -} - -impl<'rwlock, T: ?Sized, R> Drop for RwLockUpgradableGuard<'rwlock, T, R> { - fn drop(&mut self) { - debug_assert_eq!( - self.inner.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED), - UPGRADED - ); - self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel); - } -} - -impl<'rwlock, T: ?Sized, R> Drop for RwLockWriteGuard<'rwlock, T, R> { - fn drop(&mut self) { - debug_assert_eq!(self.inner.lock.load(Ordering::Relaxed) & WRITER, WRITER); - - // Writer is responsible for clearing both WRITER and UPGRADED bits. - // The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held. - self.inner - .lock - .fetch_and(!(WRITER | UPGRADED), Ordering::Release); - } -} - -#[inline(always)] -fn compare_exchange( - atomic: &AtomicUsize, - current: usize, - new: usize, - success: Ordering, - failure: Ordering, - strong: bool, -) -> Result<usize, usize> { - if strong { - atomic.compare_exchange(current, new, success, failure) - } else { - atomic.compare_exchange_weak(current, new, success, failure) - } -} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLock for RwLock<(), R> { - type GuardMarker = lock_api_crate::GuardSend; - - const INIT: Self = Self::new(()); - - #[inline(always)] - fn lock_exclusive(&self) { - // Prevent guard destructor running - core::mem::forget(self.write()); - } - - #[inline(always)] - fn try_lock_exclusive(&self) -> bool { - // Prevent guard destructor running - self.try_write().map(|g| core::mem::forget(g)).is_some() - } - - #[inline(always)] - unsafe fn unlock_exclusive(&self) { - drop(RwLockWriteGuard { - inner: self, - data: &mut (), - phantom: PhantomData, - }); - } - - #[inline(always)] - fn lock_shared(&self) { - // Prevent guard destructor running - core::mem::forget(self.read()); - } - - #[inline(always)] - fn try_lock_shared(&self) -> bool { - // Prevent guard destructor running - self.try_read().map(|g| core::mem::forget(g)).is_some() - } - - #[inline(always)] - unsafe fn unlock_shared(&self) { - drop(RwLockReadGuard { - lock: &self.lock, - data: &(), - }); - } - - #[inline(always)] - fn is_locked(&self) -> bool { - self.lock.load(Ordering::Relaxed) != 0 - } -} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockUpgrade for RwLock<(), R> { - #[inline(always)] - fn lock_upgradable(&self) { - // Prevent guard destructor running - core::mem::forget(self.upgradeable_read()); - } - - #[inline(always)] - fn try_lock_upgradable(&self) -> bool { - // Prevent guard destructor running - self.try_upgradeable_read() - .map(|g| core::mem::forget(g)) - .is_some() - } - - #[inline(always)] - unsafe fn unlock_upgradable(&self) { - drop(RwLockUpgradableGuard { - inner: self, - data: &(), - phantom: PhantomData, - }); - } - - #[inline(always)] - unsafe fn upgrade(&self) { - let tmp_guard = RwLockUpgradableGuard { - inner: self, - data: &(), - phantom: PhantomData, - }; - core::mem::forget(tmp_guard.upgrade()); - } - - #[inline(always)] - unsafe fn try_upgrade(&self) -> bool { - let tmp_guard = RwLockUpgradableGuard { - inner: self, - data: &(), - phantom: PhantomData, - }; - tmp_guard - .try_upgrade() - .map(|g| core::mem::forget(g)) - .is_ok() - } -} - -#[cfg(feature = "lock_api")] -unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockDowngrade for RwLock<(), R> { - unsafe fn downgrade(&self) { - let tmp_guard = RwLockWriteGuard { - inner: self, - data: &mut (), - phantom: PhantomData, - }; - core::mem::forget(tmp_guard.downgrade()); - } -} - -#[cfg(feature = "lock_api1")] -unsafe impl lock_api::RawRwLockUpgradeDowngrade for RwLock<()> { - unsafe fn downgrade_upgradable(&self) { - let tmp_guard = RwLockUpgradableGuard { - inner: self, - data: &(), - phantom: PhantomData, - }; - core::mem::forget(tmp_guard.downgrade()); - } - - unsafe fn downgrade_to_upgradable(&self) { - let tmp_guard = RwLockWriteGuard { - inner: self, - data: &mut (), - phantom: PhantomData, - }; - core::mem::forget(tmp_guard.downgrade_to_upgradeable()); - } -} - -#[cfg(test)] -mod tests { - use std::prelude::v1::*; - - use std::sync::atomic::{AtomicUsize, Ordering}; - use std::sync::mpsc::channel; - use std::sync::Arc; - use std::thread; - - type RwLock<T> = super::RwLock<T>; - - #[derive(Eq, PartialEq, Debug)] - struct NonCopy(i32); - - #[test] - fn smoke() { - let l = RwLock::new(()); - drop(l.read()); - drop(l.write()); - drop((l.read(), l.read())); - drop(l.write()); - } - - // TODO: needs RNG - //#[test] - //fn frob() { - // static R: RwLock = RwLock::new(); - // const N: usize = 10; - // const M: usize = 1000; - // - // let (tx, rx) = channel::<()>(); - // for _ in 0..N { - // let tx = tx.clone(); - // thread::spawn(move|| { - // let mut rng = rand::thread_rng(); - // for _ in 0..M { - // if rng.gen_weighted_bool(N) { - // drop(R.write()); - // } else { - // drop(R.read()); - // } - // } - // drop(tx); - // }); - // } - // drop(tx); - // let _ = rx.recv(); - // unsafe { R.destroy(); } - //} - - #[test] - fn test_rw_arc() { - let arc = Arc::new(RwLock::new(0)); - let arc2 = arc.clone(); - let (tx, rx) = channel(); - - let t = thread::spawn(move || { - let mut lock = arc2.write(); - for _ in 0..10 { - let tmp = *lock; - *lock = -1; - thread::yield_now(); - *lock = tmp + 1; - } - tx.send(()).unwrap(); - }); - - // Readers try to catch the writer in the act - let mut children = Vec::new(); - for _ in 0..5 { - let arc3 = arc.clone(); - children.push(thread::spawn(move || { - let lock = arc3.read(); - assert!(*lock >= 0); - })); - } - - // Wait for children to pass their asserts - for r in children { - assert!(r.join().is_ok()); - } - - // Wait for writer to finish - rx.recv().unwrap(); - let lock = arc.read(); - assert_eq!(*lock, 10); - - assert!(t.join().is_ok()); - } - - #[test] - fn test_rw_access_in_unwind() { - let arc = Arc::new(RwLock::new(1)); - let arc2 = arc.clone(); - let _ = thread::spawn(move || -> () { - struct Unwinder { - i: Arc<RwLock<isize>>, - } - impl Drop for Unwinder { - fn drop(&mut self) { - let mut lock = self.i.write(); - *lock += 1; - } - } - let _u = Unwinder { i: arc2 }; - panic!(); - }) - .join(); - let lock = arc.read(); - assert_eq!(*lock, 2); - } - - #[test] - fn test_rwlock_unsized() { - let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]); - { - let b = &mut *rw.write(); - b[0] = 4; - b[2] = 5; - } - let comp: &[i32] = &[4, 2, 5]; - assert_eq!(&*rw.read(), comp); - } - - #[test] - fn test_rwlock_try_write() { - use std::mem::drop; - - let lock = RwLock::new(0isize); - let read_guard = lock.read(); - - let write_result = lock.try_write(); - match write_result { - None => (), - Some(_) => assert!( - false, - "try_write should not succeed while read_guard is in scope" - ), - } - - drop(read_guard); - } - - #[test] - fn test_rw_try_read() { - let m = RwLock::new(0); - ::std::mem::forget(m.write()); - assert!(m.try_read().is_none()); - } - - #[test] - fn test_into_inner() { - let m = RwLock::new(NonCopy(10)); - assert_eq!(m.into_inner(), NonCopy(10)); - } - - #[test] - fn test_into_inner_drop() { - struct Foo(Arc<AtomicUsize>); - impl Drop for Foo { - fn drop(&mut self) { - self.0.fetch_add(1, Ordering::SeqCst); - } - } - let num_drops = Arc::new(AtomicUsize::new(0)); - let m = RwLock::new(Foo(num_drops.clone())); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - { - let _inner = m.into_inner(); - assert_eq!(num_drops.load(Ordering::SeqCst), 0); - } - assert_eq!(num_drops.load(Ordering::SeqCst), 1); - } - - #[test] - fn test_force_read_decrement() { - let m = RwLock::new(()); - ::std::mem::forget(m.read()); - ::std::mem::forget(m.read()); - ::std::mem::forget(m.read()); - assert!(m.try_write().is_none()); - unsafe { - m.force_read_decrement(); - m.force_read_decrement(); - } - assert!(m.try_write().is_none()); - unsafe { - m.force_read_decrement(); - } - assert!(m.try_write().is_some()); - } - - #[test] - fn test_force_write_unlock() { - let m = RwLock::new(()); - ::std::mem::forget(m.write()); - assert!(m.try_read().is_none()); - unsafe { - m.force_write_unlock(); - } - assert!(m.try_read().is_some()); - } - - #[test] - fn test_upgrade_downgrade() { - let m = RwLock::new(()); - { - let _r = m.read(); - let upg = m.try_upgradeable_read().unwrap(); - assert!(m.try_read().is_none()); - assert!(m.try_write().is_none()); - assert!(upg.try_upgrade().is_err()); - } - { - let w = m.write(); - assert!(m.try_upgradeable_read().is_none()); - let _r = w.downgrade(); - assert!(m.try_upgradeable_read().is_some()); - assert!(m.try_read().is_some()); - assert!(m.try_write().is_none()); - } - { - let _u = m.upgradeable_read(); - assert!(m.try_upgradeable_read().is_none()); - } - - assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok()); - } -} |