aboutsummaryrefslogtreecommitdiff
path: root/vendor/tiff/src/decoder/image.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/tiff/src/decoder/image.rs')
-rw-r--r--vendor/tiff/src/decoder/image.rs601
1 files changed, 601 insertions, 0 deletions
diff --git a/vendor/tiff/src/decoder/image.rs b/vendor/tiff/src/decoder/image.rs
new file mode 100644
index 0000000..c037e31
--- /dev/null
+++ b/vendor/tiff/src/decoder/image.rs
@@ -0,0 +1,601 @@
+use super::ifd::{Directory, Value};
+use super::stream::{ByteOrder, DeflateReader, JpegReader, LZWReader, PackBitsReader};
+use super::tag_reader::TagReader;
+use super::{fp_predict_f32, fp_predict_f64, DecodingBuffer, Limits};
+use super::{stream::SmartReader, ChunkType};
+use crate::tags::{CompressionMethod, PhotometricInterpretation, Predictor, SampleFormat, Tag};
+use crate::{ColorType, TiffError, TiffFormatError, TiffResult, TiffUnsupportedError, UsageError};
+use std::convert::{TryFrom, TryInto};
+use std::io::{self, Cursor, Read, Seek};
+use std::sync::Arc;
+
+#[derive(Debug)]
+pub(crate) struct StripDecodeState {
+ pub rows_per_strip: u32,
+}
+
+#[derive(Debug)]
+/// Computed values useful for tile decoding
+pub(crate) struct TileAttributes {
+ pub image_width: usize,
+ pub image_height: usize,
+
+ pub tile_width: usize,
+ pub tile_length: usize,
+}
+
+impl TileAttributes {
+ pub fn tiles_across(&self) -> usize {
+ (self.image_width + self.tile_width - 1) / self.tile_width
+ }
+ pub fn tiles_down(&self) -> usize {
+ (self.image_height + self.tile_length - 1) / self.tile_length
+ }
+ fn padding_right(&self) -> usize {
+ (self.tile_width - self.image_width % self.tile_width) % self.tile_width
+ }
+ fn padding_down(&self) -> usize {
+ (self.tile_length - self.image_height % self.tile_length) % self.tile_length
+ }
+ pub fn get_padding(&self, tile: usize) -> (usize, usize) {
+ let row = tile / self.tiles_across();
+ let column = tile % self.tiles_across();
+
+ let padding_right = if column == self.tiles_across() - 1 {
+ self.padding_right()
+ } else {
+ 0
+ };
+
+ let padding_down = if row == self.tiles_down() - 1 {
+ self.padding_down()
+ } else {
+ 0
+ };
+
+ (padding_right, padding_down)
+ }
+}
+
+#[derive(Debug)]
+pub(crate) struct Image {
+ pub ifd: Option<Directory>,
+ pub width: u32,
+ pub height: u32,
+ pub bits_per_sample: Vec<u8>,
+ #[allow(unused)]
+ pub samples: u8,
+ pub sample_format: Vec<SampleFormat>,
+ pub photometric_interpretation: PhotometricInterpretation,
+ pub compression_method: CompressionMethod,
+ pub predictor: Predictor,
+ pub jpeg_tables: Option<Arc<Vec<u8>>>,
+ pub chunk_type: ChunkType,
+ pub strip_decoder: Option<StripDecodeState>,
+ pub tile_attributes: Option<TileAttributes>,
+ pub chunk_offsets: Vec<u64>,
+ pub chunk_bytes: Vec<u64>,
+}
+
+impl Image {
+ pub fn from_reader<R: Read + Seek>(
+ reader: &mut SmartReader<R>,
+ ifd: Directory,
+ limits: &Limits,
+ bigtiff: bool,
+ ) -> TiffResult<Image> {
+ let mut tag_reader = TagReader {
+ reader,
+ limits,
+ ifd: &ifd,
+ bigtiff,
+ };
+
+ let width = tag_reader.require_tag(Tag::ImageWidth)?.into_u32()?;
+ let height = tag_reader.require_tag(Tag::ImageLength)?.into_u32()?;
+ if width == 0 || height == 0 {
+ return Err(TiffError::FormatError(TiffFormatError::InvalidDimensions(
+ width, height,
+ )));
+ }
+
+ let photometric_interpretation = tag_reader
+ .find_tag(Tag::PhotometricInterpretation)?
+ .map(Value::into_u16)
+ .transpose()?
+ .and_then(PhotometricInterpretation::from_u16)
+ .ok_or(TiffUnsupportedError::UnknownInterpretation)?;
+
+ // Try to parse both the compression method and the number, format, and bits of the included samples.
+ // If they are not explicitly specified, those tags are reset to their default values and not carried from previous images.
+ let compression_method = match tag_reader.find_tag(Tag::Compression)? {
+ Some(val) => CompressionMethod::from_u16(val.into_u16()?)
+ .ok_or(TiffUnsupportedError::UnknownCompressionMethod)?,
+ None => CompressionMethod::None,
+ };
+
+ let jpeg_tables = if compression_method == CompressionMethod::ModernJPEG
+ && ifd.contains_key(&Tag::JPEGTables)
+ {
+ let vec = tag_reader
+ .find_tag(Tag::JPEGTables)?
+ .unwrap()
+ .into_u8_vec()?;
+ if vec.len() < 2 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InvalidTagValueType(Tag::JPEGTables),
+ ));
+ }
+
+ Some(Arc::new(vec))
+ } else {
+ None
+ };
+
+ let samples = tag_reader
+ .find_tag(Tag::SamplesPerPixel)?
+ .map(Value::into_u16)
+ .transpose()?
+ .unwrap_or(1)
+ .try_into()?;
+
+ let sample_format = match tag_reader.find_tag_uint_vec(Tag::SampleFormat)? {
+ Some(vals) => {
+ let sample_format: Vec<_> = vals
+ .into_iter()
+ .map(SampleFormat::from_u16_exhaustive)
+ .collect();
+
+ // TODO: for now, only homogenous formats across samples are supported.
+ if !sample_format.windows(2).all(|s| s[0] == s[1]) {
+ return Err(TiffUnsupportedError::UnsupportedSampleFormat(sample_format).into());
+ }
+
+ sample_format
+ }
+ None => vec![SampleFormat::Uint],
+ };
+
+ let bits_per_sample = match samples {
+ 1 | 3 | 4 => tag_reader
+ .find_tag_uint_vec(Tag::BitsPerSample)?
+ .unwrap_or_else(|| vec![1]),
+ _ => return Err(TiffUnsupportedError::UnsupportedSampleDepth(samples).into()),
+ };
+
+ let predictor = tag_reader
+ .find_tag(Tag::Predictor)?
+ .map(Value::into_u16)
+ .transpose()?
+ .map(|p| {
+ Predictor::from_u16(p)
+ .ok_or(TiffError::FormatError(TiffFormatError::UnknownPredictor(p)))
+ })
+ .transpose()?
+ .unwrap_or(Predictor::None);
+
+ let chunk_type;
+ let chunk_offsets;
+ let chunk_bytes;
+ let strip_decoder;
+ let tile_attributes;
+ match (
+ ifd.contains_key(&Tag::StripByteCounts),
+ ifd.contains_key(&Tag::StripOffsets),
+ ifd.contains_key(&Tag::TileByteCounts),
+ ifd.contains_key(&Tag::TileOffsets),
+ ) {
+ (true, true, false, false) => {
+ chunk_type = ChunkType::Strip;
+
+ chunk_offsets = tag_reader
+ .find_tag(Tag::StripOffsets)?
+ .unwrap()
+ .into_u64_vec()?;
+ chunk_bytes = tag_reader
+ .find_tag(Tag::StripByteCounts)?
+ .unwrap()
+ .into_u64_vec()?;
+ let rows_per_strip = tag_reader
+ .find_tag(Tag::RowsPerStrip)?
+ .map(Value::into_u32)
+ .transpose()?
+ .unwrap_or(height);
+ strip_decoder = Some(StripDecodeState { rows_per_strip });
+ tile_attributes = None;
+
+ if chunk_offsets.len() != chunk_bytes.len()
+ || rows_per_strip == 0
+ || u32::try_from(chunk_offsets.len())?
+ != height.saturating_sub(1) / rows_per_strip + 1
+ {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+ }
+ (false, false, true, true) => {
+ chunk_type = ChunkType::Tile;
+
+ let tile_width =
+ usize::try_from(tag_reader.require_tag(Tag::TileWidth)?.into_u32()?)?;
+ let tile_length =
+ usize::try_from(tag_reader.require_tag(Tag::TileLength)?.into_u32()?)?;
+
+ if tile_width == 0 {
+ return Err(TiffFormatError::InvalidTagValueType(Tag::TileWidth).into());
+ } else if tile_length == 0 {
+ return Err(TiffFormatError::InvalidTagValueType(Tag::TileLength).into());
+ }
+
+ strip_decoder = None;
+ tile_attributes = Some(TileAttributes {
+ image_width: usize::try_from(width)?,
+ image_height: usize::try_from(height)?,
+ tile_width,
+ tile_length,
+ });
+ chunk_offsets = tag_reader
+ .find_tag(Tag::TileOffsets)?
+ .unwrap()
+ .into_u64_vec()?;
+ chunk_bytes = tag_reader
+ .find_tag(Tag::TileByteCounts)?
+ .unwrap()
+ .into_u64_vec()?;
+
+ let tile = tile_attributes.as_ref().unwrap();
+ if chunk_offsets.len() != chunk_bytes.len()
+ || chunk_offsets.len() != tile.tiles_down() * tile.tiles_across()
+ {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+ }
+ (_, _, _, _) => {
+ return Err(TiffError::FormatError(
+ TiffFormatError::StripTileTagConflict,
+ ))
+ }
+ };
+
+ Ok(Image {
+ ifd: Some(ifd),
+ width,
+ height,
+ bits_per_sample,
+ samples,
+ sample_format,
+ photometric_interpretation,
+ compression_method,
+ jpeg_tables,
+ predictor,
+ chunk_type,
+ strip_decoder,
+ tile_attributes,
+ chunk_offsets,
+ chunk_bytes,
+ })
+ }
+
+ pub(crate) fn colortype(&self) -> TiffResult<ColorType> {
+ match self.photometric_interpretation {
+ PhotometricInterpretation::RGB => match self.bits_per_sample[..] {
+ [r, g, b] if [r, r] == [g, b] => Ok(ColorType::RGB(r)),
+ [r, g, b, a] if [r, r, r] == [g, b, a] => Ok(ColorType::RGBA(r)),
+ // FIXME: We should _ignore_ other components. In particular:
+ // > Beware of extra components. Some TIFF files may have more components per pixel
+ // than you think. A Baseline TIFF reader must skip over them gracefully,using the
+ // values of the SamplesPerPixel and BitsPerSample fields.
+ // > -- TIFF 6.0 Specification, Section 7, Additional Baseline requirements.
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ },
+ PhotometricInterpretation::CMYK => match self.bits_per_sample[..] {
+ [c, m, y, k] if [c, c, c] == [m, y, k] => Ok(ColorType::CMYK(c)),
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ },
+ PhotometricInterpretation::YCbCr => match self.bits_per_sample[..] {
+ [y, cb, cr] if [y, y] == [cb, cr] => Ok(ColorType::YCbCr(y)),
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ },
+ PhotometricInterpretation::BlackIsZero | PhotometricInterpretation::WhiteIsZero
+ if self.bits_per_sample.len() == 1 =>
+ {
+ Ok(ColorType::Gray(self.bits_per_sample[0]))
+ }
+
+ // TODO: this is bad we should not fail at this point
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ }
+ }
+
+ fn create_reader<'r, R: 'r + Read>(
+ reader: R,
+ photometric_interpretation: PhotometricInterpretation,
+ compression_method: CompressionMethod,
+ compressed_length: u64,
+ jpeg_tables: Option<Arc<Vec<u8>>>,
+ ) -> TiffResult<Box<dyn Read + 'r>> {
+ Ok(match compression_method {
+ CompressionMethod::None => Box::new(reader),
+ CompressionMethod::LZW => {
+ Box::new(LZWReader::new(reader, usize::try_from(compressed_length)?))
+ }
+ CompressionMethod::PackBits => Box::new(PackBitsReader::new(reader, compressed_length)),
+ CompressionMethod::Deflate | CompressionMethod::OldDeflate => {
+ Box::new(DeflateReader::new(reader))
+ }
+ CompressionMethod::ModernJPEG => {
+ if jpeg_tables.is_some() && compressed_length < 2 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InvalidTagValueType(Tag::JPEGTables),
+ ));
+ }
+
+ let jpeg_reader = JpegReader::new(reader, compressed_length, jpeg_tables)?;
+ let mut decoder = jpeg::Decoder::new(jpeg_reader);
+
+ match photometric_interpretation {
+ PhotometricInterpretation::RGB => {
+ decoder.set_color_transform(jpeg::ColorTransform::RGB)
+ }
+ PhotometricInterpretation::WhiteIsZero => {
+ decoder.set_color_transform(jpeg::ColorTransform::None)
+ }
+ PhotometricInterpretation::BlackIsZero => {
+ decoder.set_color_transform(jpeg::ColorTransform::None)
+ }
+ PhotometricInterpretation::TransparencyMask => {
+ decoder.set_color_transform(jpeg::ColorTransform::None)
+ }
+ PhotometricInterpretation::CMYK => {
+ decoder.set_color_transform(jpeg::ColorTransform::CMYK)
+ }
+ PhotometricInterpretation::YCbCr => {
+ decoder.set_color_transform(jpeg::ColorTransform::YCbCr)
+ }
+ photometric_interpretation => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedInterpretation(
+ photometric_interpretation,
+ ),
+ ));
+ }
+ }
+
+ let data = decoder.decode()?;
+
+ Box::new(Cursor::new(data))
+ }
+ method => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedCompressionMethod(method),
+ ))
+ }
+ })
+ }
+
+ pub(crate) fn chunk_file_range(&self, chunk: u32) -> TiffResult<(u64, u64)> {
+ let file_offset = self
+ .chunk_offsets
+ .get(chunk as usize)
+ .ok_or(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ))?;
+
+ let compressed_bytes =
+ self.chunk_bytes
+ .get(chunk as usize)
+ .ok_or(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ))?;
+
+ Ok((*file_offset, *compressed_bytes))
+ }
+
+ pub(crate) fn chunk_dimensions(&self) -> TiffResult<(u32, u32)> {
+ match self.chunk_type {
+ ChunkType::Strip => {
+ let strip_attrs = self.strip_decoder.as_ref().unwrap();
+ Ok((self.width, strip_attrs.rows_per_strip))
+ }
+ ChunkType::Tile => {
+ let tile_attrs = self.tile_attributes.as_ref().unwrap();
+ Ok((
+ u32::try_from(tile_attrs.tile_width)?,
+ u32::try_from(tile_attrs.tile_length)?,
+ ))
+ }
+ }
+ }
+
+ pub(crate) fn chunk_data_dimensions(&self, chunk_index: u32) -> TiffResult<(u32, u32)> {
+ let dims = self.chunk_dimensions()?;
+
+ match self.chunk_type {
+ ChunkType::Strip => {
+ let strip_height_without_padding = chunk_index
+ .checked_mul(dims.1)
+ .and_then(|x| self.height.checked_sub(x))
+ .ok_or(TiffError::UsageError(UsageError::InvalidChunkIndex(
+ chunk_index,
+ )))?;
+
+ // Ignore potential vertical padding on the bottommost strip
+ let strip_height = dims.1.min(strip_height_without_padding);
+
+ Ok((dims.0, strip_height))
+ }
+ ChunkType::Tile => {
+ let tile_attrs = self.tile_attributes.as_ref().unwrap();
+ let (padding_right, padding_down) = tile_attrs.get_padding(chunk_index as usize);
+
+ let tile_width = tile_attrs.tile_width - padding_right;
+ let tile_length = tile_attrs.tile_length - padding_down;
+
+ Ok((u32::try_from(tile_width)?, u32::try_from(tile_length)?))
+ }
+ }
+ }
+
+ pub(crate) fn expand_chunk(
+ &self,
+ reader: impl Read,
+ mut buffer: DecodingBuffer,
+ output_width: usize,
+ byte_order: ByteOrder,
+ chunk_index: u32,
+ ) -> TiffResult<()> {
+ // Validate that the provided buffer is of the expected type.
+ let color_type = self.colortype()?;
+ match (color_type, &buffer) {
+ (ColorType::RGB(n), _)
+ | (ColorType::RGBA(n), _)
+ | (ColorType::CMYK(n), _)
+ | (ColorType::YCbCr(n), _)
+ | (ColorType::Gray(n), _)
+ if usize::from(n) == buffer.byte_len() * 8 => {}
+ (ColorType::Gray(n), DecodingBuffer::U8(_)) if n < 8 => match self.predictor {
+ Predictor::None => {}
+ Predictor::Horizontal => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::HorizontalPredictor(color_type),
+ ))
+ }
+ Predictor::FloatingPoint => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::FloatingPointPredictor(color_type),
+ ));
+ }
+ },
+ (type_, _) => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedColorType(type_),
+ ))
+ }
+ }
+
+ // Validate that the predictor is supported for the sample type.
+ match (self.predictor, &buffer) {
+ (Predictor::Horizontal, DecodingBuffer::F32(_))
+ | (Predictor::Horizontal, DecodingBuffer::F64(_)) => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::HorizontalPredictor(color_type),
+ ));
+ }
+ (Predictor::FloatingPoint, DecodingBuffer::F32(_))
+ | (Predictor::FloatingPoint, DecodingBuffer::F64(_)) => {}
+ (Predictor::FloatingPoint, _) => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::FloatingPointPredictor(color_type),
+ ));
+ }
+ _ => {}
+ }
+
+ let compressed_bytes =
+ self.chunk_bytes
+ .get(chunk_index as usize)
+ .ok_or(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ))?;
+
+ let byte_len = buffer.byte_len();
+ let compression_method = self.compression_method;
+ let photometric_interpretation = self.photometric_interpretation;
+ let predictor = self.predictor;
+ let samples = self.bits_per_sample.len();
+
+ let chunk_dims = self.chunk_dimensions()?;
+ let data_dims = self.chunk_data_dimensions(chunk_index)?;
+
+ let padding_right = chunk_dims.0 - data_dims.0;
+
+ let jpeg_tables = self.jpeg_tables.clone();
+ let mut reader = Self::create_reader(
+ reader,
+ photometric_interpretation,
+ compression_method,
+ *compressed_bytes,
+ jpeg_tables,
+ )?;
+
+ if output_width == data_dims.0 as usize && padding_right == 0 {
+ let total_samples = data_dims.0 as usize * data_dims.1 as usize * samples;
+ let tile = &mut buffer.as_bytes_mut()[..total_samples * byte_len];
+ reader.read_exact(tile)?;
+
+ for row in 0..data_dims.1 as usize {
+ let row_start = row as usize * output_width as usize * samples;
+ let row_end = (row + 1) * output_width as usize * samples;
+ let row = buffer.subrange(row_start..row_end);
+ super::fix_endianness_and_predict(row, samples, byte_order, predictor);
+ }
+ if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
+ super::invert_colors(&mut buffer.subrange(0..total_samples), color_type);
+ }
+ } else if padding_right > 0 && self.predictor == Predictor::FloatingPoint {
+ // The floating point predictor shuffles the padding bytes into the encoded output, so
+ // this case is handled specially when needed.
+ let mut encoded = vec![0u8; chunk_dims.0 as usize * samples * byte_len];
+
+ for row in 0..data_dims.1 as usize {
+ let row_start = row * output_width as usize * samples;
+ let row_end = row_start + data_dims.0 as usize * samples;
+
+ reader.read_exact(&mut encoded)?;
+ match buffer.subrange(row_start..row_end) {
+ DecodingBuffer::F32(buf) => fp_predict_f32(&mut encoded, buf, samples),
+ DecodingBuffer::F64(buf) => fp_predict_f64(&mut encoded, buf, samples),
+ _ => unreachable!(),
+ }
+ if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
+ super::invert_colors(&mut buffer.subrange(row_start..row_end), color_type);
+ }
+ }
+ } else {
+ for row in 0..data_dims.1 as usize {
+ let row_start = row * output_width as usize * samples;
+ let row_end = row_start + data_dims.0 as usize * samples;
+
+ let row = &mut buffer.as_bytes_mut()[(row_start * byte_len)..(row_end * byte_len)];
+ reader.read_exact(row)?;
+
+ // Skip horizontal padding
+ if padding_right > 0 {
+ let len = u64::try_from(padding_right as usize * samples * byte_len)?;
+ io::copy(&mut reader.by_ref().take(len), &mut io::sink())?;
+ }
+
+ let mut row = buffer.subrange(row_start..row_end);
+ super::fix_endianness_and_predict(row.copy(), samples, byte_order, predictor);
+ if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
+ super::invert_colors(&mut row, color_type);
+ }
+ }
+ }
+
+ Ok(())
+ }
+}