summaryrefslogtreecommitdiff
path: root/vendor/tiff/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/tiff/src')
-rw-r--r--vendor/tiff/src/bytecast.rs34
-rw-r--r--vendor/tiff/src/decoder/ifd.rs670
-rw-r--r--vendor/tiff/src/decoder/image.rs601
-rw-r--r--vendor/tiff/src/decoder/mod.rs1176
-rw-r--r--vendor/tiff/src/decoder/stream.rs435
-rw-r--r--vendor/tiff/src/decoder/tag_reader.rs45
-rw-r--r--vendor/tiff/src/encoder/colortype.rs245
-rw-r--r--vendor/tiff/src/encoder/compression/deflate.rs83
-rw-r--r--vendor/tiff/src/encoder/compression/lzw.rs47
-rw-r--r--vendor/tiff/src/encoder/compression/mod.rs60
-rw-r--r--vendor/tiff/src/encoder/compression/packbits.rs214
-rw-r--r--vendor/tiff/src/encoder/compression/uncompressed.rs37
-rw-r--r--vendor/tiff/src/encoder/mod.rs681
-rw-r--r--vendor/tiff/src/encoder/tiff_value.rs523
-rw-r--r--vendor/tiff/src/encoder/writer.rs188
-rw-r--r--vendor/tiff/src/error.rs369
-rw-r--r--vendor/tiff/src/lib.rs43
-rw-r--r--vendor/tiff/src/tags.rs234
18 files changed, 5685 insertions, 0 deletions
diff --git a/vendor/tiff/src/bytecast.rs b/vendor/tiff/src/bytecast.rs
new file mode 100644
index 0000000..6e9d762
--- /dev/null
+++ b/vendor/tiff/src/bytecast.rs
@@ -0,0 +1,34 @@
+//! Trivial, internal byte transmutation.
+//!
+//! A dependency like bytemuck would give us extra assurance of the safety but overall would not
+//! reduce the amount of total unsafety. We don't use it in the interface where the traits would
+//! really become useful.
+//!
+//! SAFETY: These are benign casts as we apply them to fixed size integer types only. All of them
+//! are naturally aligned, valid for all bit patterns and their alignment is surely at most their
+//! size (we assert the latter fact since it is 'implementation defined' if following the letter of
+//! the unsafe code guidelines).
+//!
+//! TODO: Would like to use std-lib here.
+use std::{mem, slice};
+
+macro_rules! integral_slice_as_bytes{($int:ty, $const:ident $(,$mut:ident)*) => {
+ pub(crate) fn $const(slice: &[$int]) -> &[u8] {
+ assert!(mem::align_of::<$int>() <= mem::size_of::<$int>());
+ unsafe { slice::from_raw_parts(slice.as_ptr() as *const u8, mem::size_of_val(slice)) }
+ }
+ $(pub(crate) fn $mut(slice: &mut [$int]) -> &mut [u8] {
+ assert!(mem::align_of::<$int>() <= mem::size_of::<$int>());
+ unsafe { slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut u8, mem::size_of_val(slice)) }
+ })*
+}}
+
+integral_slice_as_bytes!(i8, i8_as_ne_bytes, i8_as_ne_mut_bytes);
+integral_slice_as_bytes!(u16, u16_as_ne_bytes, u16_as_ne_mut_bytes);
+integral_slice_as_bytes!(i16, i16_as_ne_bytes, i16_as_ne_mut_bytes);
+integral_slice_as_bytes!(u32, u32_as_ne_bytes, u32_as_ne_mut_bytes);
+integral_slice_as_bytes!(i32, i32_as_ne_bytes, i32_as_ne_mut_bytes);
+integral_slice_as_bytes!(u64, u64_as_ne_bytes, u64_as_ne_mut_bytes);
+integral_slice_as_bytes!(i64, i64_as_ne_bytes, i64_as_ne_mut_bytes);
+integral_slice_as_bytes!(f32, f32_as_ne_bytes, f32_as_ne_mut_bytes);
+integral_slice_as_bytes!(f64, f64_as_ne_bytes, f64_as_ne_mut_bytes);
diff --git a/vendor/tiff/src/decoder/ifd.rs b/vendor/tiff/src/decoder/ifd.rs
new file mode 100644
index 0000000..b05513d
--- /dev/null
+++ b/vendor/tiff/src/decoder/ifd.rs
@@ -0,0 +1,670 @@
+//! Function for reading TIFF tags
+
+use std::collections::HashMap;
+use std::convert::{TryFrom, TryInto};
+use std::io::{self, Read, Seek};
+use std::mem;
+use std::str;
+
+use super::stream::{ByteOrder, EndianReader, SmartReader};
+use crate::tags::{Tag, Type};
+use crate::{TiffError, TiffFormatError, TiffResult};
+
+use self::Value::{
+ Ascii, Byte, Double, Float, Ifd, IfdBig, List, Rational, RationalBig, SRational, SRationalBig,
+ Short, Signed, SignedBig, Unsigned, UnsignedBig,
+};
+
+#[allow(unused_qualifications)]
+#[derive(Debug, Clone, PartialEq)]
+#[non_exhaustive]
+pub enum Value {
+ Byte(u8),
+ Short(u16),
+ Signed(i32),
+ SignedBig(i64),
+ Unsigned(u32),
+ UnsignedBig(u64),
+ Float(f32),
+ Double(f64),
+ List(Vec<Value>),
+ Rational(u32, u32),
+ RationalBig(u64, u64),
+ SRational(i32, i32),
+ SRationalBig(i64, i64),
+ Ascii(String),
+ Ifd(u32),
+ IfdBig(u64),
+}
+
+impl Value {
+ pub fn into_u8(self) -> TiffResult<u8> {
+ match self {
+ Byte(val) => Ok(val),
+ val => Err(TiffError::FormatError(TiffFormatError::ByteExpected(val))),
+ }
+ }
+
+ pub fn into_u16(self) -> TiffResult<u16> {
+ match self {
+ Short(val) => Ok(val),
+ Unsigned(val) => Ok(u16::try_from(val)?),
+ UnsignedBig(val) => Ok(u16::try_from(val)?),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_u32(self) -> TiffResult<u32> {
+ match self {
+ Short(val) => Ok(val.into()),
+ Unsigned(val) => Ok(val),
+ UnsignedBig(val) => Ok(u32::try_from(val)?),
+ Ifd(val) => Ok(val),
+ IfdBig(val) => Ok(u32::try_from(val)?),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_i32(self) -> TiffResult<i32> {
+ match self {
+ Signed(val) => Ok(val),
+ SignedBig(val) => Ok(i32::try_from(val)?),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_u64(self) -> TiffResult<u64> {
+ match self {
+ Short(val) => Ok(val.into()),
+ Unsigned(val) => Ok(val.into()),
+ UnsignedBig(val) => Ok(val),
+ Ifd(val) => Ok(val.into()),
+ IfdBig(val) => Ok(val),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_i64(self) -> TiffResult<i64> {
+ match self {
+ Signed(val) => Ok(val.into()),
+ SignedBig(val) => Ok(val),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_f32(self) -> TiffResult<f32> {
+ match self {
+ Float(val) => Ok(val),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_f64(self) -> TiffResult<f64> {
+ match self {
+ Double(val) => Ok(val),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_string(self) -> TiffResult<String> {
+ match self {
+ Ascii(val) => Ok(val),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_u32_vec(self) -> TiffResult<Vec<u32>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ new_vec.push(v.into_u32()?)
+ }
+ Ok(new_vec)
+ }
+ Unsigned(val) => Ok(vec![val]),
+ UnsignedBig(val) => Ok(vec![u32::try_from(val)?]),
+ Rational(numerator, denominator) => Ok(vec![numerator, denominator]),
+ RationalBig(numerator, denominator) => {
+ Ok(vec![u32::try_from(numerator)?, u32::try_from(denominator)?])
+ }
+ Ifd(val) => Ok(vec![val]),
+ IfdBig(val) => Ok(vec![u32::try_from(val)?]),
+ Ascii(val) => Ok(val.chars().map(u32::from).collect()),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_u8_vec(self) -> TiffResult<Vec<u8>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ new_vec.push(v.into_u8()?)
+ }
+ Ok(new_vec)
+ }
+ Byte(val) => Ok(vec![val]),
+
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_u16_vec(self) -> TiffResult<Vec<u16>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ new_vec.push(v.into_u16()?)
+ }
+ Ok(new_vec)
+ }
+ Short(val) => Ok(vec![val]),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_i32_vec(self) -> TiffResult<Vec<i32>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ match v {
+ SRational(numerator, denominator) => {
+ new_vec.push(numerator);
+ new_vec.push(denominator);
+ }
+ SRationalBig(numerator, denominator) => {
+ new_vec.push(i32::try_from(numerator)?);
+ new_vec.push(i32::try_from(denominator)?);
+ }
+ _ => new_vec.push(v.into_i32()?),
+ }
+ }
+ Ok(new_vec)
+ }
+ Signed(val) => Ok(vec![val]),
+ SignedBig(val) => Ok(vec![i32::try_from(val)?]),
+ SRational(numerator, denominator) => Ok(vec![numerator, denominator]),
+ SRationalBig(numerator, denominator) => {
+ Ok(vec![i32::try_from(numerator)?, i32::try_from(denominator)?])
+ }
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_f32_vec(self) -> TiffResult<Vec<f32>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ new_vec.push(v.into_f32()?)
+ }
+ Ok(new_vec)
+ }
+ Float(val) => Ok(vec![val]),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_f64_vec(self) -> TiffResult<Vec<f64>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ new_vec.push(v.into_f64()?)
+ }
+ Ok(new_vec)
+ }
+ Double(val) => Ok(vec![val]),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_u64_vec(self) -> TiffResult<Vec<u64>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ new_vec.push(v.into_u64()?)
+ }
+ Ok(new_vec)
+ }
+ Unsigned(val) => Ok(vec![val.into()]),
+ UnsignedBig(val) => Ok(vec![val]),
+ Rational(numerator, denominator) => Ok(vec![numerator.into(), denominator.into()]),
+ RationalBig(numerator, denominator) => Ok(vec![numerator, denominator]),
+ Ifd(val) => Ok(vec![val.into()]),
+ IfdBig(val) => Ok(vec![val]),
+ Ascii(val) => Ok(val.chars().map(u32::from).map(u64::from).collect()),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::UnsignedIntegerExpected(val),
+ )),
+ }
+ }
+
+ pub fn into_i64_vec(self) -> TiffResult<Vec<i64>> {
+ match self {
+ List(vec) => {
+ let mut new_vec = Vec::with_capacity(vec.len());
+ for v in vec {
+ match v {
+ SRational(numerator, denominator) => {
+ new_vec.push(numerator.into());
+ new_vec.push(denominator.into());
+ }
+ SRationalBig(numerator, denominator) => {
+ new_vec.push(numerator);
+ new_vec.push(denominator);
+ }
+ _ => new_vec.push(v.into_i64()?),
+ }
+ }
+ Ok(new_vec)
+ }
+ Signed(val) => Ok(vec![val.into()]),
+ SignedBig(val) => Ok(vec![val]),
+ SRational(numerator, denominator) => Ok(vec![numerator.into(), denominator.into()]),
+ SRationalBig(numerator, denominator) => Ok(vec![numerator, denominator]),
+ val => Err(TiffError::FormatError(
+ TiffFormatError::SignedIntegerExpected(val),
+ )),
+ }
+ }
+}
+
+#[derive(Clone)]
+pub struct Entry {
+ type_: Type,
+ count: u64,
+ offset: [u8; 8],
+}
+
+impl ::std::fmt::Debug for Entry {
+ fn fmt(&self, fmt: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> {
+ fmt.write_str(&format!(
+ "Entry {{ type_: {:?}, count: {:?}, offset: {:?} }}",
+ self.type_, self.count, &self.offset
+ ))
+ }
+}
+
+impl Entry {
+ pub fn new(type_: Type, count: u32, offset: [u8; 4]) -> Entry {
+ let mut offset = offset.to_vec();
+ offset.append(&mut vec![0; 4]);
+ Entry::new_u64(type_, count.into(), offset[..].try_into().unwrap())
+ }
+
+ pub fn new_u64(type_: Type, count: u64, offset: [u8; 8]) -> Entry {
+ Entry {
+ type_,
+ count,
+ offset,
+ }
+ }
+
+ /// Returns a mem_reader for the offset/value field
+ fn r(&self, byte_order: ByteOrder) -> SmartReader<io::Cursor<Vec<u8>>> {
+ SmartReader::wrap(io::Cursor::new(self.offset.to_vec()), byte_order)
+ }
+
+ pub fn val<R: Read + Seek>(
+ &self,
+ limits: &super::Limits,
+ bigtiff: bool,
+ reader: &mut SmartReader<R>,
+ ) -> TiffResult<Value> {
+ // Case 1: there are no values so we can return immediately.
+ if self.count == 0 {
+ return Ok(List(Vec::new()));
+ }
+
+ let bo = reader.byte_order();
+
+ let tag_size = match self.type_ {
+ Type::BYTE | Type::SBYTE | Type::ASCII | Type::UNDEFINED => 1,
+ Type::SHORT | Type::SSHORT => 2,
+ Type::LONG | Type::SLONG | Type::FLOAT | Type::IFD => 4,
+ Type::LONG8
+ | Type::SLONG8
+ | Type::DOUBLE
+ | Type::RATIONAL
+ | Type::SRATIONAL
+ | Type::IFD8 => 8,
+ };
+
+ let value_bytes = match self.count.checked_mul(tag_size) {
+ Some(n) => n,
+ None => {
+ return Err(TiffError::LimitsExceeded);
+ }
+ };
+
+ // Case 2: there is one value.
+ if self.count == 1 {
+ // 2a: the value is 5-8 bytes and we're in BigTiff mode.
+ if bigtiff && value_bytes > 4 && value_bytes <= 8 {
+ return Ok(match self.type_ {
+ Type::LONG8 => UnsignedBig(self.r(bo).read_u64()?),
+ Type::SLONG8 => SignedBig(self.r(bo).read_i64()?),
+ Type::DOUBLE => Double(self.r(bo).read_f64()?),
+ Type::RATIONAL => {
+ let mut r = self.r(bo);
+ Rational(r.read_u32()?, r.read_u32()?)
+ }
+ Type::SRATIONAL => {
+ let mut r = self.r(bo);
+ SRational(r.read_i32()?, r.read_i32()?)
+ }
+ Type::IFD8 => IfdBig(self.r(bo).read_u64()?),
+ Type::BYTE
+ | Type::SBYTE
+ | Type::ASCII
+ | Type::UNDEFINED
+ | Type::SHORT
+ | Type::SSHORT
+ | Type::LONG
+ | Type::SLONG
+ | Type::FLOAT
+ | Type::IFD => unreachable!(),
+ });
+ }
+
+ // 2b: the value is at most 4 bytes or doesn't fit in the offset field.
+ return Ok(match self.type_ {
+ Type::BYTE => Unsigned(u32::from(self.offset[0])),
+ Type::SBYTE => Signed(i32::from(self.offset[0] as i8)),
+ Type::UNDEFINED => Byte(self.offset[0]),
+ Type::SHORT => Unsigned(u32::from(self.r(bo).read_u16()?)),
+ Type::SSHORT => Signed(i32::from(self.r(bo).read_i16()?)),
+ Type::LONG => Unsigned(self.r(bo).read_u32()?),
+ Type::SLONG => Signed(self.r(bo).read_i32()?),
+ Type::FLOAT => Float(self.r(bo).read_f32()?),
+ Type::ASCII => {
+ if self.offset[0] == 0 {
+ Ascii("".to_string())
+ } else {
+ return Err(TiffError::FormatError(TiffFormatError::InvalidTag));
+ }
+ }
+ Type::LONG8 => {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?;
+ UnsignedBig(reader.read_u64()?)
+ }
+ Type::SLONG8 => {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?;
+ SignedBig(reader.read_i64()?)
+ }
+ Type::DOUBLE => {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?;
+ Double(reader.read_f64()?)
+ }
+ Type::RATIONAL => {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?;
+ Rational(reader.read_u32()?, reader.read_u32()?)
+ }
+ Type::SRATIONAL => {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?;
+ SRational(reader.read_i32()?, reader.read_i32()?)
+ }
+ Type::IFD => Ifd(self.r(bo).read_u32()?),
+ Type::IFD8 => {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?;
+ IfdBig(reader.read_u64()?)
+ }
+ });
+ }
+
+ // Case 3: There is more than one value, but it fits in the offset field.
+ if value_bytes <= 4 || bigtiff && value_bytes <= 8 {
+ match self.type_ {
+ Type::BYTE => return offset_to_bytes(self.count as usize, self),
+ Type::SBYTE => return offset_to_sbytes(self.count as usize, self),
+ Type::ASCII => {
+ let mut buf = vec![0; self.count as usize];
+ self.r(bo).read_exact(&mut buf)?;
+ if buf.is_ascii() && buf.ends_with(&[0]) {
+ let v = str::from_utf8(&buf)?;
+ let v = v.trim_matches(char::from(0));
+ return Ok(Ascii(v.into()));
+ } else {
+ return Err(TiffError::FormatError(TiffFormatError::InvalidTag));
+ }
+ }
+ Type::UNDEFINED => {
+ return Ok(List(
+ self.offset[0..self.count as usize]
+ .iter()
+ .map(|&b| Byte(b))
+ .collect(),
+ ));
+ }
+ Type::SHORT => {
+ let mut r = self.r(bo);
+ let mut v = Vec::new();
+ for _ in 0..self.count {
+ v.push(Short(r.read_u16()?));
+ }
+ return Ok(List(v));
+ }
+ Type::SSHORT => {
+ let mut r = self.r(bo);
+ let mut v = Vec::new();
+ for _ in 0..self.count {
+ v.push(Signed(i32::from(r.read_i16()?)));
+ }
+ return Ok(List(v));
+ }
+ Type::LONG => {
+ let mut r = self.r(bo);
+ let mut v = Vec::new();
+ for _ in 0..self.count {
+ v.push(Unsigned(r.read_u32()?));
+ }
+ return Ok(List(v));
+ }
+ Type::SLONG => {
+ let mut r = self.r(bo);
+ let mut v = Vec::new();
+ for _ in 0..self.count {
+ v.push(Signed(r.read_i32()?));
+ }
+ return Ok(List(v));
+ }
+ Type::FLOAT => {
+ let mut r = self.r(bo);
+ let mut v = Vec::new();
+ for _ in 0..self.count {
+ v.push(Float(r.read_f32()?));
+ }
+ return Ok(List(v));
+ }
+ Type::IFD => {
+ let mut r = self.r(bo);
+ let mut v = Vec::new();
+ for _ in 0..self.count {
+ v.push(Ifd(r.read_u32()?));
+ }
+ return Ok(List(v));
+ }
+ Type::LONG8
+ | Type::SLONG8
+ | Type::RATIONAL
+ | Type::SRATIONAL
+ | Type::DOUBLE
+ | Type::IFD8 => {
+ unreachable!()
+ }
+ }
+ }
+
+ // Case 4: there is more than one value, and it doesn't fit in the offset field.
+ match self.type_ {
+ // TODO check if this could give wrong results
+ // at a different endianess of file/computer.
+ Type::BYTE => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ let mut buf = [0; 1];
+ reader.read_exact(&mut buf)?;
+ Ok(UnsignedBig(u64::from(buf[0])))
+ }),
+ Type::SBYTE => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(SignedBig(i64::from(reader.read_i8()? as i8)))
+ }),
+ Type::SHORT => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(UnsignedBig(u64::from(reader.read_u16()?)))
+ }),
+ Type::SSHORT => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(SignedBig(i64::from(reader.read_i16()?)))
+ }),
+ Type::LONG => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(Unsigned(reader.read_u32()?))
+ }),
+ Type::SLONG => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(Signed(reader.read_i32()?))
+ }),
+ Type::FLOAT => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(Float(reader.read_f32()?))
+ }),
+ Type::DOUBLE => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(Double(reader.read_f64()?))
+ }),
+ Type::RATIONAL => {
+ self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(Rational(reader.read_u32()?, reader.read_u32()?))
+ })
+ }
+ Type::SRATIONAL => {
+ self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(SRational(reader.read_i32()?, reader.read_i32()?))
+ })
+ }
+ Type::LONG8 => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(UnsignedBig(reader.read_u64()?))
+ }),
+ Type::SLONG8 => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(SignedBig(reader.read_i64()?))
+ }),
+ Type::IFD => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(Ifd(reader.read_u32()?))
+ }),
+ Type::IFD8 => self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ Ok(IfdBig(reader.read_u64()?))
+ }),
+ Type::UNDEFINED => {
+ self.decode_offset(self.count, bo, bigtiff, limits, reader, |reader| {
+ let mut buf = [0; 1];
+ reader.read_exact(&mut buf)?;
+ Ok(Byte(buf[0]))
+ })
+ }
+ Type::ASCII => {
+ let n = usize::try_from(self.count)?;
+ if n > limits.decoding_buffer_size {
+ return Err(TiffError::LimitsExceeded);
+ }
+
+ if bigtiff {
+ reader.goto_offset(self.r(bo).read_u64()?)?
+ } else {
+ reader.goto_offset(self.r(bo).read_u32()?.into())?
+ }
+
+ let mut out = vec![0; n];
+ reader.read_exact(&mut out)?;
+ // Strings may be null-terminated, so we trim anything downstream of the null byte
+ if let Some(first) = out.iter().position(|&b| b == 0) {
+ out.truncate(first);
+ }
+ Ok(Ascii(String::from_utf8(out)?))
+ }
+ }
+ }
+
+ #[inline]
+ fn decode_offset<R, F>(
+ &self,
+ value_count: u64,
+ bo: ByteOrder,
+ bigtiff: bool,
+ limits: &super::Limits,
+ reader: &mut SmartReader<R>,
+ decode_fn: F,
+ ) -> TiffResult<Value>
+ where
+ R: Read + Seek,
+ F: Fn(&mut SmartReader<R>) -> TiffResult<Value>,
+ {
+ let value_count = usize::try_from(value_count)?;
+ if value_count > limits.decoding_buffer_size / mem::size_of::<Value>() {
+ return Err(TiffError::LimitsExceeded);
+ }
+
+ let mut v = Vec::with_capacity(value_count);
+
+ let offset = if bigtiff {
+ self.r(bo).read_u64()?
+ } else {
+ self.r(bo).read_u32()?.into()
+ };
+ reader.goto_offset(offset)?;
+
+ for _ in 0..value_count {
+ v.push(decode_fn(reader)?)
+ }
+ Ok(List(v))
+ }
+}
+
+/// Extracts a list of BYTE tags stored in an offset
+#[inline]
+fn offset_to_bytes(n: usize, entry: &Entry) -> TiffResult<Value> {
+ Ok(List(
+ entry.offset[0..n]
+ .iter()
+ .map(|&e| Unsigned(u32::from(e)))
+ .collect(),
+ ))
+}
+
+/// Extracts a list of SBYTE tags stored in an offset
+#[inline]
+fn offset_to_sbytes(n: usize, entry: &Entry) -> TiffResult<Value> {
+ Ok(List(
+ entry.offset[0..n]
+ .iter()
+ .map(|&e| Signed(i32::from(e as i8)))
+ .collect(),
+ ))
+}
+
+/// Type representing an Image File Directory
+pub type Directory = HashMap<Tag, Entry>;
diff --git a/vendor/tiff/src/decoder/image.rs b/vendor/tiff/src/decoder/image.rs
new file mode 100644
index 0000000..c037e31
--- /dev/null
+++ b/vendor/tiff/src/decoder/image.rs
@@ -0,0 +1,601 @@
+use super::ifd::{Directory, Value};
+use super::stream::{ByteOrder, DeflateReader, JpegReader, LZWReader, PackBitsReader};
+use super::tag_reader::TagReader;
+use super::{fp_predict_f32, fp_predict_f64, DecodingBuffer, Limits};
+use super::{stream::SmartReader, ChunkType};
+use crate::tags::{CompressionMethod, PhotometricInterpretation, Predictor, SampleFormat, Tag};
+use crate::{ColorType, TiffError, TiffFormatError, TiffResult, TiffUnsupportedError, UsageError};
+use std::convert::{TryFrom, TryInto};
+use std::io::{self, Cursor, Read, Seek};
+use std::sync::Arc;
+
+#[derive(Debug)]
+pub(crate) struct StripDecodeState {
+ pub rows_per_strip: u32,
+}
+
+#[derive(Debug)]
+/// Computed values useful for tile decoding
+pub(crate) struct TileAttributes {
+ pub image_width: usize,
+ pub image_height: usize,
+
+ pub tile_width: usize,
+ pub tile_length: usize,
+}
+
+impl TileAttributes {
+ pub fn tiles_across(&self) -> usize {
+ (self.image_width + self.tile_width - 1) / self.tile_width
+ }
+ pub fn tiles_down(&self) -> usize {
+ (self.image_height + self.tile_length - 1) / self.tile_length
+ }
+ fn padding_right(&self) -> usize {
+ (self.tile_width - self.image_width % self.tile_width) % self.tile_width
+ }
+ fn padding_down(&self) -> usize {
+ (self.tile_length - self.image_height % self.tile_length) % self.tile_length
+ }
+ pub fn get_padding(&self, tile: usize) -> (usize, usize) {
+ let row = tile / self.tiles_across();
+ let column = tile % self.tiles_across();
+
+ let padding_right = if column == self.tiles_across() - 1 {
+ self.padding_right()
+ } else {
+ 0
+ };
+
+ let padding_down = if row == self.tiles_down() - 1 {
+ self.padding_down()
+ } else {
+ 0
+ };
+
+ (padding_right, padding_down)
+ }
+}
+
+#[derive(Debug)]
+pub(crate) struct Image {
+ pub ifd: Option<Directory>,
+ pub width: u32,
+ pub height: u32,
+ pub bits_per_sample: Vec<u8>,
+ #[allow(unused)]
+ pub samples: u8,
+ pub sample_format: Vec<SampleFormat>,
+ pub photometric_interpretation: PhotometricInterpretation,
+ pub compression_method: CompressionMethod,
+ pub predictor: Predictor,
+ pub jpeg_tables: Option<Arc<Vec<u8>>>,
+ pub chunk_type: ChunkType,
+ pub strip_decoder: Option<StripDecodeState>,
+ pub tile_attributes: Option<TileAttributes>,
+ pub chunk_offsets: Vec<u64>,
+ pub chunk_bytes: Vec<u64>,
+}
+
+impl Image {
+ pub fn from_reader<R: Read + Seek>(
+ reader: &mut SmartReader<R>,
+ ifd: Directory,
+ limits: &Limits,
+ bigtiff: bool,
+ ) -> TiffResult<Image> {
+ let mut tag_reader = TagReader {
+ reader,
+ limits,
+ ifd: &ifd,
+ bigtiff,
+ };
+
+ let width = tag_reader.require_tag(Tag::ImageWidth)?.into_u32()?;
+ let height = tag_reader.require_tag(Tag::ImageLength)?.into_u32()?;
+ if width == 0 || height == 0 {
+ return Err(TiffError::FormatError(TiffFormatError::InvalidDimensions(
+ width, height,
+ )));
+ }
+
+ let photometric_interpretation = tag_reader
+ .find_tag(Tag::PhotometricInterpretation)?
+ .map(Value::into_u16)
+ .transpose()?
+ .and_then(PhotometricInterpretation::from_u16)
+ .ok_or(TiffUnsupportedError::UnknownInterpretation)?;
+
+ // Try to parse both the compression method and the number, format, and bits of the included samples.
+ // If they are not explicitly specified, those tags are reset to their default values and not carried from previous images.
+ let compression_method = match tag_reader.find_tag(Tag::Compression)? {
+ Some(val) => CompressionMethod::from_u16(val.into_u16()?)
+ .ok_or(TiffUnsupportedError::UnknownCompressionMethod)?,
+ None => CompressionMethod::None,
+ };
+
+ let jpeg_tables = if compression_method == CompressionMethod::ModernJPEG
+ && ifd.contains_key(&Tag::JPEGTables)
+ {
+ let vec = tag_reader
+ .find_tag(Tag::JPEGTables)?
+ .unwrap()
+ .into_u8_vec()?;
+ if vec.len() < 2 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InvalidTagValueType(Tag::JPEGTables),
+ ));
+ }
+
+ Some(Arc::new(vec))
+ } else {
+ None
+ };
+
+ let samples = tag_reader
+ .find_tag(Tag::SamplesPerPixel)?
+ .map(Value::into_u16)
+ .transpose()?
+ .unwrap_or(1)
+ .try_into()?;
+
+ let sample_format = match tag_reader.find_tag_uint_vec(Tag::SampleFormat)? {
+ Some(vals) => {
+ let sample_format: Vec<_> = vals
+ .into_iter()
+ .map(SampleFormat::from_u16_exhaustive)
+ .collect();
+
+ // TODO: for now, only homogenous formats across samples are supported.
+ if !sample_format.windows(2).all(|s| s[0] == s[1]) {
+ return Err(TiffUnsupportedError::UnsupportedSampleFormat(sample_format).into());
+ }
+
+ sample_format
+ }
+ None => vec![SampleFormat::Uint],
+ };
+
+ let bits_per_sample = match samples {
+ 1 | 3 | 4 => tag_reader
+ .find_tag_uint_vec(Tag::BitsPerSample)?
+ .unwrap_or_else(|| vec![1]),
+ _ => return Err(TiffUnsupportedError::UnsupportedSampleDepth(samples).into()),
+ };
+
+ let predictor = tag_reader
+ .find_tag(Tag::Predictor)?
+ .map(Value::into_u16)
+ .transpose()?
+ .map(|p| {
+ Predictor::from_u16(p)
+ .ok_or(TiffError::FormatError(TiffFormatError::UnknownPredictor(p)))
+ })
+ .transpose()?
+ .unwrap_or(Predictor::None);
+
+ let chunk_type;
+ let chunk_offsets;
+ let chunk_bytes;
+ let strip_decoder;
+ let tile_attributes;
+ match (
+ ifd.contains_key(&Tag::StripByteCounts),
+ ifd.contains_key(&Tag::StripOffsets),
+ ifd.contains_key(&Tag::TileByteCounts),
+ ifd.contains_key(&Tag::TileOffsets),
+ ) {
+ (true, true, false, false) => {
+ chunk_type = ChunkType::Strip;
+
+ chunk_offsets = tag_reader
+ .find_tag(Tag::StripOffsets)?
+ .unwrap()
+ .into_u64_vec()?;
+ chunk_bytes = tag_reader
+ .find_tag(Tag::StripByteCounts)?
+ .unwrap()
+ .into_u64_vec()?;
+ let rows_per_strip = tag_reader
+ .find_tag(Tag::RowsPerStrip)?
+ .map(Value::into_u32)
+ .transpose()?
+ .unwrap_or(height);
+ strip_decoder = Some(StripDecodeState { rows_per_strip });
+ tile_attributes = None;
+
+ if chunk_offsets.len() != chunk_bytes.len()
+ || rows_per_strip == 0
+ || u32::try_from(chunk_offsets.len())?
+ != height.saturating_sub(1) / rows_per_strip + 1
+ {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+ }
+ (false, false, true, true) => {
+ chunk_type = ChunkType::Tile;
+
+ let tile_width =
+ usize::try_from(tag_reader.require_tag(Tag::TileWidth)?.into_u32()?)?;
+ let tile_length =
+ usize::try_from(tag_reader.require_tag(Tag::TileLength)?.into_u32()?)?;
+
+ if tile_width == 0 {
+ return Err(TiffFormatError::InvalidTagValueType(Tag::TileWidth).into());
+ } else if tile_length == 0 {
+ return Err(TiffFormatError::InvalidTagValueType(Tag::TileLength).into());
+ }
+
+ strip_decoder = None;
+ tile_attributes = Some(TileAttributes {
+ image_width: usize::try_from(width)?,
+ image_height: usize::try_from(height)?,
+ tile_width,
+ tile_length,
+ });
+ chunk_offsets = tag_reader
+ .find_tag(Tag::TileOffsets)?
+ .unwrap()
+ .into_u64_vec()?;
+ chunk_bytes = tag_reader
+ .find_tag(Tag::TileByteCounts)?
+ .unwrap()
+ .into_u64_vec()?;
+
+ let tile = tile_attributes.as_ref().unwrap();
+ if chunk_offsets.len() != chunk_bytes.len()
+ || chunk_offsets.len() != tile.tiles_down() * tile.tiles_across()
+ {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+ }
+ (_, _, _, _) => {
+ return Err(TiffError::FormatError(
+ TiffFormatError::StripTileTagConflict,
+ ))
+ }
+ };
+
+ Ok(Image {
+ ifd: Some(ifd),
+ width,
+ height,
+ bits_per_sample,
+ samples,
+ sample_format,
+ photometric_interpretation,
+ compression_method,
+ jpeg_tables,
+ predictor,
+ chunk_type,
+ strip_decoder,
+ tile_attributes,
+ chunk_offsets,
+ chunk_bytes,
+ })
+ }
+
+ pub(crate) fn colortype(&self) -> TiffResult<ColorType> {
+ match self.photometric_interpretation {
+ PhotometricInterpretation::RGB => match self.bits_per_sample[..] {
+ [r, g, b] if [r, r] == [g, b] => Ok(ColorType::RGB(r)),
+ [r, g, b, a] if [r, r, r] == [g, b, a] => Ok(ColorType::RGBA(r)),
+ // FIXME: We should _ignore_ other components. In particular:
+ // > Beware of extra components. Some TIFF files may have more components per pixel
+ // than you think. A Baseline TIFF reader must skip over them gracefully,using the
+ // values of the SamplesPerPixel and BitsPerSample fields.
+ // > -- TIFF 6.0 Specification, Section 7, Additional Baseline requirements.
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ },
+ PhotometricInterpretation::CMYK => match self.bits_per_sample[..] {
+ [c, m, y, k] if [c, c, c] == [m, y, k] => Ok(ColorType::CMYK(c)),
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ },
+ PhotometricInterpretation::YCbCr => match self.bits_per_sample[..] {
+ [y, cb, cr] if [y, y] == [cb, cr] => Ok(ColorType::YCbCr(y)),
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ },
+ PhotometricInterpretation::BlackIsZero | PhotometricInterpretation::WhiteIsZero
+ if self.bits_per_sample.len() == 1 =>
+ {
+ Ok(ColorType::Gray(self.bits_per_sample[0]))
+ }
+
+ // TODO: this is bad we should not fail at this point
+ _ => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::InterpretationWithBits(
+ self.photometric_interpretation,
+ self.bits_per_sample.clone(),
+ ),
+ )),
+ }
+ }
+
+ fn create_reader<'r, R: 'r + Read>(
+ reader: R,
+ photometric_interpretation: PhotometricInterpretation,
+ compression_method: CompressionMethod,
+ compressed_length: u64,
+ jpeg_tables: Option<Arc<Vec<u8>>>,
+ ) -> TiffResult<Box<dyn Read + 'r>> {
+ Ok(match compression_method {
+ CompressionMethod::None => Box::new(reader),
+ CompressionMethod::LZW => {
+ Box::new(LZWReader::new(reader, usize::try_from(compressed_length)?))
+ }
+ CompressionMethod::PackBits => Box::new(PackBitsReader::new(reader, compressed_length)),
+ CompressionMethod::Deflate | CompressionMethod::OldDeflate => {
+ Box::new(DeflateReader::new(reader))
+ }
+ CompressionMethod::ModernJPEG => {
+ if jpeg_tables.is_some() && compressed_length < 2 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InvalidTagValueType(Tag::JPEGTables),
+ ));
+ }
+
+ let jpeg_reader = JpegReader::new(reader, compressed_length, jpeg_tables)?;
+ let mut decoder = jpeg::Decoder::new(jpeg_reader);
+
+ match photometric_interpretation {
+ PhotometricInterpretation::RGB => {
+ decoder.set_color_transform(jpeg::ColorTransform::RGB)
+ }
+ PhotometricInterpretation::WhiteIsZero => {
+ decoder.set_color_transform(jpeg::ColorTransform::None)
+ }
+ PhotometricInterpretation::BlackIsZero => {
+ decoder.set_color_transform(jpeg::ColorTransform::None)
+ }
+ PhotometricInterpretation::TransparencyMask => {
+ decoder.set_color_transform(jpeg::ColorTransform::None)
+ }
+ PhotometricInterpretation::CMYK => {
+ decoder.set_color_transform(jpeg::ColorTransform::CMYK)
+ }
+ PhotometricInterpretation::YCbCr => {
+ decoder.set_color_transform(jpeg::ColorTransform::YCbCr)
+ }
+ photometric_interpretation => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedInterpretation(
+ photometric_interpretation,
+ ),
+ ));
+ }
+ }
+
+ let data = decoder.decode()?;
+
+ Box::new(Cursor::new(data))
+ }
+ method => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedCompressionMethod(method),
+ ))
+ }
+ })
+ }
+
+ pub(crate) fn chunk_file_range(&self, chunk: u32) -> TiffResult<(u64, u64)> {
+ let file_offset = self
+ .chunk_offsets
+ .get(chunk as usize)
+ .ok_or(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ))?;
+
+ let compressed_bytes =
+ self.chunk_bytes
+ .get(chunk as usize)
+ .ok_or(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ))?;
+
+ Ok((*file_offset, *compressed_bytes))
+ }
+
+ pub(crate) fn chunk_dimensions(&self) -> TiffResult<(u32, u32)> {
+ match self.chunk_type {
+ ChunkType::Strip => {
+ let strip_attrs = self.strip_decoder.as_ref().unwrap();
+ Ok((self.width, strip_attrs.rows_per_strip))
+ }
+ ChunkType::Tile => {
+ let tile_attrs = self.tile_attributes.as_ref().unwrap();
+ Ok((
+ u32::try_from(tile_attrs.tile_width)?,
+ u32::try_from(tile_attrs.tile_length)?,
+ ))
+ }
+ }
+ }
+
+ pub(crate) fn chunk_data_dimensions(&self, chunk_index: u32) -> TiffResult<(u32, u32)> {
+ let dims = self.chunk_dimensions()?;
+
+ match self.chunk_type {
+ ChunkType::Strip => {
+ let strip_height_without_padding = chunk_index
+ .checked_mul(dims.1)
+ .and_then(|x| self.height.checked_sub(x))
+ .ok_or(TiffError::UsageError(UsageError::InvalidChunkIndex(
+ chunk_index,
+ )))?;
+
+ // Ignore potential vertical padding on the bottommost strip
+ let strip_height = dims.1.min(strip_height_without_padding);
+
+ Ok((dims.0, strip_height))
+ }
+ ChunkType::Tile => {
+ let tile_attrs = self.tile_attributes.as_ref().unwrap();
+ let (padding_right, padding_down) = tile_attrs.get_padding(chunk_index as usize);
+
+ let tile_width = tile_attrs.tile_width - padding_right;
+ let tile_length = tile_attrs.tile_length - padding_down;
+
+ Ok((u32::try_from(tile_width)?, u32::try_from(tile_length)?))
+ }
+ }
+ }
+
+ pub(crate) fn expand_chunk(
+ &self,
+ reader: impl Read,
+ mut buffer: DecodingBuffer,
+ output_width: usize,
+ byte_order: ByteOrder,
+ chunk_index: u32,
+ ) -> TiffResult<()> {
+ // Validate that the provided buffer is of the expected type.
+ let color_type = self.colortype()?;
+ match (color_type, &buffer) {
+ (ColorType::RGB(n), _)
+ | (ColorType::RGBA(n), _)
+ | (ColorType::CMYK(n), _)
+ | (ColorType::YCbCr(n), _)
+ | (ColorType::Gray(n), _)
+ if usize::from(n) == buffer.byte_len() * 8 => {}
+ (ColorType::Gray(n), DecodingBuffer::U8(_)) if n < 8 => match self.predictor {
+ Predictor::None => {}
+ Predictor::Horizontal => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::HorizontalPredictor(color_type),
+ ))
+ }
+ Predictor::FloatingPoint => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::FloatingPointPredictor(color_type),
+ ));
+ }
+ },
+ (type_, _) => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedColorType(type_),
+ ))
+ }
+ }
+
+ // Validate that the predictor is supported for the sample type.
+ match (self.predictor, &buffer) {
+ (Predictor::Horizontal, DecodingBuffer::F32(_))
+ | (Predictor::Horizontal, DecodingBuffer::F64(_)) => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::HorizontalPredictor(color_type),
+ ));
+ }
+ (Predictor::FloatingPoint, DecodingBuffer::F32(_))
+ | (Predictor::FloatingPoint, DecodingBuffer::F64(_)) => {}
+ (Predictor::FloatingPoint, _) => {
+ return Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::FloatingPointPredictor(color_type),
+ ));
+ }
+ _ => {}
+ }
+
+ let compressed_bytes =
+ self.chunk_bytes
+ .get(chunk_index as usize)
+ .ok_or(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ))?;
+
+ let byte_len = buffer.byte_len();
+ let compression_method = self.compression_method;
+ let photometric_interpretation = self.photometric_interpretation;
+ let predictor = self.predictor;
+ let samples = self.bits_per_sample.len();
+
+ let chunk_dims = self.chunk_dimensions()?;
+ let data_dims = self.chunk_data_dimensions(chunk_index)?;
+
+ let padding_right = chunk_dims.0 - data_dims.0;
+
+ let jpeg_tables = self.jpeg_tables.clone();
+ let mut reader = Self::create_reader(
+ reader,
+ photometric_interpretation,
+ compression_method,
+ *compressed_bytes,
+ jpeg_tables,
+ )?;
+
+ if output_width == data_dims.0 as usize && padding_right == 0 {
+ let total_samples = data_dims.0 as usize * data_dims.1 as usize * samples;
+ let tile = &mut buffer.as_bytes_mut()[..total_samples * byte_len];
+ reader.read_exact(tile)?;
+
+ for row in 0..data_dims.1 as usize {
+ let row_start = row as usize * output_width as usize * samples;
+ let row_end = (row + 1) * output_width as usize * samples;
+ let row = buffer.subrange(row_start..row_end);
+ super::fix_endianness_and_predict(row, samples, byte_order, predictor);
+ }
+ if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
+ super::invert_colors(&mut buffer.subrange(0..total_samples), color_type);
+ }
+ } else if padding_right > 0 && self.predictor == Predictor::FloatingPoint {
+ // The floating point predictor shuffles the padding bytes into the encoded output, so
+ // this case is handled specially when needed.
+ let mut encoded = vec![0u8; chunk_dims.0 as usize * samples * byte_len];
+
+ for row in 0..data_dims.1 as usize {
+ let row_start = row * output_width as usize * samples;
+ let row_end = row_start + data_dims.0 as usize * samples;
+
+ reader.read_exact(&mut encoded)?;
+ match buffer.subrange(row_start..row_end) {
+ DecodingBuffer::F32(buf) => fp_predict_f32(&mut encoded, buf, samples),
+ DecodingBuffer::F64(buf) => fp_predict_f64(&mut encoded, buf, samples),
+ _ => unreachable!(),
+ }
+ if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
+ super::invert_colors(&mut buffer.subrange(row_start..row_end), color_type);
+ }
+ }
+ } else {
+ for row in 0..data_dims.1 as usize {
+ let row_start = row * output_width as usize * samples;
+ let row_end = row_start + data_dims.0 as usize * samples;
+
+ let row = &mut buffer.as_bytes_mut()[(row_start * byte_len)..(row_end * byte_len)];
+ reader.read_exact(row)?;
+
+ // Skip horizontal padding
+ if padding_right > 0 {
+ let len = u64::try_from(padding_right as usize * samples * byte_len)?;
+ io::copy(&mut reader.by_ref().take(len), &mut io::sink())?;
+ }
+
+ let mut row = buffer.subrange(row_start..row_end);
+ super::fix_endianness_and_predict(row.copy(), samples, byte_order, predictor);
+ if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
+ super::invert_colors(&mut row, color_type);
+ }
+ }
+ }
+
+ Ok(())
+ }
+}
diff --git a/vendor/tiff/src/decoder/mod.rs b/vendor/tiff/src/decoder/mod.rs
new file mode 100644
index 0000000..5fa1812
--- /dev/null
+++ b/vendor/tiff/src/decoder/mod.rs
@@ -0,0 +1,1176 @@
+use std::collections::{HashMap, HashSet};
+use std::convert::TryFrom;
+use std::io::{self, Read, Seek};
+use std::ops::Range;
+
+use crate::{
+ bytecast, ColorType, TiffError, TiffFormatError, TiffResult, TiffUnsupportedError, UsageError,
+};
+
+use self::ifd::Directory;
+use self::image::Image;
+use crate::tags::{
+ CompressionMethod, PhotometricInterpretation, Predictor, SampleFormat, Tag, Type,
+};
+
+use self::stream::{ByteOrder, EndianReader, SmartReader};
+
+pub mod ifd;
+mod image;
+mod stream;
+mod tag_reader;
+
+/// Result of a decoding process
+#[derive(Debug)]
+pub enum DecodingResult {
+ /// A vector of unsigned bytes
+ U8(Vec<u8>),
+ /// A vector of unsigned words
+ U16(Vec<u16>),
+ /// A vector of 32 bit unsigned ints
+ U32(Vec<u32>),
+ /// A vector of 64 bit unsigned ints
+ U64(Vec<u64>),
+ /// A vector of 32 bit IEEE floats
+ F32(Vec<f32>),
+ /// A vector of 64 bit IEEE floats
+ F64(Vec<f64>),
+ /// A vector of 8 bit signed ints
+ I8(Vec<i8>),
+ /// A vector of 16 bit signed ints
+ I16(Vec<i16>),
+ /// A vector of 32 bit signed ints
+ I32(Vec<i32>),
+ /// A vector of 64 bit signed ints
+ I64(Vec<i64>),
+}
+
+impl DecodingResult {
+ fn new_u8(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::U8(vec![0; size]))
+ }
+ }
+
+ fn new_u16(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / 2 {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::U16(vec![0; size]))
+ }
+ }
+
+ fn new_u32(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / 4 {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::U32(vec![0; size]))
+ }
+ }
+
+ fn new_u64(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / 8 {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::U64(vec![0; size]))
+ }
+ }
+
+ fn new_f32(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / std::mem::size_of::<f32>() {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::F32(vec![0.0; size]))
+ }
+ }
+
+ fn new_f64(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / std::mem::size_of::<f64>() {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::F64(vec![0.0; size]))
+ }
+ }
+
+ fn new_i8(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / std::mem::size_of::<i8>() {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::I8(vec![0; size]))
+ }
+ }
+
+ fn new_i16(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / 2 {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::I16(vec![0; size]))
+ }
+ }
+
+ fn new_i32(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / 4 {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::I32(vec![0; size]))
+ }
+ }
+
+ fn new_i64(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
+ if size > limits.decoding_buffer_size / 8 {
+ Err(TiffError::LimitsExceeded)
+ } else {
+ Ok(DecodingResult::I64(vec![0; size]))
+ }
+ }
+
+ pub fn as_buffer(&mut self, start: usize) -> DecodingBuffer {
+ match *self {
+ DecodingResult::U8(ref mut buf) => DecodingBuffer::U8(&mut buf[start..]),
+ DecodingResult::U16(ref mut buf) => DecodingBuffer::U16(&mut buf[start..]),
+ DecodingResult::U32(ref mut buf) => DecodingBuffer::U32(&mut buf[start..]),
+ DecodingResult::U64(ref mut buf) => DecodingBuffer::U64(&mut buf[start..]),
+ DecodingResult::F32(ref mut buf) => DecodingBuffer::F32(&mut buf[start..]),
+ DecodingResult::F64(ref mut buf) => DecodingBuffer::F64(&mut buf[start..]),
+ DecodingResult::I8(ref mut buf) => DecodingBuffer::I8(&mut buf[start..]),
+ DecodingResult::I16(ref mut buf) => DecodingBuffer::I16(&mut buf[start..]),
+ DecodingResult::I32(ref mut buf) => DecodingBuffer::I32(&mut buf[start..]),
+ DecodingResult::I64(ref mut buf) => DecodingBuffer::I64(&mut buf[start..]),
+ }
+ }
+}
+
+// A buffer for image decoding
+pub enum DecodingBuffer<'a> {
+ /// A slice of unsigned bytes
+ U8(&'a mut [u8]),
+ /// A slice of unsigned words
+ U16(&'a mut [u16]),
+ /// A slice of 32 bit unsigned ints
+ U32(&'a mut [u32]),
+ /// A slice of 64 bit unsigned ints
+ U64(&'a mut [u64]),
+ /// A slice of 32 bit IEEE floats
+ F32(&'a mut [f32]),
+ /// A slice of 64 bit IEEE floats
+ F64(&'a mut [f64]),
+ /// A slice of 8 bits signed ints
+ I8(&'a mut [i8]),
+ /// A slice of 16 bits signed ints
+ I16(&'a mut [i16]),
+ /// A slice of 32 bits signed ints
+ I32(&'a mut [i32]),
+ /// A slice of 64 bits signed ints
+ I64(&'a mut [i64]),
+}
+
+impl<'a> DecodingBuffer<'a> {
+ fn byte_len(&self) -> usize {
+ match *self {
+ DecodingBuffer::U8(_) => 1,
+ DecodingBuffer::U16(_) => 2,
+ DecodingBuffer::U32(_) => 4,
+ DecodingBuffer::U64(_) => 8,
+ DecodingBuffer::F32(_) => 4,
+ DecodingBuffer::F64(_) => 8,
+ DecodingBuffer::I8(_) => 1,
+ DecodingBuffer::I16(_) => 2,
+ DecodingBuffer::I32(_) => 4,
+ DecodingBuffer::I64(_) => 8,
+ }
+ }
+
+ fn copy<'b>(&'b mut self) -> DecodingBuffer<'b>
+ where
+ 'a: 'b,
+ {
+ match *self {
+ DecodingBuffer::U8(ref mut buf) => DecodingBuffer::U8(buf),
+ DecodingBuffer::U16(ref mut buf) => DecodingBuffer::U16(buf),
+ DecodingBuffer::U32(ref mut buf) => DecodingBuffer::U32(buf),
+ DecodingBuffer::U64(ref mut buf) => DecodingBuffer::U64(buf),
+ DecodingBuffer::F32(ref mut buf) => DecodingBuffer::F32(buf),
+ DecodingBuffer::F64(ref mut buf) => DecodingBuffer::F64(buf),
+ DecodingBuffer::I8(ref mut buf) => DecodingBuffer::I8(buf),
+ DecodingBuffer::I16(ref mut buf) => DecodingBuffer::I16(buf),
+ DecodingBuffer::I32(ref mut buf) => DecodingBuffer::I32(buf),
+ DecodingBuffer::I64(ref mut buf) => DecodingBuffer::I64(buf),
+ }
+ }
+
+ fn subrange<'b>(&'b mut self, range: Range<usize>) -> DecodingBuffer<'b>
+ where
+ 'a: 'b,
+ {
+ match *self {
+ DecodingBuffer::U8(ref mut buf) => DecodingBuffer::U8(&mut buf[range]),
+ DecodingBuffer::U16(ref mut buf) => DecodingBuffer::U16(&mut buf[range]),
+ DecodingBuffer::U32(ref mut buf) => DecodingBuffer::U32(&mut buf[range]),
+ DecodingBuffer::U64(ref mut buf) => DecodingBuffer::U64(&mut buf[range]),
+ DecodingBuffer::F32(ref mut buf) => DecodingBuffer::F32(&mut buf[range]),
+ DecodingBuffer::F64(ref mut buf) => DecodingBuffer::F64(&mut buf[range]),
+ DecodingBuffer::I8(ref mut buf) => DecodingBuffer::I8(&mut buf[range]),
+ DecodingBuffer::I16(ref mut buf) => DecodingBuffer::I16(&mut buf[range]),
+ DecodingBuffer::I32(ref mut buf) => DecodingBuffer::I32(&mut buf[range]),
+ DecodingBuffer::I64(ref mut buf) => DecodingBuffer::I64(&mut buf[range]),
+ }
+ }
+
+ fn as_bytes_mut(&mut self) -> &mut [u8] {
+ match self {
+ DecodingBuffer::U8(buf) => &mut *buf,
+ DecodingBuffer::I8(buf) => bytecast::i8_as_ne_mut_bytes(buf),
+ DecodingBuffer::U16(buf) => bytecast::u16_as_ne_mut_bytes(buf),
+ DecodingBuffer::I16(buf) => bytecast::i16_as_ne_mut_bytes(buf),
+ DecodingBuffer::U32(buf) => bytecast::u32_as_ne_mut_bytes(buf),
+ DecodingBuffer::I32(buf) => bytecast::i32_as_ne_mut_bytes(buf),
+ DecodingBuffer::U64(buf) => bytecast::u64_as_ne_mut_bytes(buf),
+ DecodingBuffer::I64(buf) => bytecast::i64_as_ne_mut_bytes(buf),
+ DecodingBuffer::F32(buf) => bytecast::f32_as_ne_mut_bytes(buf),
+ DecodingBuffer::F64(buf) => bytecast::f64_as_ne_mut_bytes(buf),
+ }
+ }
+}
+
+#[derive(Debug, Copy, Clone, PartialEq)]
+/// Chunk type of the internal representation
+pub enum ChunkType {
+ Strip,
+ Tile,
+}
+
+/// Decoding limits
+#[derive(Clone, Debug)]
+pub struct Limits {
+ /// The maximum size of any `DecodingResult` in bytes, the default is
+ /// 256MiB. If the entire image is decoded at once, then this will
+ /// be the maximum size of the image. If it is decoded one strip at a
+ /// time, this will be the maximum size of a strip.
+ pub decoding_buffer_size: usize,
+ /// The maximum size of any ifd value in bytes, the default is
+ /// 1MiB.
+ pub ifd_value_size: usize,
+ /// Maximum size for intermediate buffer which may be used to limit the amount of data read per
+ /// segment even if the entire image is decoded at once.
+ pub intermediate_buffer_size: usize,
+ /// The purpose of this is to prevent all the fields of the struct from
+ /// being public, as this would make adding new fields a major version
+ /// bump.
+ _non_exhaustive: (),
+}
+
+impl Limits {
+ /// A configuration that does not impose any limits.
+ ///
+ /// This is a good start if the caller only wants to impose selective limits, contrary to the
+ /// default limits which allows selectively disabling limits.
+ ///
+ /// Note that this configuration is likely to crash on excessively large images since,
+ /// naturally, the machine running the program does not have infinite memory.
+ pub fn unlimited() -> Limits {
+ Limits {
+ decoding_buffer_size: usize::max_value(),
+ ifd_value_size: usize::max_value(),
+ intermediate_buffer_size: usize::max_value(),
+ _non_exhaustive: (),
+ }
+ }
+}
+
+impl Default for Limits {
+ fn default() -> Limits {
+ Limits {
+ decoding_buffer_size: 256 * 1024 * 1024,
+ intermediate_buffer_size: 128 * 1024 * 1024,
+ ifd_value_size: 1024 * 1024,
+ _non_exhaustive: (),
+ }
+ }
+}
+
+/// The representation of a TIFF decoder
+///
+/// Currently does not support decoding of interlaced images
+#[derive(Debug)]
+pub struct Decoder<R>
+where
+ R: Read + Seek,
+{
+ reader: SmartReader<R>,
+ bigtiff: bool,
+ limits: Limits,
+ next_ifd: Option<u64>,
+ ifd_offsets: Vec<u64>,
+ seen_ifds: HashSet<u64>,
+ image: Image,
+}
+
+trait Wrapping {
+ fn wrapping_add(&self, other: Self) -> Self;
+}
+
+impl Wrapping for u8 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ u8::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for u16 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ u16::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for u32 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ u32::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for u64 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ u64::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for i8 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ i8::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for i16 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ i16::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for i32 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ i32::wrapping_add(*self, other)
+ }
+}
+
+impl Wrapping for i64 {
+ fn wrapping_add(&self, other: Self) -> Self {
+ i64::wrapping_add(*self, other)
+ }
+}
+
+fn rev_hpredict_nsamp<T: Copy + Wrapping>(image: &mut [T], samples: usize) {
+ for col in samples..image.len() {
+ image[col] = image[col].wrapping_add(image[col - samples]);
+ }
+}
+
+pub fn fp_predict_f32(input: &mut [u8], output: &mut [f32], samples: usize) {
+ rev_hpredict_nsamp(input, samples);
+ for i in 0..output.len() {
+ // TODO: use f32::from_be_bytes() when we can (version 1.40)
+ output[i] = f32::from_bits(u32::from_be_bytes([
+ input[input.len() / 4 * 0 + i],
+ input[input.len() / 4 * 1 + i],
+ input[input.len() / 4 * 2 + i],
+ input[input.len() / 4 * 3 + i],
+ ]));
+ }
+}
+
+pub fn fp_predict_f64(input: &mut [u8], output: &mut [f64], samples: usize) {
+ rev_hpredict_nsamp(input, samples);
+ for i in 0..output.len() {
+ // TODO: use f64::from_be_bytes() when we can (version 1.40)
+ output[i] = f64::from_bits(u64::from_be_bytes([
+ input[input.len() / 8 * 0 + i],
+ input[input.len() / 8 * 1 + i],
+ input[input.len() / 8 * 2 + i],
+ input[input.len() / 8 * 3 + i],
+ input[input.len() / 8 * 4 + i],
+ input[input.len() / 8 * 5 + i],
+ input[input.len() / 8 * 6 + i],
+ input[input.len() / 8 * 7 + i],
+ ]));
+ }
+}
+
+fn fix_endianness_and_predict(
+ mut image: DecodingBuffer,
+ samples: usize,
+ byte_order: ByteOrder,
+ predictor: Predictor,
+) {
+ match predictor {
+ Predictor::None => {
+ fix_endianness(&mut image, byte_order);
+ }
+ Predictor::Horizontal => {
+ fix_endianness(&mut image, byte_order);
+ match image {
+ DecodingBuffer::U8(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::U16(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::U32(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::U64(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::I8(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::I16(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::I32(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::I64(buf) => rev_hpredict_nsamp(buf, samples),
+ DecodingBuffer::F32(_) | DecodingBuffer::F64(_) => {
+ unreachable!("Caller should have validated arguments. Please file a bug.")
+ }
+ }
+ }
+ Predictor::FloatingPoint => {
+ let mut buffer_copy = image.as_bytes_mut().to_vec();
+ match image {
+ DecodingBuffer::F32(buf) => fp_predict_f32(&mut buffer_copy, buf, samples),
+ DecodingBuffer::F64(buf) => fp_predict_f64(&mut buffer_copy, buf, samples),
+ _ => unreachable!("Caller should have validated arguments. Please file a bug."),
+ }
+ }
+ }
+}
+
+fn invert_colors_unsigned<T>(buffer: &mut [T], max: T)
+where
+ T: std::ops::Sub<T> + std::ops::Sub<Output = T> + Copy,
+{
+ for datum in buffer.iter_mut() {
+ *datum = max - *datum
+ }
+}
+
+fn invert_colors_fp<T>(buffer: &mut [T], max: T)
+where
+ T: std::ops::Sub<T> + std::ops::Sub<Output = T> + Copy,
+{
+ for datum in buffer.iter_mut() {
+ // FIXME: assumes [0, 1) range for floats
+ *datum = max - *datum
+ }
+}
+
+fn invert_colors(buf: &mut DecodingBuffer, color_type: ColorType) {
+ match (color_type, buf) {
+ (ColorType::Gray(64), DecodingBuffer::U64(ref mut buffer)) => {
+ invert_colors_unsigned(buffer, 0xffff_ffff_ffff_ffff);
+ }
+ (ColorType::Gray(32), DecodingBuffer::U32(ref mut buffer)) => {
+ invert_colors_unsigned(buffer, 0xffff_ffff);
+ }
+ (ColorType::Gray(16), DecodingBuffer::U16(ref mut buffer)) => {
+ invert_colors_unsigned(buffer, 0xffff);
+ }
+ (ColorType::Gray(n), DecodingBuffer::U8(ref mut buffer)) if n <= 8 => {
+ invert_colors_unsigned(buffer, 0xff);
+ }
+ (ColorType::Gray(32), DecodingBuffer::F32(ref mut buffer)) => {
+ invert_colors_fp(buffer, 1.0);
+ }
+ (ColorType::Gray(64), DecodingBuffer::F64(ref mut buffer)) => {
+ invert_colors_fp(buffer, 1.0);
+ }
+ _ => {}
+ }
+}
+
+/// Fix endianness. If `byte_order` matches the host, then conversion is a no-op.
+fn fix_endianness(buf: &mut DecodingBuffer, byte_order: ByteOrder) {
+ match byte_order {
+ ByteOrder::LittleEndian => match buf {
+ DecodingBuffer::U8(_) | DecodingBuffer::I8(_) => {}
+ DecodingBuffer::U16(b) => b.iter_mut().for_each(|v| *v = u16::from_le(*v)),
+ DecodingBuffer::I16(b) => b.iter_mut().for_each(|v| *v = i16::from_le(*v)),
+ DecodingBuffer::U32(b) => b.iter_mut().for_each(|v| *v = u32::from_le(*v)),
+ DecodingBuffer::I32(b) => b.iter_mut().for_each(|v| *v = i32::from_le(*v)),
+ DecodingBuffer::U64(b) => b.iter_mut().for_each(|v| *v = u64::from_le(*v)),
+ DecodingBuffer::I64(b) => b.iter_mut().for_each(|v| *v = i64::from_le(*v)),
+ DecodingBuffer::F32(b) => b
+ .iter_mut()
+ .for_each(|v| *v = f32::from_bits(u32::from_le(v.to_bits()))),
+ DecodingBuffer::F64(b) => b
+ .iter_mut()
+ .for_each(|v| *v = f64::from_bits(u64::from_le(v.to_bits()))),
+ },
+ ByteOrder::BigEndian => match buf {
+ DecodingBuffer::U8(_) | DecodingBuffer::I8(_) => {}
+ DecodingBuffer::U16(b) => b.iter_mut().for_each(|v| *v = u16::from_be(*v)),
+ DecodingBuffer::I16(b) => b.iter_mut().for_each(|v| *v = i16::from_be(*v)),
+ DecodingBuffer::U32(b) => b.iter_mut().for_each(|v| *v = u32::from_be(*v)),
+ DecodingBuffer::I32(b) => b.iter_mut().for_each(|v| *v = i32::from_be(*v)),
+ DecodingBuffer::U64(b) => b.iter_mut().for_each(|v| *v = u64::from_be(*v)),
+ DecodingBuffer::I64(b) => b.iter_mut().for_each(|v| *v = i64::from_be(*v)),
+ DecodingBuffer::F32(b) => b
+ .iter_mut()
+ .for_each(|v| *v = f32::from_bits(u32::from_be(v.to_bits()))),
+ DecodingBuffer::F64(b) => b
+ .iter_mut()
+ .for_each(|v| *v = f64::from_bits(u64::from_be(v.to_bits()))),
+ },
+ };
+}
+
+impl<R: Read + Seek> Decoder<R> {
+ /// Create a new decoder that decodes from the stream ```r```
+ pub fn new(mut r: R) -> TiffResult<Decoder<R>> {
+ let mut endianess = Vec::with_capacity(2);
+ (&mut r).take(2).read_to_end(&mut endianess)?;
+ let byte_order = match &*endianess {
+ b"II" => ByteOrder::LittleEndian,
+ b"MM" => ByteOrder::BigEndian,
+ _ => {
+ return Err(TiffError::FormatError(
+ TiffFormatError::TiffSignatureNotFound,
+ ))
+ }
+ };
+ let mut reader = SmartReader::wrap(r, byte_order);
+
+ let bigtiff = match reader.read_u16()? {
+ 42 => false,
+ 43 => {
+ // Read bytesize of offsets (in bigtiff it's alway 8 but provide a way to move to 16 some day)
+ if reader.read_u16()? != 8 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::TiffSignatureNotFound,
+ ));
+ }
+ // This constant should always be 0
+ if reader.read_u16()? != 0 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::TiffSignatureNotFound,
+ ));
+ }
+ true
+ }
+ _ => {
+ return Err(TiffError::FormatError(
+ TiffFormatError::TiffSignatureInvalid,
+ ))
+ }
+ };
+ let next_ifd = if bigtiff {
+ Some(reader.read_u64()?)
+ } else {
+ Some(u64::from(reader.read_u32()?))
+ };
+
+ let mut seen_ifds = HashSet::new();
+ seen_ifds.insert(*next_ifd.as_ref().unwrap());
+ let ifd_offsets = vec![*next_ifd.as_ref().unwrap()];
+
+ let mut decoder = Decoder {
+ reader,
+ bigtiff,
+ limits: Default::default(),
+ next_ifd,
+ ifd_offsets,
+ seen_ifds,
+ image: Image {
+ ifd: None,
+ width: 0,
+ height: 0,
+ bits_per_sample: vec![1],
+ samples: 1,
+ sample_format: vec![SampleFormat::Uint],
+ photometric_interpretation: PhotometricInterpretation::BlackIsZero,
+ compression_method: CompressionMethod::None,
+ jpeg_tables: None,
+ predictor: Predictor::None,
+ chunk_type: ChunkType::Strip,
+ strip_decoder: None,
+ tile_attributes: None,
+ chunk_offsets: Vec::new(),
+ chunk_bytes: Vec::new(),
+ },
+ };
+ decoder.next_image()?;
+ Ok(decoder)
+ }
+
+ pub fn with_limits(mut self, limits: Limits) -> Decoder<R> {
+ self.limits = limits;
+ self
+ }
+
+ pub fn dimensions(&mut self) -> TiffResult<(u32, u32)> {
+ Ok((self.image().width, self.image().height))
+ }
+
+ pub fn colortype(&mut self) -> TiffResult<ColorType> {
+ self.image().colortype()
+ }
+
+ fn image(&self) -> &Image {
+ &self.image
+ }
+
+ /// Loads the IFD at the specified index in the list, if one exists
+ pub fn seek_to_image(&mut self, ifd_index: usize) -> TiffResult<()> {
+ // Check whether we have seen this IFD before, if so then the index will be less than the length of the list of ifd offsets
+ if ifd_index >= self.ifd_offsets.len() {
+ // We possibly need to load in the next IFD
+ if self.next_ifd.is_none() {
+ return Err(TiffError::FormatError(
+ TiffFormatError::ImageFileDirectoryNotFound,
+ ));
+ }
+
+ loop {
+ // Follow the list until we find the one we want, or we reach the end, whichever happens first
+ let (_ifd, next_ifd) = self.next_ifd()?;
+
+ if next_ifd.is_none() {
+ break;
+ }
+
+ if ifd_index < self.ifd_offsets.len() {
+ break;
+ }
+ }
+ }
+
+ // If the index is within the list of ifds then we can load the selected image/IFD
+ if let Some(ifd_offset) = self.ifd_offsets.get(ifd_index) {
+ let (ifd, _next_ifd) = Self::read_ifd(&mut self.reader, self.bigtiff, *ifd_offset)?;
+
+ self.image = Image::from_reader(&mut self.reader, ifd, &self.limits, self.bigtiff)?;
+
+ Ok(())
+ } else {
+ Err(TiffError::FormatError(
+ TiffFormatError::ImageFileDirectoryNotFound,
+ ))
+ }
+ }
+
+ fn next_ifd(&mut self) -> TiffResult<(Directory, Option<u64>)> {
+ if self.next_ifd.is_none() {
+ return Err(TiffError::FormatError(
+ TiffFormatError::ImageFileDirectoryNotFound,
+ ));
+ }
+
+ let (ifd, next_ifd) = Self::read_ifd(
+ &mut self.reader,
+ self.bigtiff,
+ self.next_ifd.take().unwrap(),
+ )?;
+
+ if let Some(next) = next_ifd {
+ if !self.seen_ifds.insert(next) {
+ return Err(TiffError::FormatError(TiffFormatError::CycleInOffsets));
+ }
+ self.next_ifd = Some(next);
+ self.ifd_offsets.push(next);
+ }
+
+ Ok((ifd, next_ifd))
+ }
+
+ /// Reads in the next image.
+ /// If there is no further image in the TIFF file a format error is returned.
+ /// To determine whether there are more images call `TIFFDecoder::more_images` instead.
+ pub fn next_image(&mut self) -> TiffResult<()> {
+ let (ifd, _next_ifd) = self.next_ifd()?;
+
+ self.image = Image::from_reader(&mut self.reader, ifd, &self.limits, self.bigtiff)?;
+ Ok(())
+ }
+
+ /// Returns `true` if there is at least one more image available.
+ pub fn more_images(&self) -> bool {
+ self.next_ifd.is_some()
+ }
+
+ /// Returns the byte_order
+ pub fn byte_order(&self) -> ByteOrder {
+ self.reader.byte_order
+ }
+
+ #[inline]
+ pub fn read_ifd_offset(&mut self) -> Result<u64, io::Error> {
+ if self.bigtiff {
+ self.read_long8()
+ } else {
+ self.read_long().map(u64::from)
+ }
+ }
+
+ /// Reads a TIFF byte value
+ #[inline]
+ pub fn read_byte(&mut self) -> Result<u8, io::Error> {
+ let mut buf = [0; 1];
+ self.reader.read_exact(&mut buf)?;
+ Ok(buf[0])
+ }
+
+ /// Reads a TIFF short value
+ #[inline]
+ pub fn read_short(&mut self) -> Result<u16, io::Error> {
+ self.reader.read_u16()
+ }
+
+ /// Reads a TIFF sshort value
+ #[inline]
+ pub fn read_sshort(&mut self) -> Result<i16, io::Error> {
+ self.reader.read_i16()
+ }
+
+ /// Reads a TIFF long value
+ #[inline]
+ pub fn read_long(&mut self) -> Result<u32, io::Error> {
+ self.reader.read_u32()
+ }
+
+ /// Reads a TIFF slong value
+ #[inline]
+ pub fn read_slong(&mut self) -> Result<i32, io::Error> {
+ self.reader.read_i32()
+ }
+
+ /// Reads a TIFF float value
+ #[inline]
+ pub fn read_float(&mut self) -> Result<f32, io::Error> {
+ self.reader.read_f32()
+ }
+
+ /// Reads a TIFF double value
+ #[inline]
+ pub fn read_double(&mut self) -> Result<f64, io::Error> {
+ self.reader.read_f64()
+ }
+
+ #[inline]
+ pub fn read_long8(&mut self) -> Result<u64, io::Error> {
+ self.reader.read_u64()
+ }
+
+ #[inline]
+ pub fn read_slong8(&mut self) -> Result<i64, io::Error> {
+ self.reader.read_i64()
+ }
+
+ /// Reads a string
+ #[inline]
+ pub fn read_string(&mut self, length: usize) -> TiffResult<String> {
+ let mut out = vec![0; length];
+ self.reader.read_exact(&mut out)?;
+ // Strings may be null-terminated, so we trim anything downstream of the null byte
+ if let Some(first) = out.iter().position(|&b| b == 0) {
+ out.truncate(first);
+ }
+ Ok(String::from_utf8(out)?)
+ }
+
+ /// Reads a TIFF IFA offset/value field
+ #[inline]
+ pub fn read_offset(&mut self) -> TiffResult<[u8; 4]> {
+ if self.bigtiff {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+ let mut val = [0; 4];
+ self.reader.read_exact(&mut val)?;
+ Ok(val)
+ }
+
+ /// Reads a TIFF IFA offset/value field
+ #[inline]
+ pub fn read_offset_u64(&mut self) -> Result<[u8; 8], io::Error> {
+ let mut val = [0; 8];
+ self.reader.read_exact(&mut val)?;
+ Ok(val)
+ }
+
+ /// Moves the cursor to the specified offset
+ #[inline]
+ pub fn goto_offset(&mut self, offset: u32) -> io::Result<()> {
+ self.goto_offset_u64(offset.into())
+ }
+
+ #[inline]
+ pub fn goto_offset_u64(&mut self, offset: u64) -> io::Result<()> {
+ self.reader.seek(io::SeekFrom::Start(offset)).map(|_| ())
+ }
+
+ /// Reads a IFD entry.
+ // An IFD entry has four fields:
+ //
+ // Tag 2 bytes
+ // Type 2 bytes
+ // Count 4 bytes
+ // Value 4 bytes either a pointer the value itself
+ fn read_entry(
+ reader: &mut SmartReader<R>,
+ bigtiff: bool,
+ ) -> TiffResult<Option<(Tag, ifd::Entry)>> {
+ let tag = Tag::from_u16_exhaustive(reader.read_u16()?);
+ let type_ = match Type::from_u16(reader.read_u16()?) {
+ Some(t) => t,
+ None => {
+ // Unknown type. Skip this entry according to spec.
+ reader.read_u32()?;
+ reader.read_u32()?;
+ return Ok(None);
+ }
+ };
+ let entry = if bigtiff {
+ let mut offset = [0; 8];
+
+ let count = reader.read_u64()?;
+ reader.read_exact(&mut offset)?;
+ ifd::Entry::new_u64(type_, count, offset)
+ } else {
+ let mut offset = [0; 4];
+
+ let count = reader.read_u32()?;
+ reader.read_exact(&mut offset)?;
+ ifd::Entry::new(type_, count, offset)
+ };
+ Ok(Some((tag, entry)))
+ }
+
+ /// Reads the IFD starting at the indicated location.
+ fn read_ifd(
+ reader: &mut SmartReader<R>,
+ bigtiff: bool,
+ ifd_location: u64,
+ ) -> TiffResult<(Directory, Option<u64>)> {
+ reader.goto_offset(ifd_location)?;
+
+ let mut dir: Directory = HashMap::new();
+
+ let num_tags = if bigtiff {
+ reader.read_u64()?
+ } else {
+ reader.read_u16()?.into()
+ };
+ for _ in 0..num_tags {
+ let (tag, entry) = match Self::read_entry(reader, bigtiff)? {
+ Some(val) => val,
+ None => {
+ continue;
+ } // Unknown data type in tag, skip
+ };
+ dir.insert(tag, entry);
+ }
+
+ let next_ifd = if bigtiff {
+ reader.read_u64()?
+ } else {
+ reader.read_u32()?.into()
+ };
+
+ let next_ifd = match next_ifd {
+ 0 => None,
+ _ => Some(next_ifd),
+ };
+
+ Ok((dir, next_ifd))
+ }
+
+ /// Tries to retrieve a tag.
+ /// Return `Ok(None)` if the tag is not present.
+ pub fn find_tag(&mut self, tag: Tag) -> TiffResult<Option<ifd::Value>> {
+ let entry = match self.image().ifd.as_ref().unwrap().get(&tag) {
+ None => return Ok(None),
+ Some(entry) => entry.clone(),
+ };
+
+ Ok(Some(entry.val(
+ &self.limits,
+ self.bigtiff,
+ &mut self.reader,
+ )?))
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired unsigned type.
+ pub fn find_tag_unsigned<T: TryFrom<u64>>(&mut self, tag: Tag) -> TiffResult<Option<T>> {
+ self.find_tag(tag)?
+ .map(|v| v.into_u64())
+ .transpose()?
+ .map(|value| {
+ T::try_from(value).map_err(|_| TiffFormatError::InvalidTagValueType(tag).into())
+ })
+ .transpose()
+ }
+
+ /// Tries to retrieve a vector of all a tag's values and convert them to
+ /// the desired unsigned type.
+ pub fn find_tag_unsigned_vec<T: TryFrom<u64>>(
+ &mut self,
+ tag: Tag,
+ ) -> TiffResult<Option<Vec<T>>> {
+ self.find_tag(tag)?
+ .map(|v| v.into_u64_vec())
+ .transpose()?
+ .map(|v| {
+ v.into_iter()
+ .map(|u| {
+ T::try_from(u).map_err(|_| TiffFormatError::InvalidTagValueType(tag).into())
+ })
+ .collect()
+ })
+ .transpose()
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired unsigned type.
+ /// Returns an error if the tag is not present.
+ pub fn get_tag_unsigned<T: TryFrom<u64>>(&mut self, tag: Tag) -> TiffResult<T> {
+ self.find_tag_unsigned(tag)?
+ .ok_or_else(|| TiffFormatError::RequiredTagNotFound(tag).into())
+ }
+
+ /// Tries to retrieve a tag.
+ /// Returns an error if the tag is not present
+ pub fn get_tag(&mut self, tag: Tag) -> TiffResult<ifd::Value> {
+ match self.find_tag(tag)? {
+ Some(val) => Ok(val),
+ None => Err(TiffError::FormatError(
+ TiffFormatError::RequiredTagNotFound(tag),
+ )),
+ }
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired type.
+ pub fn get_tag_u32(&mut self, tag: Tag) -> TiffResult<u32> {
+ self.get_tag(tag)?.into_u32()
+ }
+ pub fn get_tag_u64(&mut self, tag: Tag) -> TiffResult<u64> {
+ self.get_tag(tag)?.into_u64()
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired type.
+ pub fn get_tag_f32(&mut self, tag: Tag) -> TiffResult<f32> {
+ self.get_tag(tag)?.into_f32()
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired type.
+ pub fn get_tag_f64(&mut self, tag: Tag) -> TiffResult<f64> {
+ self.get_tag(tag)?.into_f64()
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired type.
+ pub fn get_tag_u32_vec(&mut self, tag: Tag) -> TiffResult<Vec<u32>> {
+ self.get_tag(tag)?.into_u32_vec()
+ }
+
+ pub fn get_tag_u16_vec(&mut self, tag: Tag) -> TiffResult<Vec<u16>> {
+ self.get_tag(tag)?.into_u16_vec()
+ }
+ pub fn get_tag_u64_vec(&mut self, tag: Tag) -> TiffResult<Vec<u64>> {
+ self.get_tag(tag)?.into_u64_vec()
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired type.
+ pub fn get_tag_f32_vec(&mut self, tag: Tag) -> TiffResult<Vec<f32>> {
+ self.get_tag(tag)?.into_f32_vec()
+ }
+
+ /// Tries to retrieve a tag and convert it to the desired type.
+ pub fn get_tag_f64_vec(&mut self, tag: Tag) -> TiffResult<Vec<f64>> {
+ self.get_tag(tag)?.into_f64_vec()
+ }
+
+ /// Tries to retrieve a tag and convert it to a 8bit vector.
+ pub fn get_tag_u8_vec(&mut self, tag: Tag) -> TiffResult<Vec<u8>> {
+ self.get_tag(tag)?.into_u8_vec()
+ }
+
+ /// Tries to retrieve a tag and convert it to a ascii vector.
+ pub fn get_tag_ascii_string(&mut self, tag: Tag) -> TiffResult<String> {
+ self.get_tag(tag)?.into_string()
+ }
+
+ fn check_chunk_type(&self, expected: ChunkType) -> TiffResult<()> {
+ if expected != self.image().chunk_type {
+ return Err(TiffError::UsageError(UsageError::InvalidChunkType(
+ expected,
+ self.image().chunk_type,
+ )));
+ }
+
+ Ok(())
+ }
+
+ /// The chunk type (Strips / Tiles) of the image
+ pub fn get_chunk_type(&self) -> ChunkType {
+ self.image().chunk_type
+ }
+
+ /// Number of strips in image
+ pub fn strip_count(&mut self) -> TiffResult<u32> {
+ self.check_chunk_type(ChunkType::Strip)?;
+ let rows_per_strip = self.image().strip_decoder.as_ref().unwrap().rows_per_strip;
+
+ if rows_per_strip == 0 {
+ return Ok(0);
+ }
+
+ // rows_per_strip - 1 can never fail since we know it's at least 1
+ let height = match self.image().height.checked_add(rows_per_strip - 1) {
+ Some(h) => h,
+ None => return Err(TiffError::IntSizeError),
+ };
+
+ Ok(height / rows_per_strip)
+ }
+
+ /// Number of tiles in image
+ pub fn tile_count(&mut self) -> TiffResult<u32> {
+ self.check_chunk_type(ChunkType::Tile)?;
+ Ok(u32::try_from(self.image().chunk_offsets.len())?)
+ }
+
+ pub fn read_chunk_to_buffer(
+ &mut self,
+ mut buffer: DecodingBuffer,
+ chunk_index: u32,
+ output_width: usize,
+ ) -> TiffResult<()> {
+ let offset = self.image.chunk_file_range(chunk_index)?.0;
+ self.goto_offset_u64(offset)?;
+
+ let byte_order = self.reader.byte_order;
+
+ self.image.expand_chunk(
+ &mut self.reader,
+ buffer.copy(),
+ output_width,
+ byte_order,
+ chunk_index,
+ )?;
+
+ Ok(())
+ }
+
+ fn result_buffer(&self, width: usize, height: usize) -> TiffResult<DecodingResult> {
+ let buffer_size = match width
+ .checked_mul(height)
+ .and_then(|x| x.checked_mul(self.image().bits_per_sample.len()))
+ {
+ Some(s) => s,
+ None => return Err(TiffError::LimitsExceeded),
+ };
+
+ let max_sample_bits = self
+ .image()
+ .bits_per_sample
+ .iter()
+ .cloned()
+ .max()
+ .unwrap_or(8);
+ match self
+ .image()
+ .sample_format
+ .first()
+ .unwrap_or(&SampleFormat::Uint)
+ {
+ SampleFormat::Uint => match max_sample_bits {
+ n if n <= 8 => DecodingResult::new_u8(buffer_size, &self.limits),
+ n if n <= 16 => DecodingResult::new_u16(buffer_size, &self.limits),
+ n if n <= 32 => DecodingResult::new_u32(buffer_size, &self.limits),
+ n if n <= 64 => DecodingResult::new_u64(buffer_size, &self.limits),
+ n => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedBitsPerChannel(n),
+ )),
+ },
+ SampleFormat::IEEEFP => match max_sample_bits {
+ 32 => DecodingResult::new_f32(buffer_size, &self.limits),
+ 64 => DecodingResult::new_f64(buffer_size, &self.limits),
+ n => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedBitsPerChannel(n),
+ )),
+ },
+ SampleFormat::Int => match max_sample_bits {
+ n if n <= 8 => DecodingResult::new_i8(buffer_size, &self.limits),
+ n if n <= 16 => DecodingResult::new_i16(buffer_size, &self.limits),
+ n if n <= 32 => DecodingResult::new_i32(buffer_size, &self.limits),
+ n if n <= 64 => DecodingResult::new_i64(buffer_size, &self.limits),
+ n => Err(TiffError::UnsupportedError(
+ TiffUnsupportedError::UnsupportedBitsPerChannel(n),
+ )),
+ },
+ format => {
+ Err(TiffUnsupportedError::UnsupportedSampleFormat(vec![format.clone()]).into())
+ }
+ }
+ }
+
+ /// Read the specified chunk (at index `chunk_index`) and return the binary data as a Vector.
+ pub fn read_chunk(&mut self, chunk_index: u32) -> TiffResult<DecodingResult> {
+ let data_dims = self.image().chunk_data_dimensions(chunk_index)?;
+
+ let mut result = self.result_buffer(data_dims.0 as usize, data_dims.1 as usize)?;
+
+ self.read_chunk_to_buffer(result.as_buffer(0), chunk_index, data_dims.0 as usize)?;
+
+ Ok(result)
+ }
+
+ /// Returns the default chunk size for the current image. Any given chunk in the image is at most as large as
+ /// the value returned here. For the size of the data (chunk minus padding), use `chunk_data_dimensions`.
+ pub fn chunk_dimensions(&self) -> (u32, u32) {
+ self.image().chunk_dimensions().unwrap()
+ }
+
+ /// Returns the size of the data in the chunk with the specified index. This is the default size of the chunk,
+ /// minus any padding.
+ pub fn chunk_data_dimensions(&self, chunk_index: u32) -> (u32, u32) {
+ self.image()
+ .chunk_data_dimensions(chunk_index)
+ .expect("invalid chunk_index")
+ }
+
+ /// Decodes the entire image and return it as a Vector
+ pub fn read_image(&mut self) -> TiffResult<DecodingResult> {
+ let width = self.image().width;
+ let height = self.image().height;
+ let mut result = self.result_buffer(width as usize, height as usize)?;
+ if width == 0 || height == 0 {
+ return Ok(result);
+ }
+
+ let chunk_dimensions = self.image().chunk_dimensions()?;
+ let chunk_dimensions = (
+ chunk_dimensions.0.min(width),
+ chunk_dimensions.1.min(height),
+ );
+ if chunk_dimensions.0 == 0 || chunk_dimensions.1 == 0 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+
+ let samples = self.image().bits_per_sample.len();
+ if samples == 0 {
+ return Err(TiffError::FormatError(
+ TiffFormatError::InconsistentSizesEncountered,
+ ));
+ }
+
+ let chunks_across = ((width - 1) / chunk_dimensions.0 + 1) as usize;
+ let strip_samples = width as usize * chunk_dimensions.1 as usize * samples;
+
+ for chunk in 0..self.image().chunk_offsets.len() {
+ self.goto_offset_u64(self.image().chunk_offsets[chunk])?;
+
+ let x = chunk % chunks_across;
+ let y = chunk / chunks_across;
+ let buffer_offset = y * strip_samples + x * chunk_dimensions.0 as usize * samples;
+ let byte_order = self.reader.byte_order;
+ self.image.expand_chunk(
+ &mut self.reader,
+ result.as_buffer(buffer_offset).copy(),
+ width as usize,
+ byte_order,
+ chunk as u32,
+ )?;
+ }
+
+ Ok(result)
+ }
+}
diff --git a/vendor/tiff/src/decoder/stream.rs b/vendor/tiff/src/decoder/stream.rs
new file mode 100644
index 0000000..e0323c2
--- /dev/null
+++ b/vendor/tiff/src/decoder/stream.rs
@@ -0,0 +1,435 @@
+//! All IO functionality needed for TIFF decoding
+
+use std::convert::TryFrom;
+use std::io::{self, BufRead, BufReader, Read, Seek, SeekFrom, Take};
+use std::sync::Arc;
+
+/// Byte order of the TIFF file.
+#[derive(Clone, Copy, Debug)]
+pub enum ByteOrder {
+ /// little endian byte order
+ LittleEndian,
+ /// big endian byte order
+ BigEndian,
+}
+
+/// Reader that is aware of the byte order.
+pub trait EndianReader: Read {
+ /// Byte order that should be adhered to
+ fn byte_order(&self) -> ByteOrder;
+
+ /// Reads an u16
+ #[inline(always)]
+ fn read_u16(&mut self) -> Result<u16, io::Error> {
+ let mut n = [0u8; 2];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => u16::from_le_bytes(n),
+ ByteOrder::BigEndian => u16::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an i8
+ #[inline(always)]
+ fn read_i8(&mut self) -> Result<i8, io::Error> {
+ let mut n = [0u8; 1];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => i8::from_le_bytes(n),
+ ByteOrder::BigEndian => i8::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an i16
+ #[inline(always)]
+ fn read_i16(&mut self) -> Result<i16, io::Error> {
+ let mut n = [0u8; 2];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => i16::from_le_bytes(n),
+ ByteOrder::BigEndian => i16::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an u32
+ #[inline(always)]
+ fn read_u32(&mut self) -> Result<u32, io::Error> {
+ let mut n = [0u8; 4];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => u32::from_le_bytes(n),
+ ByteOrder::BigEndian => u32::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an i32
+ #[inline(always)]
+ fn read_i32(&mut self) -> Result<i32, io::Error> {
+ let mut n = [0u8; 4];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => i32::from_le_bytes(n),
+ ByteOrder::BigEndian => i32::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an u64
+ #[inline(always)]
+ fn read_u64(&mut self) -> Result<u64, io::Error> {
+ let mut n = [0u8; 8];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => u64::from_le_bytes(n),
+ ByteOrder::BigEndian => u64::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an i64
+ #[inline(always)]
+ fn read_i64(&mut self) -> Result<i64, io::Error> {
+ let mut n = [0u8; 8];
+ self.read_exact(&mut n)?;
+ Ok(match self.byte_order() {
+ ByteOrder::LittleEndian => i64::from_le_bytes(n),
+ ByteOrder::BigEndian => i64::from_be_bytes(n),
+ })
+ }
+
+ /// Reads an f32
+ #[inline(always)]
+ fn read_f32(&mut self) -> Result<f32, io::Error> {
+ let mut n = [0u8; 4];
+ self.read_exact(&mut n)?;
+ Ok(f32::from_bits(match self.byte_order() {
+ ByteOrder::LittleEndian => u32::from_le_bytes(n),
+ ByteOrder::BigEndian => u32::from_be_bytes(n),
+ }))
+ }
+
+ /// Reads an f64
+ #[inline(always)]
+ fn read_f64(&mut self) -> Result<f64, io::Error> {
+ let mut n = [0u8; 8];
+ self.read_exact(&mut n)?;
+ Ok(f64::from_bits(match self.byte_order() {
+ ByteOrder::LittleEndian => u64::from_le_bytes(n),
+ ByteOrder::BigEndian => u64::from_be_bytes(n),
+ }))
+ }
+}
+
+///
+/// # READERS
+///
+
+///
+/// ## Deflate Reader
+///
+
+pub type DeflateReader<R> = flate2::read::ZlibDecoder<R>;
+
+///
+/// ## LZW Reader
+///
+
+/// Reader that decompresses LZW streams
+pub struct LZWReader<R: Read> {
+ reader: BufReader<Take<R>>,
+ decoder: weezl::decode::Decoder,
+}
+
+impl<R: Read> LZWReader<R> {
+ /// Wraps a reader
+ pub fn new(reader: R, compressed_length: usize) -> LZWReader<R> {
+ Self {
+ reader: BufReader::with_capacity(
+ (32 * 1024).min(compressed_length),
+ reader.take(u64::try_from(compressed_length).unwrap()),
+ ),
+ decoder: weezl::decode::Decoder::with_tiff_size_switch(weezl::BitOrder::Msb, 8),
+ }
+ }
+}
+
+impl<R: Read> Read for LZWReader<R> {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ loop {
+ let result = self.decoder.decode_bytes(self.reader.fill_buf()?, buf);
+ self.reader.consume(result.consumed_in);
+
+ match result.status {
+ Ok(weezl::LzwStatus::Ok) => {
+ if result.consumed_out == 0 {
+ continue;
+ } else {
+ return Ok(result.consumed_out);
+ }
+ }
+ Ok(weezl::LzwStatus::NoProgress) => {
+ assert_eq!(result.consumed_in, 0);
+ assert_eq!(result.consumed_out, 0);
+ assert!(self.reader.buffer().is_empty());
+ return Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "no lzw end code found",
+ ));
+ }
+ Ok(weezl::LzwStatus::Done) => {
+ return Ok(result.consumed_out);
+ }
+ Err(err) => return Err(io::Error::new(io::ErrorKind::InvalidData, err)),
+ }
+ }
+ }
+}
+
+///
+/// ## JPEG Reader (for "new-style" JPEG format (TIFF compression tag 7))
+///
+
+pub(crate) struct JpegReader {
+ jpeg_tables: Option<Arc<Vec<u8>>>,
+
+ buffer: io::Cursor<Vec<u8>>,
+
+ offset: usize,
+}
+
+impl JpegReader {
+ /// Constructs new JpegReader wrapping a SmartReader.
+ /// Because JPEG compression in TIFF allows to save quantization and/or huffman tables in one
+ /// central location, the constructor accepts this data as `jpeg_tables` here containing either
+ /// or both.
+ /// These `jpeg_tables` are simply prepended to the remaining jpeg image data.
+ /// Because these `jpeg_tables` start with a `SOI` (HEX: `0xFFD8`) or __start of image__ marker
+ /// which is also at the beginning of the remaining JPEG image data and would
+ /// confuse the JPEG renderer, one of these has to be taken off. In this case the first two
+ /// bytes of the remaining JPEG data is removed because it follows `jpeg_tables`.
+ /// Similary, `jpeg_tables` ends with a `EOI` (HEX: `0xFFD9`) or __end of image__ marker,
+ /// this has to be removed as well (last two bytes of `jpeg_tables`).
+ pub fn new<R: Read>(
+ mut reader: R,
+ length: u64,
+ jpeg_tables: Option<Arc<Vec<u8>>>,
+ ) -> io::Result<JpegReader> {
+ // Read jpeg image data
+ let mut segment = vec![0; length as usize];
+
+ reader.read_exact(&mut segment[..])?;
+
+ match jpeg_tables {
+ Some(jpeg_tables) => {
+ assert!(
+ jpeg_tables.len() >= 2,
+ "jpeg_tables, if given, must be at least 2 bytes long. Got {:?}",
+ jpeg_tables
+ );
+
+ assert!(
+ length >= 2,
+ "if jpeg_tables is given, length must be at least 2 bytes long, got {}",
+ length
+ );
+
+ let mut buffer = io::Cursor::new(segment);
+ // Skip the first two bytes (marker bytes)
+ buffer.seek(SeekFrom::Start(2))?;
+
+ Ok(JpegReader {
+ buffer,
+ jpeg_tables: Some(jpeg_tables),
+ offset: 0,
+ })
+ }
+ None => Ok(JpegReader {
+ buffer: io::Cursor::new(segment),
+ jpeg_tables: None,
+ offset: 0,
+ }),
+ }
+ }
+}
+
+impl Read for JpegReader {
+ // #[inline]
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ let mut start = 0;
+
+ if let Some(jpeg_tables) = &self.jpeg_tables {
+ if jpeg_tables.len() - 2 > self.offset {
+ // Read (rest of) jpeg_tables to buf (without the last two bytes)
+ let size_remaining = jpeg_tables.len() - self.offset - 2;
+ let to_copy = size_remaining.min(buf.len());
+
+ buf[start..start + to_copy]
+ .copy_from_slice(&jpeg_tables[self.offset..self.offset + to_copy]);
+
+ self.offset += to_copy;
+
+ if to_copy == buf.len() {
+ return Ok(to_copy);
+ }
+
+ start += to_copy;
+ }
+ }
+
+ let read = self.buffer.read(&mut buf[start..])?;
+ self.offset += read;
+
+ Ok(read + start)
+ }
+}
+
+///
+/// ## PackBits Reader
+///
+
+enum PackBitsReaderState {
+ Header,
+ Literal,
+ Repeat { value: u8 },
+}
+
+/// Reader that unpacks Apple's `PackBits` format
+pub struct PackBitsReader<R: Read> {
+ reader: Take<R>,
+ state: PackBitsReaderState,
+ count: usize,
+}
+
+impl<R: Read> PackBitsReader<R> {
+ /// Wraps a reader
+ pub fn new(reader: R, length: u64) -> Self {
+ Self {
+ reader: reader.take(length),
+ state: PackBitsReaderState::Header,
+ count: 0,
+ }
+ }
+}
+
+impl<R: Read> Read for PackBitsReader<R> {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ while let PackBitsReaderState::Header = self.state {
+ if self.reader.limit() == 0 {
+ return Ok(0);
+ }
+ let mut header: [u8; 1] = [0];
+ self.reader.read_exact(&mut header)?;
+ let h = header[0] as i8;
+ if h >= -127 && h <= -1 {
+ let mut data: [u8; 1] = [0];
+ self.reader.read_exact(&mut data)?;
+ self.state = PackBitsReaderState::Repeat { value: data[0] };
+ self.count = (1 - h as isize) as usize;
+ } else if h >= 0 {
+ self.state = PackBitsReaderState::Literal;
+ self.count = h as usize + 1;
+ } else {
+ // h = -128 is a no-op.
+ }
+ }
+
+ let length = buf.len().min(self.count);
+ let actual = match self.state {
+ PackBitsReaderState::Literal => self.reader.read(&mut buf[..length])?,
+ PackBitsReaderState::Repeat { value } => {
+ for b in &mut buf[..length] {
+ *b = value;
+ }
+
+ length
+ }
+ PackBitsReaderState::Header => unreachable!(),
+ };
+
+ self.count -= actual;
+ if self.count == 0 {
+ self.state = PackBitsReaderState::Header;
+ }
+ return Ok(actual);
+ }
+}
+
+///
+/// ## SmartReader Reader
+///
+
+/// Reader that is aware of the byte order.
+#[derive(Debug)]
+pub struct SmartReader<R>
+where
+ R: Read,
+{
+ reader: R,
+ pub byte_order: ByteOrder,
+}
+
+impl<R> SmartReader<R>
+where
+ R: Read,
+{
+ /// Wraps a reader
+ pub fn wrap(reader: R, byte_order: ByteOrder) -> SmartReader<R> {
+ SmartReader { reader, byte_order }
+ }
+ pub fn into_inner(self) -> R {
+ self.reader
+ }
+}
+impl<R: Read + Seek> SmartReader<R> {
+ pub fn goto_offset(&mut self, offset: u64) -> io::Result<()> {
+ self.seek(io::SeekFrom::Start(offset)).map(|_| ())
+ }
+}
+
+impl<R> EndianReader for SmartReader<R>
+where
+ R: Read,
+{
+ #[inline(always)]
+ fn byte_order(&self) -> ByteOrder {
+ self.byte_order
+ }
+}
+
+impl<R: Read> Read for SmartReader<R> {
+ #[inline]
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ self.reader.read(buf)
+ }
+}
+
+impl<R: Read + Seek> Seek for SmartReader<R> {
+ #[inline]
+ fn seek(&mut self, pos: io::SeekFrom) -> io::Result<u64> {
+ self.reader.seek(pos)
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_packbits() {
+ let encoded = vec![
+ 0xFE, 0xAA, 0x02, 0x80, 0x00, 0x2A, 0xFD, 0xAA, 0x03, 0x80, 0x00, 0x2A, 0x22, 0xF7,
+ 0xAA,
+ ];
+ let encoded_len = encoded.len();
+
+ let buff = io::Cursor::new(encoded);
+ let mut decoder = PackBitsReader::new(buff, encoded_len as u64);
+
+ let mut decoded = Vec::new();
+ decoder.read_to_end(&mut decoded).unwrap();
+
+ let expected = vec![
+ 0xAA, 0xAA, 0xAA, 0x80, 0x00, 0x2A, 0xAA, 0xAA, 0xAA, 0xAA, 0x80, 0x00, 0x2A, 0x22,
+ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
+ ];
+ assert_eq!(decoded, expected);
+ }
+}
diff --git a/vendor/tiff/src/decoder/tag_reader.rs b/vendor/tiff/src/decoder/tag_reader.rs
new file mode 100644
index 0000000..837da40
--- /dev/null
+++ b/vendor/tiff/src/decoder/tag_reader.rs
@@ -0,0 +1,45 @@
+use std::convert::TryFrom;
+use std::io::{Read, Seek};
+
+use crate::tags::Tag;
+use crate::{TiffError, TiffFormatError, TiffResult};
+
+use super::ifd::{Directory, Value};
+use super::stream::SmartReader;
+use super::Limits;
+
+pub(crate) struct TagReader<'a, R: Read + Seek> {
+ pub reader: &'a mut SmartReader<R>,
+ pub ifd: &'a Directory,
+ pub limits: &'a Limits,
+ pub bigtiff: bool,
+}
+impl<'a, R: Read + Seek> TagReader<'a, R> {
+ pub(crate) fn find_tag(&mut self, tag: Tag) -> TiffResult<Option<Value>> {
+ Ok(match self.ifd.get(&tag) {
+ Some(entry) => Some(entry.clone().val(self.limits, self.bigtiff, self.reader)?),
+ None => None,
+ })
+ }
+ pub(crate) fn require_tag(&mut self, tag: Tag) -> TiffResult<Value> {
+ match self.find_tag(tag)? {
+ Some(val) => Ok(val),
+ None => Err(TiffError::FormatError(
+ TiffFormatError::RequiredTagNotFound(tag),
+ )),
+ }
+ }
+ pub fn find_tag_uint_vec<T: TryFrom<u64>>(&mut self, tag: Tag) -> TiffResult<Option<Vec<T>>> {
+ self.find_tag(tag)?
+ .map(|v| v.into_u64_vec())
+ .transpose()?
+ .map(|v| {
+ v.into_iter()
+ .map(|u| {
+ T::try_from(u).map_err(|_| TiffFormatError::InvalidTagValueType(tag).into())
+ })
+ .collect()
+ })
+ .transpose()
+ }
+}
diff --git a/vendor/tiff/src/encoder/colortype.rs b/vendor/tiff/src/encoder/colortype.rs
new file mode 100644
index 0000000..1946daf
--- /dev/null
+++ b/vendor/tiff/src/encoder/colortype.rs
@@ -0,0 +1,245 @@
+use crate::tags::{PhotometricInterpretation, SampleFormat};
+
+/// Trait for different colortypes that can be encoded.
+pub trait ColorType {
+ /// The type of each sample of this colortype
+ type Inner: super::TiffValue;
+ /// The value of the tiff tag `PhotometricInterpretation`
+ const TIFF_VALUE: PhotometricInterpretation;
+ /// The value of the tiff tag `BitsPerSample`
+ const BITS_PER_SAMPLE: &'static [u16];
+ /// The value of the tiff tag `SampleFormat`
+ const SAMPLE_FORMAT: &'static [SampleFormat];
+}
+
+pub struct Gray8;
+impl ColorType for Gray8 {
+ type Inner = u8;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[8];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint];
+}
+
+pub struct GrayI8;
+impl ColorType for GrayI8 {
+ type Inner = i8;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[8];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Int];
+}
+
+pub struct Gray16;
+impl ColorType for Gray16 {
+ type Inner = u16;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[16];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint];
+}
+
+pub struct GrayI16;
+impl ColorType for GrayI16 {
+ type Inner = i16;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[16];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Int];
+}
+
+pub struct Gray32;
+impl ColorType for Gray32 {
+ type Inner = u32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint];
+}
+
+pub struct GrayI32;
+impl ColorType for GrayI32 {
+ type Inner = i32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Int];
+}
+
+pub struct Gray32Float;
+impl ColorType for Gray32Float {
+ type Inner = f32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP];
+}
+
+pub struct Gray64;
+impl ColorType for Gray64 {
+ type Inner = u64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint];
+}
+
+pub struct GrayI64;
+impl ColorType for GrayI64 {
+ type Inner = i64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Int];
+}
+
+pub struct Gray64Float;
+impl ColorType for Gray64Float {
+ type Inner = f64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::BlackIsZero;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP];
+}
+
+pub struct RGB8;
+impl ColorType for RGB8 {
+ type Inner = u8;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[8, 8, 8];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 3];
+}
+
+pub struct RGB16;
+impl ColorType for RGB16 {
+ type Inner = u16;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[16, 16, 16];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 3];
+}
+
+pub struct RGB32;
+impl ColorType for RGB32 {
+ type Inner = u32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32, 32, 32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 3];
+}
+
+pub struct RGB32Float;
+impl ColorType for RGB32Float {
+ type Inner = f32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32, 32, 32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP; 3];
+}
+
+pub struct RGB64;
+impl ColorType for RGB64 {
+ type Inner = u64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64, 64, 64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 3];
+}
+
+pub struct RGB64Float;
+impl ColorType for RGB64Float {
+ type Inner = f64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64, 64, 64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP; 3];
+}
+
+pub struct RGBA8;
+impl ColorType for RGBA8 {
+ type Inner = u8;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[8, 8, 8, 8];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct RGBA16;
+impl ColorType for RGBA16 {
+ type Inner = u16;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[16, 16, 16, 16];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct RGBA32;
+impl ColorType for RGBA32 {
+ type Inner = u32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32, 32, 32, 32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct RGBA32Float;
+impl ColorType for RGBA32Float {
+ type Inner = f32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32, 32, 32, 32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP; 4];
+}
+
+pub struct RGBA64;
+impl ColorType for RGBA64 {
+ type Inner = u64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64, 64, 64, 64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct RGBA64Float;
+impl ColorType for RGBA64Float {
+ type Inner = f64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::RGB;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64, 64, 64, 64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP; 4];
+}
+
+pub struct CMYK8;
+impl ColorType for CMYK8 {
+ type Inner = u8;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::CMYK;
+ const BITS_PER_SAMPLE: &'static [u16] = &[8, 8, 8, 8];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct CMYK16;
+impl ColorType for CMYK16 {
+ type Inner = u16;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::CMYK;
+ const BITS_PER_SAMPLE: &'static [u16] = &[16, 16, 16, 16];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct CMYK32;
+impl ColorType for CMYK32 {
+ type Inner = u32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::CMYK;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32, 32, 32, 32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct CMYK32Float;
+impl ColorType for CMYK32Float {
+ type Inner = f32;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::CMYK;
+ const BITS_PER_SAMPLE: &'static [u16] = &[32, 32, 32, 32];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP; 4];
+}
+
+pub struct CMYK64;
+impl ColorType for CMYK64 {
+ type Inner = u64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::CMYK;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64, 64, 64, 64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 4];
+}
+
+pub struct CMYK64Float;
+impl ColorType for CMYK64Float {
+ type Inner = f64;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::CMYK;
+ const BITS_PER_SAMPLE: &'static [u16] = &[64, 64, 64, 64];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::IEEEFP; 4];
+}
+
+pub struct YCbCr8;
+impl ColorType for YCbCr8 {
+ type Inner = u8;
+ const TIFF_VALUE: PhotometricInterpretation = PhotometricInterpretation::YCbCr;
+ const BITS_PER_SAMPLE: &'static [u16] = &[8, 8, 8];
+ const SAMPLE_FORMAT: &'static [SampleFormat] = &[SampleFormat::Uint; 3];
+}
diff --git a/vendor/tiff/src/encoder/compression/deflate.rs b/vendor/tiff/src/encoder/compression/deflate.rs
new file mode 100644
index 0000000..5e7a261
--- /dev/null
+++ b/vendor/tiff/src/encoder/compression/deflate.rs
@@ -0,0 +1,83 @@
+use crate::{encoder::compression::*, tags::CompressionMethod};
+use flate2::{write::ZlibEncoder, Compression as FlateCompression};
+use std::io::Write;
+
+/// The Deflate algorithm used to compress image data in TIFF files.
+#[derive(Debug, Clone, Copy)]
+pub struct Deflate {
+ level: FlateCompression,
+}
+
+/// The level of compression used by the Deflate algorithm.
+/// It allows trading compression ratio for compression speed.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+#[non_exhaustive]
+pub enum DeflateLevel {
+ /// The fastest possible compression mode.
+ Fast = 1,
+ /// The conserative choice between speed and ratio.
+ Balanced = 6,
+ /// The best compression available with Deflate.
+ Best = 9,
+}
+
+impl Default for DeflateLevel {
+ fn default() -> Self {
+ DeflateLevel::Balanced
+ }
+}
+
+impl Deflate {
+ /// Create a new deflate compressor with a specific level of compression.
+ pub fn with_level(level: DeflateLevel) -> Self {
+ Self {
+ level: FlateCompression::new(level as u32),
+ }
+ }
+}
+
+impl Default for Deflate {
+ fn default() -> Self {
+ Self::with_level(DeflateLevel::default())
+ }
+}
+
+impl Compression for Deflate {
+ const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::Deflate;
+
+ fn get_algorithm(&self) -> Compressor {
+ Compressor::Deflate(self.clone())
+ }
+}
+
+impl CompressionAlgorithm for Deflate {
+ fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
+ let mut encoder = ZlibEncoder::new(writer, self.level);
+ encoder.write_all(bytes)?;
+ encoder.try_finish()?;
+ Ok(encoder.total_out())
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::encoder::compression::tests::TEST_DATA;
+ use std::io::Cursor;
+
+ #[test]
+ fn test_deflate() {
+ const EXPECTED_COMPRESSED_DATA: [u8; 64] = [
+ 0x78, 0x9C, 0x15, 0xC7, 0xD1, 0x0D, 0x80, 0x20, 0x0C, 0x04, 0xD0, 0x55, 0x6E, 0x02,
+ 0xA7, 0x71, 0x81, 0xA6, 0x41, 0xDA, 0x28, 0xD4, 0xF4, 0xD0, 0xF9, 0x81, 0xE4, 0xFD,
+ 0xBC, 0xD3, 0x9C, 0x58, 0x04, 0x1C, 0xE9, 0xBD, 0xE2, 0x8A, 0x84, 0x5A, 0xD1, 0x7B,
+ 0xE7, 0x97, 0xF4, 0xF8, 0x08, 0x8D, 0xF6, 0x66, 0x21, 0x3D, 0x3A, 0xE4, 0xA9, 0x91,
+ 0x3E, 0xAC, 0xF1, 0x98, 0xB9, 0x70, 0x17, 0x13,
+ ];
+
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Deflate::default().write_to(&mut writer, TEST_DATA).unwrap();
+ assert_eq!(EXPECTED_COMPRESSED_DATA, compressed_data.as_slice());
+ }
+}
diff --git a/vendor/tiff/src/encoder/compression/lzw.rs b/vendor/tiff/src/encoder/compression/lzw.rs
new file mode 100644
index 0000000..0e0f2aa
--- /dev/null
+++ b/vendor/tiff/src/encoder/compression/lzw.rs
@@ -0,0 +1,47 @@
+use crate::{encoder::compression::*, tags::CompressionMethod};
+use std::io::Write;
+use weezl::encode::Encoder as LZWEncoder;
+
+/// The LZW algorithm used to compress image data in TIFF files.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
+pub struct Lzw;
+
+impl Compression for Lzw {
+ const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::LZW;
+
+ fn get_algorithm(&self) -> Compressor {
+ Compressor::Lzw(*self)
+ }
+}
+
+impl CompressionAlgorithm for Lzw {
+ fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
+ let mut encoder = LZWEncoder::with_tiff_size_switch(weezl::BitOrder::Msb, 8);
+ let result = encoder.into_stream(writer).encode_all(bytes);
+ let byte_count = result.bytes_written as u64;
+ result.status.map(|_| byte_count)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::encoder::compression::tests::TEST_DATA;
+ use std::io::Cursor;
+
+ #[test]
+ fn test_lzw() {
+ const EXPECTED_COMPRESSED_DATA: [u8; 63] = [
+ 0x80, 0x15, 0x0D, 0x06, 0x93, 0x98, 0x82, 0x08, 0x20, 0x30, 0x88, 0x0E, 0x67, 0x43,
+ 0x91, 0xA4, 0xDC, 0x67, 0x10, 0x19, 0x8D, 0xE7, 0x21, 0x01, 0x8C, 0xD0, 0x65, 0x31,
+ 0x9A, 0xE1, 0xD1, 0x03, 0xB1, 0x86, 0x1A, 0x6F, 0x3A, 0xC1, 0x4C, 0x66, 0xF3, 0x69,
+ 0xC0, 0xE4, 0x65, 0x39, 0x9C, 0xCD, 0x26, 0xF3, 0x74, 0x20, 0xD8, 0x67, 0x89, 0x9A,
+ 0x4E, 0x86, 0x83, 0x69, 0xCC, 0x5D, 0x01,
+ ];
+
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Lzw::default().write_to(&mut writer, TEST_DATA).unwrap();
+ assert_eq!(EXPECTED_COMPRESSED_DATA, compressed_data.as_slice());
+ }
+}
diff --git a/vendor/tiff/src/encoder/compression/mod.rs b/vendor/tiff/src/encoder/compression/mod.rs
new file mode 100644
index 0000000..04baef3
--- /dev/null
+++ b/vendor/tiff/src/encoder/compression/mod.rs
@@ -0,0 +1,60 @@
+use crate::tags::CompressionMethod;
+use std::io::{self, Write};
+
+mod deflate;
+mod lzw;
+mod packbits;
+mod uncompressed;
+
+pub use self::deflate::{Deflate, DeflateLevel};
+pub use self::lzw::Lzw;
+pub use self::packbits::Packbits;
+pub use self::uncompressed::Uncompressed;
+
+/// An algorithm used for compression
+pub trait CompressionAlgorithm {
+ /// The algorithm writes data directly into the writer.
+ /// It returns the total number of bytes written.
+ fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error>;
+}
+
+/// An algorithm used for compression with associated enums and optional configurations.
+pub trait Compression: CompressionAlgorithm {
+ /// The corresponding tag to the algorithm.
+ const COMPRESSION_METHOD: CompressionMethod;
+
+ /// Method to optain a type that can store each variant of comression algorithm.
+ fn get_algorithm(&self) -> Compressor;
+}
+
+/// An enum to store each compression algorithm.
+pub enum Compressor {
+ Uncompressed(Uncompressed),
+ Lzw(Lzw),
+ Deflate(Deflate),
+ Packbits(Packbits),
+}
+
+impl Default for Compressor {
+ /// The default compression strategy does not apply any compression.
+ fn default() -> Self {
+ Compressor::Uncompressed(Uncompressed::default())
+ }
+}
+
+impl CompressionAlgorithm for Compressor {
+ fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
+ match self {
+ Compressor::Uncompressed(algorithm) => algorithm.write_to(writer, bytes),
+ Compressor::Lzw(algorithm) => algorithm.write_to(writer, bytes),
+ Compressor::Deflate(algorithm) => algorithm.write_to(writer, bytes),
+ Compressor::Packbits(algorithm) => algorithm.write_to(writer, bytes),
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ pub const TEST_DATA: &'static [u8] =
+ b"This is a string for checking various compression algorithms.";
+}
diff --git a/vendor/tiff/src/encoder/compression/packbits.rs b/vendor/tiff/src/encoder/compression/packbits.rs
new file mode 100644
index 0000000..7ba3833
--- /dev/null
+++ b/vendor/tiff/src/encoder/compression/packbits.rs
@@ -0,0 +1,214 @@
+use crate::{encoder::compression::*, tags::CompressionMethod};
+use std::io::{BufWriter, Error, ErrorKind, Write};
+
+/// Compressor that uses the Packbits[^note] algorithm to compress bytes.
+///
+/// [^note]: PackBits is often ineffective on continuous tone images,
+/// including many grayscale images. In such cases, it is better
+/// to leave the image uncompressed.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
+pub struct Packbits;
+
+impl Compression for Packbits {
+ const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::PackBits;
+
+ fn get_algorithm(&self) -> Compressor {
+ Compressor::Packbits(*self)
+ }
+}
+
+impl CompressionAlgorithm for Packbits {
+ fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
+ // Inspired by https://github.com/skirridsystems/packbits
+
+ const MIN_REPT: u8 = 3; // Minimum run to compress between differ blocks
+ const MAX_BYTES: u8 = 128; // Maximum number of bytes that can be encoded in a header byte
+
+ // Encoding for header byte based on number of bytes represented.
+ fn encode_diff(n: u8) -> u8 {
+ n - 1
+ }
+ fn encode_rept(n: u8) -> u8 {
+ let var = 256 - (n - 1) as u16;
+ var as u8
+ }
+
+ fn write_u8<W: Write>(writer: &mut W, byte: u8) -> Result<u64, Error> {
+ writer.write(&[byte]).map(|byte_count| byte_count as u64)
+ }
+
+ let mut bufwriter = BufWriter::new(writer);
+ let mut bytes_written = 0u64; // The number of bytes written into the writer
+ let mut offset: Option<u64> = None; // The index of the first byte written into the writer
+
+ let mut src_index: usize = 0; // Index of the current byte
+ let mut src_count = bytes.len(); //The number of bytes remaining to be compressed
+
+ let mut in_run = false; // Indication whether counting of similar bytes is performed
+ let mut run_index = 0u8; // Distance into pending bytes that a run starts
+
+ let mut bytes_pending = 0u8; // Bytes looked at but not yet output
+ let mut pending_index = 0usize; // Index of the first pending byte
+
+ let mut curr_byte: u8; // Byte currently being considered
+ let mut last_byte: u8; // Previous byte
+
+ // Need at least one byte to compress
+ if src_count == 0 {
+ return Err(Error::new(ErrorKind::WriteZero, "write zero"));
+ }
+
+ // Prime compressor with first character.
+ last_byte = bytes[src_index];
+ src_index += 1;
+ bytes_pending += 1;
+
+ while src_count - 1 != 0 {
+ src_count -= 1;
+ curr_byte = bytes[src_index];
+ src_index += 1;
+ bytes_pending += 1;
+
+ if in_run {
+ if (curr_byte != last_byte) || (bytes_pending > MAX_BYTES) {
+ offset.get_or_insert(write_u8(&mut bufwriter, encode_rept(bytes_pending - 1))?);
+ write_u8(&mut bufwriter, last_byte)?;
+ bytes_written += 2;
+
+ bytes_pending = 1;
+ pending_index = src_index - 1;
+ run_index = 0;
+ in_run = false;
+ }
+ } else {
+ if bytes_pending > MAX_BYTES {
+ // We have as much differing data as we can output in one chunk.
+ // Output MAX_BYTES leaving one byte.
+ offset.get_or_insert(write_u8(&mut bufwriter, encode_diff(MAX_BYTES))?);
+ bufwriter.write(&bytes[pending_index..pending_index + MAX_BYTES as usize])?;
+ bytes_written += 1 + MAX_BYTES as u64;
+
+ pending_index += MAX_BYTES as usize;
+ bytes_pending -= MAX_BYTES;
+ run_index = bytes_pending - 1; // A run could start here
+ } else if curr_byte == last_byte {
+ if (bytes_pending - run_index >= MIN_REPT) || (run_index == 0) {
+ // This is a worthwhile run
+ if run_index != 0 {
+ // Flush differing data out of input buffer
+ offset.get_or_insert(write_u8(&mut bufwriter, encode_diff(run_index))?);
+ bufwriter
+ .write(&bytes[pending_index..pending_index + run_index as usize])?;
+ bytes_written += 1 + run_index as u64;
+ }
+ bytes_pending -= run_index; // Length of run
+ in_run = true;
+ }
+ } else {
+ run_index = bytes_pending - 1; // A run could start here
+ }
+ }
+ last_byte = curr_byte;
+ }
+
+ // Output the remainder
+ if in_run {
+ bytes_written += 2;
+ offset.get_or_insert(write_u8(&mut bufwriter, encode_rept(bytes_pending))?);
+ write_u8(&mut bufwriter, last_byte)?;
+ } else {
+ bytes_written += 1 + bytes_pending as u64;
+ offset.get_or_insert(write_u8(&mut bufwriter, encode_diff(bytes_pending))?);
+ bufwriter.write(&bytes[pending_index..pending_index + bytes_pending as usize])?;
+ }
+
+ bufwriter.flush()?;
+ Ok(bytes_written)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::encoder::compression::tests::TEST_DATA;
+ use std::io::Cursor;
+
+ #[test]
+ fn test_packbits_single_byte() {
+ // compress single byte
+ const UNCOMPRESSED_DATA: [u8; 1] = [0x3F];
+ const EXPECTED_COMPRESSED_DATA: [u8; 2] = [0x00, 0x3F];
+
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Packbits::default()
+ .write_to(&mut writer, &UNCOMPRESSED_DATA)
+ .unwrap();
+ assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
+ }
+
+ #[test]
+ fn test_packbits_rept() {
+ // compress buffer with repetitive sequence
+ const UNCOMPRESSED_DATA: &'static [u8] =
+ b"This strrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrring hangs.";
+ const EXPECTED_COMPRESSED_DATA: &'static [u8] = b"\x06This st\xD1r\x09ing hangs.";
+
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Packbits::default()
+ .write_to(&mut writer, UNCOMPRESSED_DATA)
+ .unwrap();
+ assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
+ }
+
+ #[test]
+ fn test_packbits_large_rept_nonrept() {
+ // compress buffer with large repetitive and non-repetitive sequence
+ let mut data = b"This st".to_vec();
+ for _i in 0..158 {
+ data.push(b'r');
+ }
+ data.extend_from_slice(b"ing hangs.");
+ for i in 0..158 {
+ data.push(i);
+ }
+
+ const EXPECTED_COMPRESSED_DATA: [u8; 182] = [
+ 0x06, 0x54, 0x68, 0x69, 0x73, 0x20, 0x73, 0x74, 0x81, 0x72, 0xE3, 0x72, 0x7F, 0x69,
+ 0x6E, 0x67, 0x20, 0x68, 0x61, 0x6E, 0x67, 0x73, 0x2E, 0x00, 0x01, 0x02, 0x03, 0x04,
+ 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12,
+ 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
+ 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E,
+ 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C,
+ 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A,
+ 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+ 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
+ 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74,
+ 0x75, 0x27, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, 0x80, 0x81,
+ 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
+ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D,
+ ];
+
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Packbits::default()
+ .write_to(&mut writer, data.as_slice())
+ .unwrap();
+ assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
+ }
+
+ #[test]
+ fn test_packbits() {
+ // compress teststring
+ const EXPECTED_COMPRESSED_DATA: &'static [u8] =
+ b"\x3CThis is a string for checking various compression algorithms.";
+
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Packbits::default()
+ .write_to(&mut writer, TEST_DATA)
+ .unwrap();
+ assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
+ }
+}
diff --git a/vendor/tiff/src/encoder/compression/uncompressed.rs b/vendor/tiff/src/encoder/compression/uncompressed.rs
new file mode 100644
index 0000000..900426f
--- /dev/null
+++ b/vendor/tiff/src/encoder/compression/uncompressed.rs
@@ -0,0 +1,37 @@
+use crate::{encoder::compression::*, tags::CompressionMethod};
+use std::io::Write;
+
+/// The default algorithm which does not compress at all.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
+pub struct Uncompressed;
+
+impl Compression for Uncompressed {
+ const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::None;
+
+ fn get_algorithm(&self) -> Compressor {
+ Compressor::Uncompressed(*self)
+ }
+}
+
+impl CompressionAlgorithm for Uncompressed {
+ fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
+ writer.write(bytes).map(|byte_count| byte_count as u64)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::encoder::compression::tests::TEST_DATA;
+ use std::io::Cursor;
+
+ #[test]
+ fn test_no_compression() {
+ let mut compressed_data = Vec::<u8>::new();
+ let mut writer = Cursor::new(&mut compressed_data);
+ Uncompressed::default()
+ .write_to(&mut writer, TEST_DATA)
+ .unwrap();
+ assert_eq!(TEST_DATA, compressed_data);
+ }
+}
diff --git a/vendor/tiff/src/encoder/mod.rs b/vendor/tiff/src/encoder/mod.rs
new file mode 100644
index 0000000..6e39c93
--- /dev/null
+++ b/vendor/tiff/src/encoder/mod.rs
@@ -0,0 +1,681 @@
+pub use tiff_value::*;
+
+use std::{
+ cmp,
+ collections::BTreeMap,
+ convert::{TryFrom, TryInto},
+ io::{self, Seek, Write},
+ marker::PhantomData,
+ mem,
+ num::TryFromIntError,
+};
+
+use crate::{
+ error::TiffResult,
+ tags::{CompressionMethod, ResolutionUnit, Tag},
+ TiffError, TiffFormatError,
+};
+
+pub mod colortype;
+pub mod compression;
+mod tiff_value;
+mod writer;
+
+use self::colortype::*;
+use self::compression::*;
+use self::writer::*;
+
+/// Encoder for Tiff and BigTiff files.
+///
+/// With this type you can get a `DirectoryEncoder` or a `ImageEncoder`
+/// to encode Tiff/BigTiff ifd directories with images.
+///
+/// See `DirectoryEncoder` and `ImageEncoder`.
+///
+/// # Examples
+/// ```
+/// # extern crate tiff;
+/// # fn main() {
+/// # let mut file = std::io::Cursor::new(Vec::new());
+/// # let image_data = vec![0; 100*100*3];
+/// use tiff::encoder::*;
+///
+/// // create a standard Tiff file
+/// let mut tiff = TiffEncoder::new(&mut file).unwrap();
+/// tiff.write_image::<colortype::RGB8>(100, 100, &image_data).unwrap();
+///
+/// // create a BigTiff file
+/// let mut bigtiff = TiffEncoder::new_big(&mut file).unwrap();
+/// bigtiff.write_image::<colortype::RGB8>(100, 100, &image_data).unwrap();
+///
+/// # }
+/// ```
+pub struct TiffEncoder<W, K: TiffKind = TiffKindStandard> {
+ writer: TiffWriter<W>,
+ kind: PhantomData<K>,
+}
+
+/// Constructor functions to create standard Tiff files.
+impl<W: Write + Seek> TiffEncoder<W> {
+ /// Creates a new encoder for standard Tiff files.
+ ///
+ /// To create BigTiff files, use [`new_big`][TiffEncoder::new_big] or
+ /// [`new_generic`][TiffEncoder::new_generic].
+ pub fn new(writer: W) -> TiffResult<TiffEncoder<W, TiffKindStandard>> {
+ TiffEncoder::new_generic(writer)
+ }
+}
+
+/// Constructor functions to create BigTiff files.
+impl<W: Write + Seek> TiffEncoder<W, TiffKindBig> {
+ /// Creates a new encoder for BigTiff files.
+ ///
+ /// To create standard Tiff files, use [`new`][TiffEncoder::new] or
+ /// [`new_generic`][TiffEncoder::new_generic].
+ pub fn new_big(writer: W) -> TiffResult<Self> {
+ TiffEncoder::new_generic(writer)
+ }
+}
+
+/// Generic functions that are available for both Tiff and BigTiff encoders.
+impl<W: Write + Seek, K: TiffKind> TiffEncoder<W, K> {
+ /// Creates a new Tiff or BigTiff encoder, inferred from the return type.
+ pub fn new_generic(writer: W) -> TiffResult<Self> {
+ let mut encoder = TiffEncoder {
+ writer: TiffWriter::new(writer),
+ kind: PhantomData,
+ };
+
+ K::write_header(&mut encoder.writer)?;
+
+ Ok(encoder)
+ }
+
+ /// Create a [`DirectoryEncoder`] to encode an ifd directory.
+ pub fn new_directory(&mut self) -> TiffResult<DirectoryEncoder<W, K>> {
+ DirectoryEncoder::new(&mut self.writer)
+ }
+
+ /// Create an [`ImageEncoder`] to encode an image one slice at a time.
+ pub fn new_image<C: ColorType>(
+ &mut self,
+ width: u32,
+ height: u32,
+ ) -> TiffResult<ImageEncoder<W, C, K, Uncompressed>> {
+ let encoder = DirectoryEncoder::new(&mut self.writer)?;
+ ImageEncoder::new(encoder, width, height)
+ }
+
+ /// Create an [`ImageEncoder`] to encode an image one slice at a time.
+ pub fn new_image_with_compression<C: ColorType, D: Compression>(
+ &mut self,
+ width: u32,
+ height: u32,
+ compression: D,
+ ) -> TiffResult<ImageEncoder<W, C, K, D>> {
+ let encoder = DirectoryEncoder::new(&mut self.writer)?;
+ ImageEncoder::with_compression(encoder, width, height, compression)
+ }
+
+ /// Convenience function to write an entire image from memory.
+ pub fn write_image<C: ColorType>(
+ &mut self,
+ width: u32,
+ height: u32,
+ data: &[C::Inner],
+ ) -> TiffResult<()>
+ where
+ [C::Inner]: TiffValue,
+ {
+ let encoder = DirectoryEncoder::new(&mut self.writer)?;
+ let image: ImageEncoder<W, C, K> = ImageEncoder::new(encoder, width, height)?;
+ image.write_data(data)
+ }
+
+ /// Convenience function to write an entire image from memory with a given compression.
+ pub fn write_image_with_compression<C: ColorType, D: Compression>(
+ &mut self,
+ width: u32,
+ height: u32,
+ compression: D,
+ data: &[C::Inner],
+ ) -> TiffResult<()>
+ where
+ [C::Inner]: TiffValue,
+ {
+ let encoder = DirectoryEncoder::new(&mut self.writer)?;
+ let image: ImageEncoder<W, C, K, D> =
+ ImageEncoder::with_compression(encoder, width, height, compression)?;
+ image.write_data(data)
+ }
+}
+
+/// Low level interface to encode ifd directories.
+///
+/// You should call `finish` on this when you are finished with it.
+/// Encoding can silently fail while this is dropping.
+pub struct DirectoryEncoder<'a, W: 'a + Write + Seek, K: TiffKind> {
+ writer: &'a mut TiffWriter<W>,
+ dropped: bool,
+ // We use BTreeMap to make sure tags are written in correct order
+ ifd_pointer_pos: u64,
+ ifd: BTreeMap<u16, DirectoryEntry<K::OffsetType>>,
+}
+
+impl<'a, W: 'a + Write + Seek, K: TiffKind> DirectoryEncoder<'a, W, K> {
+ fn new(writer: &'a mut TiffWriter<W>) -> TiffResult<Self> {
+ // the previous word is the IFD offset position
+ let ifd_pointer_pos = writer.offset() - mem::size_of::<K::OffsetType>() as u64;
+ writer.pad_word_boundary()?; // TODO: Do we need to adjust this for BigTiff?
+ Ok(DirectoryEncoder {
+ writer,
+ dropped: false,
+ ifd_pointer_pos,
+ ifd: BTreeMap::new(),
+ })
+ }
+
+ /// Write a single ifd tag.
+ pub fn write_tag<T: TiffValue>(&mut self, tag: Tag, value: T) -> TiffResult<()> {
+ let mut bytes = Vec::with_capacity(value.bytes());
+ {
+ let mut writer = TiffWriter::new(&mut bytes);
+ value.write(&mut writer)?;
+ }
+
+ self.ifd.insert(
+ tag.to_u16(),
+ DirectoryEntry {
+ data_type: <T>::FIELD_TYPE.to_u16(),
+ count: value.count().try_into()?,
+ data: bytes,
+ },
+ );
+
+ Ok(())
+ }
+
+ fn write_directory(&mut self) -> TiffResult<u64> {
+ // Start by writing out all values
+ for &mut DirectoryEntry {
+ data: ref mut bytes,
+ ..
+ } in self.ifd.values_mut()
+ {
+ let data_bytes = mem::size_of::<K::OffsetType>();
+
+ if bytes.len() > data_bytes {
+ let offset = self.writer.offset();
+ self.writer.write_bytes(bytes)?;
+ *bytes = vec![0; data_bytes];
+ let mut writer = TiffWriter::new(bytes as &mut [u8]);
+ K::write_offset(&mut writer, offset)?;
+ } else {
+ while bytes.len() < data_bytes {
+ bytes.push(0);
+ }
+ }
+ }
+
+ let offset = self.writer.offset();
+
+ K::write_entry_count(&mut self.writer, self.ifd.len())?;
+ for (
+ tag,
+ &DirectoryEntry {
+ data_type: ref field_type,
+ ref count,
+ data: ref offset,
+ },
+ ) in self.ifd.iter()
+ {
+ self.writer.write_u16(*tag)?;
+ self.writer.write_u16(*field_type)?;
+ (*count).write(&mut self.writer)?;
+ self.writer.write_bytes(offset)?;
+ }
+
+ Ok(offset)
+ }
+
+ /// Write some data to the tiff file, the offset of the data is returned.
+ ///
+ /// This could be used to write tiff strips.
+ pub fn write_data<T: TiffValue>(&mut self, value: T) -> TiffResult<u64> {
+ let offset = self.writer.offset();
+ value.write(&mut self.writer)?;
+ Ok(offset)
+ }
+
+ /// Provides the number of bytes written by the underlying TiffWriter during the last call.
+ fn last_written(&self) -> u64 {
+ self.writer.last_written()
+ }
+
+ fn finish_internal(&mut self) -> TiffResult<()> {
+ let ifd_pointer = self.write_directory()?;
+ let curr_pos = self.writer.offset();
+
+ self.writer.goto_offset(self.ifd_pointer_pos)?;
+ K::write_offset(&mut self.writer, ifd_pointer)?;
+ self.writer.goto_offset(curr_pos)?;
+ K::write_offset(&mut self.writer, 0)?;
+
+ self.dropped = true;
+
+ Ok(())
+ }
+
+ /// Write out the ifd directory.
+ pub fn finish(mut self) -> TiffResult<()> {
+ self.finish_internal()
+ }
+}
+
+impl<'a, W: Write + Seek, K: TiffKind> Drop for DirectoryEncoder<'a, W, K> {
+ fn drop(&mut self) {
+ if !self.dropped {
+ let _ = self.finish_internal();
+ }
+ }
+}
+
+/// Type to encode images strip by strip.
+///
+/// You should call `finish` on this when you are finished with it.
+/// Encoding can silently fail while this is dropping.
+///
+/// # Examples
+/// ```
+/// # extern crate tiff;
+/// # fn main() {
+/// # let mut file = std::io::Cursor::new(Vec::new());
+/// # let image_data = vec![0; 100*100*3];
+/// use tiff::encoder::*;
+/// use tiff::tags::Tag;
+///
+/// let mut tiff = TiffEncoder::new(&mut file).unwrap();
+/// let mut image = tiff.new_image::<colortype::RGB8>(100, 100).unwrap();
+///
+/// // You can encode tags here
+/// image.encoder().write_tag(Tag::Artist, "Image-tiff").unwrap();
+///
+/// // Strip size can be configured before writing data
+/// image.rows_per_strip(2).unwrap();
+///
+/// let mut idx = 0;
+/// while image.next_strip_sample_count() > 0 {
+/// let sample_count = image.next_strip_sample_count() as usize;
+/// image.write_strip(&image_data[idx..idx+sample_count]).unwrap();
+/// idx += sample_count;
+/// }
+/// image.finish().unwrap();
+/// # }
+/// ```
+/// You can also call write_data function wich will encode by strip and finish
+pub struct ImageEncoder<
+ 'a,
+ W: 'a + Write + Seek,
+ C: ColorType,
+ K: TiffKind,
+ D: Compression = Uncompressed,
+> {
+ encoder: DirectoryEncoder<'a, W, K>,
+ strip_idx: u64,
+ strip_count: u64,
+ row_samples: u64,
+ width: u32,
+ height: u32,
+ rows_per_strip: u64,
+ strip_offsets: Vec<K::OffsetType>,
+ strip_byte_count: Vec<K::OffsetType>,
+ dropped: bool,
+ compression: D,
+ _phantom: ::std::marker::PhantomData<C>,
+}
+
+impl<'a, W: 'a + Write + Seek, T: ColorType, K: TiffKind, D: Compression>
+ ImageEncoder<'a, W, T, K, D>
+{
+ fn new(encoder: DirectoryEncoder<'a, W, K>, width: u32, height: u32) -> TiffResult<Self>
+ where
+ D: Default,
+ {
+ Self::with_compression(encoder, width, height, D::default())
+ }
+
+ fn with_compression(
+ mut encoder: DirectoryEncoder<'a, W, K>,
+ width: u32,
+ height: u32,
+ compression: D,
+ ) -> TiffResult<Self> {
+ if width == 0 || height == 0 {
+ return Err(TiffError::FormatError(TiffFormatError::InvalidDimensions(
+ width, height,
+ )));
+ }
+
+ let row_samples = u64::from(width) * u64::try_from(<T>::BITS_PER_SAMPLE.len())?;
+ let row_bytes = row_samples * u64::from(<T::Inner>::BYTE_LEN);
+
+ // Limit the strip size to prevent potential memory and security issues.
+ // Also keep the multiple strip handling 'oiled'
+ let rows_per_strip = {
+ match D::COMPRESSION_METHOD {
+ CompressionMethod::PackBits => 1, // Each row must be packed separately. Do not compress across row boundaries
+ _ => (1_000_000 + row_bytes - 1) / row_bytes,
+ }
+ };
+
+ let strip_count = (u64::from(height) + rows_per_strip - 1) / rows_per_strip;
+
+ encoder.write_tag(Tag::ImageWidth, width)?;
+ encoder.write_tag(Tag::ImageLength, height)?;
+ encoder.write_tag(Tag::Compression, D::COMPRESSION_METHOD.to_u16())?;
+
+ encoder.write_tag(Tag::BitsPerSample, <T>::BITS_PER_SAMPLE)?;
+ let sample_format: Vec<_> = <T>::SAMPLE_FORMAT.iter().map(|s| s.to_u16()).collect();
+ encoder.write_tag(Tag::SampleFormat, &sample_format[..])?;
+ encoder.write_tag(Tag::PhotometricInterpretation, <T>::TIFF_VALUE.to_u16())?;
+
+ encoder.write_tag(Tag::RowsPerStrip, u32::try_from(rows_per_strip)?)?;
+
+ encoder.write_tag(
+ Tag::SamplesPerPixel,
+ u16::try_from(<T>::BITS_PER_SAMPLE.len())?,
+ )?;
+ encoder.write_tag(Tag::XResolution, Rational { n: 1, d: 1 })?;
+ encoder.write_tag(Tag::YResolution, Rational { n: 1, d: 1 })?;
+ encoder.write_tag(Tag::ResolutionUnit, ResolutionUnit::None.to_u16())?;
+
+ Ok(ImageEncoder {
+ encoder,
+ strip_count,
+ strip_idx: 0,
+ row_samples,
+ rows_per_strip,
+ width,
+ height,
+ strip_offsets: Vec::new(),
+ strip_byte_count: Vec::new(),
+ dropped: false,
+ compression: compression,
+ _phantom: ::std::marker::PhantomData,
+ })
+ }
+
+ /// Number of samples the next strip should have.
+ pub fn next_strip_sample_count(&self) -> u64 {
+ if self.strip_idx >= self.strip_count {
+ return 0;
+ }
+
+ let raw_start_row = self.strip_idx * self.rows_per_strip;
+ let start_row = cmp::min(u64::from(self.height), raw_start_row);
+ let end_row = cmp::min(u64::from(self.height), raw_start_row + self.rows_per_strip);
+
+ (end_row - start_row) * self.row_samples
+ }
+
+ /// Write a single strip.
+ pub fn write_strip(&mut self, value: &[T::Inner]) -> TiffResult<()>
+ where
+ [T::Inner]: TiffValue,
+ {
+ let samples = self.next_strip_sample_count();
+ if u64::try_from(value.len())? != samples {
+ return Err(io::Error::new(
+ io::ErrorKind::InvalidData,
+ "Slice is wrong size for strip",
+ )
+ .into());
+ }
+
+ // Write the (possible compressed) data to the encoder.
+ let offset = self.encoder.write_data(value)?;
+ let byte_count = self.encoder.last_written() as usize;
+
+ self.strip_offsets.push(K::convert_offset(offset)?);
+ self.strip_byte_count.push(byte_count.try_into()?);
+
+ self.strip_idx += 1;
+ Ok(())
+ }
+
+ /// Write strips from data
+ pub fn write_data(mut self, data: &[T::Inner]) -> TiffResult<()>
+ where
+ [T::Inner]: TiffValue,
+ {
+ let num_pix = usize::try_from(self.width)?
+ .checked_mul(usize::try_from(self.height)?)
+ .ok_or_else(|| {
+ io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "Image width * height exceeds usize",
+ )
+ })?;
+ if data.len() < num_pix {
+ return Err(io::Error::new(
+ io::ErrorKind::InvalidData,
+ "Input data slice is undersized for provided dimensions",
+ )
+ .into());
+ }
+
+ self.encoder
+ .writer
+ .set_compression(self.compression.get_algorithm());
+
+ let mut idx = 0;
+ while self.next_strip_sample_count() > 0 {
+ let sample_count = usize::try_from(self.next_strip_sample_count())?;
+ self.write_strip(&data[idx..idx + sample_count])?;
+ idx += sample_count;
+ }
+
+ self.encoder.writer.reset_compression();
+ self.finish()?;
+ Ok(())
+ }
+
+ /// Set image resolution
+ pub fn resolution(&mut self, unit: ResolutionUnit, value: Rational) {
+ self.encoder
+ .write_tag(Tag::ResolutionUnit, unit.to_u16())
+ .unwrap();
+ self.encoder
+ .write_tag(Tag::XResolution, value.clone())
+ .unwrap();
+ self.encoder.write_tag(Tag::YResolution, value).unwrap();
+ }
+
+ /// Set image resolution unit
+ pub fn resolution_unit(&mut self, unit: ResolutionUnit) {
+ self.encoder
+ .write_tag(Tag::ResolutionUnit, unit.to_u16())
+ .unwrap();
+ }
+
+ /// Set image x-resolution
+ pub fn x_resolution(&mut self, value: Rational) {
+ self.encoder.write_tag(Tag::XResolution, value).unwrap();
+ }
+
+ /// Set image y-resolution
+ pub fn y_resolution(&mut self, value: Rational) {
+ self.encoder.write_tag(Tag::YResolution, value).unwrap();
+ }
+
+ /// Set image number of lines per strip
+ ///
+ /// This function needs to be called before any calls to `write_data` or
+ /// `write_strip` and will return an error otherwise.
+ pub fn rows_per_strip(&mut self, value: u32) -> TiffResult<()> {
+ if self.strip_idx != 0 {
+ return Err(io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "Cannot change strip size after data was written",
+ )
+ .into());
+ }
+ // Write tag as 32 bits
+ self.encoder.write_tag(Tag::RowsPerStrip, value)?;
+
+ let value: u64 = value as u64;
+ self.strip_count = (self.height as u64 + value - 1) / value;
+ self.rows_per_strip = value;
+
+ Ok(())
+ }
+
+ fn finish_internal(&mut self) -> TiffResult<()> {
+ self.encoder
+ .write_tag(Tag::StripOffsets, K::convert_slice(&self.strip_offsets))?;
+ self.encoder.write_tag(
+ Tag::StripByteCounts,
+ K::convert_slice(&self.strip_byte_count),
+ )?;
+ self.dropped = true;
+
+ self.encoder.finish_internal()
+ }
+
+ /// Get a reference of the underlying `DirectoryEncoder`
+ pub fn encoder(&mut self) -> &mut DirectoryEncoder<'a, W, K> {
+ &mut self.encoder
+ }
+
+ /// Write out image and ifd directory.
+ pub fn finish(mut self) -> TiffResult<()> {
+ self.finish_internal()
+ }
+}
+
+impl<'a, W: Write + Seek, C: ColorType, K: TiffKind, D: Compression> Drop
+ for ImageEncoder<'a, W, C, K, D>
+{
+ fn drop(&mut self) {
+ if !self.dropped {
+ let _ = self.finish_internal();
+ }
+ }
+}
+
+struct DirectoryEntry<S> {
+ data_type: u16,
+ count: S,
+ data: Vec<u8>,
+}
+
+/// Trait to abstract over Tiff/BigTiff differences.
+///
+/// Implemented for [`TiffKindStandard`] and [`TiffKindBig`].
+pub trait TiffKind {
+ /// The type of offset fields, `u32` for normal Tiff, `u64` for BigTiff.
+ type OffsetType: TryFrom<usize, Error = TryFromIntError> + Into<u64> + TiffValue;
+
+ /// Needed for the `convert_slice` method.
+ type OffsetArrayType: ?Sized + TiffValue;
+
+ /// Write the (Big)Tiff header.
+ fn write_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()>;
+
+ /// Convert a file offset to `Self::OffsetType`.
+ ///
+ /// This returns an error for normal Tiff if the offset is larger than `u32::MAX`.
+ fn convert_offset(offset: u64) -> TiffResult<Self::OffsetType>;
+
+ /// Write an offset value to the given writer.
+ ///
+ /// Like `convert_offset`, this errors if `offset > u32::MAX` for normal Tiff.
+ fn write_offset<W: Write>(writer: &mut TiffWriter<W>, offset: u64) -> TiffResult<()>;
+
+ /// Write the IFD entry count field with the given `count` value.
+ ///
+ /// The entry count field is an `u16` for normal Tiff and `u64` for BigTiff. Errors
+ /// if the given `usize` is larger than the representable values.
+ fn write_entry_count<W: Write>(writer: &mut TiffWriter<W>, count: usize) -> TiffResult<()>;
+
+ /// Internal helper method for satisfying Rust's type checker.
+ ///
+ /// The `TiffValue` trait is implemented for both primitive values (e.g. `u8`, `u32`) and
+ /// slices of primitive values (e.g. `[u8]`, `[u32]`). However, this is not represented in
+ /// the type system, so there is no guarantee that that for all `T: TiffValue` there is also
+ /// an implementation of `TiffValue` for `[T]`. This method works around that problem by
+ /// providing a conversion from `[T]` to some value that implements `TiffValue`, thereby
+ /// making all slices of `OffsetType` usable with `write_tag` and similar methods.
+ ///
+ /// Implementations of this trait should always set `OffsetArrayType` to `[OffsetType]`.
+ fn convert_slice(slice: &[Self::OffsetType]) -> &Self::OffsetArrayType;
+}
+
+/// Create a standard Tiff file.
+pub struct TiffKindStandard;
+
+impl TiffKind for TiffKindStandard {
+ type OffsetType = u32;
+ type OffsetArrayType = [u32];
+
+ fn write_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ write_tiff_header(writer)?;
+ // blank the IFD offset location
+ writer.write_u32(0)?;
+
+ Ok(())
+ }
+
+ fn convert_offset(offset: u64) -> TiffResult<Self::OffsetType> {
+ Ok(Self::OffsetType::try_from(offset)?)
+ }
+
+ fn write_offset<W: Write>(writer: &mut TiffWriter<W>, offset: u64) -> TiffResult<()> {
+ writer.write_u32(u32::try_from(offset)?)?;
+ Ok(())
+ }
+
+ fn write_entry_count<W: Write>(writer: &mut TiffWriter<W>, count: usize) -> TiffResult<()> {
+ writer.write_u16(u16::try_from(count)?)?;
+
+ Ok(())
+ }
+
+ fn convert_slice(slice: &[Self::OffsetType]) -> &Self::OffsetArrayType {
+ slice
+ }
+}
+
+/// Create a BigTiff file.
+pub struct TiffKindBig;
+
+impl TiffKind for TiffKindBig {
+ type OffsetType = u64;
+ type OffsetArrayType = [u64];
+
+ fn write_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ write_bigtiff_header(writer)?;
+ // blank the IFD offset location
+ writer.write_u64(0)?;
+
+ Ok(())
+ }
+
+ fn convert_offset(offset: u64) -> TiffResult<Self::OffsetType> {
+ Ok(offset)
+ }
+
+ fn write_offset<W: Write>(writer: &mut TiffWriter<W>, offset: u64) -> TiffResult<()> {
+ writer.write_u64(offset)?;
+ Ok(())
+ }
+
+ fn write_entry_count<W: Write>(writer: &mut TiffWriter<W>, count: usize) -> TiffResult<()> {
+ writer.write_u64(u64::try_from(count)?)?;
+ Ok(())
+ }
+
+ fn convert_slice(slice: &[Self::OffsetType]) -> &Self::OffsetArrayType {
+ slice
+ }
+}
diff --git a/vendor/tiff/src/encoder/tiff_value.rs b/vendor/tiff/src/encoder/tiff_value.rs
new file mode 100644
index 0000000..43653f4
--- /dev/null
+++ b/vendor/tiff/src/encoder/tiff_value.rs
@@ -0,0 +1,523 @@
+use std::{borrow::Cow, io::Write, slice::from_ref};
+
+use crate::{bytecast, tags::Type, TiffError, TiffFormatError, TiffResult};
+
+use super::writer::TiffWriter;
+
+/// Trait for types that can be encoded in a tiff file
+pub trait TiffValue {
+ const BYTE_LEN: u8;
+ const FIELD_TYPE: Type;
+ fn count(&self) -> usize;
+ fn bytes(&self) -> usize {
+ self.count() * usize::from(Self::BYTE_LEN)
+ }
+
+ /// Access this value as an contiguous sequence of bytes.
+ /// If their is no trivial representation, allocate it on the heap.
+ fn data(&self) -> Cow<[u8]>;
+
+ /// Write this value to a TiffWriter.
+ /// While the default implementation will work in all cases, it may require unnecessary allocations.
+ /// The written bytes of any custom implementation MUST be the same as yielded by `self.data()`.
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_bytes(&self.data())?;
+ Ok(())
+ }
+}
+
+impl TiffValue for [u8] {
+ const BYTE_LEN: u8 = 1;
+ const FIELD_TYPE: Type = Type::BYTE;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(self)
+ }
+}
+
+impl TiffValue for [i8] {
+ const BYTE_LEN: u8 = 1;
+ const FIELD_TYPE: Type = Type::SBYTE;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i8_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [u16] {
+ const BYTE_LEN: u8 = 2;
+ const FIELD_TYPE: Type = Type::SHORT;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u16_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [i16] {
+ const BYTE_LEN: u8 = 2;
+ const FIELD_TYPE: Type = Type::SSHORT;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i16_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [u32] {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::LONG;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u32_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [i32] {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::SLONG;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i32_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [u64] {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::LONG8;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u64_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [i64] {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::SLONG8;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i64_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [f32] {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::FLOAT;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ // We write using native endian so this should be safe
+ Cow::Borrowed(bytecast::f32_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for [f64] {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::DOUBLE;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ // We write using native endian so this should be safe
+ Cow::Borrowed(bytecast::f64_as_ne_bytes(self))
+ }
+}
+
+impl TiffValue for u8 {
+ const BYTE_LEN: u8 = 1;
+ const FIELD_TYPE: Type = Type::BYTE;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u8(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(from_ref(self))
+ }
+}
+
+impl TiffValue for i8 {
+ const BYTE_LEN: u8 = 1;
+ const FIELD_TYPE: Type = Type::SBYTE;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_i8(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i8_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for u16 {
+ const BYTE_LEN: u8 = 2;
+ const FIELD_TYPE: Type = Type::SHORT;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u16(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u16_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for i16 {
+ const BYTE_LEN: u8 = 2;
+ const FIELD_TYPE: Type = Type::SSHORT;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_i16(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i16_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for u32 {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::LONG;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u32(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u32_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for i32 {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::SLONG;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_i32(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i32_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for u64 {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::LONG8;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u64(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u64_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for i64 {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::SLONG8;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_i64(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::i64_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for f32 {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::FLOAT;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_f32(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::f32_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for f64 {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::DOUBLE;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_f64(*self)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::f64_as_ne_bytes(from_ref(self)))
+ }
+}
+
+impl TiffValue for Ifd {
+ const BYTE_LEN: u8 = 4;
+ const FIELD_TYPE: Type = Type::IFD;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u32(self.0)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u32_as_ne_bytes(from_ref(&self.0)))
+ }
+}
+
+impl TiffValue for Ifd8 {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::IFD8;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u64(self.0)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Borrowed(bytecast::u64_as_ne_bytes(from_ref(&self.0)))
+ }
+}
+
+impl TiffValue for Rational {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::RATIONAL;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_u32(self.n)?;
+ writer.write_u32(self.d)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Owned({
+ let first_dword = bytecast::u32_as_ne_bytes(from_ref(&self.n));
+ let second_dword = bytecast::u32_as_ne_bytes(from_ref(&self.d));
+ [first_dword, second_dword].concat()
+ })
+ }
+}
+
+impl TiffValue for SRational {
+ const BYTE_LEN: u8 = 8;
+ const FIELD_TYPE: Type = Type::SRATIONAL;
+
+ fn count(&self) -> usize {
+ 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ writer.write_i32(self.n)?;
+ writer.write_i32(self.d)?;
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Owned({
+ let first_dword = bytecast::i32_as_ne_bytes(from_ref(&self.n));
+ let second_dword = bytecast::i32_as_ne_bytes(from_ref(&self.d));
+ [first_dword, second_dword].concat()
+ })
+ }
+}
+
+impl TiffValue for str {
+ const BYTE_LEN: u8 = 1;
+ const FIELD_TYPE: Type = Type::ASCII;
+
+ fn count(&self) -> usize {
+ self.len() + 1
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ if self.is_ascii() && !self.bytes().any(|b| b == 0) {
+ writer.write_bytes(self.as_bytes())?;
+ writer.write_u8(0)?;
+ Ok(())
+ } else {
+ Err(TiffError::FormatError(TiffFormatError::InvalidTag))
+ }
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ Cow::Owned({
+ if self.is_ascii() && !self.bytes().any(|b| b == 0) {
+ let bytes: &[u8] = self.as_bytes();
+ [bytes, &[0]].concat()
+ } else {
+ vec![]
+ }
+ })
+ }
+}
+
+impl<'a, T: TiffValue + ?Sized> TiffValue for &'a T {
+ const BYTE_LEN: u8 = T::BYTE_LEN;
+ const FIELD_TYPE: Type = T::FIELD_TYPE;
+
+ fn count(&self) -> usize {
+ (*self).count()
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ (*self).write(writer)
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ T::data(self)
+ }
+}
+
+macro_rules! impl_tiff_value_for_contiguous_sequence {
+ ($inner_type:ty; $bytes:expr; $field_type:expr) => {
+ impl $crate::encoder::TiffValue for [$inner_type] {
+ const BYTE_LEN: u8 = $bytes;
+ const FIELD_TYPE: Type = $field_type;
+
+ fn count(&self) -> usize {
+ self.len()
+ }
+
+ fn write<W: Write>(&self, writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ for x in self {
+ x.write(writer)?;
+ }
+ Ok(())
+ }
+
+ fn data(&self) -> Cow<[u8]> {
+ let mut buf: Vec<u8> = Vec::with_capacity(Self::BYTE_LEN as usize * self.len());
+ for x in self {
+ buf.extend_from_slice(&x.data());
+ }
+ Cow::Owned(buf)
+ }
+ }
+ };
+}
+
+impl_tiff_value_for_contiguous_sequence!(Ifd; 4; Type::IFD);
+impl_tiff_value_for_contiguous_sequence!(Ifd8; 8; Type::IFD8);
+impl_tiff_value_for_contiguous_sequence!(Rational; 8; Type::RATIONAL);
+impl_tiff_value_for_contiguous_sequence!(SRational; 8; Type::SRATIONAL);
+
+/// Type to represent tiff values of type `IFD`
+#[derive(Clone)]
+pub struct Ifd(pub u32);
+
+/// Type to represent tiff values of type `IFD8`
+#[derive(Clone)]
+pub struct Ifd8(pub u64);
+
+/// Type to represent tiff values of type `RATIONAL`
+#[derive(Clone)]
+pub struct Rational {
+ pub n: u32,
+ pub d: u32,
+}
+
+/// Type to represent tiff values of type `SRATIONAL`
+#[derive(Clone)]
+pub struct SRational {
+ pub n: i32,
+ pub d: i32,
+}
diff --git a/vendor/tiff/src/encoder/writer.rs b/vendor/tiff/src/encoder/writer.rs
new file mode 100644
index 0000000..c5139e9
--- /dev/null
+++ b/vendor/tiff/src/encoder/writer.rs
@@ -0,0 +1,188 @@
+use crate::encoder::compression::*;
+use crate::error::TiffResult;
+use std::io::{self, Seek, SeekFrom, Write};
+
+pub fn write_tiff_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ #[cfg(target_endian = "little")]
+ let boi: u8 = 0x49;
+ #[cfg(not(target_endian = "little"))]
+ let boi: u8 = 0x4d;
+
+ writer.writer.write_all(&[boi, boi])?;
+ writer.writer.write_all(&42u16.to_ne_bytes())?;
+ writer.offset += 4;
+
+ Ok(())
+}
+
+/// Writes a BigTiff header, excluding the IFD offset field.
+///
+/// Writes the byte order, version number, offset byte size, and zero constant fields. Does
+// _not_ write the offset to the first IFD, this should be done by the caller.
+pub fn write_bigtiff_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()> {
+ #[cfg(target_endian = "little")]
+ let boi: u8 = 0x49;
+ #[cfg(not(target_endian = "little"))]
+ let boi: u8 = 0x4d;
+
+ // byte order indication
+ writer.writer.write_all(&[boi, boi])?;
+ // version number
+ writer.writer.write_all(&43u16.to_ne_bytes())?;
+ // bytesize of offsets (pointer size)
+ writer.writer.write_all(&8u16.to_ne_bytes())?;
+ // always 0
+ writer.writer.write_all(&0u16.to_ne_bytes())?;
+
+ // we wrote 8 bytes, so set the internal offset accordingly
+ writer.offset += 8;
+
+ Ok(())
+}
+
+pub struct TiffWriter<W> {
+ writer: W,
+ offset: u64,
+ byte_count: u64,
+ compressor: Compressor,
+}
+
+impl<W: Write> TiffWriter<W> {
+ pub fn new(writer: W) -> Self {
+ Self {
+ writer,
+ offset: 0,
+ byte_count: 0,
+ compressor: Compressor::default(),
+ }
+ }
+
+ pub fn set_compression(&mut self, compressor: Compressor) {
+ self.compressor = compressor;
+ }
+
+ pub fn reset_compression(&mut self) {
+ self.compressor = Compressor::default();
+ }
+
+ pub fn offset(&self) -> u64 {
+ self.offset
+ }
+
+ pub fn last_written(&self) -> u64 {
+ self.byte_count
+ }
+
+ pub fn write_bytes(&mut self, bytes: &[u8]) -> Result<(), io::Error> {
+ self.byte_count = self.compressor.write_to(&mut self.writer, bytes)?;
+ self.offset += self.byte_count;
+ Ok(())
+ }
+
+ pub fn write_u8(&mut self, n: u8) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+ Ok(())
+ }
+
+ pub fn write_i8(&mut self, n: i8) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+ Ok(())
+ }
+
+ pub fn write_u16(&mut self, n: u16) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_i16(&mut self, n: i16) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_u32(&mut self, n: u32) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_i32(&mut self, n: i32) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_u64(&mut self, n: u64) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_i64(&mut self, n: i64) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &n.to_ne_bytes())?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_f32(&mut self, n: f32) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &u32::to_ne_bytes(n.to_bits()))?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn write_f64(&mut self, n: f64) -> Result<(), io::Error> {
+ self.byte_count = self
+ .compressor
+ .write_to(&mut self.writer, &u64::to_ne_bytes(n.to_bits()))?;
+ self.offset += self.byte_count;
+
+ Ok(())
+ }
+
+ pub fn pad_word_boundary(&mut self) -> Result<(), io::Error> {
+ if self.offset % 4 != 0 {
+ let padding = [0, 0, 0];
+ let padd_len = 4 - (self.offset % 4);
+ self.writer.write_all(&padding[..padd_len as usize])?;
+ self.offset += padd_len;
+ }
+
+ Ok(())
+ }
+}
+
+impl<W: Seek> TiffWriter<W> {
+ pub fn goto_offset(&mut self, offset: u64) -> Result<(), io::Error> {
+ self.offset = offset;
+ self.writer.seek(SeekFrom::Start(offset as u64))?;
+ Ok(())
+ }
+}
diff --git a/vendor/tiff/src/error.rs b/vendor/tiff/src/error.rs
new file mode 100644
index 0000000..a401c6f
--- /dev/null
+++ b/vendor/tiff/src/error.rs
@@ -0,0 +1,369 @@
+use std::error::Error;
+use std::fmt;
+use std::fmt::Display;
+use std::io;
+use std::str;
+use std::string;
+use std::sync::Arc;
+
+use jpeg::UnsupportedFeature;
+
+use crate::decoder::{ifd::Value, ChunkType};
+use crate::tags::{
+ CompressionMethod, PhotometricInterpretation, PlanarConfiguration, SampleFormat, Tag,
+};
+use crate::ColorType;
+
+use crate::weezl::LzwError;
+
+/// Tiff error kinds.
+#[derive(Debug)]
+pub enum TiffError {
+ /// The Image is not formatted properly.
+ FormatError(TiffFormatError),
+
+ /// The Decoder does not support features required by the image.
+ UnsupportedError(TiffUnsupportedError),
+
+ /// An I/O Error occurred while decoding the image.
+ IoError(io::Error),
+
+ /// The Limits of the Decoder is exceeded.
+ LimitsExceeded,
+
+ /// An integer conversion to or from a platform size failed, either due to
+ /// limits of the platform size or limits of the format.
+ IntSizeError,
+
+ /// The image does not support the requested operation
+ UsageError(UsageError),
+}
+
+/// The image is not formatted properly.
+///
+/// This indicates that the encoder producing the image might behave incorrectly or that the input
+/// file has been corrupted.
+///
+/// The list of variants may grow to incorporate errors of future features. Matching against this
+/// exhaustively is not covered by interface stability guarantees.
+#[derive(Debug, Clone, PartialEq)]
+#[non_exhaustive]
+pub enum TiffFormatError {
+ TiffSignatureNotFound,
+ TiffSignatureInvalid,
+ ImageFileDirectoryNotFound,
+ InconsistentSizesEncountered,
+ UnexpectedCompressedData {
+ actual_bytes: usize,
+ required_bytes: usize,
+ },
+ InconsistentStripSamples {
+ actual_samples: usize,
+ required_samples: usize,
+ },
+ InvalidDimensions(u32, u32),
+ InvalidTag,
+ InvalidTagValueType(Tag),
+ RequiredTagNotFound(Tag),
+ UnknownPredictor(u16),
+ ByteExpected(Value),
+ UnsignedIntegerExpected(Value),
+ SignedIntegerExpected(Value),
+ Format(String),
+ RequiredTagEmpty(Tag),
+ StripTileTagConflict,
+ CycleInOffsets,
+ JpegDecoder(JpegDecoderError),
+}
+
+impl fmt::Display for TiffFormatError {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
+ use self::TiffFormatError::*;
+ match *self {
+ TiffSignatureNotFound => write!(fmt, "TIFF signature not found."),
+ TiffSignatureInvalid => write!(fmt, "TIFF signature invalid."),
+ ImageFileDirectoryNotFound => write!(fmt, "Image file directory not found."),
+ InconsistentSizesEncountered => write!(fmt, "Inconsistent sizes encountered."),
+ UnexpectedCompressedData {
+ actual_bytes,
+ required_bytes,
+ } => {
+ write!(
+ fmt,
+ "Decompression returned different amount of bytes than expected: got {}, expected {}.",
+ actual_bytes, required_bytes
+ )
+ }
+ InconsistentStripSamples {
+ actual_samples,
+ required_samples,
+ } => {
+ write!(
+ fmt,
+ "Inconsistent elements in strip: got {}, expected {}.",
+ actual_samples, required_samples
+ )
+ }
+ InvalidDimensions(width, height) => write!(fmt, "Invalid dimensions: {}x{}.", width, height),
+ InvalidTag => write!(fmt, "Image contains invalid tag."),
+ InvalidTagValueType(ref tag) => {
+ write!(fmt, "Tag `{:?}` did not have the expected value type.", tag)
+ }
+ RequiredTagNotFound(ref tag) => write!(fmt, "Required tag `{:?}` not found.", tag),
+ UnknownPredictor(ref predictor) => {
+ write!(fmt, "Unknown predictor “{}” encountered", predictor)
+ }
+ ByteExpected(ref val) => write!(fmt, "Expected byte, {:?} found.", val),
+ UnsignedIntegerExpected(ref val) => {
+ write!(fmt, "Expected unsigned integer, {:?} found.", val)
+ }
+ SignedIntegerExpected(ref val) => {
+ write!(fmt, "Expected signed integer, {:?} found.", val)
+ }
+ Format(ref val) => write!(fmt, "Invalid format: {:?}.", val),
+ RequiredTagEmpty(ref val) => write!(fmt, "Required tag {:?} was empty.", val),
+ StripTileTagConflict => write!(fmt, "File should contain either (StripByteCounts and StripOffsets) or (TileByteCounts and TileOffsets), other combination was found."),
+ CycleInOffsets => write!(fmt, "File contained a cycle in the list of IFDs"),
+ JpegDecoder(ref error) => write!(fmt, "{}", error),
+ }
+ }
+}
+
+/// The Decoder does not support features required by the image.
+///
+/// This only captures known failures for which the standard either does not require support or an
+/// implementation has been planned but not yet completed. Some variants may become unused over
+/// time and will then get deprecated before being removed.
+///
+/// The list of variants may grow. Matching against this exhaustively is not covered by interface
+/// stability guarantees.
+#[derive(Debug, Clone, PartialEq, Eq, Hash)]
+#[non_exhaustive]
+pub enum TiffUnsupportedError {
+ FloatingPointPredictor(ColorType),
+ HorizontalPredictor(ColorType),
+ InterpretationWithBits(PhotometricInterpretation, Vec<u8>),
+ UnknownInterpretation,
+ UnknownCompressionMethod,
+ UnsupportedCompressionMethod(CompressionMethod),
+ UnsupportedSampleDepth(u8),
+ UnsupportedSampleFormat(Vec<SampleFormat>),
+ UnsupportedColorType(ColorType),
+ UnsupportedBitsPerChannel(u8),
+ UnsupportedPlanarConfig(Option<PlanarConfiguration>),
+ UnsupportedDataType,
+ UnsupportedInterpretation(PhotometricInterpretation),
+ UnsupportedJpegFeature(UnsupportedFeature),
+}
+
+impl fmt::Display for TiffUnsupportedError {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
+ use self::TiffUnsupportedError::*;
+ match *self {
+ FloatingPointPredictor(color_type) => write!(
+ fmt,
+ "Floating point predictor for {:?} is unsupported.",
+ color_type
+ ),
+ HorizontalPredictor(color_type) => write!(
+ fmt,
+ "Horizontal predictor for {:?} is unsupported.",
+ color_type
+ ),
+ InterpretationWithBits(ref photometric_interpretation, ref bits_per_sample) => write!(
+ fmt,
+ "{:?} with {:?} bits per sample is unsupported",
+ photometric_interpretation, bits_per_sample
+ ),
+ UnknownInterpretation => write!(
+ fmt,
+ "The image is using an unknown photometric interpretation."
+ ),
+ UnknownCompressionMethod => write!(fmt, "Unknown compression method."),
+ UnsupportedCompressionMethod(method) => {
+ write!(fmt, "Compression method {:?} is unsupported", method)
+ }
+ UnsupportedSampleDepth(samples) => {
+ write!(fmt, "{} samples per pixel is unsupported.", samples)
+ }
+ UnsupportedSampleFormat(ref formats) => {
+ write!(fmt, "Sample format {:?} is unsupported.", formats)
+ }
+ UnsupportedColorType(color_type) => {
+ write!(fmt, "Color type {:?} is unsupported", color_type)
+ }
+ UnsupportedBitsPerChannel(bits) => {
+ write!(fmt, "{} bits per channel not supported", bits)
+ }
+ UnsupportedPlanarConfig(config) => {
+ write!(fmt, "Unsupported planar configuration “{:?}”.", config)
+ }
+ UnsupportedDataType => write!(fmt, "Unsupported data type."),
+ UnsupportedInterpretation(interpretation) => {
+ write!(
+ fmt,
+ "Unsupported photometric interpretation \"{:?}\".",
+ interpretation
+ )
+ }
+ UnsupportedJpegFeature(ref unsupported_feature) => {
+ write!(fmt, "Unsupported JPEG feature {:?}", unsupported_feature)
+ }
+ }
+ }
+}
+
+/// User attempted to use the Decoder in a way that is incompatible with a specific image.
+///
+/// For example: attempting to read a tile from a stripped image.
+#[derive(Debug)]
+pub enum UsageError {
+ InvalidChunkType(ChunkType, ChunkType),
+ InvalidChunkIndex(u32),
+}
+
+impl fmt::Display for UsageError {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use self::UsageError::*;
+ match *self {
+ InvalidChunkType(expected, actual) => {
+ write!(
+ fmt,
+ "Requested operation is only valid for images with chunk encoding of type: {:?}, got {:?}.",
+ expected, actual
+ )
+ }
+ InvalidChunkIndex(index) => write!(fmt, "Image chunk index ({}) requested.", index),
+ }
+ }
+}
+
+impl fmt::Display for TiffError {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
+ match *self {
+ TiffError::FormatError(ref e) => write!(fmt, "Format error: {}", e),
+ TiffError::UnsupportedError(ref f) => write!(
+ fmt,
+ "The Decoder does not support the \
+ image format `{}`",
+ f
+ ),
+ TiffError::IoError(ref e) => e.fmt(fmt),
+ TiffError::LimitsExceeded => write!(fmt, "The Decoder limits are exceeded"),
+ TiffError::IntSizeError => write!(fmt, "Platform or format size limits exceeded"),
+ TiffError::UsageError(ref e) => write!(fmt, "Usage error: {}", e),
+ }
+ }
+}
+
+impl Error for TiffError {
+ fn description(&self) -> &str {
+ match *self {
+ TiffError::FormatError(..) => "Format error",
+ TiffError::UnsupportedError(..) => "Unsupported error",
+ TiffError::IoError(..) => "IO error",
+ TiffError::LimitsExceeded => "Decoder limits exceeded",
+ TiffError::IntSizeError => "Platform or format size limits exceeded",
+ TiffError::UsageError(..) => "Invalid usage",
+ }
+ }
+
+ fn cause(&self) -> Option<&dyn Error> {
+ match *self {
+ TiffError::IoError(ref e) => Some(e),
+ _ => None,
+ }
+ }
+}
+
+impl From<io::Error> for TiffError {
+ fn from(err: io::Error) -> TiffError {
+ TiffError::IoError(err)
+ }
+}
+
+impl From<str::Utf8Error> for TiffError {
+ fn from(_err: str::Utf8Error) -> TiffError {
+ TiffError::FormatError(TiffFormatError::InvalidTag)
+ }
+}
+
+impl From<string::FromUtf8Error> for TiffError {
+ fn from(_err: string::FromUtf8Error) -> TiffError {
+ TiffError::FormatError(TiffFormatError::InvalidTag)
+ }
+}
+
+impl From<TiffFormatError> for TiffError {
+ fn from(err: TiffFormatError) -> TiffError {
+ TiffError::FormatError(err)
+ }
+}
+
+impl From<TiffUnsupportedError> for TiffError {
+ fn from(err: TiffUnsupportedError) -> TiffError {
+ TiffError::UnsupportedError(err)
+ }
+}
+
+impl From<UsageError> for TiffError {
+ fn from(err: UsageError) -> TiffError {
+ TiffError::UsageError(err)
+ }
+}
+
+impl From<std::num::TryFromIntError> for TiffError {
+ fn from(_err: std::num::TryFromIntError) -> TiffError {
+ TiffError::IntSizeError
+ }
+}
+
+impl From<LzwError> for TiffError {
+ fn from(err: LzwError) -> TiffError {
+ match err {
+ LzwError::InvalidCode => TiffError::FormatError(TiffFormatError::Format(String::from(
+ "LZW compressed data corrupted",
+ ))),
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct JpegDecoderError {
+ inner: Arc<jpeg::Error>,
+}
+
+impl JpegDecoderError {
+ fn new(error: jpeg::Error) -> Self {
+ Self {
+ inner: Arc::new(error),
+ }
+ }
+}
+
+impl PartialEq for JpegDecoderError {
+ fn eq(&self, other: &Self) -> bool {
+ Arc::ptr_eq(&self.inner, &other.inner)
+ }
+}
+
+impl Display for JpegDecoderError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.inner.fmt(f)
+ }
+}
+
+impl From<JpegDecoderError> for TiffError {
+ fn from(error: JpegDecoderError) -> Self {
+ TiffError::FormatError(TiffFormatError::JpegDecoder(error))
+ }
+}
+
+impl From<jpeg::Error> for TiffError {
+ fn from(error: jpeg::Error) -> Self {
+ JpegDecoderError::new(error).into()
+ }
+}
+
+/// Result of an image decoding/encoding process
+pub type TiffResult<T> = Result<T, TiffError>;
diff --git a/vendor/tiff/src/lib.rs b/vendor/tiff/src/lib.rs
new file mode 100644
index 0000000..8f23f35
--- /dev/null
+++ b/vendor/tiff/src/lib.rs
@@ -0,0 +1,43 @@
+//! Decoding and Encoding of TIFF Images
+//!
+//! TIFF (Tagged Image File Format) is a versatile image format that supports
+//! lossless and lossy compression.
+//!
+//! # Related Links
+//! * <https://web.archive.org/web/20210108073850/https://www.adobe.io/open/standards/TIFF.html> - The TIFF specification
+
+extern crate jpeg;
+extern crate weezl;
+
+mod bytecast;
+pub mod decoder;
+pub mod encoder;
+mod error;
+pub mod tags;
+
+pub use self::error::{TiffError, TiffFormatError, TiffResult, TiffUnsupportedError, UsageError};
+
+/// An enumeration over supported color types and their bit depths
+#[derive(Copy, PartialEq, Eq, Debug, Clone, Hash)]
+pub enum ColorType {
+ /// Pixel is grayscale
+ Gray(u8),
+
+ /// Pixel contains R, G and B channels
+ RGB(u8),
+
+ /// Pixel is an index into a color palette
+ Palette(u8),
+
+ /// Pixel is grayscale with an alpha channel
+ GrayA(u8),
+
+ /// Pixel is RGB with an alpha channel
+ RGBA(u8),
+
+ /// Pixel is CMYK
+ CMYK(u8),
+
+ /// Pixel is YCbCr
+ YCbCr(u8),
+}
diff --git a/vendor/tiff/src/tags.rs b/vendor/tiff/src/tags.rs
new file mode 100644
index 0000000..cbf7472
--- /dev/null
+++ b/vendor/tiff/src/tags.rs
@@ -0,0 +1,234 @@
+macro_rules! tags {
+ {
+ // Permit arbitrary meta items, which include documentation.
+ $( #[$enum_attr:meta] )*
+ $vis:vis enum $name:ident($ty:tt) $(unknown($unknown_doc:literal))* {
+ // Each of the `Name = Val,` permitting documentation.
+ $($(#[$ident_attr:meta])* $tag:ident = $val:expr,)*
+ }
+ } => {
+ $( #[$enum_attr] )*
+ #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
+ #[non_exhaustive]
+ pub enum $name {
+ $($(#[$ident_attr])* $tag,)*
+ $(
+ #[doc = $unknown_doc]
+ Unknown($ty),
+ )*
+ }
+
+ impl $name {
+ #[inline(always)]
+ fn __from_inner_type(n: $ty) -> Result<Self, $ty> {
+ match n {
+ $( $val => Ok($name::$tag), )*
+ n => Err(n),
+ }
+ }
+
+ #[inline(always)]
+ fn __to_inner_type(&self) -> $ty {
+ match *self {
+ $( $name::$tag => $val, )*
+ $( $name::Unknown(n) => { $unknown_doc; n }, )*
+ }
+ }
+ }
+
+ tags!($name, $ty, $($unknown_doc)*);
+ };
+ // For u16 tags, provide direct inherent primitive conversion methods.
+ ($name:tt, u16, $($unknown_doc:literal)*) => {
+ impl $name {
+ #[inline(always)]
+ pub fn from_u16(val: u16) -> Option<Self> {
+ Self::__from_inner_type(val).ok()
+ }
+
+ $(
+ #[inline(always)]
+ pub fn from_u16_exhaustive(val: u16) -> Self {
+ $unknown_doc;
+ Self::__from_inner_type(val).unwrap_or_else(|_| $name::Unknown(val))
+ }
+ )*
+
+ #[inline(always)]
+ pub fn to_u16(&self) -> u16 {
+ Self::__to_inner_type(self)
+ }
+ }
+ };
+ // For other tag types, do nothing for now. With concat_idents one could
+ // provide inherent conversion methods for all types.
+ ($name:tt, $ty:tt, $($unknown_doc:literal)*) => {};
+}
+
+// Note: These tags appear in the order they are mentioned in the TIFF reference
+tags! {
+/// TIFF tags
+pub enum Tag(u16) unknown("A private or extension tag") {
+ // Baseline tags:
+ Artist = 315,
+ // grayscale images PhotometricInterpretation 1 or 3
+ BitsPerSample = 258,
+ CellLength = 265, // TODO add support
+ CellWidth = 264, // TODO add support
+ // palette-color images (PhotometricInterpretation 3)
+ ColorMap = 320, // TODO add support
+ Compression = 259, // TODO add support for 2 and 32773
+ Copyright = 33_432,
+ DateTime = 306,
+ ExtraSamples = 338, // TODO add support
+ FillOrder = 266, // TODO add support
+ FreeByteCounts = 289, // TODO add support
+ FreeOffsets = 288, // TODO add support
+ GrayResponseCurve = 291, // TODO add support
+ GrayResponseUnit = 290, // TODO add support
+ HostComputer = 316,
+ ImageDescription = 270,
+ ImageLength = 257,
+ ImageWidth = 256,
+ Make = 271,
+ MaxSampleValue = 281, // TODO add support
+ MinSampleValue = 280, // TODO add support
+ Model = 272,
+ NewSubfileType = 254, // TODO add support
+ Orientation = 274, // TODO add support
+ PhotometricInterpretation = 262,
+ PlanarConfiguration = 284,
+ ResolutionUnit = 296, // TODO add support
+ RowsPerStrip = 278,
+ SamplesPerPixel = 277,
+ Software = 305,
+ StripByteCounts = 279,
+ StripOffsets = 273,
+ SubfileType = 255, // TODO add support
+ Threshholding = 263, // TODO add support
+ XResolution = 282,
+ YResolution = 283,
+ // Advanced tags
+ Predictor = 317,
+ TileWidth = 322,
+ TileLength = 323,
+ TileOffsets = 324,
+ TileByteCounts = 325,
+ // Data Sample Format
+ SampleFormat = 339,
+ SMinSampleValue = 340, // TODO add support
+ SMaxSampleValue = 341, // TODO add support
+ // JPEG
+ JPEGTables = 347,
+ // GeoTIFF
+ ModelPixelScaleTag = 33550, // (SoftDesk)
+ ModelTransformationTag = 34264, // (JPL Carto Group)
+ ModelTiepointTag = 33922, // (Intergraph)
+ GeoKeyDirectoryTag = 34735, // (SPOT)
+ GeoDoubleParamsTag = 34736, // (SPOT)
+ GeoAsciiParamsTag = 34737, // (SPOT)
+ GdalNodata = 42113, // Contains areas with missing data
+}
+}
+
+tags! {
+/// The type of an IFD entry (a 2 byte field).
+pub enum Type(u16) {
+ /// 8-bit unsigned integer
+ BYTE = 1,
+ /// 8-bit byte that contains a 7-bit ASCII code; the last byte must be zero
+ ASCII = 2,
+ /// 16-bit unsigned integer
+ SHORT = 3,
+ /// 32-bit unsigned integer
+ LONG = 4,
+ /// Fraction stored as two 32-bit unsigned integers
+ RATIONAL = 5,
+ /// 8-bit signed integer
+ SBYTE = 6,
+ /// 8-bit byte that may contain anything, depending on the field
+ UNDEFINED = 7,
+ /// 16-bit signed integer
+ SSHORT = 8,
+ /// 32-bit signed integer
+ SLONG = 9,
+ /// Fraction stored as two 32-bit signed integers
+ SRATIONAL = 10,
+ /// 32-bit IEEE floating point
+ FLOAT = 11,
+ /// 64-bit IEEE floating point
+ DOUBLE = 12,
+ /// 32-bit unsigned integer (offset)
+ IFD = 13,
+ /// BigTIFF 64-bit unsigned integer
+ LONG8 = 16,
+ /// BigTIFF 64-bit signed integer
+ SLONG8 = 17,
+ /// BigTIFF 64-bit unsigned integer (offset)
+ IFD8 = 18,
+}
+}
+
+tags! {
+/// See [TIFF compression tags](https://www.awaresystems.be/imaging/tiff/tifftags/compression.html)
+/// for reference.
+pub enum CompressionMethod(u16) {
+ None = 1,
+ Huffman = 2,
+ Fax3 = 3,
+ Fax4 = 4,
+ LZW = 5,
+ JPEG = 6,
+ // "Extended JPEG" or "new JPEG" style
+ ModernJPEG = 7,
+ Deflate = 8,
+ OldDeflate = 0x80B2,
+ PackBits = 0x8005,
+}
+}
+
+tags! {
+pub enum PhotometricInterpretation(u16) {
+ WhiteIsZero = 0,
+ BlackIsZero = 1,
+ RGB = 2,
+ RGBPalette = 3,
+ TransparencyMask = 4,
+ CMYK = 5,
+ YCbCr = 6,
+ CIELab = 8,
+}
+}
+
+tags! {
+pub enum PlanarConfiguration(u16) {
+ Chunky = 1,
+ Planar = 2,
+}
+}
+
+tags! {
+pub enum Predictor(u16) {
+ None = 1,
+ Horizontal = 2,
+ FloatingPoint = 3,
+}
+}
+
+tags! {
+/// Type to represent resolution units
+pub enum ResolutionUnit(u16) {
+ None = 1,
+ Inch = 2,
+ Centimeter = 3,
+}
+}
+
+tags! {
+pub enum SampleFormat(u16) unknown("An unknown extension sample format") {
+ Uint = 1,
+ Int = 2,
+ IEEEFP = 3,
+ Void = 4,
+}
+}