aboutsummaryrefslogtreecommitdiff
path: root/vendor/weezl/src/decode.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/weezl/src/decode.rs')
-rw-r--r--vendor/weezl/src/decode.rs1333
1 files changed, 1333 insertions, 0 deletions
diff --git a/vendor/weezl/src/decode.rs b/vendor/weezl/src/decode.rs
new file mode 100644
index 0000000..641a3a8
--- /dev/null
+++ b/vendor/weezl/src/decode.rs
@@ -0,0 +1,1333 @@
+//! A module for all decoding needs.
+#[cfg(feature = "std")]
+use crate::error::StreamResult;
+use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
+use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};
+
+use crate::alloc::{boxed::Box, vec, vec::Vec};
+#[cfg(feature = "std")]
+use std::io::{self, BufRead, Write};
+
+/// The state for decoding data with an LZW algorithm.
+///
+/// The same structure can be utilized with streams as well as your own buffers and driver logic.
+/// It may even be possible to mix them if you are sufficiently careful not to lose or skip any
+/// already decode data in the process.
+///
+/// This is a sans-IO implementation, meaning that it only contains the state of the decoder and
+/// the caller will provide buffers for input and output data when calling the basic
+/// [`decode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
+/// methods for decoding with a particular style of common IO.
+///
+/// * [`decode`] for decoding once without any IO-loop.
+/// * [`into_async`] for decoding with the `futures` traits for asynchronous IO.
+/// * [`into_stream`] for decoding with the standard `io` traits.
+/// * [`into_vec`] for in-memory decoding.
+///
+/// [`decode_bytes`]: #method.decode_bytes
+/// [`decode`]: #method.decode
+/// [`into_async`]: #method.into_async
+/// [`into_stream`]: #method.into_stream
+/// [`into_vec`]: #method.into_vec
+pub struct Decoder {
+ state: Box<dyn Stateful + Send + 'static>,
+}
+
+/// A decoding stream sink.
+///
+/// See [`Decoder::into_stream`] on how to create this type.
+///
+/// [`Decoder::into_stream`]: struct.Decoder.html#method.into_stream
+#[cfg_attr(
+ not(feature = "std"),
+ deprecated = "This type is only useful with the `std` feature."
+)]
+#[cfg_attr(not(feature = "std"), allow(dead_code))]
+pub struct IntoStream<'d, W> {
+ decoder: &'d mut Decoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// An async decoding sink.
+///
+/// See [`Decoder::into_async`] on how to create this type.
+///
+/// [`Decoder::into_async`]: struct.Decoder.html#method.into_async
+#[cfg(feature = "async")]
+pub struct IntoAsync<'d, W> {
+ decoder: &'d mut Decoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// A decoding sink into a vector.
+///
+/// See [`Decoder::into_vec`] on how to create this type.
+///
+/// [`Decoder::into_vec`]: struct.Decoder.html#method.into_vec
+pub struct IntoVec<'d> {
+ decoder: &'d mut Decoder,
+ vector: &'d mut Vec<u8>,
+}
+
+trait Stateful {
+ fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
+ fn has_ended(&self) -> bool;
+ /// Ignore an end code and continue decoding (no implied reset).
+ fn restart(&mut self);
+ /// Reset the decoder to the beginning, dropping all buffers etc.
+ fn reset(&mut self);
+}
+
+#[derive(Clone)]
+struct Link {
+ prev: Code,
+ byte: u8,
+}
+
+#[derive(Default)]
+struct MsbBuffer {
+ /// A buffer of individual bits. The oldest code is kept in the high-order bits.
+ bit_buffer: u64,
+ /// A precomputed mask for this code.
+ code_mask: u16,
+ /// The current code size.
+ code_size: u8,
+ /// The number of bits in the buffer.
+ bits: u8,
+}
+
+#[derive(Default)]
+struct LsbBuffer {
+ /// A buffer of individual bits. The oldest code is kept in the high-order bits.
+ bit_buffer: u64,
+ /// A precomputed mask for this code.
+ code_mask: u16,
+ /// The current code size.
+ code_size: u8,
+ /// The number of bits in the buffer.
+ bits: u8,
+}
+
+trait CodeBuffer {
+ fn new(min_size: u8) -> Self;
+ fn reset(&mut self, min_size: u8);
+ fn bump_code_size(&mut self);
+ /// Retrieve the next symbol, refilling if necessary.
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code>;
+ /// Refill the internal buffer.
+ fn refill_bits(&mut self, inp: &mut &[u8]);
+ /// Get the next buffered code word.
+ fn get_bits(&mut self) -> Option<Code>;
+ fn max_code(&self) -> Code;
+ fn code_size(&self) -> u8;
+}
+
+struct DecodeState<CodeBuffer> {
+ /// The original minimum code size.
+ min_size: u8,
+ /// The table of decoded codes.
+ table: Table,
+ /// The buffer of decoded data.
+ buffer: Buffer,
+ /// The link which we are still decoding and its original code.
+ last: Option<(Code, Link)>,
+ /// The next code entry.
+ next_code: Code,
+ /// Code to reset all tables.
+ clear_code: Code,
+ /// Code to signal the end of the stream.
+ end_code: Code,
+ /// A stored flag if the end code has already appeared.
+ has_ended: bool,
+ /// If tiff then bumps are a single code sooner.
+ is_tiff: bool,
+ /// Do we allow stream to start without an explicit reset code?
+ implicit_reset: bool,
+ /// The buffer for decoded words.
+ code_buffer: CodeBuffer,
+}
+
+struct Buffer {
+ bytes: Box<[u8]>,
+ read_mark: usize,
+ write_mark: usize,
+}
+
+struct Table {
+ inner: Vec<Link>,
+ depths: Vec<u16>,
+}
+
+impl Decoder {
+ /// Create a new decoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// original specification. In particular you will need to specify an `Lsb` bit oder to decode
+ /// the data portion of a compressed `gif` image.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `0..=12`.
+ pub fn new(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_decode_size(size);
+ let state = match order {
+ BitOrder::Lsb => Box::new(DecodeState::<LsbBuffer>::new(size)) as Boxed,
+ BitOrder::Msb => Box::new(DecodeState::<MsbBuffer>::new(size)) as Boxed,
+ };
+
+ Decoder { state }
+ }
+
+ /// Create a TIFF compatible decoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// TIFF specification, which is a misinterpretation of the original algorithm for increasing
+ /// the code size. It switches one symbol sooner.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `0..=12`.
+ pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_decode_size(size);
+ let state = match order {
+ BitOrder::Lsb => {
+ let mut state = Box::new(DecodeState::<LsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ BitOrder::Msb => {
+ let mut state = Box::new(DecodeState::<MsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ };
+
+ Decoder { state }
+ }
+
+ /// Decode some bytes from `inp` and write result to `out`.
+ ///
+ /// This will consume a prefix of the input buffer and write decoded output into a prefix of
+ /// the output buffer. See the respective fields of the return value for the count of consumed
+ /// and written bytes. For the next call You should have adjusted the inputs accordingly.
+ ///
+ /// The call will try to decode and write as many bytes of output as available. It will be
+ /// much more optimized (and avoid intermediate buffering) if it is allowed to write a large
+ /// contiguous chunk at once.
+ ///
+ /// See [`into_stream`] for high-level functions (that are only available with the `std`
+ /// feature).
+ ///
+ /// [`into_stream`]: #method.into_stream
+ pub fn decode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
+ self.state.advance(inp, out)
+ }
+
+ /// Decode a single chunk of lzw encoded data.
+ ///
+ /// This method requires the data to contain an end marker, and returns an error otherwise.
+ ///
+ /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
+ /// buffer size, to supply an existing vector, to control whether an end marker is required, or
+ /// to preserve partial data in the case of a decoding error.
+ ///
+ /// [`into_vec`]: #into_vec
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use weezl::{BitOrder, decode::Decoder};
+ ///
+ /// // Encoded that was created with an encoder.
+ /// let data = b"\x80\x04\x81\x94l\x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l\x19 \x10";
+ /// let decoded = Decoder::new(BitOrder::Msb, 9)
+ /// .decode(data)
+ /// .unwrap();
+ /// assert_eq!(decoded, b"Hello, world");
+ /// ```
+ pub fn decode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
+ let mut output = vec![];
+ self.into_vec(&mut output).decode_all(data).status?;
+ Ok(output)
+ }
+
+ /// Construct a decoder into a writer.
+ #[cfg(feature = "std")]
+ pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
+ IntoStream {
+ decoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct a decoder into an async writer.
+ #[cfg(feature = "async")]
+ pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
+ IntoAsync {
+ decoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct a decoder into a vector.
+ ///
+ /// All decoded data is appended and the vector is __not__ cleared.
+ ///
+ /// Compared to `into_stream` this interface allows a high-level access to decoding without
+ /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
+ /// special target exposes.
+ pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
+ IntoVec {
+ decoder: self,
+ vector: vec,
+ }
+ }
+
+ /// Check if the decoding has finished.
+ ///
+ /// No more output is produced beyond the end code that marked the finish of the stream. The
+ /// decoder may have read additional bytes, including padding bits beyond the last code word
+ /// but also excess bytes provided.
+ pub fn has_ended(&self) -> bool {
+ self.state.has_ended()
+ }
+
+ /// Ignore an end code and continue.
+ ///
+ /// This will _not_ reset any of the inner code tables and not have the effect of a clear code.
+ /// It will instead continue as if the end code had not been present. If no end code has
+ /// occurred then this is a no-op.
+ ///
+ /// You can test if an end code has occurred with [`has_ended`](#method.has_ended).
+ /// FIXME: clarify how this interacts with padding introduced after end code.
+ #[allow(dead_code)]
+ pub(crate) fn restart(&mut self) {
+ self.state.restart();
+ }
+
+ /// Reset all internal state.
+ ///
+ /// This produce a decoder as if just constructed with `new` but taking slightly less work. In
+ /// particular it will not deallocate any internal allocations. It will also avoid some
+ /// duplicate setup work.
+ pub fn reset(&mut self) {
+ self.state.reset();
+ }
+}
+
+#[cfg(feature = "std")]
+impl<'d, W: Write> IntoStream<'d, W> {
+ /// Decode data from a reader.
+ ///
+ /// This will read data until the stream is empty or an end marker is reached.
+ pub fn decode(&mut self, read: impl BufRead) -> StreamResult {
+ self.decode_part(read, false)
+ }
+
+ /// Decode data from a reader, requiring an end marker.
+ pub fn decode_all(mut self, read: impl BufRead) -> StreamResult {
+ self.decode_part(read, true)
+ }
+
+ /// Set the size of the intermediate decode buffer.
+ ///
+ /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is
+ /// available and any decoding method is called. No buffer is allocated if `set_buffer` has
+ /// been called. The buffer is reused.
+ ///
+ /// # Panics
+ /// This method panics if `size` is `0`.
+ pub fn set_buffer_size(&mut self, size: usize) {
+ assert_ne!(size, 0, "Attempted to set empty buffer");
+ self.default_size = size;
+ }
+
+ /// Use a particular buffer as an intermediate decode buffer.
+ ///
+ /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
+ /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical
+ /// for efficient decoding. Some optimization techniques require the buffer to hold one or more
+ /// previous decoded words. There is also additional overhead from `write` calls each time the
+ /// buffer has been filled.
+ ///
+ /// # Panics
+ /// This method panics if the `buffer` is empty.
+ pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
+ assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
+ self.buffer = Some(StreamBuf::Borrowed(buffer));
+ }
+
+ fn decode_part(&mut self, mut read: impl BufRead, must_finish: bool) -> StreamResult {
+ let IntoStream {
+ decoder,
+ writer,
+ buffer,
+ default_size,
+ } = self;
+
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ let mut bytes_read = 0;
+ let mut bytes_written = 0;
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut bytes_read;
+ let write_bytes = &mut bytes_written;
+
+ let outbuf: &mut [u8] =
+ match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
+ StreamBuf::Borrowed(slice) => &mut *slice,
+ StreamBuf::Owned(vec) => &mut *vec,
+ };
+ assert!(!outbuf.is_empty());
+
+ let once = move || {
+ // Try to grab one buffer of input data.
+ let data = read.fill_buf()?;
+
+ // Decode as much of the buffer as fits.
+ let result = decoder.decode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ read.consume(result.consumed_in);
+
+ // Handle the status in the result.
+ let done = result.status.map_err(|err| {
+ io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
+ })?;
+
+ // Check if we had any new data at all.
+ if let LzwStatus::NoProgress = done {
+ debug_assert_eq!(
+ result.consumed_out, 0,
+ "No progress means we have not decoded any data"
+ );
+ // In particular we did not finish decoding.
+ if must_finish {
+ return Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "No more data but no end marker detected",
+ ));
+ } else {
+ return Ok(Progress::Done);
+ }
+ }
+
+ // And finish by writing our result.
+ // TODO: we may lose data on error (also on status error above) which we might want to
+ // deterministically handle so that we don't need to restart everything from scratch as
+ // the only recovery strategy. Any changes welcome.
+ writer.write_all(&outbuf[..result.consumed_out])?;
+
+ Ok(if let LzwStatus::Done = done {
+ Progress::Done
+ } else {
+ Progress::Ok
+ })
+ };
+
+ // Decode chunks of input data until we're done.
+ let status = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ StreamResult {
+ bytes_read,
+ bytes_written,
+ status,
+ }
+ }
+}
+
+impl IntoVec<'_> {
+ /// Decode data from a slice.
+ ///
+ /// This will read data until the slice is empty or an end marker is reached.
+ pub fn decode(&mut self, read: &[u8]) -> VectorResult {
+ self.decode_part(read, false)
+ }
+
+ /// Decode data from a slice, requiring an end marker.
+ pub fn decode_all(mut self, read: &[u8]) -> VectorResult {
+ self.decode_part(read, true)
+ }
+
+ fn grab_buffer(&mut self) -> (&mut [u8], &mut Decoder) {
+ const CHUNK_SIZE: usize = 1 << 12;
+ let decoder = &mut self.decoder;
+ let length = self.vector.len();
+
+ // Use the vector to do overflow checks and w/e.
+ self.vector.reserve(CHUNK_SIZE);
+ // FIXME: decoding into uninit buffer?
+ self.vector.resize(length + CHUNK_SIZE, 0u8);
+
+ (&mut self.vector[length..], decoder)
+ }
+
+ fn decode_part(&mut self, part: &[u8], must_finish: bool) -> VectorResult {
+ let mut result = VectorResult {
+ consumed_in: 0,
+ consumed_out: 0,
+ status: Ok(LzwStatus::Ok),
+ };
+
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut result.consumed_in;
+ let write_bytes = &mut result.consumed_out;
+ let mut data = part;
+
+ // A 64 MB buffer is quite large but should get alloc_zeroed.
+ // Note that the decoded size can be up to quadratic in code block.
+ let once = move || {
+ // Grab a new output buffer.
+ let (outbuf, decoder) = self.grab_buffer();
+
+ // Decode as much of the buffer as fits.
+ let result = decoder.decode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ data = &data[result.consumed_in..];
+
+ let unfilled = outbuf.len() - result.consumed_out;
+ let filled = self.vector.len() - unfilled;
+ self.vector.truncate(filled);
+
+ // Handle the status in the result.
+ match result.status {
+ Err(err) => Err(err),
+ Ok(LzwStatus::NoProgress) if must_finish => Err(LzwError::InvalidCode),
+ Ok(LzwStatus::NoProgress) | Ok(LzwStatus::Done) => Ok(Progress::Done),
+ Ok(LzwStatus::Ok) => Ok(Progress::Ok),
+ }
+ };
+
+ // Decode chunks of input data until we're done.
+ let status: Result<(), _> = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ if let Err(err) = status {
+ result.status = Err(err);
+ }
+
+ result
+ }
+}
+
+// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
+// trip over the usage of await, which is a reserved keyword in that edition/version. It only
+// contains an impl block.
+#[cfg(feature = "async")]
+#[path = "decode_into_async.rs"]
+mod impl_decode_into_async;
+
+impl<C: CodeBuffer> DecodeState<C> {
+ fn new(min_size: u8) -> Self {
+ DecodeState {
+ min_size,
+ table: Table::new(),
+ buffer: Buffer::new(),
+ last: None,
+ clear_code: 1 << min_size,
+ end_code: (1 << min_size) + 1,
+ next_code: (1 << min_size) + 2,
+ has_ended: false,
+ is_tiff: false,
+ implicit_reset: true,
+ code_buffer: CodeBuffer::new(min_size),
+ }
+ }
+
+ fn init_tables(&mut self) {
+ self.code_buffer.reset(self.min_size);
+ self.next_code = (1 << self.min_size) + 2;
+ self.table.init(self.min_size);
+ }
+
+ fn reset_tables(&mut self) {
+ self.code_buffer.reset(self.min_size);
+ self.next_code = (1 << self.min_size) + 2;
+ self.table.clear(self.min_size);
+ }
+}
+
+impl<C: CodeBuffer> Stateful for DecodeState<C> {
+ fn has_ended(&self) -> bool {
+ self.has_ended
+ }
+
+ fn restart(&mut self) {
+ self.has_ended = false;
+ }
+
+ fn reset(&mut self) {
+ self.table.init(self.min_size);
+ self.buffer.read_mark = 0;
+ self.buffer.write_mark = 0;
+ self.last = None;
+ self.restart();
+ self.code_buffer = CodeBuffer::new(self.min_size);
+ }
+
+ fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
+ // Skip everything if there is nothing to do.
+ if self.has_ended {
+ return BufferResult {
+ consumed_in: 0,
+ consumed_out: 0,
+ status: Ok(LzwStatus::Done),
+ };
+ }
+
+ // Rough description:
+ // We will fill the output slice as much as possible until either there is no more symbols
+ // to decode or an end code has been reached. This requires an internal buffer to hold a
+ // potential tail of the word corresponding to the last symbol. This tail will then be
+ // decoded first before continuing with the regular decoding. The same buffer is required
+ // to persist some symbol state across calls.
+ //
+ // We store the words corresponding to code symbols in an index chain, bytewise, where we
+ // push each decoded symbol. (TODO: wuffs shows some success with 8-byte units). This chain
+ // is traversed for each symbol when it is decoded and bytes are placed directly into the
+ // output slice. In the special case (new_code == next_code) we use an existing decoded
+ // version that is present in either the out bytes of this call or in buffer to copy the
+ // repeated prefix slice.
+ // TODO: I played with a 'decoding cache' to remember the position of long symbols and
+ // avoid traversing the chain, doing a copy of memory instead. It did however not lead to
+ // a serious improvement. It's just unlikely to both have a long symbol and have that
+ // repeated twice in the same output buffer.
+ //
+ // You will also find the (to my knowledge novel) concept of a _decoding burst_ which
+ // gained some >~10% speedup in tests. This is motivated by wanting to use out-of-order
+ // execution as much as possible and for this reason have the least possible stress on
+ // branch prediction. Our decoding table already gives us a lookahead on symbol lengths but
+ // only for re-used codes, not novel ones. This lookahead also makes the loop termination
+ // when restoring each byte of the code word perfectly predictable! So a burst is a chunk
+ // of code words which are all independent of each other, have known lengths _and_ are
+ // guaranteed to fit into the out slice without requiring a buffer. One burst can be
+ // decoded in an extremely tight loop.
+ //
+ // TODO: since words can be at most (1 << MAX_CODESIZE) = 4096 bytes long we could avoid
+ // that intermediate buffer at the expense of not always filling the output buffer
+ // completely. Alternatively we might follow its chain of precursor states twice. This may
+ // be even cheaper if we store more than one byte per link so it really should be
+ // evaluated.
+ // TODO: if the caller was required to provide the previous last word we could also avoid
+ // the buffer for cases where we need it to restore the next code! This could be built
+ // backwards compatible by only doing it after an opt-in call that enables the behaviour.
+
+ // Record initial lengths for the result that is returned.
+ let o_in = inp.len();
+ let o_out = out.len();
+
+ // The code_link is the previously decoded symbol.
+ // It's used to link the new code back to its predecessor.
+ let mut code_link = None;
+ // The status, which is written to on an invalid code.
+ let mut status = Ok(LzwStatus::Ok);
+
+ match self.last.take() {
+ // No last state? This is the first code after a reset?
+ None => {
+ match self.next_symbol(&mut inp) {
+ // Plainly invalid code.
+ Some(code) if code > self.next_code => status = Err(LzwError::InvalidCode),
+ // next_code would require an actual predecessor.
+ Some(code) if code == self.next_code => status = Err(LzwError::InvalidCode),
+ // No more symbols available and nothing decoded yet.
+ // Assume that we didn't make progress, this may get reset to Done if we read
+ // some bytes from the input.
+ None => status = Ok(LzwStatus::NoProgress),
+ // Handle a valid code.
+ Some(init_code) => {
+ if init_code == self.clear_code {
+ self.init_tables();
+ } else if init_code == self.end_code {
+ self.has_ended = true;
+ status = Ok(LzwStatus::Done);
+ } else if self.table.is_empty() {
+ if self.implicit_reset {
+ self.init_tables();
+
+ self.buffer.fill_reconstruct(&self.table, init_code);
+ let link = self.table.at(init_code).clone();
+ code_link = Some((init_code, link));
+ } else {
+ // We require an explicit reset.
+ status = Err(LzwError::InvalidCode);
+ }
+ } else {
+ // Reconstruct the first code in the buffer.
+ self.buffer.fill_reconstruct(&self.table, init_code);
+ let link = self.table.at(init_code).clone();
+ code_link = Some((init_code, link));
+ }
+ }
+ }
+ }
+ // Move the tracking state to the stack.
+ Some(tup) => code_link = Some(tup),
+ };
+
+ // Track an empty `burst` (see below) means we made no progress.
+ let mut burst_required_for_progress = false;
+ // Restore the previous state, if any.
+ if let Some((code, link)) = code_link.take() {
+ code_link = Some((code, link));
+ let remain = self.buffer.buffer();
+ // Check if we can fully finish the buffer.
+ if remain.len() > out.len() {
+ if out.is_empty() {
+ status = Ok(LzwStatus::NoProgress);
+ } else {
+ out.copy_from_slice(&remain[..out.len()]);
+ self.buffer.consume(out.len());
+ out = &mut [];
+ }
+ } else if remain.is_empty() {
+ status = Ok(LzwStatus::NoProgress);
+ burst_required_for_progress = true;
+ } else {
+ let consumed = remain.len();
+ out[..consumed].copy_from_slice(remain);
+ self.buffer.consume(consumed);
+ out = &mut out[consumed..];
+ burst_required_for_progress = false;
+ }
+ }
+
+ // The tracking state for a burst.
+ // These are actually initialized later but compiler wasn't smart enough to fully optimize
+ // out the init code so that appears outside th loop.
+ // TODO: maybe we can make it part of the state but it's dubious if that really gives a
+ // benefit over stack usage? Also the slices stored here would need some treatment as we
+ // can't infect the main struct with a lifetime.
+ let mut burst = [0; 6];
+ let mut bytes = [0u16; 6];
+ let mut target: [&mut [u8]; 6] = Default::default();
+ // A special reference to out slice which holds the last decoded symbol.
+ let mut last_decoded: Option<&[u8]> = None;
+
+ while let Some((mut code, mut link)) = code_link.take() {
+ if out.is_empty() && !self.buffer.buffer().is_empty() {
+ code_link = Some((code, link));
+ break;
+ }
+
+ let mut burst_size = 0;
+ // Ensure the code buffer is full, we're about to request some codes.
+ // Note that this also ensures at least one code is in the buffer if any input is left.
+ self.refill_bits(&mut inp);
+ // A burst is a sequence of decodes that are completely independent of each other. This
+ // is the case if neither is an end code, a clear code, or a next code, i.e. we have
+ // all of them in the decoding table and thus known their depths, and additionally if
+ // we can decode them directly into the output buffer.
+ for b in &mut burst {
+ // TODO: does it actually make a perf difference to avoid reading new bits here?
+ *b = match self.get_bits() {
+ None => break,
+ Some(code) => code,
+ };
+
+ // We can commit the previous burst code, and will take a slice from the output
+ // buffer. This also avoids the bounds check in the tight loop later.
+ if burst_size > 0 {
+ let len = bytes[burst_size - 1];
+ let (into, tail) = out.split_at_mut(usize::from(len));
+ target[burst_size - 1] = into;
+ out = tail;
+ }
+
+ // Check that we don't overflow the code size with all codes we burst decode.
+ if let Some(potential_code) = self.next_code.checked_add(burst_size as u16) {
+ burst_size += 1;
+ if potential_code == self.code_buffer.max_code() - Code::from(self.is_tiff) {
+ break;
+ }
+ } else {
+ // next_code overflowed
+ break;
+ }
+
+ // A burst code can't be special.
+ if *b == self.clear_code || *b == self.end_code || *b >= self.next_code {
+ break;
+ }
+
+ // Read the code length and check that we can decode directly into the out slice.
+ let len = self.table.depths[usize::from(*b)];
+ if out.len() < usize::from(len) {
+ break;
+ }
+
+ bytes[burst_size - 1] = len;
+ }
+
+ // No code left, and no more bytes to fill the buffer.
+ if burst_size == 0 {
+ if burst_required_for_progress {
+ status = Ok(LzwStatus::NoProgress);
+ }
+ code_link = Some((code, link));
+ break;
+ }
+
+ burst_required_for_progress = false;
+ // Note that the very last code in the burst buffer doesn't actually belong to the
+ // burst itself. TODO: sometimes it could, we just don't differentiate between the
+ // breaks and a loop end condition above. That may be a speed advantage?
+ let (&new_code, burst) = burst[..burst_size].split_last().unwrap();
+
+ // The very tight loop for restoring the actual burst.
+ for (&burst, target) in burst.iter().zip(&mut target[..burst_size - 1]) {
+ let cha = self.table.reconstruct(burst, target);
+ // TODO: this pushes into a Vec, maybe we can make this cleaner.
+ // Theoretically this has a branch and llvm tends to be flaky with code layout for
+ // the case of requiring an allocation (which can't occur in practice).
+ let new_link = self.table.derive(&link, cha, code);
+ self.next_code += 1;
+ code = burst;
+ link = new_link;
+ }
+
+ // Update the slice holding the last decoded word.
+ if let Some(new_last) = target[..burst_size - 1].last_mut() {
+ let slice = core::mem::replace(new_last, &mut []);
+ last_decoded = Some(&*slice);
+ }
+
+ // Now handle the special codes.
+ if new_code == self.clear_code {
+ self.reset_tables();
+ last_decoded = None;
+ continue;
+ }
+
+ if new_code == self.end_code {
+ self.has_ended = true;
+ status = Ok(LzwStatus::Done);
+ last_decoded = None;
+ break;
+ }
+
+ if new_code > self.next_code {
+ status = Err(LzwError::InvalidCode);
+ last_decoded = None;
+ break;
+ }
+
+ let required_len = if new_code == self.next_code {
+ self.table.depths[usize::from(code)] + 1
+ } else {
+ self.table.depths[usize::from(new_code)]
+ };
+
+ let cha;
+ let is_in_buffer;
+ // Check if we will need to store our current state into the buffer.
+ if usize::from(required_len) > out.len() {
+ is_in_buffer = true;
+ if new_code == self.next_code {
+ // last_decoded will be Some if we have restored any code into the out slice.
+ // Otherwise it will still be present in the buffer.
+ if let Some(last) = last_decoded.take() {
+ self.buffer.bytes[..last.len()].copy_from_slice(last);
+ self.buffer.write_mark = last.len();
+ self.buffer.read_mark = last.len();
+ }
+
+ cha = self.buffer.fill_cscsc();
+ } else {
+ // Restore the decoded word into the buffer.
+ last_decoded = None;
+ cha = self.buffer.fill_reconstruct(&self.table, new_code);
+ }
+ } else {
+ is_in_buffer = false;
+ let (target, tail) = out.split_at_mut(usize::from(required_len));
+ out = tail;
+
+ if new_code == self.next_code {
+ // Reconstruct high.
+ let source = match last_decoded.take() {
+ Some(last) => last,
+ None => &self.buffer.bytes[..self.buffer.write_mark],
+ };
+ cha = source[0];
+ target[..source.len()].copy_from_slice(source);
+ target[source.len()..][0] = source[0];
+ } else {
+ cha = self.table.reconstruct(new_code, target);
+ }
+
+ // A new decoded word.
+ last_decoded = Some(target);
+ }
+
+ let new_link;
+ // Each newly read code creates one new code/link based on the preceding code if we
+ // have enough space to put it there.
+ if !self.table.is_full() {
+ let link = self.table.derive(&link, cha, code);
+
+ if self.next_code == self.code_buffer.max_code() - Code::from(self.is_tiff)
+ && self.code_buffer.code_size() < MAX_CODESIZE
+ {
+ self.bump_code_size();
+ }
+
+ self.next_code += 1;
+ new_link = link;
+ } else {
+ // It's actually quite likely that the next code will be a reset but just in case.
+ // FIXME: this path hasn't been tested very well.
+ new_link = link.clone();
+ }
+
+ // store the information on the decoded word.
+ code_link = Some((new_code, new_link));
+
+ // Can't make any more progress with decoding.
+ if is_in_buffer {
+ break;
+ }
+ }
+
+ // We need to store the last word into the buffer in case the first code in the next
+ // iteration is the next_code.
+ if let Some(tail) = last_decoded {
+ self.buffer.bytes[..tail.len()].copy_from_slice(tail);
+ self.buffer.write_mark = tail.len();
+ self.buffer.read_mark = tail.len();
+ }
+
+ // Ensure we don't indicate that no progress was made if we read some bytes from the input
+ // (which is progress).
+ if o_in > inp.len() {
+ if let Ok(LzwStatus::NoProgress) = status {
+ status = Ok(LzwStatus::Ok);
+ }
+ }
+
+ // Store the code/link state.
+ self.last = code_link;
+
+ BufferResult {
+ consumed_in: o_in.wrapping_sub(inp.len()),
+ consumed_out: o_out.wrapping_sub(out.len()),
+ status,
+ }
+ }
+}
+
+impl<C: CodeBuffer> DecodeState<C> {
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
+ self.code_buffer.next_symbol(inp)
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_buffer.bump_code_size()
+ }
+
+ fn refill_bits(&mut self, inp: &mut &[u8]) {
+ self.code_buffer.refill_bits(inp)
+ }
+
+ fn get_bits(&mut self) -> Option<Code> {
+ self.code_buffer.get_bits()
+ }
+}
+
+impl CodeBuffer for MsbBuffer {
+ fn new(min_size: u8) -> Self {
+ MsbBuffer {
+ code_size: min_size + 1,
+ code_mask: (1u16 << (min_size + 1)) - 1,
+ bit_buffer: 0,
+ bits: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.code_mask = (1 << self.code_size) - 1;
+ }
+
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
+ if self.bits < self.code_size {
+ self.refill_bits(inp);
+ }
+
+ self.get_bits()
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ self.code_mask = (self.code_mask << 1) | 1;
+ }
+
+ fn refill_bits(&mut self, inp: &mut &[u8]) {
+ let wish_count = (64 - self.bits) / 8;
+ let mut buffer = [0u8; 8];
+ let new_bits = match inp.get(..usize::from(wish_count)) {
+ Some(bytes) => {
+ buffer[..usize::from(wish_count)].copy_from_slice(bytes);
+ *inp = &inp[usize::from(wish_count)..];
+ wish_count * 8
+ }
+ None => {
+ let new_bits = inp.len() * 8;
+ buffer[..inp.len()].copy_from_slice(inp);
+ *inp = &[];
+ new_bits as u8
+ }
+ };
+ self.bit_buffer |= u64::from_be_bytes(buffer) >> self.bits;
+ self.bits += new_bits;
+ }
+
+ fn get_bits(&mut self) -> Option<Code> {
+ if self.bits < self.code_size {
+ return None;
+ }
+
+ let mask = u64::from(self.code_mask);
+ let rotbuf = self.bit_buffer.rotate_left(self.code_size.into());
+ self.bit_buffer = rotbuf & !mask;
+ self.bits -= self.code_size;
+ Some((rotbuf & mask) as u16)
+ }
+
+ fn max_code(&self) -> Code {
+ self.code_mask
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl CodeBuffer for LsbBuffer {
+ fn new(min_size: u8) -> Self {
+ LsbBuffer {
+ code_size: min_size + 1,
+ code_mask: (1u16 << (min_size + 1)) - 1,
+ bit_buffer: 0,
+ bits: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.code_mask = (1 << self.code_size) - 1;
+ }
+
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
+ if self.bits < self.code_size {
+ self.refill_bits(inp);
+ }
+
+ self.get_bits()
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ self.code_mask = (self.code_mask << 1) | 1;
+ }
+
+ fn refill_bits(&mut self, inp: &mut &[u8]) {
+ let wish_count = (64 - self.bits) / 8;
+ let mut buffer = [0u8; 8];
+ let new_bits = match inp.get(..usize::from(wish_count)) {
+ Some(bytes) => {
+ buffer[..usize::from(wish_count)].copy_from_slice(bytes);
+ *inp = &inp[usize::from(wish_count)..];
+ wish_count * 8
+ }
+ None => {
+ let new_bits = inp.len() * 8;
+ buffer[..inp.len()].copy_from_slice(inp);
+ *inp = &[];
+ new_bits as u8
+ }
+ };
+ self.bit_buffer |= u64::from_be_bytes(buffer).swap_bytes() << self.bits;
+ self.bits += new_bits;
+ }
+
+ fn get_bits(&mut self) -> Option<Code> {
+ if self.bits < self.code_size {
+ return None;
+ }
+
+ let mask = u64::from(self.code_mask);
+ let code = self.bit_buffer & mask;
+ self.bit_buffer >>= self.code_size;
+ self.bits -= self.code_size;
+ Some(code as u16)
+ }
+
+ fn max_code(&self) -> Code {
+ self.code_mask
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl Buffer {
+ fn new() -> Self {
+ Buffer {
+ bytes: vec![0; MAX_ENTRIES].into_boxed_slice(),
+ read_mark: 0,
+ write_mark: 0,
+ }
+ }
+
+ /// When encoding a sequence `cScSc` where `c` is any character and `S` is any string
+ /// this results in two codes `AB`, `A` encoding `cS` and `B` encoding `cSc`. Supposing
+ /// the buffer is already filled with the reconstruction of `A`, we can easily fill it
+ /// with the reconstruction of `B`.
+ fn fill_cscsc(&mut self) -> u8 {
+ self.bytes[self.write_mark] = self.bytes[0];
+ self.write_mark += 1;
+ self.read_mark = 0;
+ self.bytes[0]
+ }
+
+ // Fill the buffer by decoding from the table
+ fn fill_reconstruct(&mut self, table: &Table, code: Code) -> u8 {
+ self.write_mark = 0;
+ self.read_mark = 0;
+ let depth = table.depths[usize::from(code)];
+ let mut memory = core::mem::replace(&mut self.bytes, Box::default());
+
+ let out = &mut memory[..usize::from(depth)];
+ let last = table.reconstruct(code, out);
+
+ self.bytes = memory;
+ self.write_mark = usize::from(depth);
+ last
+ }
+
+ fn buffer(&self) -> &[u8] {
+ &self.bytes[self.read_mark..self.write_mark]
+ }
+
+ fn consume(&mut self, amt: usize) {
+ self.read_mark += amt;
+ }
+}
+
+impl Table {
+ fn new() -> Self {
+ Table {
+ inner: Vec::with_capacity(MAX_ENTRIES),
+ depths: Vec::with_capacity(MAX_ENTRIES),
+ }
+ }
+
+ fn clear(&mut self, min_size: u8) {
+ let static_count = usize::from(1u16 << u16::from(min_size)) + 2;
+ self.inner.truncate(static_count);
+ self.depths.truncate(static_count);
+ }
+
+ fn init(&mut self, min_size: u8) {
+ self.inner.clear();
+ self.depths.clear();
+ for i in 0..(1u16 << u16::from(min_size)) {
+ self.inner.push(Link::base(i as u8));
+ self.depths.push(1);
+ }
+ // Clear code.
+ self.inner.push(Link::base(0));
+ self.depths.push(0);
+ // End code.
+ self.inner.push(Link::base(0));
+ self.depths.push(0);
+ }
+
+ fn at(&self, code: Code) -> &Link {
+ &self.inner[usize::from(code)]
+ }
+
+ fn is_empty(&self) -> bool {
+ self.inner.is_empty()
+ }
+
+ fn is_full(&self) -> bool {
+ self.inner.len() >= MAX_ENTRIES
+ }
+
+ fn derive(&mut self, from: &Link, byte: u8, prev: Code) -> Link {
+ let link = from.derive(byte, prev);
+ let depth = self.depths[usize::from(prev)] + 1;
+ self.inner.push(link.clone());
+ self.depths.push(depth);
+ link
+ }
+
+ fn reconstruct(&self, code: Code, out: &mut [u8]) -> u8 {
+ let mut code_iter = code;
+ let table = &self.inner[..=usize::from(code)];
+ let len = code_iter;
+ for ch in out.iter_mut().rev() {
+ //(code, cha) = self.table[k as usize];
+ // Note: This could possibly be replaced with an unchecked array access if
+ // - value is asserted to be < self.next_code() in push
+ // - min_size is asserted to be < MAX_CODESIZE
+ let entry = &table[usize::from(code_iter)];
+ code_iter = core::cmp::min(len, entry.prev);
+ *ch = entry.byte;
+ }
+ out[0]
+ }
+}
+
+impl Link {
+ fn base(byte: u8) -> Self {
+ Link { prev: 0, byte }
+ }
+
+ // TODO: this has self type to make it clear we might depend on the old in a future
+ // optimization. However, that has no practical purpose right now.
+ fn derive(&self, byte: u8, prev: Code) -> Self {
+ Link { prev, byte }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::alloc::vec::Vec;
+ #[cfg(feature = "std")]
+ use crate::StreamBuf;
+ use crate::{decode::Decoder, BitOrder};
+
+ #[test]
+ fn invalid_code_size_low() {
+ let _ = Decoder::new(BitOrder::Msb, 0);
+ let _ = Decoder::new(BitOrder::Msb, 1);
+ }
+
+ #[test]
+ #[should_panic]
+ fn invalid_code_size_high() {
+ let _ = Decoder::new(BitOrder::Msb, 14);
+ }
+
+ fn make_encoded() -> Vec<u8> {
+ const FILE: &'static [u8] = include_bytes!(concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/benches/binary-8-msb.lzw"
+ ));
+ return Vec::from(FILE);
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_no_alloc() {
+ let encoded = make_encoded();
+ let mut decoder = Decoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = decoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.decode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Borrowed(_)) => {}
+ None => panic!("Decoded without buffer??"),
+ Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_small_alloc() {
+ struct WriteTap<W: std::io::Write>(W);
+ const BUF_SIZE: usize = 512;
+
+ impl<W: std::io::Write> std::io::Write for WriteTap<W> {
+ fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
+ assert!(buf.len() <= BUF_SIZE);
+ self.0.write(buf)
+ }
+ fn flush(&mut self) -> std::io::Result<()> {
+ self.0.flush()
+ }
+ }
+
+ let encoded = make_encoded();
+ let mut decoder = Decoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut istream = decoder.into_stream(WriteTap(&mut output));
+ istream.set_buffer_size(512);
+ istream.decode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
+ Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
+ None => panic!("Decoded without buffer??"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn reset() {
+ let encoded = make_encoded();
+ let mut decoder = Decoder::new(BitOrder::Msb, 8);
+ let mut reference = None;
+
+ for _ in 0..2 {
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = decoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.decode_all(&encoded[..]).status.unwrap();
+
+ decoder.reset();
+ if let Some(reference) = &reference {
+ assert_eq!(output, *reference);
+ } else {
+ reference = Some(output);
+ }
+ }
+ }
+}