aboutsummaryrefslogtreecommitdiff
path: root/vendor/weezl/src/encode.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/weezl/src/encode.rs')
-rw-r--r--vendor/weezl/src/encode.rs1126
1 files changed, 1126 insertions, 0 deletions
diff --git a/vendor/weezl/src/encode.rs b/vendor/weezl/src/encode.rs
new file mode 100644
index 0000000..492b18c
--- /dev/null
+++ b/vendor/weezl/src/encode.rs
@@ -0,0 +1,1126 @@
+//! A module for all encoding needs.
+use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
+use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};
+
+use crate::alloc::{boxed::Box, vec::Vec};
+#[cfg(feature = "std")]
+use crate::error::StreamResult;
+#[cfg(feature = "std")]
+use std::io::{self, BufRead, Write};
+
+/// The state for encoding data with an LZW algorithm.
+///
+/// The same structure can be utilized with streams as well as your own buffers and driver logic.
+/// It may even be possible to mix them if you are sufficiently careful not to lose any written
+/// data in the process.
+///
+/// This is a sans-IO implementation, meaning that it only contains the state of the encoder and
+/// the caller will provide buffers for input and output data when calling the basic
+/// [`encode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
+/// methods for enoding with a particular style of common IO.
+///
+/// * [`encode`] for encoding once without any IO-loop.
+/// * [`into_async`] for encoding with the `futures` traits for asynchronous IO.
+/// * [`into_stream`] for encoding with the standard `io` traits.
+/// * [`into_vec`] for in-memory encoding.
+///
+/// [`encode_bytes`]: #method.encode_bytes
+/// [`encode`]: #method.encode
+/// [`into_async`]: #method.into_async
+/// [`into_stream`]: #method.into_stream
+/// [`into_vec`]: #method.into_vec
+pub struct Encoder {
+ /// Internally dispatch via a dynamic trait object. This did not have any significant
+ /// performance impact as we batch data internally and this pointer does not change after
+ /// creation!
+ state: Box<dyn Stateful + Send + 'static>,
+}
+
+/// A encoding stream sink.
+///
+/// See [`Encoder::into_stream`] on how to create this type.
+///
+/// [`Encoder::into_stream`]: struct.Encoder.html#method.into_stream
+#[cfg_attr(
+ not(feature = "std"),
+ deprecated = "This type is only useful with the `std` feature."
+)]
+#[cfg_attr(not(feature = "std"), allow(dead_code))]
+pub struct IntoStream<'d, W> {
+ encoder: &'d mut Encoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// An async decoding sink.
+///
+/// See [`Encoder::into_async`] on how to create this type.
+///
+/// [`Encoder::into_async`]: struct.Encoder.html#method.into_async
+#[cfg(feature = "async")]
+pub struct IntoAsync<'d, W> {
+ encoder: &'d mut Encoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// A encoding sink into a vector.
+///
+/// See [`Encoder::into_vec`] on how to create this type.
+///
+/// [`Encoder::into_vec`]: struct.Encoder.html#method.into_vec
+pub struct IntoVec<'d> {
+ encoder: &'d mut Encoder,
+ vector: &'d mut Vec<u8>,
+}
+
+trait Stateful {
+ fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
+ fn mark_ended(&mut self) -> bool;
+ /// Reset the state tracking if end code has been written.
+ fn restart(&mut self);
+ /// Reset the encoder to the beginning, dropping all buffers etc.
+ fn reset(&mut self);
+}
+
+struct EncodeState<B: Buffer> {
+ /// The configured minimal code size.
+ min_size: u8,
+ /// The current encoding symbol tree.
+ tree: Tree,
+ /// If we have pushed the end code.
+ has_ended: bool,
+ /// If tiff then bumps are a single code sooner.
+ is_tiff: bool,
+ /// The code corresponding to the currently read characters.
+ current_code: Code,
+ /// The clear code for resetting the dictionary.
+ clear_code: Code,
+ /// The bit buffer for encoding.
+ buffer: B,
+}
+
+struct MsbBuffer {
+ /// The current code length.
+ code_size: u8,
+ /// The buffer bits.
+ buffer: u64,
+ /// The number of valid buffer bits.
+ bits_in_buffer: u8,
+}
+
+struct LsbBuffer {
+ /// The current code length.
+ code_size: u8,
+ /// The buffer bits.
+ buffer: u64,
+ /// The number of valid buffer bits.
+ bits_in_buffer: u8,
+}
+
+trait Buffer {
+ fn new(size: u8) -> Self;
+ /// Reset the code size in the buffer.
+ fn reset(&mut self, min_size: u8);
+ /// Apply effects of a Clear Code.
+ fn clear(&mut self, min_size: u8);
+ /// Insert a code into the buffer.
+ fn buffer_code(&mut self, code: Code);
+ /// Push bytes if the buffer space is getting small.
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool;
+ /// Flush all full bytes, returning if at least one more byte remains.
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool;
+ /// Pad the buffer to a full byte.
+ fn buffer_pad(&mut self);
+ /// Increase the maximum code size.
+ fn bump_code_size(&mut self);
+ /// Return the maximum code with the current code size.
+ fn max_code(&self) -> Code;
+ /// Return the current code size in bits.
+ fn code_size(&self) -> u8;
+}
+
+/// One tree node for at most each code.
+/// To avoid using too much memory we keep nodes with few successors in optimized form. This form
+/// doesn't offer lookup by indexing but instead does a linear search.
+#[derive(Default)]
+struct Tree {
+ simples: Vec<Simple>,
+ complex: Vec<Full>,
+ keys: Vec<CompressedKey>,
+}
+
+#[derive(Clone, Copy)]
+enum FullKey {
+ NoSuccessor,
+ Simple(u16),
+ Full(u16),
+}
+
+#[derive(Clone, Copy)]
+struct CompressedKey(u16);
+
+const SHORT: usize = 16;
+
+#[derive(Clone, Copy)]
+struct Simple {
+ codes: [Code; SHORT],
+ chars: [u8; SHORT],
+ count: u8,
+}
+
+#[derive(Clone, Copy)]
+struct Full {
+ char_continuation: [Code; 256],
+}
+
+impl Encoder {
+ /// Create a new encoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// original specification. In particular you will need to specify an `Lsb` bit oder to encode
+ /// the data portion of a compressed `gif` image.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `2..=12`.
+ pub fn new(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_encode_size(size);
+ let state = match order {
+ BitOrder::Lsb => Box::new(EncodeState::<LsbBuffer>::new(size)) as Boxed,
+ BitOrder::Msb => Box::new(EncodeState::<MsbBuffer>::new(size)) as Boxed,
+ };
+
+ Encoder { state }
+ }
+
+ /// Create a TIFF compatible encoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// TIFF specification, which is a misinterpretation of the original algorithm for increasing
+ /// the code size. It switches one symbol sooner.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `2..=12`.
+ pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_encode_size(size);
+ let state = match order {
+ BitOrder::Lsb => {
+ let mut state = Box::new(EncodeState::<LsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ BitOrder::Msb => {
+ let mut state = Box::new(EncodeState::<MsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ };
+
+ Encoder { state }
+ }
+
+ /// Encode some bytes from `inp` into `out`.
+ ///
+ /// See [`into_stream`] for high-level functions (this interface is only available with the
+ /// `std` feature) and [`finish`] for marking the input data as complete.
+ ///
+ /// When some input byte is invalid, i.e. is not smaller than `1 << size`, then that byte and
+ /// all following ones will _not_ be consumed and the `status` of the result will signal an
+ /// error. The result will also indicate that all bytes up to but not including the offending
+ /// byte have been consumed. You may try again with a fixed byte.
+ ///
+ /// [`into_stream`]: #method.into_stream
+ /// [`finish`]: #method.finish
+ pub fn encode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
+ self.state.advance(inp, out)
+ }
+
+ /// Encode a single chunk of data.
+ ///
+ /// This method will add an end marker to the encoded chunk.
+ ///
+ /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
+ /// buffer size, to supply an existing vector, to control whether an end marker is required, or
+ /// to preserve partial data in the case of a decoding error.
+ ///
+ /// [`into_vec`]: #into_vec
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use weezl::{BitOrder, encode::Encoder};
+ ///
+ /// let data = b"Hello, world";
+ /// let encoded = Encoder::new(BitOrder::Msb, 9)
+ /// .encode(data)
+ /// .expect("All bytes valid for code size");
+ /// ```
+ pub fn encode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
+ let mut output = Vec::new();
+ self.into_vec(&mut output).encode_all(data).status?;
+ Ok(output)
+ }
+
+ /// Construct a encoder into a writer.
+ #[cfg(feature = "std")]
+ pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
+ IntoStream {
+ encoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct a encoder into an async writer.
+ #[cfg(feature = "async")]
+ pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
+ IntoAsync {
+ encoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct an encoder into a vector.
+ ///
+ /// All encoded data is appended and the vector is __not__ cleared.
+ ///
+ /// Compared to `into_stream` this interface allows a high-level access to encoding without
+ /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
+ /// special target exposes.
+ pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
+ IntoVec {
+ encoder: self,
+ vector: vec,
+ }
+ }
+
+ /// Mark the encoding as in the process of finishing.
+ ///
+ /// The next following call to `encode_bytes` which is able to consume the complete input will
+ /// also try to emit an end code. It's not recommended, but also not unsound, to use different
+ /// byte slices in different calls from this point forward and thus to 'delay' the actual end
+ /// of the data stream. The behaviour after the end marker has been written is unspecified but
+ /// sound.
+ pub fn finish(&mut self) {
+ self.state.mark_ended();
+ }
+
+ /// Undo marking this data stream as ending.
+ /// FIXME: clarify how this interacts with padding introduced after end code.
+ #[allow(dead_code)]
+ pub(crate) fn restart(&mut self) {
+ self.state.restart()
+ }
+
+ /// Reset all internal state.
+ ///
+ /// This produce an encoder as if just constructed with `new` but taking slightly less work. In
+ /// particular it will not deallocate any internal allocations. It will also avoid some
+ /// duplicate setup work.
+ pub fn reset(&mut self) {
+ self.state.reset()
+ }
+}
+
+#[cfg(feature = "std")]
+impl<'d, W: Write> IntoStream<'d, W> {
+ /// Encode data from a reader.
+ ///
+ /// This will drain the supplied reader. It will not encode an end marker after all data has
+ /// been processed.
+ pub fn encode(&mut self, read: impl BufRead) -> StreamResult {
+ self.encode_part(read, false)
+ }
+
+ /// Encode data from a reader and an end marker.
+ pub fn encode_all(mut self, read: impl BufRead) -> StreamResult {
+ self.encode_part(read, true)
+ }
+
+ /// Set the size of the intermediate encode buffer.
+ ///
+ /// A buffer of this size is allocated to hold one part of the encoded stream when no buffer is
+ /// available and any encoding method is called. No buffer is allocated if `set_buffer` has
+ /// been called. The buffer is reused.
+ ///
+ /// # Panics
+ /// This method panics if `size` is `0`.
+ pub fn set_buffer_size(&mut self, size: usize) {
+ assert_ne!(size, 0, "Attempted to set empty buffer");
+ self.default_size = size;
+ }
+
+ /// Use a particular buffer as an intermediate encode buffer.
+ ///
+ /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
+ /// instead of a dynamically allocating a buffer. Note that the size of the buffer is relevant
+ /// for efficient encoding as there is additional overhead from `write` calls each time the
+ /// buffer has been filled.
+ ///
+ /// # Panics
+ /// This method panics if the `buffer` is empty.
+ pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
+ assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
+ self.buffer = Some(StreamBuf::Borrowed(buffer));
+ }
+
+ fn encode_part(&mut self, mut read: impl BufRead, finish: bool) -> StreamResult {
+ let IntoStream {
+ encoder,
+ writer,
+ buffer,
+ default_size,
+ } = self;
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ let mut bytes_read = 0;
+ let mut bytes_written = 0;
+
+ let read_bytes = &mut bytes_read;
+ let write_bytes = &mut bytes_written;
+
+ let outbuf: &mut [u8] =
+ match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
+ StreamBuf::Borrowed(slice) => &mut *slice,
+ StreamBuf::Owned(vec) => &mut *vec,
+ };
+ assert!(!outbuf.is_empty());
+
+ let once = move || {
+ let data = read.fill_buf()?;
+
+ if data.is_empty() {
+ if finish {
+ encoder.finish();
+ } else {
+ return Ok(Progress::Done);
+ }
+ }
+
+ let result = encoder.encode_bytes(data, &mut outbuf[..]);
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ read.consume(result.consumed_in);
+
+ let done = result.status.map_err(|err| {
+ io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
+ })?;
+
+ if let LzwStatus::Done = done {
+ writer.write_all(&outbuf[..result.consumed_out])?;
+ return Ok(Progress::Done);
+ }
+
+ if let LzwStatus::NoProgress = done {
+ return Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "No more data but no end marker detected",
+ ));
+ }
+
+ writer.write_all(&outbuf[..result.consumed_out])?;
+ Ok(Progress::Ok)
+ };
+
+ let status = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ StreamResult {
+ bytes_read,
+ bytes_written,
+ status,
+ }
+ }
+}
+
+impl IntoVec<'_> {
+ /// Encode data from a slice.
+ pub fn encode(&mut self, read: &[u8]) -> VectorResult {
+ self.encode_part(read, false)
+ }
+
+ /// Decode data from a reader, adding an end marker.
+ pub fn encode_all(mut self, read: &[u8]) -> VectorResult {
+ self.encode_part(read, true)
+ }
+
+ fn grab_buffer(&mut self) -> (&mut [u8], &mut Encoder) {
+ const CHUNK_SIZE: usize = 1 << 12;
+ let decoder = &mut self.encoder;
+ let length = self.vector.len();
+
+ // Use the vector to do overflow checks and w/e.
+ self.vector.reserve(CHUNK_SIZE);
+ // FIXME: encoding into uninit buffer?
+ self.vector.resize(length + CHUNK_SIZE, 0u8);
+
+ (&mut self.vector[length..], decoder)
+ }
+
+ fn encode_part(&mut self, part: &[u8], finish: bool) -> VectorResult {
+ let mut result = VectorResult {
+ consumed_in: 0,
+ consumed_out: 0,
+ status: Ok(LzwStatus::Ok),
+ };
+
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut result.consumed_in;
+ let write_bytes = &mut result.consumed_out;
+ let mut data = part;
+
+ // A 64 MB buffer is quite large but should get alloc_zeroed.
+ // Note that the decoded size can be up to quadratic in code block.
+ let once = move || {
+ // Grab a new output buffer.
+ let (outbuf, encoder) = self.grab_buffer();
+
+ if finish {
+ encoder.finish();
+ }
+
+ // Decode as much of the buffer as fits.
+ let result = encoder.encode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ data = &data[result.consumed_in..];
+
+ let unfilled = outbuf.len() - result.consumed_out;
+ let filled = self.vector.len() - unfilled;
+ self.vector.truncate(filled);
+
+ // Handle the status in the result.
+ let done = result.status?;
+ if let LzwStatus::Done = done {
+ Ok(Progress::Done)
+ } else {
+ Ok(Progress::Ok)
+ }
+ };
+
+ // Decode chunks of input data until we're done.
+ let status: Result<(), _> = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ if let Err(err) = status {
+ result.status = Err(err);
+ }
+
+ result
+ }
+}
+
+// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
+// trip over the usage of await, which is a reserved keyword in that edition/version. It only
+// contains an impl block.
+#[cfg(feature = "async")]
+#[path = "encode_into_async.rs"]
+mod impl_encode_into_async;
+
+impl<B: Buffer> EncodeState<B> {
+ fn new(min_size: u8) -> Self {
+ let clear_code = 1 << min_size;
+ let mut tree = Tree::default();
+ tree.init(min_size);
+ let mut state = EncodeState {
+ min_size,
+ tree,
+ has_ended: false,
+ is_tiff: false,
+ current_code: clear_code,
+ clear_code,
+ buffer: B::new(min_size),
+ };
+ state.buffer_code(clear_code);
+ state
+ }
+}
+
+impl<B: Buffer> Stateful for EncodeState<B> {
+ fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
+ let c_in = inp.len();
+ let c_out = out.len();
+ let mut status = Ok(LzwStatus::Ok);
+
+ 'encoding: loop {
+ if self.push_out(&mut out) {
+ break;
+ }
+
+ if inp.is_empty() && self.has_ended {
+ let end = self.end_code();
+ if self.current_code != end {
+ if self.current_code != self.clear_code {
+ self.buffer_code(self.current_code);
+
+ // When reading this code, the decoder will add an extra entry to its table
+ // before reading th end code. Thusly, it may increase its code size based
+ // on this additional entry.
+ if self.tree.keys.len() + usize::from(self.is_tiff)
+ > usize::from(self.buffer.max_code())
+ && self.buffer.code_size() < MAX_CODESIZE
+ {
+ self.buffer.bump_code_size();
+ }
+ }
+ self.buffer_code(end);
+ self.current_code = end;
+ self.buffer_pad();
+ }
+
+ break;
+ }
+
+ let mut next_code = None;
+ let mut bytes = inp.iter();
+ while let Some(&byte) = bytes.next() {
+ if self.min_size < 8 && byte >= 1 << self.min_size {
+ status = Err(LzwError::InvalidCode);
+ break 'encoding;
+ }
+
+ inp = bytes.as_slice();
+ match self.tree.iterate(self.current_code, byte) {
+ Ok(code) => self.current_code = code,
+ Err(_) => {
+ next_code = Some(self.current_code);
+
+ self.current_code = u16::from(byte);
+ break;
+ }
+ }
+ }
+
+ match next_code {
+ // No more bytes, no code produced.
+ None => break,
+ Some(code) => {
+ self.buffer_code(code);
+
+ if self.tree.keys.len() + usize::from(self.is_tiff)
+ > usize::from(self.buffer.max_code()) + 1
+ && self.buffer.code_size() < MAX_CODESIZE
+ {
+ self.buffer.bump_code_size();
+ }
+
+ if self.tree.keys.len() > MAX_ENTRIES {
+ self.buffer_code(self.clear_code);
+ self.tree.reset(self.min_size);
+ self.buffer.clear(self.min_size);
+ }
+ }
+ }
+ }
+
+ if inp.is_empty() && self.current_code == self.end_code() {
+ if !self.flush_out(&mut out) {
+ status = Ok(LzwStatus::Done);
+ }
+ }
+
+ BufferResult {
+ consumed_in: c_in - inp.len(),
+ consumed_out: c_out - out.len(),
+ status,
+ }
+ }
+
+ fn mark_ended(&mut self) -> bool {
+ core::mem::replace(&mut self.has_ended, true)
+ }
+
+ fn restart(&mut self) {
+ self.has_ended = false;
+ }
+
+ fn reset(&mut self) {
+ self.restart();
+ self.current_code = self.clear_code;
+ self.tree.reset(self.min_size);
+ self.buffer.reset(self.min_size);
+ self.buffer_code(self.clear_code);
+ }
+}
+
+impl<B: Buffer> EncodeState<B> {
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
+ self.buffer.push_out(out)
+ }
+
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
+ self.buffer.flush_out(out)
+ }
+
+ fn end_code(&self) -> Code {
+ self.clear_code + 1
+ }
+
+ fn buffer_pad(&mut self) {
+ self.buffer.buffer_pad();
+ }
+
+ fn buffer_code(&mut self, code: Code) {
+ self.buffer.buffer_code(code);
+ }
+}
+
+impl Buffer for MsbBuffer {
+ fn new(min_size: u8) -> Self {
+ MsbBuffer {
+ code_size: min_size + 1,
+ buffer: 0,
+ bits_in_buffer: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.buffer = 0;
+ self.bits_in_buffer = 0;
+ }
+
+ fn clear(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ }
+
+ fn buffer_code(&mut self, code: Code) {
+ let shift = 64 - self.bits_in_buffer - self.code_size;
+ self.buffer |= u64::from(code) << shift;
+ self.bits_in_buffer += self.code_size;
+ }
+
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
+ if self.bits_in_buffer + 2 * self.code_size < 64 {
+ return false;
+ }
+
+ self.flush_out(out)
+ }
+
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
+ let want = usize::from(self.bits_in_buffer / 8);
+ let count = want.min((*out).len());
+ let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
+ *out = tail;
+
+ for b in bytes {
+ *b = ((self.buffer & 0xff00_0000_0000_0000) >> 56) as u8;
+ self.buffer <<= 8;
+ self.bits_in_buffer -= 8;
+ }
+
+ count < want
+ }
+
+ fn buffer_pad(&mut self) {
+ let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
+ self.bits_in_buffer += to_byte;
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ }
+
+ fn max_code(&self) -> Code {
+ (1 << self.code_size) - 1
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl Buffer for LsbBuffer {
+ fn new(min_size: u8) -> Self {
+ LsbBuffer {
+ code_size: min_size + 1,
+ buffer: 0,
+ bits_in_buffer: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.buffer = 0;
+ self.bits_in_buffer = 0;
+ }
+
+ fn clear(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ }
+
+ fn buffer_code(&mut self, code: Code) {
+ self.buffer |= u64::from(code) << self.bits_in_buffer;
+ self.bits_in_buffer += self.code_size;
+ }
+
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
+ if self.bits_in_buffer + 2 * self.code_size < 64 {
+ return false;
+ }
+
+ self.flush_out(out)
+ }
+
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
+ let want = usize::from(self.bits_in_buffer / 8);
+ let count = want.min((*out).len());
+ let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
+ *out = tail;
+
+ for b in bytes {
+ *b = (self.buffer & 0x0000_0000_0000_00ff) as u8;
+ self.buffer >>= 8;
+ self.bits_in_buffer -= 8;
+ }
+
+ count < want
+ }
+
+ fn buffer_pad(&mut self) {
+ let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
+ self.bits_in_buffer += to_byte;
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ }
+
+ fn max_code(&self) -> Code {
+ (1 << self.code_size) - 1
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl Tree {
+ fn init(&mut self, min_size: u8) {
+ // We need a way to represent the state of a currently empty buffer. We use the clear code
+ // for this, thus create one complex mapping that leads to the one-char base codes.
+ self.keys
+ .resize((1 << min_size) + 2, FullKey::NoSuccessor.into());
+ self.complex.push(Full {
+ char_continuation: [0; 256],
+ });
+ let map_of_begin = self.complex.last_mut().unwrap();
+ for ch in 0u16..256 {
+ map_of_begin.char_continuation[usize::from(ch)] = ch;
+ }
+ self.keys[1 << min_size] = FullKey::Full(0).into();
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.simples.clear();
+ self.keys.truncate((1 << min_size) + 2);
+ // Keep entry for clear code.
+ self.complex.truncate(1);
+ // The first complex is not changed..
+ for k in self.keys[..(1 << min_size) + 2].iter_mut() {
+ *k = FullKey::NoSuccessor.into();
+ }
+ self.keys[1 << min_size] = FullKey::Full(0).into();
+ }
+
+ fn at_key(&self, code: Code, ch: u8) -> Option<Code> {
+ let key = self.keys[usize::from(code)];
+ match FullKey::from(key) {
+ FullKey::NoSuccessor => None,
+ FullKey::Simple(idx) => {
+ let nexts = &self.simples[usize::from(idx)];
+ let successors = nexts
+ .codes
+ .iter()
+ .zip(nexts.chars.iter())
+ .take(usize::from(nexts.count));
+ for (&scode, &sch) in successors {
+ if sch == ch {
+ return Some(scode);
+ }
+ }
+
+ None
+ }
+ FullKey::Full(idx) => {
+ let full = &self.complex[usize::from(idx)];
+ let precode = full.char_continuation[usize::from(ch)];
+ if usize::from(precode) < MAX_ENTRIES {
+ Some(precode)
+ } else {
+ None
+ }
+ }
+ }
+ }
+
+ /// Iterate to the next char.
+ /// Return Ok when it was already in the tree or creates a new entry for it and returns Err.
+ fn iterate(&mut self, code: Code, ch: u8) -> Result<Code, Code> {
+ if let Some(next) = self.at_key(code, ch) {
+ Ok(next)
+ } else {
+ Err(self.append(code, ch))
+ }
+ }
+
+ fn append(&mut self, code: Code, ch: u8) -> Code {
+ let next: Code = self.keys.len() as u16;
+ let key = self.keys[usize::from(code)];
+ // TODO: with debug assertions, check for non-existence
+ match FullKey::from(key) {
+ FullKey::NoSuccessor => {
+ let new_key = FullKey::Simple(self.simples.len() as u16);
+ self.simples.push(Simple::default());
+ let simples = self.simples.last_mut().unwrap();
+ simples.codes[0] = next;
+ simples.chars[0] = ch;
+ simples.count = 1;
+ self.keys[usize::from(code)] = new_key.into();
+ }
+ FullKey::Simple(idx) if usize::from(self.simples[usize::from(idx)].count) < SHORT => {
+ let nexts = &mut self.simples[usize::from(idx)];
+ let nidx = usize::from(nexts.count);
+ nexts.chars[nidx] = ch;
+ nexts.codes[nidx] = next;
+ nexts.count += 1;
+ }
+ FullKey::Simple(idx) => {
+ let new_key = FullKey::Full(self.complex.len() as u16);
+ let simples = &self.simples[usize::from(idx)];
+ self.complex.push(Full {
+ char_continuation: [Code::max_value(); 256],
+ });
+ let full = self.complex.last_mut().unwrap();
+ for (&pch, &pcont) in simples.chars.iter().zip(simples.codes.iter()) {
+ full.char_continuation[usize::from(pch)] = pcont;
+ }
+ self.keys[usize::from(code)] = new_key.into();
+ }
+ FullKey::Full(idx) => {
+ let full = &mut self.complex[usize::from(idx)];
+ full.char_continuation[usize::from(ch)] = next;
+ }
+ }
+ self.keys.push(FullKey::NoSuccessor.into());
+ next
+ }
+}
+
+impl Default for FullKey {
+ fn default() -> Self {
+ FullKey::NoSuccessor
+ }
+}
+
+impl Default for Simple {
+ fn default() -> Self {
+ Simple {
+ codes: [0; SHORT],
+ chars: [0; SHORT],
+ count: 0,
+ }
+ }
+}
+
+impl From<CompressedKey> for FullKey {
+ fn from(CompressedKey(key): CompressedKey) -> Self {
+ match (key >> MAX_CODESIZE) & 0xf {
+ 0 => FullKey::Full(key & 0xfff),
+ 1 => FullKey::Simple(key & 0xfff),
+ _ => FullKey::NoSuccessor,
+ }
+ }
+}
+
+impl From<FullKey> for CompressedKey {
+ fn from(full: FullKey) -> Self {
+ CompressedKey(match full {
+ FullKey::NoSuccessor => 0x2000,
+ FullKey::Simple(code) => 0x1000 | code,
+ FullKey::Full(code) => code,
+ })
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{BitOrder, Encoder, LzwError, LzwStatus};
+ use crate::alloc::vec::Vec;
+ use crate::decode::Decoder;
+ #[cfg(feature = "std")]
+ use crate::StreamBuf;
+
+ #[test]
+ fn invalid_input_rejected() {
+ const BIT_LEN: u8 = 2;
+ let ref input = [0, 1 << BIT_LEN /* invalid */, 0];
+ let ref mut target = [0u8; 128];
+ let mut encoder = Encoder::new(BitOrder::Msb, BIT_LEN);
+
+ encoder.finish();
+ // We require simulation of normality, that is byte-for-byte compression.
+ let result = encoder.encode_bytes(input, target);
+ assert!(if let Err(LzwError::InvalidCode) = result.status {
+ true
+ } else {
+ false
+ });
+ assert_eq!(result.consumed_in, 1);
+
+ let fixed = encoder.encode_bytes(&[1, 0], &mut target[result.consumed_out..]);
+ assert!(if let Ok(LzwStatus::Done) = fixed.status {
+ true
+ } else {
+ false
+ });
+ assert_eq!(fixed.consumed_in, 2);
+
+ // Okay, now test we actually fixed it.
+ let ref mut compare = [0u8; 4];
+ let mut todo = &target[..result.consumed_out + fixed.consumed_out];
+ let mut free = &mut compare[..];
+ let mut decoder = Decoder::new(BitOrder::Msb, BIT_LEN);
+
+ // Decode with up to 16 rounds, far too much but inconsequential.
+ for _ in 0..16 {
+ if decoder.has_ended() {
+ break;
+ }
+
+ let result = decoder.decode_bytes(todo, free);
+ assert!(result.status.is_ok());
+ todo = &todo[result.consumed_in..];
+ free = &mut free[result.consumed_out..];
+ }
+
+ let remaining = { free }.len();
+ let len = compare.len() - remaining;
+ assert_eq!(todo, &[]);
+ assert_eq!(compare[..len], [0, 1, 0]);
+ }
+
+ #[test]
+ #[should_panic]
+ fn invalid_code_size_low() {
+ let _ = Encoder::new(BitOrder::Msb, 1);
+ }
+
+ #[test]
+ #[should_panic]
+ fn invalid_code_size_high() {
+ let _ = Encoder::new(BitOrder::Msb, 14);
+ }
+
+ fn make_decoded() -> Vec<u8> {
+ const FILE: &'static [u8] =
+ include_bytes!(concat!(env!("CARGO_MANIFEST_DIR"), "/Cargo.lock"));
+ return Vec::from(FILE);
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_no_alloc() {
+ let encoded = make_decoded();
+ let mut encoder = Encoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = encoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.encode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Borrowed(_)) => {}
+ None => panic!("Decoded without buffer??"),
+ Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_small_alloc() {
+ struct WriteTap<W: std::io::Write>(W);
+ const BUF_SIZE: usize = 512;
+
+ impl<W: std::io::Write> std::io::Write for WriteTap<W> {
+ fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
+ assert!(buf.len() <= BUF_SIZE);
+ self.0.write(buf)
+ }
+ fn flush(&mut self) -> std::io::Result<()> {
+ self.0.flush()
+ }
+ }
+
+ let encoded = make_decoded();
+ let mut encoder = Encoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut istream = encoder.into_stream(WriteTap(&mut output));
+ istream.set_buffer_size(512);
+ istream.encode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
+ Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
+ None => panic!("Decoded without buffer??"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn reset() {
+ let encoded = make_decoded();
+ let mut encoder = Encoder::new(BitOrder::Msb, 8);
+ let mut reference = None;
+
+ for _ in 0..2 {
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = encoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.encode_all(&encoded[..]).status.unwrap();
+
+ encoder.reset();
+ if let Some(reference) = &reference {
+ assert_eq!(output, *reference);
+ } else {
+ reference = Some(output);
+ }
+ }
+ }
+}