From a990de90fe41456a23e58bd087d2f107d321f3a1 Mon Sep 17 00:00:00 2001 From: Valentin Popov Date: Fri, 19 Jul 2024 16:37:58 +0400 Subject: Deleted vendor folder --- vendor/crossbeam-deque/src/deque.rs | 2195 ----------------------------------- 1 file changed, 2195 deletions(-) delete mode 100644 vendor/crossbeam-deque/src/deque.rs (limited to 'vendor/crossbeam-deque/src/deque.rs') diff --git a/vendor/crossbeam-deque/src/deque.rs b/vendor/crossbeam-deque/src/deque.rs deleted file mode 100644 index c37de2d..0000000 --- a/vendor/crossbeam-deque/src/deque.rs +++ /dev/null @@ -1,2195 +0,0 @@ -use std::cell::{Cell, UnsafeCell}; -use std::cmp; -use std::fmt; -use std::iter::FromIterator; -use std::marker::PhantomData; -use std::mem::{self, ManuallyDrop, MaybeUninit}; -use std::ptr; -use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering}; -use std::sync::Arc; - -use crate::epoch::{self, Atomic, Owned}; -use crate::utils::{Backoff, CachePadded}; - -// Minimum buffer capacity. -const MIN_CAP: usize = 64; -// Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`. -const MAX_BATCH: usize = 32; -// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets -// deallocated as soon as possible. -const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; - -/// A buffer that holds tasks in a worker queue. -/// -/// This is just a pointer to the buffer and its length - dropping an instance of this struct will -/// *not* deallocate the buffer. -struct Buffer { - /// Pointer to the allocated memory. - ptr: *mut T, - - /// Capacity of the buffer. Always a power of two. - cap: usize, -} - -unsafe impl Send for Buffer {} - -impl Buffer { - /// Allocates a new buffer with the specified capacity. - fn alloc(cap: usize) -> Buffer { - debug_assert_eq!(cap, cap.next_power_of_two()); - - let mut v = ManuallyDrop::new(Vec::with_capacity(cap)); - let ptr = v.as_mut_ptr(); - - Buffer { ptr, cap } - } - - /// Deallocates the buffer. - unsafe fn dealloc(self) { - drop(Vec::from_raw_parts(self.ptr, 0, self.cap)); - } - - /// Returns a pointer to the task at the specified `index`. - unsafe fn at(&self, index: isize) -> *mut T { - // `self.cap` is always a power of two. - // We do all the loads at `MaybeUninit` because we might realize, after loading, that we - // don't actually have the right to access this memory. - self.ptr.offset(index & (self.cap - 1) as isize) - } - - /// Writes `task` into the specified `index`. - /// - /// This method might be concurrently called with another `read` at the same index, which is - /// technically speaking a data race and therefore UB. We should use an atomic store here, but - /// that would be more expensive and difficult to implement generically for all types `T`. - /// Hence, as a hack, we use a volatile write instead. - unsafe fn write(&self, index: isize, task: MaybeUninit) { - ptr::write_volatile(self.at(index).cast::>(), task) - } - - /// Reads a task from the specified `index`. - /// - /// This method might be concurrently called with another `write` at the same index, which is - /// technically speaking a data race and therefore UB. We should use an atomic load here, but - /// that would be more expensive and difficult to implement generically for all types `T`. - /// Hence, as a hack, we use a volatile load instead. - unsafe fn read(&self, index: isize) -> MaybeUninit { - ptr::read_volatile(self.at(index).cast::>()) - } -} - -impl Clone for Buffer { - fn clone(&self) -> Buffer { - *self - } -} - -impl Copy for Buffer {} - -/// Internal queue data shared between the worker and stealers. -/// -/// The implementation is based on the following work: -/// -/// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] -/// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. -/// PPoPP 2013.][weak-mem] -/// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ -/// atomics. OOPSLA 2013.][checker] -/// -/// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 -/// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 -/// [checker]: https://dl.acm.org/citation.cfm?id=2509514 -struct Inner { - /// The front index. - front: AtomicIsize, - - /// The back index. - back: AtomicIsize, - - /// The underlying buffer. - buffer: CachePadded>>, -} - -impl Drop for Inner { - fn drop(&mut self) { - // Load the back index, front index, and buffer. - let b = *self.back.get_mut(); - let f = *self.front.get_mut(); - - unsafe { - let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected()); - - // Go through the buffer from front to back and drop all tasks in the queue. - let mut i = f; - while i != b { - buffer.deref().at(i).drop_in_place(); - i = i.wrapping_add(1); - } - - // Free the memory allocated by the buffer. - buffer.into_owned().into_box().dealloc(); - } - } -} - -/// Worker queue flavor: FIFO or LIFO. -#[derive(Clone, Copy, Debug, Eq, PartialEq)] -enum Flavor { - /// The first-in first-out flavor. - Fifo, - - /// The last-in first-out flavor. - Lifo, -} - -/// A worker queue. -/// -/// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal -/// tasks from it. Task schedulers typically create a single worker queue per thread. -/// -/// # Examples -/// -/// A FIFO worker: -/// -/// ``` -/// use crossbeam_deque::{Steal, Worker}; -/// -/// let w = Worker::new_fifo(); -/// let s = w.stealer(); -/// -/// w.push(1); -/// w.push(2); -/// w.push(3); -/// -/// assert_eq!(s.steal(), Steal::Success(1)); -/// assert_eq!(w.pop(), Some(2)); -/// assert_eq!(w.pop(), Some(3)); -/// ``` -/// -/// A LIFO worker: -/// -/// ``` -/// use crossbeam_deque::{Steal, Worker}; -/// -/// let w = Worker::new_lifo(); -/// let s = w.stealer(); -/// -/// w.push(1); -/// w.push(2); -/// w.push(3); -/// -/// assert_eq!(s.steal(), Steal::Success(1)); -/// assert_eq!(w.pop(), Some(3)); -/// assert_eq!(w.pop(), Some(2)); -/// ``` -pub struct Worker { - /// A reference to the inner representation of the queue. - inner: Arc>>, - - /// A copy of `inner.buffer` for quick access. - buffer: Cell>, - - /// The flavor of the queue. - flavor: Flavor, - - /// Indicates that the worker cannot be shared among threads. - _marker: PhantomData<*mut ()>, // !Send + !Sync -} - -unsafe impl Send for Worker {} - -impl Worker { - /// Creates a FIFO worker queue. - /// - /// Tasks are pushed and popped from opposite ends. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::::new_fifo(); - /// ``` - pub fn new_fifo() -> Worker { - let buffer = Buffer::alloc(MIN_CAP); - - let inner = Arc::new(CachePadded::new(Inner { - front: AtomicIsize::new(0), - back: AtomicIsize::new(0), - buffer: CachePadded::new(Atomic::new(buffer)), - })); - - Worker { - inner, - buffer: Cell::new(buffer), - flavor: Flavor::Fifo, - _marker: PhantomData, - } - } - - /// Creates a LIFO worker queue. - /// - /// Tasks are pushed and popped from the same end. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::::new_lifo(); - /// ``` - pub fn new_lifo() -> Worker { - let buffer = Buffer::alloc(MIN_CAP); - - let inner = Arc::new(CachePadded::new(Inner { - front: AtomicIsize::new(0), - back: AtomicIsize::new(0), - buffer: CachePadded::new(Atomic::new(buffer)), - })); - - Worker { - inner, - buffer: Cell::new(buffer), - flavor: Flavor::Lifo, - _marker: PhantomData, - } - } - - /// Creates a stealer for this queue. - /// - /// The returned stealer can be shared among threads and cloned. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::::new_lifo(); - /// let s = w.stealer(); - /// ``` - pub fn stealer(&self) -> Stealer { - Stealer { - inner: self.inner.clone(), - flavor: self.flavor, - } - } - - /// Resizes the internal buffer to the new capacity of `new_cap`. - #[cold] - unsafe fn resize(&self, new_cap: usize) { - // Load the back index, front index, and buffer. - let b = self.inner.back.load(Ordering::Relaxed); - let f = self.inner.front.load(Ordering::Relaxed); - let buffer = self.buffer.get(); - - // Allocate a new buffer and copy data from the old buffer to the new one. - let new = Buffer::alloc(new_cap); - let mut i = f; - while i != b { - ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); - i = i.wrapping_add(1); - } - - let guard = &epoch::pin(); - - // Replace the old buffer with the new one. - self.buffer.replace(new); - let old = - self.inner - .buffer - .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); - - // Destroy the old buffer later. - guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); - - // If the buffer is very large, then flush the thread-local garbage in order to deallocate - // it as soon as possible. - if mem::size_of::() * new_cap >= FLUSH_THRESHOLD_BYTES { - guard.flush(); - } - } - - /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the - /// buffer. - fn reserve(&self, reserve_cap: usize) { - if reserve_cap > 0 { - // Compute the current length. - let b = self.inner.back.load(Ordering::Relaxed); - let f = self.inner.front.load(Ordering::SeqCst); - let len = b.wrapping_sub(f) as usize; - - // The current capacity. - let cap = self.buffer.get().cap; - - // Is there enough capacity to push `reserve_cap` tasks? - if cap - len < reserve_cap { - // Keep doubling the capacity as much as is needed. - let mut new_cap = cap * 2; - while new_cap - len < reserve_cap { - new_cap *= 2; - } - - // Resize the buffer. - unsafe { - self.resize(new_cap); - } - } - } - } - - /// Returns `true` if the queue is empty. - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::new_lifo(); - /// - /// assert!(w.is_empty()); - /// w.push(1); - /// assert!(!w.is_empty()); - /// ``` - pub fn is_empty(&self) -> bool { - let b = self.inner.back.load(Ordering::Relaxed); - let f = self.inner.front.load(Ordering::SeqCst); - b.wrapping_sub(f) <= 0 - } - - /// Returns the number of tasks in the deque. - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::new_lifo(); - /// - /// assert_eq!(w.len(), 0); - /// w.push(1); - /// assert_eq!(w.len(), 1); - /// w.push(1); - /// assert_eq!(w.len(), 2); - /// ``` - pub fn len(&self) -> usize { - let b = self.inner.back.load(Ordering::Relaxed); - let f = self.inner.front.load(Ordering::SeqCst); - b.wrapping_sub(f).max(0) as usize - } - - /// Pushes a task into the queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::new_lifo(); - /// w.push(1); - /// w.push(2); - /// ``` - pub fn push(&self, task: T) { - // Load the back index, front index, and buffer. - let b = self.inner.back.load(Ordering::Relaxed); - let f = self.inner.front.load(Ordering::Acquire); - let mut buffer = self.buffer.get(); - - // Calculate the length of the queue. - let len = b.wrapping_sub(f); - - // Is the queue full? - if len >= buffer.cap as isize { - // Yes. Grow the underlying buffer. - unsafe { - self.resize(2 * buffer.cap); - } - buffer = self.buffer.get(); - } - - // Write `task` into the slot. - unsafe { - buffer.write(b, MaybeUninit::new(task)); - } - - atomic::fence(Ordering::Release); - - // Increment the back index. - // - // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data - // races because it doesn't understand fences. - self.inner.back.store(b.wrapping_add(1), Ordering::Release); - } - - /// Pops a task from the queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::new_fifo(); - /// w.push(1); - /// w.push(2); - /// - /// assert_eq!(w.pop(), Some(1)); - /// assert_eq!(w.pop(), Some(2)); - /// assert_eq!(w.pop(), None); - /// ``` - pub fn pop(&self) -> Option { - // Load the back and front index. - let b = self.inner.back.load(Ordering::Relaxed); - let f = self.inner.front.load(Ordering::Relaxed); - - // Calculate the length of the queue. - let len = b.wrapping_sub(f); - - // Is the queue empty? - if len <= 0 { - return None; - } - - match self.flavor { - // Pop from the front of the queue. - Flavor::Fifo => { - // Try incrementing the front index to pop the task. - let f = self.inner.front.fetch_add(1, Ordering::SeqCst); - let new_f = f.wrapping_add(1); - - if b.wrapping_sub(new_f) < 0 { - self.inner.front.store(f, Ordering::Relaxed); - return None; - } - - unsafe { - // Read the popped task. - let buffer = self.buffer.get(); - let task = buffer.read(f).assume_init(); - - // Shrink the buffer if `len - 1` is less than one fourth of the capacity. - if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { - self.resize(buffer.cap / 2); - } - - Some(task) - } - } - - // Pop from the back of the queue. - Flavor::Lifo => { - // Decrement the back index. - let b = b.wrapping_sub(1); - self.inner.back.store(b, Ordering::Relaxed); - - atomic::fence(Ordering::SeqCst); - - // Load the front index. - let f = self.inner.front.load(Ordering::Relaxed); - - // Compute the length after the back index was decremented. - let len = b.wrapping_sub(f); - - if len < 0 { - // The queue is empty. Restore the back index to the original task. - self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); - None - } else { - // Read the task to be popped. - let buffer = self.buffer.get(); - let mut task = unsafe { Some(buffer.read(b)) }; - - // Are we popping the last task from the queue? - if len == 0 { - // Try incrementing the front index. - if self - .inner - .front - .compare_exchange( - f, - f.wrapping_add(1), - Ordering::SeqCst, - Ordering::Relaxed, - ) - .is_err() - { - // Failed. We didn't pop anything. Reset to `None`. - task.take(); - } - - // Restore the back index to the original task. - self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); - } else { - // Shrink the buffer if `len` is less than one fourth of the capacity. - if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { - unsafe { - self.resize(buffer.cap / 2); - } - } - } - - task.map(|t| unsafe { t.assume_init() }) - } - } - } - } -} - -impl fmt::Debug for Worker { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.pad("Worker { .. }") - } -} - -/// A stealer handle of a worker queue. -/// -/// Stealers can be shared among threads. -/// -/// Task schedulers typically have a single worker queue per worker thread. -/// -/// # Examples -/// -/// ``` -/// use crossbeam_deque::{Steal, Worker}; -/// -/// let w = Worker::new_lifo(); -/// w.push(1); -/// w.push(2); -/// -/// let s = w.stealer(); -/// assert_eq!(s.steal(), Steal::Success(1)); -/// assert_eq!(s.steal(), Steal::Success(2)); -/// assert_eq!(s.steal(), Steal::Empty); -/// ``` -pub struct Stealer { - /// A reference to the inner representation of the queue. - inner: Arc>>, - - /// The flavor of the queue. - flavor: Flavor, -} - -unsafe impl Send for Stealer {} -unsafe impl Sync for Stealer {} - -impl Stealer { - /// Returns `true` if the queue is empty. - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::new_lifo(); - /// let s = w.stealer(); - /// - /// assert!(s.is_empty()); - /// w.push(1); - /// assert!(!s.is_empty()); - /// ``` - pub fn is_empty(&self) -> bool { - let f = self.inner.front.load(Ordering::Acquire); - atomic::fence(Ordering::SeqCst); - let b = self.inner.back.load(Ordering::Acquire); - b.wrapping_sub(f) <= 0 - } - - /// Returns the number of tasks in the deque. - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w = Worker::new_lifo(); - /// let s = w.stealer(); - /// - /// assert_eq!(s.len(), 0); - /// w.push(1); - /// assert_eq!(s.len(), 1); - /// w.push(2); - /// assert_eq!(s.len(), 2); - /// ``` - pub fn len(&self) -> usize { - let f = self.inner.front.load(Ordering::Acquire); - atomic::fence(Ordering::SeqCst); - let b = self.inner.back.load(Ordering::Acquire); - b.wrapping_sub(f).max(0) as usize - } - - /// Steals a task from the queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Steal, Worker}; - /// - /// let w = Worker::new_lifo(); - /// w.push(1); - /// w.push(2); - /// - /// let s = w.stealer(); - /// assert_eq!(s.steal(), Steal::Success(1)); - /// assert_eq!(s.steal(), Steal::Success(2)); - /// ``` - pub fn steal(&self) -> Steal { - // Load the front index. - let f = self.inner.front.load(Ordering::Acquire); - - // A SeqCst fence is needed here. - // - // If the current thread is already pinned (reentrantly), we must manually issue the - // fence. Otherwise, the following pinning will issue the fence anyway, so we don't - // have to. - if epoch::is_pinned() { - atomic::fence(Ordering::SeqCst); - } - - let guard = &epoch::pin(); - - // Load the back index. - let b = self.inner.back.load(Ordering::Acquire); - - // Is the queue empty? - if b.wrapping_sub(f) <= 0 { - return Steal::Empty; - } - - // Load the buffer and read the task at the front. - let buffer = self.inner.buffer.load(Ordering::Acquire, guard); - let task = unsafe { buffer.deref().read(f) }; - - // Try incrementing the front index to steal the task. - // If the buffer has been swapped or the increment fails, we retry. - if self.inner.buffer.load(Ordering::Acquire, guard) != buffer - || self - .inner - .front - .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) - .is_err() - { - // We didn't steal this task, forget it. - return Steal::Retry; - } - - // Return the stolen task. - Steal::Success(unsafe { task.assume_init() }) - } - - /// Steals a batch of tasks and pushes them into another worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than some constant limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w1 = Worker::new_fifo(); - /// w1.push(1); - /// w1.push(2); - /// w1.push(3); - /// w1.push(4); - /// - /// let s = w1.stealer(); - /// let w2 = Worker::new_fifo(); - /// - /// let _ = s.steal_batch(&w2); - /// assert_eq!(w2.pop(), Some(1)); - /// assert_eq!(w2.pop(), Some(2)); - /// ``` - pub fn steal_batch(&self, dest: &Worker) -> Steal<()> { - self.steal_batch_with_limit(dest, MAX_BATCH) - } - - /// Steals no more than `limit` of tasks and pushes them into another worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than the given limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Worker; - /// - /// let w1 = Worker::new_fifo(); - /// w1.push(1); - /// w1.push(2); - /// w1.push(3); - /// w1.push(4); - /// w1.push(5); - /// w1.push(6); - /// - /// let s = w1.stealer(); - /// let w2 = Worker::new_fifo(); - /// - /// let _ = s.steal_batch_with_limit(&w2, 2); - /// assert_eq!(w2.pop(), Some(1)); - /// assert_eq!(w2.pop(), Some(2)); - /// assert_eq!(w2.pop(), None); - /// - /// w1.push(7); - /// w1.push(8); - /// // Setting a large limit does not guarantee that all elements will be popped. In this case, - /// // half of the elements are currently popped, but the number of popped elements is considered - /// // an implementation detail that may be changed in the future. - /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX); - /// assert_eq!(w2.len(), 3); - /// ``` - pub fn steal_batch_with_limit(&self, dest: &Worker, limit: usize) -> Steal<()> { - assert!(limit > 0); - if Arc::ptr_eq(&self.inner, &dest.inner) { - if dest.is_empty() { - return Steal::Empty; - } else { - return Steal::Success(()); - } - } - - // Load the front index. - let mut f = self.inner.front.load(Ordering::Acquire); - - // A SeqCst fence is needed here. - // - // If the current thread is already pinned (reentrantly), we must manually issue the - // fence. Otherwise, the following pinning will issue the fence anyway, so we don't - // have to. - if epoch::is_pinned() { - atomic::fence(Ordering::SeqCst); - } - - let guard = &epoch::pin(); - - // Load the back index. - let b = self.inner.back.load(Ordering::Acquire); - - // Is the queue empty? - let len = b.wrapping_sub(f); - if len <= 0 { - return Steal::Empty; - } - - // Reserve capacity for the stolen batch. - let batch_size = cmp::min((len as usize + 1) / 2, limit); - dest.reserve(batch_size); - let mut batch_size = batch_size as isize; - - // Get the destination buffer and back index. - let dest_buffer = dest.buffer.get(); - let mut dest_b = dest.inner.back.load(Ordering::Relaxed); - - // Load the buffer. - let buffer = self.inner.buffer.load(Ordering::Acquire, guard); - - match self.flavor { - // Steal a batch of tasks from the front at once. - Flavor::Fifo => { - // Copy the batch from the source to the destination buffer. - match dest.flavor { - Flavor::Fifo => { - for i in 0..batch_size { - unsafe { - let task = buffer.deref().read(f.wrapping_add(i)); - dest_buffer.write(dest_b.wrapping_add(i), task); - } - } - } - Flavor::Lifo => { - for i in 0..batch_size { - unsafe { - let task = buffer.deref().read(f.wrapping_add(i)); - dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); - } - } - } - } - - // Try incrementing the front index to steal the batch. - // If the buffer has been swapped or the increment fails, we retry. - if self.inner.buffer.load(Ordering::Acquire, guard) != buffer - || self - .inner - .front - .compare_exchange( - f, - f.wrapping_add(batch_size), - Ordering::SeqCst, - Ordering::Relaxed, - ) - .is_err() - { - return Steal::Retry; - } - - dest_b = dest_b.wrapping_add(batch_size); - } - - // Steal a batch of tasks from the front one by one. - Flavor::Lifo => { - // This loop may modify the batch_size, which triggers a clippy lint warning. - // Use a new variable to avoid the warning, and to make it clear we aren't - // modifying the loop exit condition during iteration. - let original_batch_size = batch_size; - - for i in 0..original_batch_size { - // If this is not the first steal, check whether the queue is empty. - if i > 0 { - // We've already got the current front index. Now execute the fence to - // synchronize with other threads. - atomic::fence(Ordering::SeqCst); - - // Load the back index. - let b = self.inner.back.load(Ordering::Acquire); - - // Is the queue empty? - if b.wrapping_sub(f) <= 0 { - batch_size = i; - break; - } - } - - // Read the task at the front. - let task = unsafe { buffer.deref().read(f) }; - - // Try incrementing the front index to steal the task. - // If the buffer has been swapped or the increment fails, we retry. - if self.inner.buffer.load(Ordering::Acquire, guard) != buffer - || self - .inner - .front - .compare_exchange( - f, - f.wrapping_add(1), - Ordering::SeqCst, - Ordering::Relaxed, - ) - .is_err() - { - // We didn't steal this task, forget it and break from the loop. - batch_size = i; - break; - } - - // Write the stolen task into the destination buffer. - unsafe { - dest_buffer.write(dest_b, task); - } - - // Move the source front index and the destination back index one step forward. - f = f.wrapping_add(1); - dest_b = dest_b.wrapping_add(1); - } - - // If we didn't steal anything, the operation needs to be retried. - if batch_size == 0 { - return Steal::Retry; - } - - // If stealing into a FIFO queue, stolen tasks need to be reversed. - if dest.flavor == Flavor::Fifo { - for i in 0..batch_size / 2 { - unsafe { - let i1 = dest_b.wrapping_sub(batch_size - i); - let i2 = dest_b.wrapping_sub(i + 1); - let t1 = dest_buffer.read(i1); - let t2 = dest_buffer.read(i2); - dest_buffer.write(i1, t2); - dest_buffer.write(i2, t1); - } - } - } - } - } - - atomic::fence(Ordering::Release); - - // Update the back index in the destination queue. - // - // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data - // races because it doesn't understand fences. - dest.inner.back.store(dest_b, Ordering::Release); - - // Return with success. - Steal::Success(()) - } - - /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than some constant limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Steal, Worker}; - /// - /// let w1 = Worker::new_fifo(); - /// w1.push(1); - /// w1.push(2); - /// w1.push(3); - /// w1.push(4); - /// - /// let s = w1.stealer(); - /// let w2 = Worker::new_fifo(); - /// - /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1)); - /// assert_eq!(w2.pop(), Some(2)); - /// ``` - pub fn steal_batch_and_pop(&self, dest: &Worker) -> Steal { - self.steal_batch_with_limit_and_pop(dest, MAX_BATCH) - } - - /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from - /// that worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than the given limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Steal, Worker}; - /// - /// let w1 = Worker::new_fifo(); - /// w1.push(1); - /// w1.push(2); - /// w1.push(3); - /// w1.push(4); - /// w1.push(5); - /// w1.push(6); - /// - /// let s = w1.stealer(); - /// let w2 = Worker::new_fifo(); - /// - /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1)); - /// assert_eq!(w2.pop(), Some(2)); - /// assert_eq!(w2.pop(), None); - /// - /// w1.push(7); - /// w1.push(8); - /// // Setting a large limit does not guarantee that all elements will be popped. In this case, - /// // half of the elements are currently popped, but the number of popped elements is considered - /// // an implementation detail that may be changed in the future. - /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3)); - /// assert_eq!(w2.pop(), Some(4)); - /// assert_eq!(w2.pop(), Some(5)); - /// assert_eq!(w2.pop(), None); - /// ``` - pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker, limit: usize) -> Steal { - assert!(limit > 0); - if Arc::ptr_eq(&self.inner, &dest.inner) { - match dest.pop() { - None => return Steal::Empty, - Some(task) => return Steal::Success(task), - } - } - - // Load the front index. - let mut f = self.inner.front.load(Ordering::Acquire); - - // A SeqCst fence is needed here. - // - // If the current thread is already pinned (reentrantly), we must manually issue the - // fence. Otherwise, the following pinning will issue the fence anyway, so we don't - // have to. - if epoch::is_pinned() { - atomic::fence(Ordering::SeqCst); - } - - let guard = &epoch::pin(); - - // Load the back index. - let b = self.inner.back.load(Ordering::Acquire); - - // Is the queue empty? - let len = b.wrapping_sub(f); - if len <= 0 { - return Steal::Empty; - } - - // Reserve capacity for the stolen batch. - let batch_size = cmp::min((len as usize - 1) / 2, limit - 1); - dest.reserve(batch_size); - let mut batch_size = batch_size as isize; - - // Get the destination buffer and back index. - let dest_buffer = dest.buffer.get(); - let mut dest_b = dest.inner.back.load(Ordering::Relaxed); - - // Load the buffer - let buffer = self.inner.buffer.load(Ordering::Acquire, guard); - - // Read the task at the front. - let mut task = unsafe { buffer.deref().read(f) }; - - match self.flavor { - // Steal a batch of tasks from the front at once. - Flavor::Fifo => { - // Copy the batch from the source to the destination buffer. - match dest.flavor { - Flavor::Fifo => { - for i in 0..batch_size { - unsafe { - let task = buffer.deref().read(f.wrapping_add(i + 1)); - dest_buffer.write(dest_b.wrapping_add(i), task); - } - } - } - Flavor::Lifo => { - for i in 0..batch_size { - unsafe { - let task = buffer.deref().read(f.wrapping_add(i + 1)); - dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); - } - } - } - } - - // Try incrementing the front index to steal the task. - // If the buffer has been swapped or the increment fails, we retry. - if self.inner.buffer.load(Ordering::Acquire, guard) != buffer - || self - .inner - .front - .compare_exchange( - f, - f.wrapping_add(batch_size + 1), - Ordering::SeqCst, - Ordering::Relaxed, - ) - .is_err() - { - // We didn't steal this task, forget it. - return Steal::Retry; - } - - dest_b = dest_b.wrapping_add(batch_size); - } - - // Steal a batch of tasks from the front one by one. - Flavor::Lifo => { - // Try incrementing the front index to steal the task. - if self - .inner - .front - .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) - .is_err() - { - // We didn't steal this task, forget it. - return Steal::Retry; - } - - // Move the front index one step forward. - f = f.wrapping_add(1); - - // Repeat the same procedure for the batch steals. - // - // This loop may modify the batch_size, which triggers a clippy lint warning. - // Use a new variable to avoid the warning, and to make it clear we aren't - // modifying the loop exit condition during iteration. - let original_batch_size = batch_size; - for i in 0..original_batch_size { - // We've already got the current front index. Now execute the fence to - // synchronize with other threads. - atomic::fence(Ordering::SeqCst); - - // Load the back index. - let b = self.inner.back.load(Ordering::Acquire); - - // Is the queue empty? - if b.wrapping_sub(f) <= 0 { - batch_size = i; - break; - } - - // Read the task at the front. - let tmp = unsafe { buffer.deref().read(f) }; - - // Try incrementing the front index to steal the task. - // If the buffer has been swapped or the increment fails, we retry. - if self.inner.buffer.load(Ordering::Acquire, guard) != buffer - || self - .inner - .front - .compare_exchange( - f, - f.wrapping_add(1), - Ordering::SeqCst, - Ordering::Relaxed, - ) - .is_err() - { - // We didn't steal this task, forget it and break from the loop. - batch_size = i; - break; - } - - // Write the previously stolen task into the destination buffer. - unsafe { - dest_buffer.write(dest_b, mem::replace(&mut task, tmp)); - } - - // Move the source front index and the destination back index one step forward. - f = f.wrapping_add(1); - dest_b = dest_b.wrapping_add(1); - } - - // If stealing into a FIFO queue, stolen tasks need to be reversed. - if dest.flavor == Flavor::Fifo { - for i in 0..batch_size / 2 { - unsafe { - let i1 = dest_b.wrapping_sub(batch_size - i); - let i2 = dest_b.wrapping_sub(i + 1); - let t1 = dest_buffer.read(i1); - let t2 = dest_buffer.read(i2); - dest_buffer.write(i1, t2); - dest_buffer.write(i2, t1); - } - } - } - } - } - - atomic::fence(Ordering::Release); - - // Update the back index in the destination queue. - // - // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data - // races because it doesn't understand fences. - dest.inner.back.store(dest_b, Ordering::Release); - - // Return with success. - Steal::Success(unsafe { task.assume_init() }) - } -} - -impl Clone for Stealer { - fn clone(&self) -> Stealer { - Stealer { - inner: self.inner.clone(), - flavor: self.flavor, - } - } -} - -impl fmt::Debug for Stealer { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.pad("Stealer { .. }") - } -} - -// Bits indicating the state of a slot: -// * If a task has been written into the slot, `WRITE` is set. -// * If a task has been read from the slot, `READ` is set. -// * If the block is being destroyed, `DESTROY` is set. -const WRITE: usize = 1; -const READ: usize = 2; -const DESTROY: usize = 4; - -// Each block covers one "lap" of indices. -const LAP: usize = 64; -// The maximum number of values a block can hold. -const BLOCK_CAP: usize = LAP - 1; -// How many lower bits are reserved for metadata. -const SHIFT: usize = 1; -// Indicates that the block is not the last one. -const HAS_NEXT: usize = 1; - -/// A slot in a block. -struct Slot { - /// The task. - task: UnsafeCell>, - - /// The state of the slot. - state: AtomicUsize, -} - -impl Slot { - const UNINIT: Self = Self { - task: UnsafeCell::new(MaybeUninit::uninit()), - state: AtomicUsize::new(0), - }; - - /// Waits until a task is written into the slot. - fn wait_write(&self) { - let backoff = Backoff::new(); - while self.state.load(Ordering::Acquire) & WRITE == 0 { - backoff.snooze(); - } - } -} - -/// A block in a linked list. -/// -/// Each block in the list can hold up to `BLOCK_CAP` values. -struct Block { - /// The next block in the linked list. - next: AtomicPtr>, - - /// Slots for values. - slots: [Slot; BLOCK_CAP], -} - -impl Block { - /// Creates an empty block that starts at `start_index`. - fn new() -> Block { - Self { - next: AtomicPtr::new(ptr::null_mut()), - slots: [Slot::UNINIT; BLOCK_CAP], - } - } - - /// Waits until the next pointer is set. - fn wait_next(&self) -> *mut Block { - let backoff = Backoff::new(); - loop { - let next = self.next.load(Ordering::Acquire); - if !next.is_null() { - return next; - } - backoff.snooze(); - } - } - - /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. - unsafe fn destroy(this: *mut Block, count: usize) { - // It is not necessary to set the `DESTROY` bit in the last slot because that slot has - // begun destruction of the block. - for i in (0..count).rev() { - let slot = (*this).slots.get_unchecked(i); - - // Mark the `DESTROY` bit if a thread is still using the slot. - if slot.state.load(Ordering::Acquire) & READ == 0 - && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 - { - // If a thread is still using the slot, it will continue destruction of the block. - return; - } - } - - // No thread is using the block, now it is safe to destroy it. - drop(Box::from_raw(this)); - } -} - -/// A position in a queue. -struct Position { - /// The index in the queue. - index: AtomicUsize, - - /// The block in the linked list. - block: AtomicPtr>, -} - -/// An injector queue. -/// -/// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have -/// a single injector queue, which is the entry point for new tasks. -/// -/// # Examples -/// -/// ``` -/// use crossbeam_deque::{Injector, Steal}; -/// -/// let q = Injector::new(); -/// q.push(1); -/// q.push(2); -/// -/// assert_eq!(q.steal(), Steal::Success(1)); -/// assert_eq!(q.steal(), Steal::Success(2)); -/// assert_eq!(q.steal(), Steal::Empty); -/// ``` -pub struct Injector { - /// The head of the queue. - head: CachePadded>, - - /// The tail of the queue. - tail: CachePadded>, - - /// Indicates that dropping a `Injector` may drop values of type `T`. - _marker: PhantomData, -} - -unsafe impl Send for Injector {} -unsafe impl Sync for Injector {} - -impl Default for Injector { - fn default() -> Self { - let block = Box::into_raw(Box::new(Block::::new())); - Self { - head: CachePadded::new(Position { - block: AtomicPtr::new(block), - index: AtomicUsize::new(0), - }), - tail: CachePadded::new(Position { - block: AtomicPtr::new(block), - index: AtomicUsize::new(0), - }), - _marker: PhantomData, - } - } -} - -impl Injector { - /// Creates a new injector queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Injector; - /// - /// let q = Injector::::new(); - /// ``` - pub fn new() -> Injector { - Self::default() - } - - /// Pushes a task into the queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Injector; - /// - /// let w = Injector::new(); - /// w.push(1); - /// w.push(2); - /// ``` - pub fn push(&self, task: T) { - let backoff = Backoff::new(); - let mut tail = self.tail.index.load(Ordering::Acquire); - let mut block = self.tail.block.load(Ordering::Acquire); - let mut next_block = None; - - loop { - // Calculate the offset of the index into the block. - let offset = (tail >> SHIFT) % LAP; - - // If we reached the end of the block, wait until the next one is installed. - if offset == BLOCK_CAP { - backoff.snooze(); - tail = self.tail.index.load(Ordering::Acquire); - block = self.tail.block.load(Ordering::Acquire); - continue; - } - - // If we're going to have to install the next block, allocate it in advance in order to - // make the wait for other threads as short as possible. - if offset + 1 == BLOCK_CAP && next_block.is_none() { - next_block = Some(Box::new(Block::::new())); - } - - let new_tail = tail + (1 << SHIFT); - - // Try advancing the tail forward. - match self.tail.index.compare_exchange_weak( - tail, - new_tail, - Ordering::SeqCst, - Ordering::Acquire, - ) { - Ok(_) => unsafe { - // If we've reached the end of the block, install the next one. - if offset + 1 == BLOCK_CAP { - let next_block = Box::into_raw(next_block.unwrap()); - let next_index = new_tail.wrapping_add(1 << SHIFT); - - self.tail.block.store(next_block, Ordering::Release); - self.tail.index.store(next_index, Ordering::Release); - (*block).next.store(next_block, Ordering::Release); - } - - // Write the task into the slot. - let slot = (*block).slots.get_unchecked(offset); - slot.task.get().write(MaybeUninit::new(task)); - slot.state.fetch_or(WRITE, Ordering::Release); - - return; - }, - Err(t) => { - tail = t; - block = self.tail.block.load(Ordering::Acquire); - backoff.spin(); - } - } - } - } - - /// Steals a task from the queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Injector, Steal}; - /// - /// let q = Injector::new(); - /// q.push(1); - /// q.push(2); - /// - /// assert_eq!(q.steal(), Steal::Success(1)); - /// assert_eq!(q.steal(), Steal::Success(2)); - /// assert_eq!(q.steal(), Steal::Empty); - /// ``` - pub fn steal(&self) -> Steal { - let mut head; - let mut block; - let mut offset; - - let backoff = Backoff::new(); - loop { - head = self.head.index.load(Ordering::Acquire); - block = self.head.block.load(Ordering::Acquire); - - // Calculate the offset of the index into the block. - offset = (head >> SHIFT) % LAP; - - // If we reached the end of the block, wait until the next one is installed. - if offset == BLOCK_CAP { - backoff.snooze(); - } else { - break; - } - } - - let mut new_head = head + (1 << SHIFT); - - if new_head & HAS_NEXT == 0 { - atomic::fence(Ordering::SeqCst); - let tail = self.tail.index.load(Ordering::Relaxed); - - // If the tail equals the head, that means the queue is empty. - if head >> SHIFT == tail >> SHIFT { - return Steal::Empty; - } - - // If head and tail are not in the same block, set `HAS_NEXT` in head. - if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { - new_head |= HAS_NEXT; - } - } - - // Try moving the head index forward. - if self - .head - .index - .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) - .is_err() - { - return Steal::Retry; - } - - unsafe { - // If we've reached the end of the block, move to the next one. - if offset + 1 == BLOCK_CAP { - let next = (*block).wait_next(); - let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); - if !(*next).next.load(Ordering::Relaxed).is_null() { - next_index |= HAS_NEXT; - } - - self.head.block.store(next, Ordering::Release); - self.head.index.store(next_index, Ordering::Release); - } - - // Read the task. - let slot = (*block).slots.get_unchecked(offset); - slot.wait_write(); - let task = slot.task.get().read().assume_init(); - - // Destroy the block if we've reached the end, or if another thread wanted to destroy - // but couldn't because we were busy reading from the slot. - if (offset + 1 == BLOCK_CAP) - || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0) - { - Block::destroy(block, offset); - } - - Steal::Success(task) - } - } - - /// Steals a batch of tasks and pushes them into a worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than some constant limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Injector, Worker}; - /// - /// let q = Injector::new(); - /// q.push(1); - /// q.push(2); - /// q.push(3); - /// q.push(4); - /// - /// let w = Worker::new_fifo(); - /// let _ = q.steal_batch(&w); - /// assert_eq!(w.pop(), Some(1)); - /// assert_eq!(w.pop(), Some(2)); - /// ``` - pub fn steal_batch(&self, dest: &Worker) -> Steal<()> { - self.steal_batch_with_limit(dest, MAX_BATCH) - } - - /// Steals no more than of tasks and pushes them into a worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than some constant limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Injector, Worker}; - /// - /// let q = Injector::new(); - /// q.push(1); - /// q.push(2); - /// q.push(3); - /// q.push(4); - /// q.push(5); - /// q.push(6); - /// - /// let w = Worker::new_fifo(); - /// let _ = q.steal_batch_with_limit(&w, 2); - /// assert_eq!(w.pop(), Some(1)); - /// assert_eq!(w.pop(), Some(2)); - /// assert_eq!(w.pop(), None); - /// - /// q.push(7); - /// q.push(8); - /// // Setting a large limit does not guarantee that all elements will be popped. In this case, - /// // half of the elements are currently popped, but the number of popped elements is considered - /// // an implementation detail that may be changed in the future. - /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX); - /// assert_eq!(w.len(), 3); - /// ``` - pub fn steal_batch_with_limit(&self, dest: &Worker, limit: usize) -> Steal<()> { - assert!(limit > 0); - let mut head; - let mut block; - let mut offset; - - let backoff = Backoff::new(); - loop { - head = self.head.index.load(Ordering::Acquire); - block = self.head.block.load(Ordering::Acquire); - - // Calculate the offset of the index into the block. - offset = (head >> SHIFT) % LAP; - - // If we reached the end of the block, wait until the next one is installed. - if offset == BLOCK_CAP { - backoff.snooze(); - } else { - break; - } - } - - let mut new_head = head; - let advance; - - if new_head & HAS_NEXT == 0 { - atomic::fence(Ordering::SeqCst); - let tail = self.tail.index.load(Ordering::Relaxed); - - // If the tail equals the head, that means the queue is empty. - if head >> SHIFT == tail >> SHIFT { - return Steal::Empty; - } - - // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate - // the right batch size to steal. - if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { - new_head |= HAS_NEXT; - // We can steal all tasks till the end of the block. - advance = (BLOCK_CAP - offset).min(limit); - } else { - let len = (tail - head) >> SHIFT; - // Steal half of the available tasks. - advance = ((len + 1) / 2).min(limit); - } - } else { - // We can steal all tasks till the end of the block. - advance = (BLOCK_CAP - offset).min(limit); - } - - new_head += advance << SHIFT; - let new_offset = offset + advance; - - // Try moving the head index forward. - if self - .head - .index - .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) - .is_err() - { - return Steal::Retry; - } - - // Reserve capacity for the stolen batch. - let batch_size = new_offset - offset; - dest.reserve(batch_size); - - // Get the destination buffer and back index. - let dest_buffer = dest.buffer.get(); - let dest_b = dest.inner.back.load(Ordering::Relaxed); - - unsafe { - // If we've reached the end of the block, move to the next one. - if new_offset == BLOCK_CAP { - let next = (*block).wait_next(); - let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); - if !(*next).next.load(Ordering::Relaxed).is_null() { - next_index |= HAS_NEXT; - } - - self.head.block.store(next, Ordering::Release); - self.head.index.store(next_index, Ordering::Release); - } - - // Copy values from the injector into the destination queue. - match dest.flavor { - Flavor::Fifo => { - for i in 0..batch_size { - // Read the task. - let slot = (*block).slots.get_unchecked(offset + i); - slot.wait_write(); - let task = slot.task.get().read(); - - // Write it into the destination queue. - dest_buffer.write(dest_b.wrapping_add(i as isize), task); - } - } - - Flavor::Lifo => { - for i in 0..batch_size { - // Read the task. - let slot = (*block).slots.get_unchecked(offset + i); - slot.wait_write(); - let task = slot.task.get().read(); - - // Write it into the destination queue. - dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); - } - } - } - - atomic::fence(Ordering::Release); - - // Update the back index in the destination queue. - // - // This ordering could be `Relaxed`, but then thread sanitizer would falsely report - // data races because it doesn't understand fences. - dest.inner - .back - .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); - - // Destroy the block if we've reached the end, or if another thread wanted to destroy - // but couldn't because we were busy reading from the slot. - if new_offset == BLOCK_CAP { - Block::destroy(block, offset); - } else { - for i in offset..new_offset { - let slot = (*block).slots.get_unchecked(i); - - if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { - Block::destroy(block, offset); - break; - } - } - } - - Steal::Success(()) - } - } - - /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than some constant limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Injector, Steal, Worker}; - /// - /// let q = Injector::new(); - /// q.push(1); - /// q.push(2); - /// q.push(3); - /// q.push(4); - /// - /// let w = Worker::new_fifo(); - /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1)); - /// assert_eq!(w.pop(), Some(2)); - /// ``` - pub fn steal_batch_and_pop(&self, dest: &Worker) -> Steal { - // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly - // better, but we may change it in the future to be compatible with the same method in Stealer. - self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1) - } - - /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker. - /// - /// How many tasks exactly will be stolen is not specified. That said, this method will try to - /// steal around half of the tasks in the queue, but also not more than the given limit. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::{Injector, Steal, Worker}; - /// - /// let q = Injector::new(); - /// q.push(1); - /// q.push(2); - /// q.push(3); - /// q.push(4); - /// q.push(5); - /// q.push(6); - /// - /// let w = Worker::new_fifo(); - /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1)); - /// assert_eq!(w.pop(), Some(2)); - /// assert_eq!(w.pop(), None); - /// - /// q.push(7); - /// // Setting a large limit does not guarantee that all elements will be popped. In this case, - /// // half of the elements are currently popped, but the number of popped elements is considered - /// // an implementation detail that may be changed in the future. - /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3)); - /// assert_eq!(w.pop(), Some(4)); - /// assert_eq!(w.pop(), Some(5)); - /// assert_eq!(w.pop(), None); - /// ``` - pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker, limit: usize) -> Steal { - assert!(limit > 0); - let mut head; - let mut block; - let mut offset; - - let backoff = Backoff::new(); - loop { - head = self.head.index.load(Ordering::Acquire); - block = self.head.block.load(Ordering::Acquire); - - // Calculate the offset of the index into the block. - offset = (head >> SHIFT) % LAP; - - // If we reached the end of the block, wait until the next one is installed. - if offset == BLOCK_CAP { - backoff.snooze(); - } else { - break; - } - } - - let mut new_head = head; - let advance; - - if new_head & HAS_NEXT == 0 { - atomic::fence(Ordering::SeqCst); - let tail = self.tail.index.load(Ordering::Relaxed); - - // If the tail equals the head, that means the queue is empty. - if head >> SHIFT == tail >> SHIFT { - return Steal::Empty; - } - - // If head and tail are not in the same block, set `HAS_NEXT` in head. - if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { - new_head |= HAS_NEXT; - // We can steal all tasks till the end of the block. - advance = (BLOCK_CAP - offset).min(limit); - } else { - let len = (tail - head) >> SHIFT; - // Steal half of the available tasks. - advance = ((len + 1) / 2).min(limit); - } - } else { - // We can steal all tasks till the end of the block. - advance = (BLOCK_CAP - offset).min(limit); - } - - new_head += advance << SHIFT; - let new_offset = offset + advance; - - // Try moving the head index forward. - if self - .head - .index - .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) - .is_err() - { - return Steal::Retry; - } - - // Reserve capacity for the stolen batch. - let batch_size = new_offset - offset - 1; - dest.reserve(batch_size); - - // Get the destination buffer and back index. - let dest_buffer = dest.buffer.get(); - let dest_b = dest.inner.back.load(Ordering::Relaxed); - - unsafe { - // If we've reached the end of the block, move to the next one. - if new_offset == BLOCK_CAP { - let next = (*block).wait_next(); - let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); - if !(*next).next.load(Ordering::Relaxed).is_null() { - next_index |= HAS_NEXT; - } - - self.head.block.store(next, Ordering::Release); - self.head.index.store(next_index, Ordering::Release); - } - - // Read the task. - let slot = (*block).slots.get_unchecked(offset); - slot.wait_write(); - let task = slot.task.get().read(); - - match dest.flavor { - Flavor::Fifo => { - // Copy values from the injector into the destination queue. - for i in 0..batch_size { - // Read the task. - let slot = (*block).slots.get_unchecked(offset + i + 1); - slot.wait_write(); - let task = slot.task.get().read(); - - // Write it into the destination queue. - dest_buffer.write(dest_b.wrapping_add(i as isize), task); - } - } - - Flavor::Lifo => { - // Copy values from the injector into the destination queue. - for i in 0..batch_size { - // Read the task. - let slot = (*block).slots.get_unchecked(offset + i + 1); - slot.wait_write(); - let task = slot.task.get().read(); - - // Write it into the destination queue. - dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); - } - } - } - - atomic::fence(Ordering::Release); - - // Update the back index in the destination queue. - // - // This ordering could be `Relaxed`, but then thread sanitizer would falsely report - // data races because it doesn't understand fences. - dest.inner - .back - .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); - - // Destroy the block if we've reached the end, or if another thread wanted to destroy - // but couldn't because we were busy reading from the slot. - if new_offset == BLOCK_CAP { - Block::destroy(block, offset); - } else { - for i in offset..new_offset { - let slot = (*block).slots.get_unchecked(i); - - if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { - Block::destroy(block, offset); - break; - } - } - } - - Steal::Success(task.assume_init()) - } - } - - /// Returns `true` if the queue is empty. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Injector; - /// - /// let q = Injector::new(); - /// - /// assert!(q.is_empty()); - /// q.push(1); - /// assert!(!q.is_empty()); - /// ``` - pub fn is_empty(&self) -> bool { - let head = self.head.index.load(Ordering::SeqCst); - let tail = self.tail.index.load(Ordering::SeqCst); - head >> SHIFT == tail >> SHIFT - } - - /// Returns the number of tasks in the queue. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Injector; - /// - /// let q = Injector::new(); - /// - /// assert_eq!(q.len(), 0); - /// q.push(1); - /// assert_eq!(q.len(), 1); - /// q.push(1); - /// assert_eq!(q.len(), 2); - /// ``` - pub fn len(&self) -> usize { - loop { - // Load the tail index, then load the head index. - let mut tail = self.tail.index.load(Ordering::SeqCst); - let mut head = self.head.index.load(Ordering::SeqCst); - - // If the tail index didn't change, we've got consistent indices to work with. - if self.tail.index.load(Ordering::SeqCst) == tail { - // Erase the lower bits. - tail &= !((1 << SHIFT) - 1); - head &= !((1 << SHIFT) - 1); - - // Fix up indices if they fall onto block ends. - if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { - tail = tail.wrapping_add(1 << SHIFT); - } - if (head >> SHIFT) & (LAP - 1) == LAP - 1 { - head = head.wrapping_add(1 << SHIFT); - } - - // Rotate indices so that head falls into the first block. - let lap = (head >> SHIFT) / LAP; - tail = tail.wrapping_sub((lap * LAP) << SHIFT); - head = head.wrapping_sub((lap * LAP) << SHIFT); - - // Remove the lower bits. - tail >>= SHIFT; - head >>= SHIFT; - - // Return the difference minus the number of blocks between tail and head. - return tail - head - tail / LAP; - } - } - } -} - -impl Drop for Injector { - fn drop(&mut self) { - let mut head = *self.head.index.get_mut(); - let mut tail = *self.tail.index.get_mut(); - let mut block = *self.head.block.get_mut(); - - // Erase the lower bits. - head &= !((1 << SHIFT) - 1); - tail &= !((1 << SHIFT) - 1); - - unsafe { - // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. - while head != tail { - let offset = (head >> SHIFT) % LAP; - - if offset < BLOCK_CAP { - // Drop the task in the slot. - let slot = (*block).slots.get_unchecked(offset); - let p = &mut *slot.task.get(); - p.as_mut_ptr().drop_in_place(); - } else { - // Deallocate the block and move to the next one. - let next = *(*block).next.get_mut(); - drop(Box::from_raw(block)); - block = next; - } - - head = head.wrapping_add(1 << SHIFT); - } - - // Deallocate the last remaining block. - drop(Box::from_raw(block)); - } - } -} - -impl fmt::Debug for Injector { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.pad("Worker { .. }") - } -} - -/// Possible outcomes of a steal operation. -/// -/// # Examples -/// -/// There are lots of ways to chain results of steal operations together: -/// -/// ``` -/// use crossbeam_deque::Steal::{self, Empty, Retry, Success}; -/// -/// let collect = |v: Vec>| v.into_iter().collect::>(); -/// -/// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty); -/// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry); -/// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1)); -/// -/// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry); -/// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1)); -/// ``` -#[must_use] -#[derive(PartialEq, Eq, Copy, Clone)] -pub enum Steal { - /// The queue was empty at the time of stealing. - Empty, - - /// At least one task was successfully stolen. - Success(T), - - /// The steal operation needs to be retried. - Retry, -} - -impl Steal { - /// Returns `true` if the queue was empty at the time of stealing. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Steal::{Empty, Retry, Success}; - /// - /// assert!(!Success(7).is_empty()); - /// assert!(!Retry::.is_empty()); - /// - /// assert!(Empty::.is_empty()); - /// ``` - pub fn is_empty(&self) -> bool { - match self { - Steal::Empty => true, - _ => false, - } - } - - /// Returns `true` if at least one task was stolen. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Steal::{Empty, Retry, Success}; - /// - /// assert!(!Empty::.is_success()); - /// assert!(!Retry::.is_success()); - /// - /// assert!(Success(7).is_success()); - /// ``` - pub fn is_success(&self) -> bool { - match self { - Steal::Success(_) => true, - _ => false, - } - } - - /// Returns `true` if the steal operation needs to be retried. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Steal::{Empty, Retry, Success}; - /// - /// assert!(!Empty::.is_retry()); - /// assert!(!Success(7).is_retry()); - /// - /// assert!(Retry::.is_retry()); - /// ``` - pub fn is_retry(&self) -> bool { - match self { - Steal::Retry => true, - _ => false, - } - } - - /// Returns the result of the operation, if successful. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Steal::{Empty, Retry, Success}; - /// - /// assert_eq!(Empty::.success(), None); - /// assert_eq!(Retry::.success(), None); - /// - /// assert_eq!(Success(7).success(), Some(7)); - /// ``` - pub fn success(self) -> Option { - match self { - Steal::Success(res) => Some(res), - _ => None, - } - } - - /// If no task was stolen, attempts another steal operation. - /// - /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then: - /// - /// * If the second steal resulted in `Success`, it is returned. - /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned. - /// * If both resulted in `None`, then `None` is returned. - /// - /// # Examples - /// - /// ``` - /// use crossbeam_deque::Steal::{Empty, Retry, Success}; - /// - /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1)); - /// assert_eq!(Retry.or_else(|| Success(2)), Success(2)); - /// - /// assert_eq!(Retry.or_else(|| Empty), Retry::); - /// assert_eq!(Empty.or_else(|| Retry), Retry::); - /// - /// assert_eq!(Empty.or_else(|| Empty), Empty::); - /// ``` - pub fn or_else(self, f: F) -> Steal - where - F: FnOnce() -> Steal, - { - match self { - Steal::Empty => f(), - Steal::Success(_) => self, - Steal::Retry => { - if let Steal::Success(res) = f() { - Steal::Success(res) - } else { - Steal::Retry - } - } - } - } -} - -impl fmt::Debug for Steal { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - match self { - Steal::Empty => f.pad("Empty"), - Steal::Success(_) => f.pad("Success(..)"), - Steal::Retry => f.pad("Retry"), - } - } -} - -impl FromIterator> for Steal { - /// Consumes items until a `Success` is found and returns it. - /// - /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`. - /// Otherwise, `Empty` is returned. - fn from_iter(iter: I) -> Steal - where - I: IntoIterator>, - { - let mut retry = false; - for s in iter { - match &s { - Steal::Empty => {} - Steal::Success(_) => return s, - Steal::Retry => retry = true, - } - } - - if retry { - Steal::Retry - } else { - Steal::Empty - } - } -} -- cgit v1.2.3