From a990de90fe41456a23e58bd087d2f107d321f3a1 Mon Sep 17 00:00:00 2001 From: Valentin Popov Date: Fri, 19 Jul 2024 16:37:58 +0400 Subject: Deleted vendor folder --- vendor/exr/src/compression/b44/mod.rs | 989 ---------------------------------- 1 file changed, 989 deletions(-) delete mode 100644 vendor/exr/src/compression/b44/mod.rs (limited to 'vendor/exr/src/compression/b44/mod.rs') diff --git a/vendor/exr/src/compression/b44/mod.rs b/vendor/exr/src/compression/b44/mod.rs deleted file mode 100644 index 815e95e..0000000 --- a/vendor/exr/src/compression/b44/mod.rs +++ /dev/null @@ -1,989 +0,0 @@ -mod table; - -use crate::compression::{mod_p, ByteVec}; -use crate::error::usize_to_i32; -use crate::io::Data; -use crate::meta::attribute::ChannelList; -use crate::prelude::*; -use std::cmp::min; -use std::mem::size_of; -use table::{EXP_TABLE, LOG_TABLE}; -use lebe::io::{ReadPrimitive, WriteEndian}; - -const BLOCK_SAMPLE_COUNT: usize = 4; - -// As B44 compression is only use on f16 channels, we can have a conste for this value. -const BLOCK_X_BYTE_COUNT: usize = BLOCK_SAMPLE_COUNT * size_of::(); - -#[inline] -fn convert_from_linear(s: &mut [u16; 16]) { - for v in s { - *v = EXP_TABLE[*v as usize]; - } -} - -#[inline] -fn convert_to_linear(s: &mut [u16; 16]) { - for v in s { - *v = LOG_TABLE[*v as usize]; - } -} - -#[inline] -fn shift_and_round(x: i32, shift: i32) -> i32 { - let x = x << 1; - let a = (1 << shift) - 1; - let shift = shift + 1; - let b = (x >> shift) & 1; - (x + a + b) >> shift -} - -/// Pack a block of 4 by 4 16-bit pixels (32 bytes, the array `s`) into either 14 or 3 bytes. -fn pack(s: [u16; 16], b: &mut [u8], optimize_flat_fields: bool, exact_max: bool) -> usize { - - let mut t = [0u16; 16]; - - for i in 0..16 { - if (s[i] & 0x7c00) == 0x7c00 { - t[i] = 0x8000; - } else if (s[i] & 0x8000) != 0 { - t[i] = !s[i]; - } else { - t[i] = s[i] | 0x8000; - } - } - - let t_max = t.iter().max().unwrap(); - - // Compute a set of running differences, r[0] ... r[14]: - // Find a shift value such that after rounding off the - // rightmost bits and shifting all differences are between - // -32 and +31. Then bias the differences so that they - // end up between 0 and 63. - let mut shift = -1; - let mut d = [0i32; 16]; - let mut r = [0i32; 15]; - let mut r_min: i32; - let mut r_max: i32; - - const BIAS: i32 = 0x20; - - loop { - shift += 1; - - // Compute absolute differences, d[0] ... d[15], - // between t_max and t[0] ... t[15]. - // - // Shift and round the absolute differences. - d.iter_mut() - .zip(&t) - .for_each(|(d_v, t_v)| *d_v = shift_and_round((t_max - t_v).into(), shift)); - - // Convert d[0] .. d[15] into running differences - r[0] = d[0] - d[4] + BIAS; - r[1] = d[4] - d[8] + BIAS; - r[2] = d[8] - d[12] + BIAS; - - r[3] = d[0] - d[1] + BIAS; - r[4] = d[4] - d[5] + BIAS; - r[5] = d[8] - d[9] + BIAS; - r[6] = d[12] - d[13] + BIAS; - - r[7] = d[1] - d[2] + BIAS; - r[8] = d[5] - d[6] + BIAS; - r[9] = d[9] - d[10] + BIAS; - r[10] = d[13] - d[14] + BIAS; - - r[11] = d[2] - d[3] + BIAS; - r[12] = d[6] - d[7] + BIAS; - r[13] = d[10] - d[11] + BIAS; - r[14] = d[14] - d[15] + BIAS; - - r_min = r[0]; - r_max = r[0]; - - r.iter().copied().for_each(|v| { - if r_min > v { - r_min = v; - } - - if r_max < v { - r_max = v; - } - }); - - if !(r_min < 0 || r_max > 0x3f) { - break; - } - } - - if r_min == BIAS && r_max == BIAS && optimize_flat_fields { - // Special case - all pixels have the same value. - // We encode this in 3 instead of 14 bytes by - // storing the value 0xfc in the third output byte, - // which cannot occur in the 14-byte encoding. - b[0] = (t[0] >> 8) as u8; - b[1] = t[0] as u8; - b[2] = 0xfc; - - return 3; - } - - if exact_max { - // Adjust t[0] so that the pixel whose value is equal - // to t_max gets represented as accurately as possible. - t[0] = t_max - (d[0] << shift) as u16; - } - - // Pack t[0], shift and r[0] ... r[14] into 14 bytes: - b[0] = (t[0] >> 8) as u8; - b[1] = t[0] as u8; - - b[2] = ((shift << 2) | (r[0] >> 4)) as u8; - b[3] = ((r[0] << 4) | (r[1] >> 2)) as u8; - b[4] = ((r[1] << 6) | r[2]) as u8; - - b[5] = ((r[3] << 2) | (r[4] >> 4)) as u8; - b[6] = ((r[4] << 4) | (r[5] >> 2)) as u8; - b[7] = ((r[5] << 6) | r[6]) as u8; - - b[8] = ((r[7] << 2) | (r[8] >> 4)) as u8; - b[9] = ((r[8] << 4) | (r[9] >> 2)) as u8; - b[10] = ((r[9] << 6) | r[10]) as u8; - - b[11] = ((r[11] << 2) | (r[12] >> 4)) as u8; - b[12] = ((r[12] << 4) | (r[13] >> 2)) as u8; - b[13] = ((r[13] << 6) | r[14]) as u8; - - return 14; -} - -// Tiny macro to simply get block array value as a u32. -macro_rules! b32 { - ($b:expr, $i:expr) => { - $b[$i] as u32 - }; -} - -// 0011 1111 -const SIX_BITS: u32 = 0x3f; - -// Unpack a 14-byte block into 4 by 4 16-bit pixels. -fn unpack14(b: &[u8], s: &mut [u16; 16]) { - debug_assert_eq!(b.len(), 14); - debug_assert_ne!(b[2], 0xfc); - - s[0] = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16; - - let shift = b32!(b, 2) >> 2; - let bias = 0x20 << shift; - - s[4] = (s[0] as u32 + ((((b32!(b, 2) << 4) | (b32!(b, 3) >> 4)) & SIX_BITS) << shift) - bias) as u16; - s[8] = (s[4] as u32 + ((((b32!(b, 3) << 2) | (b32!(b, 4) >> 6)) & SIX_BITS) << shift) - bias) as u16; - s[12] = (s[8] as u32 + ((b32!(b, 4) & SIX_BITS) << shift) - bias) as u16; - - s[1] = (s[0] as u32 + ((b32!(b, 5) >> 2) << shift) - bias) as u16; - s[5] = (s[4] as u32 + ((((b32!(b, 5) << 4) | (b32!(b, 6) >> 4)) & SIX_BITS) << shift) - bias) as u16; - s[9] = (s[8] as u32 + ((((b32!(b, 6) << 2) | (b32!(b, 7) >> 6)) & SIX_BITS) << shift) - bias) as u16; - s[13] = (s[12] as u32 + ((b32!(b, 7) & SIX_BITS) << shift) - bias) as u16; - - s[2] = (s[1] as u32 + ((b32!(b, 8) >> 2) << shift) - bias) as u16; - s[6] = (s[5] as u32 + ((((b32!(b, 8) << 4) | (b32!(b, 9) >> 4)) & SIX_BITS) << shift) - bias) as u16; - s[10] = (s[9] as u32 + ((((b32!(b, 9) << 2) | (b32!(b, 10) >> 6)) & SIX_BITS) << shift) - bias) as u16; - s[14] = (s[13] as u32 + ((b32!(b, 10) & SIX_BITS) << shift) - bias) as u16; - - s[3] = (s[2] as u32 + ((b32!(b, 11) >> 2) << shift) - bias) as u16; - s[7] = (s[6] as u32 + ((((b32!(b, 11) << 4) | (b32!(b, 12) >> 4)) & SIX_BITS) << shift) - bias) as u16; - s[11] = (s[10] as u32 + ((((b32!(b, 12) << 2) | (b32!(b, 13) >> 6)) & SIX_BITS) << shift) - bias) as u16; - s[15] = (s[14] as u32 + ((b32!(b, 13) & SIX_BITS) << shift) - bias) as u16; - - for i in 0..16 { - if (s[i] & 0x8000) != 0 { - s[i] &= 0x7fff; - } else { - s[i] = !s[i]; - } - } -} - -// Unpack a 3-byte block `b` into 4 by 4 identical 16-bit pixels in `s` array. -fn unpack3(b: &[u8], s: &mut [u16; 16]) { - // this assertion panics for fuzzed images. - // assuming this debug assertion is an overly strict check to catch potential compression errors. - // disabling because it panics when fuzzed. - // when commenting out, it simply works (maybe it should return an error instead?). - // debug_assert_eq!(b[2], 0xfc); - - // Get the 16-bit value from the block. - let mut value = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16; - - if (value & 0x8000) != 0 { - value &= 0x7fff; - } else { - value = !value; - } - - s.fill(value); // All pixels have save value. -} - -#[derive(Debug)] -struct ChannelData { - tmp_start_index: usize, - tmp_end_index: usize, - resolution: Vec2, - y_sampling: usize, - sample_type: SampleType, - quantize_linearly: bool, - samples_per_pixel: usize, -} - -// TODO: Unsafe seems to be required to efficiently copy whole slice of u16 ot u8. For now, we use -// a less efficient, yet safe, implementation. -#[inline] -fn memcpy_u16_to_u8(src: &[u16], mut dst: &mut [u8]) { - use lebe::prelude::*; - dst.write_as_native_endian(src).expect("byte copy error"); -} - -#[inline] -fn memcpy_u8_to_u16(mut src: &[u8], dst: &mut [u16]) { - use lebe::prelude::*; - src.read_from_native_endian_into(dst).expect("byte copy error"); -} - -#[inline] -fn cpy_u8(src: &[u16], src_i: usize, dst: &mut [u8], dst_i: usize, n: usize) { - memcpy_u16_to_u8(&src[src_i..src_i + n], &mut dst[dst_i..dst_i + 2 * n]); -} - -pub fn decompress( - channels: &ChannelList, - compressed: ByteVec, - rectangle: IntegerBounds, - expected_byte_size: usize, - _pedantic: bool, -) -> Result { - debug_assert_eq!( - expected_byte_size, - rectangle.size.area() * channels.bytes_per_pixel, - "expected byte size does not match header" // TODO compute instead of passing argument? - ); - - debug_assert!(!channels.list.is_empty(), "no channels found"); - - if compressed.is_empty() { - return Ok(Vec::new()); - } - - // Extract channel information needed for decompression. - let mut channel_data: Vec = Vec::with_capacity(channels.list.len()); - let mut tmp_read_index = 0; - - for channel in channels.list.iter() { - let channel = ChannelData { - tmp_start_index: tmp_read_index, - tmp_end_index: tmp_read_index, - resolution: channel.subsampled_resolution(rectangle.size), - y_sampling: channel.sampling.y(), - sample_type: channel.sample_type, - quantize_linearly: channel.quantize_linearly, - samples_per_pixel: channel.sampling.area(), - }; - - tmp_read_index += channel.resolution.area() - * channel.samples_per_pixel - * channel.sample_type.bytes_per_sample(); - - channel_data.push(channel); - } - - // Temporary buffer is used to decompress B44 datas the way they are stored in the compressed - // buffer (channel by channel). We interleave the final result later. - let mut tmp = Vec::with_capacity(expected_byte_size); - - // Index in the compressed buffer. - let mut in_i = 0usize; - - let mut remaining = compressed.len(); - - for channel in &channel_data { - - debug_assert_eq!(remaining, compressed.len()-in_i); - - // Compute information for current channel. - let sample_count = channel.resolution.area() * channel.samples_per_pixel; - let byte_count = sample_count * channel.sample_type.bytes_per_sample(); - - // Sample types that does not support B44 compression (u32 and f32) are raw copied. - // In this branch, "compressed" array is actually raw, uncompressed data. - if channel.sample_type != SampleType::F16 { - - debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4); - - if remaining < byte_count { - return Err(Error::invalid("not enough data")); - } - - tmp.extend_from_slice(&compressed[in_i..(in_i + byte_count)]); - - in_i += byte_count; - remaining -= byte_count; - - continue; - } - - // HALF channel - // The rest of the code assume we are manipulating u16 (2 bytes) values. - debug_assert_eq!(channel.sample_type, SampleType::F16); - debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::()); - - // Increase buffer to get new uncompressed datas. - tmp.resize(tmp.len() + byte_count, 0); - - let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; - let y_sample_count = channel.resolution.y() * channel.samples_per_pixel; - - let bytes_per_sample = size_of::(); - - let x_byte_count = x_sample_count * bytes_per_sample; - let cd_start = channel.tmp_start_index; - - for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) { - // Compute index in output (decompressed) buffer. We have 4 rows, because we will - // uncompress 4 by 4 data blocks. - let mut row0 = cd_start + y * x_byte_count; - let mut row1 = row0 + x_byte_count; - let mut row2 = row1 + x_byte_count; - let mut row3 = row2 + x_byte_count; - - // Move in pixel x line, 4 by 4. - for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) { - - // Extract the 4 by 4 block of 16-bit floats from the compressed buffer. - let mut s = [0u16; 16]; - - if remaining < 3 { - return Err(Error::invalid("not enough data")); - } - - // If shift exponent is 63, call unpack14 (ignoring unused bits) - if compressed[in_i + 2] >= (13 << 2) { - if remaining < 3 { - return Err(Error::invalid("not enough data")); - } - - unpack3(&compressed[in_i..(in_i + 3)], &mut s); - - in_i += 3; - remaining -= 3; - } else { - if remaining < 14 { - return Err(Error::invalid("not enough data")); - } - - unpack14(&compressed[in_i..(in_i + 14)], &mut s); - - in_i += 14; - remaining -= 14; - } - - if channel.quantize_linearly { - convert_to_linear(&mut s); - } - - // Get resting samples from the line to copy in temp buffer (without going outside channel). - let x_resting_sample_count = match x + 3 < x_sample_count { - true => BLOCK_SAMPLE_COUNT, - false => x_sample_count - x, - }; - - debug_assert!(x_resting_sample_count > 0); - debug_assert!(x_resting_sample_count <= BLOCK_SAMPLE_COUNT); - - // Copy rows (without going outside channel). - if y + 3 < y_sample_count { - cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count); - cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count); - cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count); - cpy_u8(&s, 12, &mut tmp, row3, x_resting_sample_count); - } else { - debug_assert!(y < y_sample_count); - - cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count); - - if y + 1 < y_sample_count { - cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count); - } - - if y + 2 < y_sample_count { - cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count); - } - } - - // Update row's array index to 4 next pixels. - row0 += BLOCK_X_BYTE_COUNT; - row1 += BLOCK_X_BYTE_COUNT; - row2 += BLOCK_X_BYTE_COUNT; - row3 += BLOCK_X_BYTE_COUNT; - } - } - } - - debug_assert_eq!(tmp.len(), expected_byte_size); - - // Interleave uncompressed channel data. - let mut out = Vec::with_capacity(expected_byte_size); - - for y in rectangle.position.y()..rectangle.end().y() { - for channel in &mut channel_data { - if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { - continue; - } - - // Find data location in temporary buffer. - let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; - let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample(); - let next_tmp_end_index = channel.tmp_end_index + bytes_per_line; - let channel_bytes = &tmp[channel.tmp_end_index..next_tmp_end_index]; - - channel.tmp_end_index = next_tmp_end_index; - - // TODO do not convert endianness for f16-only images - // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 - // We can support uncompressed data in the machine's native format - // if all image channels are of type HALF, and if the Xdr and the - // native representations of a half have the same size. - - if channel.sample_type == SampleType::F16 { - // TODO simplify this and make it memcpy on little endian systems - // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L943 - for mut f16_bytes in channel_bytes.chunks(std::mem::size_of::()) { - let native_endian_f16_bits = u16::read_from_little_endian(&mut f16_bytes).expect("memory read failed"); - out.write_as_native_endian(&native_endian_f16_bits).expect("memory write failed"); - } - } - else { - u8::write_slice(&mut out, channel_bytes) - .expect("write to in-memory failed"); - } - } - } - - for index in 1..channel_data.len() { - debug_assert_eq!( - channel_data[index - 1].tmp_end_index, - channel_data[index].tmp_start_index - ); - } - - debug_assert_eq!(out.len(), expected_byte_size); - - // TODO do not convert endianness for f16-only images - // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 - Ok(super::convert_little_endian_to_current(out, channels, rectangle)) -} - -pub fn compress( - channels: &ChannelList, - uncompressed: ByteVec, - rectangle: IntegerBounds, - optimize_flat_fields: bool, -) -> Result { - if uncompressed.is_empty() { - return Ok(Vec::new()); - } - - // TODO do not convert endianness for f16-only images - // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 - let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle); - let uncompressed = uncompressed.as_slice(); // TODO no alloc - - let mut channel_data = Vec::new(); - - let mut tmp_end_index = 0; - for channel in &channels.list { - let number_samples = channel.subsampled_resolution(rectangle.size); - - let sample_count = channel.subsampled_resolution(rectangle.size).area(); - let byte_count = sample_count * channel.sample_type.bytes_per_sample(); - - let channel = ChannelData { - tmp_start_index: tmp_end_index, - tmp_end_index, - y_sampling: channel.sampling.y(), - resolution: number_samples, - sample_type: channel.sample_type, - quantize_linearly: channel.quantize_linearly, - samples_per_pixel: channel.sampling.area(), - }; - - tmp_end_index += byte_count; - channel_data.push(channel); - } - - let mut tmp = vec![0_u8; uncompressed.len()]; - - debug_assert_eq!(tmp_end_index, tmp.len()); - - let mut remaining_uncompressed_bytes = uncompressed; - - for y in rectangle.position.y()..rectangle.end().y() { - for channel in &mut channel_data { - if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { - continue; - } - - let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; - let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample(); - let next_tmp_end_index = channel.tmp_end_index + bytes_per_line; - let target = &mut tmp[channel.tmp_end_index..next_tmp_end_index]; - - channel.tmp_end_index = next_tmp_end_index; - - // TODO do not convert endianness for f16-only images - // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 - // We can support uncompressed data in the machine's native format - // if all image channels are of type HALF, and if the Xdr and the - // native representations of a half have the same size. - - if channel.sample_type == SampleType::F16 { - - // TODO simplify this and make it memcpy on little endian systems - // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L640 - - for mut out_f16_bytes in target.chunks_mut(2) { - let native_endian_f16_bits = u16::read_from_native_endian(&mut remaining_uncompressed_bytes).expect("memory read failed"); - out_f16_bytes.write_as_little_endian(&native_endian_f16_bits).expect("memory write failed"); - } - } - else { - u8::read_slice(&mut remaining_uncompressed_bytes, target) - .expect("in-memory read failed"); - } - } - } - - // Generate a whole buffer that we will crop to proper size once compression is done. - let mut b44_compressed = vec![0; std::cmp::max(2048, uncompressed.len())]; - let mut b44_end = 0; // Buffer byte index for storing next compressed values. - - for channel in &channel_data { - // U32 and F32 channels are raw copied. - if channel.sample_type != SampleType::F16 { - - debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4); - - // Raw byte copy. - let slice = &tmp[channel.tmp_start_index..channel.tmp_end_index]; - slice.iter().copied().for_each(|b| { - b44_compressed[b44_end] = b; - b44_end += 1; - }); - - continue; - } - - // HALF channel - debug_assert_eq!(channel.sample_type, SampleType::F16); - debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::()); - - let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; - let y_sample_count = channel.resolution.y() * channel.samples_per_pixel; - - let x_byte_count = x_sample_count * size_of::(); - let cd_start = channel.tmp_start_index; - - for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) { - // - // Copy the next 4x4 pixel block into array s. - // If the width, cd.nx, or the height, cd.ny, of - // the pixel data in _tmpBuffer is not divisible - // by 4, then pad the data by repeating the - // rightmost column and the bottom row. - // - - // Compute row index in temp buffer. - let mut row0 = cd_start + y * x_byte_count; - let mut row1 = row0 + x_byte_count; - let mut row2 = row1 + x_byte_count; - let mut row3 = row2 + x_byte_count; - - if y + 3 >= y_sample_count { - if y + 1 >= y_sample_count { - row1 = row0; - } - - if y + 2 >= y_sample_count { - row2 = row1; - } - - row3 = row2; - } - - for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) { - let mut s = [0u16; 16]; - - if x + 3 >= x_sample_count { - let n = x_sample_count - x; - - for i in 0..BLOCK_SAMPLE_COUNT { - let j = min(i, n - 1) * 2; - - // TODO: Make [u8; 2] to u16 fast. - s[i + 0] = u16::from_ne_bytes([tmp[row0 + j], tmp[row0 + j + 1]]); - s[i + 4] = u16::from_ne_bytes([tmp[row1 + j], tmp[row1 + j + 1]]); - s[i + 8] = u16::from_ne_bytes([tmp[row2 + j], tmp[row2 + j + 1]]); - s[i + 12] = u16::from_ne_bytes([tmp[row3 + j], tmp[row3 + j + 1]]); - } - } else { - memcpy_u8_to_u16(&tmp[row0..(row0 + BLOCK_X_BYTE_COUNT)], &mut s[0..4]); - memcpy_u8_to_u16(&tmp[row1..(row1 + BLOCK_X_BYTE_COUNT)], &mut s[4..8]); - memcpy_u8_to_u16(&tmp[row2..(row2 + BLOCK_X_BYTE_COUNT)], &mut s[8..12]); - memcpy_u8_to_u16(&tmp[row3..(row3 + BLOCK_X_BYTE_COUNT)], &mut s[12..16]); - } - - // Move to next block. - row0 += BLOCK_X_BYTE_COUNT; - row1 += BLOCK_X_BYTE_COUNT; - row2 += BLOCK_X_BYTE_COUNT; - row3 += BLOCK_X_BYTE_COUNT; - - // Compress the contents of array `s` and append the results to the output buffer. - if channel.quantize_linearly { - convert_from_linear(&mut s); - } - - b44_end += pack( - s, - &mut b44_compressed[b44_end..(b44_end + 14)], - optimize_flat_fields, - !channel.quantize_linearly, - ); - } - } - } - - b44_compressed.resize(b44_end, 0); - - Ok(b44_compressed) -} - -#[cfg(test)] -mod test { - use crate::compression::b44; - use crate::compression::b44::{convert_from_linear, convert_to_linear}; - use crate::compression::ByteVec; - use crate::image::validate_results::ValidateResult; - use crate::meta::attribute::ChannelList; - use crate::prelude::f16; - use crate::prelude::*; - - #[test] - fn test_convert_from_to_linear() { - // Create two identical arrays with random floats. - let mut s1 = [0u16; 16]; - - for i in 0..16 { - s1[i] = f16::from_f32(rand::random::()).to_bits(); - } - - let s2 = s1.clone(); - - // Apply two reversible conversion. - convert_from_linear(&mut s1); - convert_to_linear(&mut s1); - - // And check. - for (u1, u2) in s1.iter().zip(&s2) { - let f1 = f16::from_bits(*u1).to_f64(); - let f2 = f16::from_bits(*u2).to_f64(); - assert!((f1 - f2).abs() < 0.01); - } - } - - fn test_roundtrip_noise_with( - channels: ChannelList, - rectangle: IntegerBounds, - ) -> (ByteVec, ByteVec, ByteVec) { - let byte_count = channels - .list - .iter() - .map(|c| { - c.subsampled_resolution(rectangle.size).area() * c.sample_type.bytes_per_sample() - }) - .sum(); - - assert!(byte_count > 0); - - let pixel_bytes: ByteVec = (0..byte_count).map(|_| rand::random()).collect(); - - assert_eq!(pixel_bytes.len(), byte_count); - - let compressed = b44::compress(&channels, pixel_bytes.clone(), rectangle, true).unwrap(); - - let decompressed = - b44::decompress(&channels, compressed.clone(), rectangle, pixel_bytes.len(), true).unwrap(); - - assert_eq!(decompressed.len(), pixel_bytes.len()); - - (pixel_bytes, compressed, decompressed) - } - - #[test] - fn roundtrip_noise_f16() { - let channel = ChannelDescription { - sample_type: SampleType::F16, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }; - - // Two similar channels. - let channels = ChannelList::new(smallvec![channel.clone(), channel]); - - let rectangle = IntegerBounds { - position: Vec2(-30, 100), - size: Vec2(322, 731), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - // On my tests, B44 give a size of 44.08% the original data (this assert implies enough - // pixels to be relevant). - assert_eq!(pixel_bytes.len(), 941528); - assert_eq!(compressed.len(), 415044); - assert_eq!(decompressed.len(), 941528); - } - - #[test] - fn roundtrip_noise_f16_tiny() { - let channel = ChannelDescription { - sample_type: SampleType::F16, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }; - - // Two similar channels. - let channels = ChannelList::new(smallvec![channel.clone(), channel]); - - let rectangle = IntegerBounds { - position: Vec2(0, 0), - size: Vec2(3, 2), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - // B44 being 4 by 4 block, compression is less efficient for tiny images. - assert_eq!(pixel_bytes.len(), 24); - assert_eq!(compressed.len(), 28); - assert_eq!(decompressed.len(), 24); - } - - #[test] - fn roundtrip_noise_f32() { - let channel = ChannelDescription { - sample_type: SampleType::F32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }; - - // Two similar channels. - let channels = ChannelList::new(smallvec![channel.clone(), channel]); - - let rectangle = IntegerBounds { - position: Vec2(-30, 100), - size: Vec2(322, 731), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - assert_eq!(pixel_bytes.len(), 1883056); - assert_eq!(compressed.len(), 1883056); - assert_eq!(decompressed.len(), 1883056); - assert_eq!(pixel_bytes, decompressed); - } - - #[test] - fn roundtrip_noise_f32_tiny() { - let channel = ChannelDescription { - sample_type: SampleType::F32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }; - - // Two similar channels. - let channels = ChannelList::new(smallvec![channel.clone(), channel]); - - let rectangle = IntegerBounds { - position: Vec2(0, 0), - size: Vec2(3, 2), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - assert_eq!(pixel_bytes.len(), 48); - assert_eq!(compressed.len(), 48); - assert_eq!(decompressed.len(), 48); - assert_eq!(pixel_bytes, decompressed); - } - - #[test] - fn roundtrip_noise_u32() { - let channel = ChannelDescription { - sample_type: SampleType::U32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }; - - // Two similar channels. - let channels = ChannelList::new(smallvec![channel.clone(), channel]); - - let rectangle = IntegerBounds { - position: Vec2(-30, 100), - size: Vec2(322, 731), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - assert_eq!(pixel_bytes.len(), 1883056); - assert_eq!(compressed.len(), 1883056); - assert_eq!(decompressed.len(), 1883056); - assert_eq!(pixel_bytes, decompressed); - } - - #[test] - fn roundtrip_noise_u32_tiny() { - let channel = ChannelDescription { - sample_type: SampleType::U32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }; - - // Two similar channels. - let channels = ChannelList::new(smallvec![channel.clone(), channel]); - - let rectangle = IntegerBounds { - position: Vec2(0, 0), - size: Vec2(3, 2), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - assert_eq!(pixel_bytes.len(), 48); - assert_eq!(compressed.len(), 48); - assert_eq!(decompressed.len(), 48); - assert_eq!(pixel_bytes, decompressed); - } - - #[test] - fn roundtrip_noise_mix_f32_f16_u32() { - let channels = ChannelList::new(smallvec![ - ChannelDescription { - sample_type: SampleType::F32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }, - ChannelDescription { - sample_type: SampleType::F16, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }, - ChannelDescription { - sample_type: SampleType::U32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - } - ]); - - let rectangle = IntegerBounds { - position: Vec2(-30, 100), - size: Vec2(322, 731), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - assert_eq!(pixel_bytes.len(), 2353820); - assert_eq!(compressed.len(), 2090578); - assert_eq!(decompressed.len(), 2353820); - } - - #[test] - fn roundtrip_noise_mix_f32_f16_u32_tiny() { - let channels = ChannelList::new(smallvec![ - ChannelDescription { - sample_type: SampleType::F32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }, - ChannelDescription { - sample_type: SampleType::F16, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - }, - ChannelDescription { - sample_type: SampleType::U32, - name: Default::default(), - quantize_linearly: false, - sampling: Vec2(1, 1), - } - ]); - - let rectangle = IntegerBounds { - position: Vec2(0, 0), - size: Vec2(3, 2), - }; - - let (pixel_bytes, compressed, decompressed) = - test_roundtrip_noise_with(channels, rectangle); - - assert_eq!(pixel_bytes.len(), 60); - assert_eq!(compressed.len(), 62); - assert_eq!(decompressed.len(), 60); - } - - #[test] - fn border_on_multiview() { - // This test is hard to reproduce, so we use the direct image. - let path = "tests/images/valid/openexr/MultiView/Adjuster.exr"; - - let read_image = read() - .no_deep_data() - .all_resolution_levels() - .all_channels() - .all_layers() - .all_attributes() - .non_parallel(); - - let image = read_image.clone().from_file(path).unwrap(); - - let mut tmp_bytes = Vec::new(); - image - .write() - .non_parallel() - .to_buffered(std::io::Cursor::new(&mut tmp_bytes)) - .unwrap(); - - let image2 = read_image - .from_buffered(std::io::Cursor::new(tmp_bytes)) - .unwrap(); - - image.assert_equals_result(&image2); - } -} -- cgit v1.2.3