From a990de90fe41456a23e58bd087d2f107d321f3a1 Mon Sep 17 00:00:00 2001 From: Valentin Popov Date: Fri, 19 Jul 2024 16:37:58 +0400 Subject: Deleted vendor folder --- vendor/exr/src/compression/pxr24.rs | 261 ------------------------------------ 1 file changed, 261 deletions(-) delete mode 100644 vendor/exr/src/compression/pxr24.rs (limited to 'vendor/exr/src/compression/pxr24.rs') diff --git a/vendor/exr/src/compression/pxr24.rs b/vendor/exr/src/compression/pxr24.rs deleted file mode 100644 index 9461c6a..0000000 --- a/vendor/exr/src/compression/pxr24.rs +++ /dev/null @@ -1,261 +0,0 @@ - -//! Lossy compression for F32 data, but lossless compression for U32 and F16 data. -// see https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPxr24Compressor.cpp - -// This compressor is based on source code that was contributed to -// OpenEXR by Pixar Animation Studios. The compression method was -// developed by Loren Carpenter. - - -// The compressor preprocesses the pixel data to reduce entropy, and then calls zlib. -// Compression of HALF and UINT channels is lossless, but compressing -// FLOAT channels is lossy: 32-bit floating-point numbers are converted -// to 24 bits by rounding the significand to 15 bits. -// -// When the compressor is invoked, the caller has already arranged -// the pixel data so that the values for each channel appear in a -// contiguous block of memory. The compressor converts the pixel -// values to unsigned integers: For UINT, this is a no-op. HALF -// values are simply re-interpreted as 16-bit integers. FLOAT -// values are converted to 24 bits, and the resulting bit patterns -// are interpreted as integers. The compressor then replaces each -// value with the difference between the value and its left neighbor. -// This turns flat fields in the image into zeroes, and ramps into -// strings of similar values. Next, each difference is split into -// 2, 3 or 4 bytes, and the bytes are transposed so that all the -// most significant bytes end up in a contiguous block, followed -// by the second most significant bytes, and so on. The resulting -// string of bytes is compressed with zlib. - -use super::*; - -use crate::error::Result; -use lebe::io::ReadPrimitive; - - -// scanline decompression routine, see https://github.com/openexr/openexr/blob/master/OpenEXR/IlmImf/ImfScanLineInputFile.cpp -// 1. Uncompress the data, if necessary (If the line is uncompressed, it's in XDR format, regardless of the compressor's output format.) -// 3. Convert one scan line's worth of pixel data back from the machine-independent representation -// 4. Fill the frame buffer with pixel data, respective to sampling and whatnot - - -#[cfg_attr(target_endian = "big", allow(unused, unreachable_code))] -pub fn compress(channels: &ChannelList, remaining_bytes: ByteVec, area: IntegerBounds) -> Result { - #[cfg(target_endian = "big")] { - return Err(Error::unsupported( - "PXR24 compression method not supported yet on big endian processor architecture" - )) - } - - if remaining_bytes.is_empty() { return Ok(Vec::new()); } - - // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 - let remaining_bytes = super::convert_current_to_little_endian(remaining_bytes, channels, area); - let mut remaining_bytes = remaining_bytes.as_slice(); // TODO less allocation - - let bytes_per_pixel: usize = channels.list.iter() - .map(|channel| match channel.sample_type { - SampleType::F16 => 2, SampleType::F32 => 3, SampleType::U32 => 4, - }) - .sum(); - - let mut raw = vec![0_u8; bytes_per_pixel * area.size.area()]; - - { - let mut write = raw.as_mut_slice(); - - // TODO this loop should be an iterator in the `IntegerBounds` class, as it is used in all compressio methods - for y in area.position.1..area.end().1 { - for channel in &channels.list { - if mod_p(y, usize_to_i32(channel.sampling.1)) != 0 { continue; } - - // this apparently can't be a closure in Rust 1.43 due to borrowing ambiguity - let sample_count_x = channel.subsampled_resolution(area.size).0; - macro_rules! split_off_write_slice { () => {{ - let (slice, rest) = write.split_at_mut(sample_count_x); - write = rest; - slice - }}; } - - let mut previous_pixel: u32 = 0; - - match channel.sample_type { - SampleType::F16 => { - let out_byte_tuples = split_off_write_slice!().iter_mut() - .zip(split_off_write_slice!()); - - for (out_byte_0, out_byte_1) in out_byte_tuples { - let pixel = u16::read_from_native_endian(&mut remaining_bytes).unwrap() as u32; - let [byte_1, byte_0] = (pixel.wrapping_sub(previous_pixel) as u16).to_ne_bytes(); - - *out_byte_0 = byte_0; - *out_byte_1 = byte_1; - previous_pixel = pixel; - } - }, - - SampleType::U32 => { - let out_byte_quadruplets = split_off_write_slice!().iter_mut() - .zip(split_off_write_slice!()) - .zip(split_off_write_slice!()) - .zip(split_off_write_slice!()); - - for (((out_byte_0, out_byte_1), out_byte_2), out_byte_3) in out_byte_quadruplets { - let pixel = u32::read_from_native_endian(&mut remaining_bytes).unwrap(); - let [byte_3, byte_2, byte_1, byte_0] = pixel.wrapping_sub(previous_pixel).to_ne_bytes(); - - *out_byte_0 = byte_0; - *out_byte_1 = byte_1; - *out_byte_2 = byte_2; - *out_byte_3 = byte_3; - previous_pixel = pixel; - } - }, - - SampleType::F32 => { - let out_byte_triplets = split_off_write_slice!().iter_mut() - .zip(split_off_write_slice!()) - .zip(split_off_write_slice!()); - - for ((out_byte_0, out_byte_1), out_byte_2) in out_byte_triplets { - let pixel = f32_to_f24(f32::read_from_native_endian(&mut remaining_bytes).unwrap()); - let [byte_2, byte_1, byte_0, _] = pixel.wrapping_sub(previous_pixel).to_ne_bytes(); - previous_pixel = pixel; - - *out_byte_0 = byte_0; - *out_byte_1 = byte_1; - *out_byte_2 = byte_2; - } - }, - } - } - } - - debug_assert_eq!(write.len(), 0, "bytes left after compression"); - } - - Ok(miniz_oxide::deflate::compress_to_vec_zlib(raw.as_slice(), 4)) -} - -#[cfg_attr(target_endian = "big", allow(unused, unreachable_code))] -pub fn decompress(channels: &ChannelList, bytes: ByteVec, area: IntegerBounds, expected_byte_size: usize, pedantic: bool) -> Result { - #[cfg(target_endian = "big")] { - return Err(Error::unsupported( - "PXR24 decompression method not supported yet on big endian processor architecture" - )) - } - - let options = zune_inflate::DeflateOptions::default().set_limit(expected_byte_size).set_size_hint(expected_byte_size); - let mut decoder = zune_inflate::DeflateDecoder::new_with_options(&bytes, options); - let raw = decoder.decode_zlib() - .map_err(|_| Error::invalid("zlib-compressed data malformed"))?; // TODO share code with zip? - - let mut read = raw.as_slice(); - let mut out = Vec::with_capacity(expected_byte_size.min(2048*4)); - - for y in area.position.1 .. area.end().1 { - for channel in &channels.list { - if mod_p(y, usize_to_i32(channel.sampling.1)) != 0 { continue; } - - let sample_count_x = channel.subsampled_resolution(area.size).0; - let mut read_sample_line = ||{ - if sample_count_x > read.len() { return Err(Error::invalid("not enough data")) } - let (samples, rest) = read.split_at(sample_count_x); - read = rest; - Ok(samples) - }; - - let mut pixel_accumulation: u32 = 0; - - match channel.sample_type { - SampleType::F16 => { - let sample_byte_pairs = read_sample_line()?.iter() - .zip(read_sample_line()?); - - for (&in_byte_0, &in_byte_1) in sample_byte_pairs { - let difference = u16::from_ne_bytes([in_byte_1, in_byte_0]) as u32; - pixel_accumulation = pixel_accumulation.overflowing_add(difference).0; - out.extend_from_slice(&(pixel_accumulation as u16).to_ne_bytes()); - } - }, - - SampleType::U32 => { - let sample_byte_quads = read_sample_line()?.iter() - .zip(read_sample_line()?) - .zip(read_sample_line()?) - .zip(read_sample_line()?); - - for (((&in_byte_0, &in_byte_1), &in_byte_2), &in_byte_3) in sample_byte_quads { - let difference = u32::from_ne_bytes([in_byte_3, in_byte_2, in_byte_1, in_byte_0]); - pixel_accumulation = pixel_accumulation.overflowing_add(difference).0; - out.extend_from_slice(&pixel_accumulation.to_ne_bytes()); - } - }, - - SampleType::F32 => { - let sample_byte_triplets = read_sample_line()?.iter() - .zip(read_sample_line()?).zip(read_sample_line()?); - - for ((&in_byte_0, &in_byte_1), &in_byte_2) in sample_byte_triplets { - let difference = u32::from_ne_bytes([0, in_byte_2, in_byte_1, in_byte_0]); - pixel_accumulation = pixel_accumulation.overflowing_add(difference).0; - out.extend_from_slice(&pixel_accumulation.to_ne_bytes()); - } - } - } - } - } - - if pedantic && !read.is_empty() { - return Err(Error::invalid("too much data")); - } - - Ok(super::convert_little_endian_to_current(out, channels, area)) -} - - - - -/// Conversion from 32-bit to 24-bit floating-point numbers. -/// Reverse conversion is just a simple 8-bit left shift. -pub fn f32_to_f24(float: f32) -> u32 { - let bits = float.to_bits(); - - let sign = bits & 0x80000000; - let exponent = bits & 0x7f800000; - let mantissa = bits & 0x007fffff; - - let result = if exponent == 0x7f800000 { - if mantissa != 0 { - // F is a NAN; we preserve the sign bit and - // the 15 leftmost bits of the significand, - // with one exception: If the 15 leftmost - // bits are all zero, the NAN would turn - // into an infinity, so we have to set at - // least one bit in the significand. - - let mantissa = mantissa >> 8; - (exponent >> 8) | mantissa | if mantissa == 0 { 1 } else { 0 } - } - else { // F is an infinity. - exponent >> 8 - } - } - else { // F is finite, round the significand to 15 bits. - let result = ((exponent | mantissa) + (mantissa & 0x00000080)) >> 8; - - if result >= 0x7f8000 { - // F was close to FLT_MAX, and the significand was - // rounded up, resulting in an exponent overflow. - // Avoid the overflow by truncating the significand - // instead of rounding it. - - (exponent | mantissa) >> 8 - } - else { - result - } - }; - - return (sign >> 8) | result; -} \ No newline at end of file -- cgit v1.2.3