From a990de90fe41456a23e58bd087d2f107d321f3a1 Mon Sep 17 00:00:00 2001 From: Valentin Popov Date: Fri, 19 Jul 2024 16:37:58 +0400 Subject: Deleted vendor folder --- vendor/image/src/animation.rs | 342 ------------------------------------------ 1 file changed, 342 deletions(-) delete mode 100644 vendor/image/src/animation.rs (limited to 'vendor/image/src/animation.rs') diff --git a/vendor/image/src/animation.rs b/vendor/image/src/animation.rs deleted file mode 100644 index aad57b4..0000000 --- a/vendor/image/src/animation.rs +++ /dev/null @@ -1,342 +0,0 @@ -use std::iter::Iterator; -use std::time::Duration; - -use num_rational::Ratio; - -use crate::error::ImageResult; -use crate::RgbaImage; - -/// An implementation dependent iterator, reading the frames as requested -pub struct Frames<'a> { - iterator: Box> + 'a>, -} - -impl<'a> Frames<'a> { - /// Creates a new `Frames` from an implementation specific iterator. - pub fn new(iterator: Box> + 'a>) -> Self { - Frames { iterator } - } - - /// Steps through the iterator from the current frame until the end and pushes each frame into - /// a `Vec`. - /// If en error is encountered that error is returned instead. - /// - /// Note: This is equivalent to `Frames::collect::>>()` - pub fn collect_frames(self) -> ImageResult> { - self.collect() - } -} - -impl<'a> Iterator for Frames<'a> { - type Item = ImageResult; - fn next(&mut self) -> Option> { - self.iterator.next() - } -} - -/// A single animation frame -#[derive(Clone)] -pub struct Frame { - /// Delay between the frames in milliseconds - delay: Delay, - /// x offset - left: u32, - /// y offset - top: u32, - buffer: RgbaImage, -} - -/// The delay of a frame relative to the previous one. -#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)] -pub struct Delay { - ratio: Ratio, -} - -impl Frame { - /// Constructs a new frame without any delay. - pub fn new(buffer: RgbaImage) -> Frame { - Frame { - delay: Delay::from_ratio(Ratio::from_integer(0)), - left: 0, - top: 0, - buffer, - } - } - - /// Constructs a new frame - pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame { - Frame { - delay, - left, - top, - buffer, - } - } - - /// Delay of this frame - pub fn delay(&self) -> Delay { - self.delay - } - - /// Returns the image buffer - pub fn buffer(&self) -> &RgbaImage { - &self.buffer - } - - /// Returns a mutable image buffer - pub fn buffer_mut(&mut self) -> &mut RgbaImage { - &mut self.buffer - } - - /// Returns the image buffer - pub fn into_buffer(self) -> RgbaImage { - self.buffer - } - - /// Returns the x offset - pub fn left(&self) -> u32 { - self.left - } - - /// Returns the y offset - pub fn top(&self) -> u32 { - self.top - } -} - -impl Delay { - /// Create a delay from a ratio of milliseconds. - /// - /// # Examples - /// - /// ``` - /// use image::Delay; - /// let delay_10ms = Delay::from_numer_denom_ms(10, 1); - /// ``` - pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self { - Delay { - ratio: Ratio::new_raw(numerator, denominator), - } - } - - /// Convert from a duration, clamped between 0 and an implemented defined maximum. - /// - /// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of - /// the result may be relative and very large delays have a coarse resolution. - /// - /// # Examples - /// - /// ``` - /// use std::time::Duration; - /// use image::Delay; - /// - /// let duration = Duration::from_millis(20); - /// let delay = Delay::from_saturating_duration(duration); - /// ``` - pub fn from_saturating_duration(duration: Duration) -> Self { - // A few notes: The largest number we can represent as a ratio is u32::MAX but we can - // sometimes represent much smaller numbers. - // - // We can represent duration as `millis+a/b` (where a < b, b > 0). - // We must thus bound b with `bĀ·millis + (b-1) <= u32::MAX` or - // > `0 < b <= (u32::MAX + 1)/(millis + 1)` - // Corollary: millis <= u32::MAX - - const MILLIS_BOUND: u128 = u32::max_value() as u128; - - let millis = duration.as_millis().min(MILLIS_BOUND); - let submillis = (duration.as_nanos() % 1_000_000) as u32; - - let max_b = if millis > 0 { - ((MILLIS_BOUND + 1) / (millis + 1)) as u32 - } else { - MILLIS_BOUND as u32 - }; - let millis = millis as u32; - - let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000); - Self::from_numer_denom_ms(a + b * millis, b) - } - - /// The numerator and denominator of the delay in milliseconds. - /// - /// This is guaranteed to be an exact conversion if the `Delay` was previously created with the - /// `from_numer_denom_ms` constructor. - pub fn numer_denom_ms(self) -> (u32, u32) { - (*self.ratio.numer(), *self.ratio.denom()) - } - - pub(crate) fn from_ratio(ratio: Ratio) -> Self { - Delay { ratio } - } - - pub(crate) fn into_ratio(self) -> Ratio { - self.ratio - } - - /// Given some fraction, compute an approximation with denominator bounded. - /// - /// Note that `denom_bound` bounds nominator and denominator of all intermediate - /// approximations and the end result. - fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) { - use std::cmp::Ordering::{self, *}; - assert!(0 < denom); - assert!(0 < denom_bound); - assert!(nom < denom); - - // Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which - // is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two - // values without fears of overflow. - - // Compare two fractions whose parts fit into a u32. - fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering { - (an * bd).cmp(&(bn * ad)) - } - - // Computes the nominator of the absolute difference between two such fractions. - fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 { - let c0 = an * bd; - let c1 = ad * bn; - - let d0 = c0.max(c1); - let d1 = c0.min(c1); - d0 - d1 - } - - let exact = (u64::from(nom), u64::from(denom)); - // The lower bound fraction, numerator and denominator. - let mut lower = (0u64, 1u64); - // The upper bound fraction, numerator and denominator. - let mut upper = (1u64, 1u64); - // The closest approximation for now. - let mut guess = (u64::from(nom * 2 > denom), 1u64); - - // loop invariant: ad, bd <= denom_bound - // iterates the Farey sequence. - loop { - // Break if we are done. - if compare_fraction(guess, exact) == Equal { - break; - } - - // Break if next Farey number is out-of-range. - if u64::from(denom_bound) - lower.1 < upper.1 { - break; - } - - // Next Farey approximation n between a and b - let next = (lower.0 + upper.0, lower.1 + upper.1); - // if F < n then replace the upper bound, else replace lower. - if compare_fraction(exact, next) == Less { - upper = next; - } else { - lower = next; - } - - // Now correct the closest guess. - // In other words, if |c - f| > |n - f| then replace it with the new guess. - // This favors the guess with smaller denominator on equality. - - // |g - f| = |g_diff_nom|/(gd*fd); - let g_diff_nom = abs_diff_nom(guess, exact); - // |n - f| = |n_diff_nom|/(nd*fd); - let n_diff_nom = abs_diff_nom(next, exact); - - // The difference |n - f| is smaller than |g - f| if either the integral part of the - // fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are - // the same but the fractional part is larger. - if match (n_diff_nom / next.1).cmp(&(g_diff_nom / guess.1)) { - Less => true, - Greater => false, - // Note that the nominator for the fractional part is smaller than its denominator - // which is smaller than u32 and can't overflow the multiplication with the other - // denominator, that is we can compare these fractions by multiplication with the - // respective other denominator. - Equal => { - compare_fraction( - (n_diff_nom % next.1, next.1), - (g_diff_nom % guess.1, guess.1), - ) == Less - } - } { - guess = next; - } - } - - (guess.0 as u32, guess.1 as u32) - } -} - -impl From for Duration { - fn from(delay: Delay) -> Self { - let ratio = delay.into_ratio(); - let ms = ratio.to_integer(); - let rest = ratio.numer() % ratio.denom(); - let nanos = (u64::from(rest) * 1_000_000) / u64::from(*ratio.denom()); - Duration::from_millis(ms.into()) + Duration::from_nanos(nanos) - } -} - -#[cfg(test)] -mod tests { - use super::{Delay, Duration, Ratio}; - - #[test] - fn simple() { - let second = Delay::from_numer_denom_ms(1000, 1); - assert_eq!(Duration::from(second), Duration::from_secs(1)); - } - - #[test] - fn fps_30() { - let thirtieth = Delay::from_numer_denom_ms(1000, 30); - let duration = Duration::from(thirtieth); - assert_eq!(duration.as_secs(), 0); - assert_eq!(duration.subsec_millis(), 33); - assert_eq!(duration.subsec_nanos(), 33_333_333); - } - - #[test] - fn duration_outlier() { - let oob = Duration::from_secs(0xFFFF_FFFF); - let delay = Delay::from_saturating_duration(oob); - assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); - } - - #[test] - fn duration_approx() { - let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1); - let delay = Delay::from_saturating_duration(oob); - assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); - - let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1); - let delay = Delay::from_saturating_duration(inbounds); - assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); - - let fine = - Duration::from_millis(0xFFFF_FFFF / 1000) + Duration::from_micros(0xFFFF_FFFF % 1000); - let delay = Delay::from_saturating_duration(fine); - // Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`. - assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000)); - } - - #[test] - fn precise() { - // The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits - // correct. But it may be expressed as 1_000_000/3 instead. - let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333); - let delay = Delay::from_saturating_duration(exceed); - assert_eq!(Duration::from(delay), exceed); - } - - #[test] - fn small() { - // Not quite a delay of `1 ms`. - let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1); - let duration = Duration::from(delay); - assert_eq!(duration.as_millis(), 0); - // Not precisely the original but should be smaller than 0. - let delay = Delay::from_saturating_duration(duration); - assert_eq!(delay.into_ratio().to_integer(), 0); - } -} -- cgit v1.2.3